
Two-variables First-Order Logic

Home Assignment 1

To hand in before or on October 13, 2015.

29 30

O
ct

o
b

er 1 2 3 4

5 6 7 8 9 10 11

12 13

Electronic versions (PDF only) can be sent by email to 〈chatain@lsv.ens-cachan.fr〉
and 〈schmitz@lsv.ens-cachan.fr〉, paper versions should be handed in on the 13th or
put in a mailbox at LSV, ENS Cachan. No delays.

The assignment contains a mandatory part (Exercises 1 to 5) and two different

options: either do the more theoretical Exercices 6 and 7, or do the more practical

Exercise 8.

This assignment is the occasion of investigating the expressive power of the two-
variables fragment of FO(AP, <,+1) on infinite words (i.e. over the (N, <) time flow).
The main result we are going to establish is that this logic is equivalent to LTL(AP,Y,X,P,F),
a linear temporal logic with past connectives.

1 First-Order Logic with Two Variables

Fix a countable set AP of atomic propositions. The syntax of FO2(AP, <,+1) is the
same as that of FO(AP, <,+1), but restricted to a set of variables X of cardinality
|X | = 2:

ϕ ::= > | p(x) | x = y | x < y | x+ 1 = y | ¬ϕ | ϕ ∨ ϕ | ∃x . ϕ

where p ranges over AP and x 6= y range over X . An atomic formula is one of
{>, p(x), x = y, x < y, x + 1 = y | p ∈ AP, x 6= y ∈ X}. We write ϕ(x) for a for-
mula with at most one free variable x and ϕ(x, y) for a formula with at most two free

variables x and y. We shall use the usual definitions for the dual connectives: ⊥ def
= ¬>,

ϕ∧ψ def
= ¬(¬ϕ∨¬ψ), ∀x.ϕ def

= ¬∃x.¬ϕ, and for implication ϕ⇒ψ
def
= ¬ϕ∨ψ. The quanti-

fier depth qd(ϕ) of a formula ϕ measures its maximal number of nested quantifiers, and is

defined inductively by qd(>) = qd(p(x)) = qd(x = y) = qd(x < y) = qd(x+1 = y)
def
= 0,

qd(¬ϕ)
def
= qd(ϕ), qd(ϕ ∨ ψ)

def
= max(qd(ϕ), qd(ψ)), and qd(∃x . ϕ)

def
= 1 + qd(ϕ).

The semantics of FO2(AP, <,+1) can be specialised in the case of infinite words w

in Σω, where Σ
def
= 2AP. We write w(i) for the ith letter of w, which is a set of atomic

mailto:chatain@lsv.ens-cachan.fr
mailto:schmitz@lsv.ens-cachan.fr

MPRI 1-22 Introduction to Verification September 29, 2015

propositions. A word w satisfies a formula ϕ under an assignment ν:X → N, noted
w |=ν ϕ, in the following inductive cases:

w |=ν > always, w |=ν p(x) iff p ∈ w(ν(x)) ,

w |=ν x = y iff ν(x) = ν(y) , w |=ν x < y iff ν(x) < ν(y) ,

w |=ν x+ 1 = y iff ν(x) + 1 = ν(y) , w |=ν ¬ϕ iff w 6|=ν ϕ ,

w |=ν ϕ ∨ ψ iff w |=ν ϕ or w |=ν ψ , w |=ν ∃x . ϕ iff ∃i ∈ N . w |=ν[x 7→i] ϕ ,

where ν[x 7→ i] denotes the assignment with ν[x 7→ i](x) = i and ν[x 7→ i](y) = ν(y) for
all y 6= x in X .

Exercise 1 (Basic Formulæ). Show that the formulæ ‘x + 2 ≤ y’ can be expressed in
FO2(<,AP,+1), where the intended semantics are

w |=ν x+ 2 ≤ y iff ν(x) + 2 ≤ ν(y) .

2 Linear Temporal Logic with Past

The first step of the proof of our main result relies on an extension of linear temporal
logic with past modalities. More precisely, we are going to work with the abstract syntax

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | Yϕ | Xϕ | Pϕ | Fϕ

where p ranges over AP. The Y and P modalities stand respectively for ‘yesterday’ and

‘in the past’. The dual connectives are defined as ⊥ def
= ¬>, ϕ ∧ ψ def

= ¬(¬ϕ ∨ ¬ψ),

Hϕ
def
= ¬P¬ϕ for ‘historically ϕ,’ and Gϕ

def
= ¬F¬ϕ for ‘globally ϕ.’

Here are the semantics of LTL(AP,Y,X,P,F) over infinite words w in Σω at a position
i in N:

w, i |= > always, w, i |= p iff p ∈ w(i) ,

w, i |= ¬ϕ iff w, i 6|= ϕ , w, i |= ϕ ∨ ψ iff w, i |= ϕ or w, i |= ψ ,

w, i |= Yϕ iff i > 0 and w, i− 1 |= ϕ , w, i |= Xϕ iff w, i+ 1 |= ϕ ,

w, i |= Pϕ iff ∃j . 0 ≤ j ≤ i and w, j |= ϕ , w, i |= Fϕ iff ∃j . i ≤ j and w, j |= ϕ .

Exercise 2 (Specification with Past Modalities). Consider the set of atomic propositions

AP
def
= {r, g} standing for ‘resource requested’ and ‘resource granted.’ We want to write

a specification for a service that receives requests to some resource and grants them.

1. Write an LTL(AP,Y,X,P,F) formula expressing that ‘every requested resource is
eventually granted.’

2. Write an LTL(AP,Y,X,P,F) formula expressing that ‘every granted resource was
requested beforehand.’

2

MPRI 1-22 Introduction to Verification September 29, 2015

3. Write an LTL(AP,X,U) formula for the previous specification, i.e. using only the
‘next’ and ‘until’ modalities.

In the following, we say that an LTL(AP,Y,X,P,F) formula ϕ and an FO2(AP, <,+1)
formula ψ(x) with one free variable are equivalent if, for all infinite words w in Σω and
all positions i in N, w, i |= ϕ if and only if w |=ν[x7→i] ψ(x). We say that they are
initially equivalent if for all w in Σω, w, 0 |= ϕ if and only if w |=ν[x 7→0] ψ(x). Note that
equivalence implies initial equivalence.

Exercise 3 (Standard Translation). Show that for any LTL(AP,Y,X,P,F) formula ϕ,
we can compute an equivalent FO2(AP, <,+1) formula STx(ϕ) of O(|ϕ|) size.

3 From FO2 to Past LTL

The main objective in this section is to prove the following theorem:

Theorem 1. For any FO2(AP, <,+1) formula ϕ(x), one can compute an equivalent
LTL(AP,Y,X,P,F) formula τ(ϕ) of 2O(|ϕ|·qd(ϕ)+1) size.

Exercise 4 (Guarded Formulæ). Let us warm up with a case where the translation
into Past LTL is relatively straightforward. An order formula is a formula from the set

O def
= {x+ 2 ≤ y, x+ 1 = y, x = y, y + 1 = x, y + 2 ≤ x}. An order guarded formula is a

formula of the form ∃y . o(x, y) ∧ ϕ(y) where o(x, y) is an order formula.

Claim 4.1. For any FO2(AP, <,+1) formula ϕ(y) with an equivalent LTL(AP,Y,X,P,F)
formula τ(ϕ), and any order formula o(x, y), one can compute an LTL(AP,Y,X,P,F)
formula τ(∃y . o(x, y) ∧ ϕ(y)) of O(|τ(ϕ)|) size.

Prove Claim 4.1.

Exercise 5 (From FO2 to Past LTL). Let us prove Theorem 1 by an ‘outer’ recurrence
on qd(ϕ), which uses a nested ‘inner’ structural induction on ϕ:

1. For the base case: provide a suitable τ(ϕ) when qd(ϕ) = 0.

For the recurrence step where qd(ϕ) > 0, we proceed by inner induction on the structure
of ϕ: the base case of the induction is ϕ(x) = ∃y.ϕ′(x, y). Although qd(ϕ′) < qd(ϕ), we
cannot apply the outer recurrence hypothesis directly on ϕ′(x, y) since it has two free
variables. We cannot apply Claim 4.1 directly either since ϕ′(x, y) might not be an order
guarded formula. Nevertheless, we are going to exhibit an FO2(AP, <) equivalent to ϕ,
where Claim 4.1 can be applied.

2. Show that ϕ is equivalent to∨
o∈O
∃y . o(x, y) ∧ ϕ′(x, y) .

3

MPRI 1-22 Introduction to Verification September 29, 2015

We still cannot apply the outer recurrence hypothesis on ϕ′(x, y) because it has two
free variables. Let ψ̄ = ψ0, . . . , ψn−1 be a finite sequence of formulæ. A Boolean formula
over ψ̄ is a formula defined by the abstract syntax

β ::= > | ¬β | β ∨ β | ψi

where 0 ≤ i < n; if the formulæ in ψ̄ are FO2(AP, <) formulæ, then β(ψ̄) is also an
FO2(AP, <) formula. Then we obtain an equivalent formula

ϕ ≡
∨
o∈O
∃y . o(x, y) ∧ β(ᾱ, δ̄, γ̄)

for some Boolean formula β, where

• ᾱ = α0(x, y), . . . , αr−1(x, y) are atomic subformulæ of ϕ′ with two free variables—
i.e. of the form x = y, x < y, y < x, x = y + 1, or y = x+ 1—,

• δ̄ = δ0(x), . . . , δs−1(x) are atomic or existential subformulæ of ϕ′ with only free x,
and

• γ̄ = γ0(y), . . . , γt−1(y) are atomic or existential subformulæ of ϕ′ with only free y.

Among these, the αi(x, y) and δi(x) subformulæ are preventing us from applying Claim 4.1.

3. Let us first focus on the αi(x, y) formulæ. Show that for all o(x, y) in O and i,
o(x, y)⇒ (αi(x, y) ≡ αoi) is valid for some αoi in {>,⊥}. This allows to rewrite ϕ
as

ϕ ≡
∨
o∈O
∃y . o(x, y) ∧ β(ᾱo, δ̄, γ̄) .

4. Let us turn to the δi(x) subformulæ. Show that ϕ can be rewritten as

ϕ ≡
∨

δ̄′∈{⊥,>}s

(∧
i<s

(δi ≡ δ′i) ∧
∨
o∈O
∃y . o(x, y) ∧ β(ᾱo, δ̄′, γ̄)

)
,

that is, where each δ̄′ is an s-tuple mixing > and ⊥ formulæ.

5. Complete the construction of τ(ϕ) for ϕ = ∃y.ϕ′(x, y).

6. Complete the proof and check that your formula τ(ϕ) has an appropriate size.

4

MPRI 1-22 Introduction to Verification September 29, 2015

Recall that you have a choice between answering both Exercise 6 and Exer-
cise 7, or answering Exercise 8.

4 Succinctness

The goal of this section is to show that, in spite of its exponential complexity, the
previous translation from FO2 to Past LTL is essentially optimal:

Theorem 2. There is a family (ϕn)n of FO2(AP, <,+1) sentences each of size O(n)
such that the smallest equivalent LTL(AP,Y,X,P,F) formula have size 2Ω(n).

As a preliminary, we are going to consider a family of ω-regular languages (Ln)n that
require very large Büchi automata.

Exercise 6 (Succinctness of Büchi Automata). Consider for each n the set of atomic

propositions APn+1
def
= {p0, . . . , pn} = APn] {pn} and the corresponding alphabet

Σn+1 = 2APn+1 . Given a symbol a in Σn+1, we write a|n
def
= {pi ∈ a | i < n} for

its projection on Σn.
We define for each n the language

Ln
def
= {w ∈ Σω

n+1 | ∀i, j ∈ N . w(i)|n = w(j)|n implies w(i) = w(j)} .

We want to prove that any generalised Büchi automaton A for Ln requires at least 22n

states.
Fix a permutation a0 · · · a2n−1 of the symbols in Σn. For every subsetK ⊆ {0, . . . , 2n−

1}, define the finite word wK
def
= b0 · · · b2n−1 over Σn+1, where bi is defined for each

0 ≤ i ≤ 2n − 1 by

bi
def
=

{
ai if i ∈ K
ai ∪ {pn} otherwise.

Hence K is the set of positions in wK where pn does not appear.

1. Show that, for all K, the infinite word (wK)ω is in Ln.

2. Show that, for all K 6= K ′, the infinite word wK(wK′)ω is not in Ln.

3. Deduce that any generalised Büchi automaton A for Ln has at least 22n states.

Exercise 7 (Succinctness of FO2).

1. Show that each language Ln from the previous exercise can be expressed by an
FO2(APn+1, <,+1) sentence ϕn of size O(n), i.e. Ln = {w ∈ Σω

n+1 | w |=ν ϕn}.

2. Using the fact that any LTL(AP,Y,X,P,F) formula ϕ has an equivalent generalised
Büchi automaton Aϕ of size 2O(|ϕ|), i.e. such that L(Aϕ) = {w ∈ 2AP | w, 0 |=
ϕ}, conclude that any LTL(AP,Y,X,P,F) formula equivalent to ϕn must be of
size 2Ω(n).

5

MPRI 1-22 Introduction to Verification September 29, 2015

5 CTL2 Model-Checking

We introduce a variant of CTL allowing one to express that a property must be satified
at some/every even position along a path.

The formulas of the logic CTL2 are defined by the following grammar:

ϕ ::= > | ¬ϕ | ϕ ∨ ϕ | EXϕ | EG2 ϕ | Eϕ U2 ϕ

where p ranges over a set AP of atomic propositions.
The intuition behind the EG2 and EU2 modalities is that they only care about the

even positions along runs. One can interpret a CTL2 formula ϕ by structural induction
directly on a state s of a transition system S = (S, T, I,AP, `) as follows:

S, s |= > always ,

S, s |= p iff p ∈ `(s) ,
S, s |= ¬ϕ iff S, s 6|= ϕ ,

S, s |= ϕ ∨ ψ iff S, s |= ϕ or S, s |= ψ ,

S, s |= EXϕ iff ∃s′ ∈ S . s→ s′ and S, s′ |= ϕ ,

S, s |= EG2 ϕ iff ∃σ = s0s1 · · · ∈ Sω a run starting at s0 = s s.t. ∀i . i mod 2 = 0

implies S, si |= ϕ ,

S, s |= Eϕ U2 ψ iff ∃σ = s0s1 · · · ∈ Sω a run starting at s0 = s such that

∃j . j mod 2 = 0 and S, sj |= ψ,

and ∀i . i mod 2 = 0 and i < j imply S, si |= ϕ .

Exercise 8 (Implementing a CTL2 Model-Checker).

1. Show that every (classical) CTL formula can be expressed as a CTL2 formula.

2. Write a model-checker for CTL2, i.e. a program that, given a transition system S,
a state s and a CTL2 formula ϕ, decides whether S, s |= ϕ.

You can program in your favorite programming language and you are free to choose
the appropriate data structures for formulæ and transition systems. No graphical
user interface is requested. It is even acceptable for the models and formulæ to be
defined directly in the code, provided they can easily be edited. Your code must
come with a few well-chosen examples.

Your clear, readable, amply annotated code must be sent by email to 〈chatain@lsv.ens-
cachan.fr〉 and 〈schmitz@lsv.ens-cachan.fr〉.

6

mailto:chatain@lsv.ens-cachan.fr
mailto:chatain@lsv.ens-cachan.fr
mailto:schmitz@lsv.ens-cachan.fr

	First-Order Logic with Two Variables
	Linear Temporal Logic with Past
	From FO2 to Past LTL
	Succinctness
	CTL2 Model-Checking

