
MPRI course 1-22, year 2015–2016

Basics of Model Checking

Sylvain Schmitz
LSV, ENS Cachan & CNRS & INRIA
September 21, 2015 (r6396M)

These rough notes cover the contents of the first half of an introductory course
on verification, also known as MPRI 1-22: Basics of Verification. These notes are
compiled from various sources; most notably:

Baier, C. and Katoen, J.P., 2008. Principles of Model Checking. MIT Press.

Diekert, V. and Gastin, P., 2008. First-order definable languages. In Flum, J.,
Grädel, E., and Wilke, T., editors, Logic and Automata: History and Perspectives,
volume 2 of Texts in Logic and Games, pages 261–306. Amsterdam University
Press. http://dare.uva.nl/document/154959#page=262.

Schnoebelen, Ph., 2003. The complexity of temporal logic model checking. In
Balbiani, Ph., Suzuki, N.Y., Wolter, F., and Zakharyaschev, M., editors, AiML’02),
4th Workshop on Advances in Modal Logics, pages 393–436. King’s College Publi-
cation. http://www.lsv.fr/Publis/PAPERS/PDF/Sch-aiml02.pdf. Cited on page 9.

Sistla, A.P. and Clarke, E.M., 1985. The complexity of propositional linear tem-
poral logics. Journal of the ACM, 32(3):733–749. doi:10.1145/3828.3837.

Cited on page 10.

Contents

1 Logical Specifications 3
1.1 System Behaviours . 3

1.1.1 Time Flows . 3
1.1.2 Linear Time Behaviours . 4
1.1.3 Branching Time Behaviours 4
1.1.4 The Model-Checking Problem(s) 5

1.2 First-Order Logic . 6
1.3 Modal Logic . 7

1.3.1 Standard Translation into First-Order 8
1.3.2 Model-Checking Branching Behaviours 8

Direct Semantics . 8
Complexity . 9

1.3.3 Model-Checking Linear Behaviours 10

2 References 13

https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-1-22
http://dare.uva.nl/document/154959#page=262
http://www.lsv.fr/Publis/PAPERS/PDF/Sch-aiml02.pdf
http://dx.doi.org/10.1145/3828.3837

Basics of Model Checking 2

Systems

Definition 0.1 (Transition System). A transition system is a tuple S = (S, T, I,AP, `)
where

• S = {s1, s2, . . . } is a set of states (finite or infinite)

• T ⊆ S × S is a set of transitions

• I ⊆ S is a set of initial states

• AP = {p, q, . . . } is a countable set of atomic propositions

• ` : S → 2AP is a labelling function.

A transition system is finitely branching if for every s ∈ S, the set {s′ ∈ S |
(s, s′) ∈ T} is finite. A transition system is finite if S is finite. A state s of a
transition system is a dead-end if there are no a, s′ such that (s, a, s′) ∈ T . Most
often, we will only consider transitions systems without dead-ends.

When specifying systems, we usually ignore the underlying set S of states, and
only talk about the ‘observable’ part of the system, namely atomic propositions.
There are several properties that one might want to verify on a given system. The
first ones are safety properties, like ‘no segmentation fault,’ ‘no division by zero,’
etc. The question they ask is wether a set of states BAD ⊆ S intersect the set of
states that are reachable from the initial states.

The lecture will focus on temporal properties, that differ from safety proper-
ties in the sense that they usually ask questions that do not necessarily reduce to
reachability problems.

We distinguish two families of temporal properties:

• linear-time properties, that talk about the infinite runs (or traces) of the sys-
tem, to be defined soon;

• branching-time properties, that talk about the computation tree of the system.

Definition 0.2 (Run). A run is a finite or infinite sequence σ = s0s1s2 · · · such
that (si, si+1) ∈ T for all i ≥ 0 and s0 ∈ I.

Chapter 1

Logical Specifications

In the model-checking paradigm, the desired properties of a transition system must
be expressed formally through logical formulæ. The logics we consider to this end
do not talk directly about the system, e.g. do not express ‘there is a state q and
it has two transitions to q1 and q2 respectively,’ which we take to be low-level
implementation details. Instead, the formulæ allow to reason about the system’s
behaviours, like ‘we can never see both propositions crit1 and crit2 hold simul-
taneously’ or ‘every request is eventually granted.’ Such behaviours are defined
formally using time flows associated to the system, see Section 1.1. We will then
consider two logics on such time flows, namely first-order logic (Section 1.2) and
modal logic (Section 1.3); the latter will be the basis for the more expressive tem-
poral logics of ??.

1.1 System Behaviours

We first define a general notion of time flows and temporal models. We shall see
then two natural ways of associating time flows to transition systems as a means
of representing their behaviours: linear time and branching time.

1.1.1 Time Flows

A time flow, also called a temporal frame, is a pair F = (T, <) where T is a
nonempty set of (time) points and < is an irreflexive transitive relation over T.

Example 1.1 (Time Flows). Two time flows are of particular interest in these notes
for verification purposes:

• (N, <) can be used to represent some infinite run of a sequential system;

• infinite trees for run-trees of sequential systems, which allow to reason si-
multaneously about several possible behaviours of the system.

Some other time flows of interest include

• ({0, . . . , n− 1}, <) for finite runs of sequential systems;

• (R, <) for runs of real-time sequential systems;

• partial orders (or Mazurkiewicz traces) for runs of distributed systems.

We might also want to reason about (Z, <), (Q, <), (ω2, <), . . .

3

Basics of Model Checking 4

We are actually interested in time flows where the points are decorated with
atomic propositions from some countable set AP. We define accordingly a tem-
poral model as a triple M = (T, <, h) where (T, <) is a time flow and h: AP→ 2T

is an assignment of the atomic propositions. Thus, if p is an atomic proposition in
AP, then h(p) ⊆ T provides the set of points in the time flow where p holds.

1.1.2 Linear Time Behaviours

Consider a transition system S = (S, T, I,AP, `). An infinite run σ = s0s1 · · ·
with (si, si+1) ∈ T for all i defines an infinite word `(σ)

def
= `(s0)`(s1) · · · over

Σ
def
= 2AP, which can be seen as a linear temporal model (N, <, h) where h(p)

def
=

{i ∈ N | p ∈ `(si)}.
We denote by

Runs(S)
def
= {`(σ) | σ(0) ∈ I} ⊆ Σω (1.1)

the set of linear temporal models of S that start in some initial state, i.e. some
state in I.

Example 1.2. Consider the following transition system with AP
def
= {a, r, h} stand-

ing respectively for ‘acknowledgement,’ ‘request,’ and ‘halt.’

{a} {r}

Figure 1.1: A finite transition system.

Its set of linear time behaviours is the language of infinite words
(
{a}{r}∗

)ω
+(

{a}{r}∗
)∗{r}ω, e.g. it contains among others the infinite words

{a}{r}{a}{r}{a}{r} · · · = ({a}{r})ω , (1.2)

{a}{r}{a}{r}{r}{a}{r}{r}{r} · · · {a}{r}i · · · =
⊙
i>0

{a}{r}i , (1.3)

{a}{r}{r}{r}{r}{r} · · · = {a}{r}ω . (1.4)

Thus, although Runs(S) is a regular language of infinite words (in a sense we will
see in ??), it contains some irregular words like (1.3).

1.1.3 Branching Time Behaviours

Consider again a transition system S = (S, T, I,AP, `). The unfolding of S from
a state s ∈ S is the infinite transition system tree(s)

def
= (S′, T ′, {s},AP, `′) with

S′
def
= {s0s1 · · · sn | n ≥ 0 ∧ s0 = s ∧ ∀0 ≤ i < n . (si, si+1) ∈ T}

the set of finite runs of S from s,

T ′
def
= {(s0 · · · sn, s0 · · · snsn+1) | (sn, sn+1) ∈ T} ,

`′(s0 · · · sn)
def
= `(sn) .

Put differently, tree(s) is an infinite unordered tree labelled by subsets of AP. It
can be seen as a branching temporal model (S′, <, h) where < is the transitive
closure of T ′ and h(p)

def
= {s0 · · · sn ∈ S′ | p ∈ `(sn)}.

Basics of Model Checking 5

We let similarly
Trees(S)

def
= {tree(s) | s ∈ I} (1.5)

be the set of unfoldings of S from its initial states.

Example 1.3. Consider again the transition system of Figure 1.1 in Example 1.2.
It has a single initial state, hence its set of trees contains a single tree, depicted in
Figure 1.2.

{a} {r}

{a}

{r}

{r}
{a}

{r}

{a}

{r}

{r}

{a}

{r}

Figure 1.2: The run-tree of the transition system of Figure 1.1.

Two remarks are in order:

1. Each tree tree(s) for a state s is a regular infinite tree, meaning that it con-
tains only finitely many non-isomorphic subtrees. In fact, tree(s) connects
its root s with isomorphic copies of tree(s′) for each s′ in T (s)

def
= {s′ ∈

S | (s, s′) ∈ T}. This should again be contrasted with the situation with
Runs(S), where individual runs like (1.3) do not necessarily have this prop-
erty.

2. The set of runs of S can still be extracted from Trees(S): formally, Runs(S) =⋃
s∈I Runs(tree(s)). The converse is in general not possible (van Glabbeek,

2001). In this sense, the set of trees is richer than the set of runs.

Remark 1.4 (Paths). Consider the very specific case of a transition system with
|T (s)| = 1 for all s ∈ S. Observe that, in that case, tree(s) is a linear temporal
model, i.e. linear time and branching time coincide. If S is finite, then, by the
Pigeonhole Principle, tree(s) is an ultimately periodic word of the form uvω for
some finite u, v ∈ Σ∗.

1.1.4 The Model-Checking Problem(s)

In the remainder of the course, we are going to define various logics with tem-
poral models as models. Assume we are given a notion of satisfaction M |= ϕ of
formulæ from some logical language L by temporal models. We focus on either
the linear time or the branching time behaviours of finite transition systems. Thus
all our model-checking problems take as input a finite transition system S and a
specification as a formula ϕ of the logic L.

We consider four questions on such inputs:

existential linear time model-checking written LMC∃(L): does w |= ϕ for some
w ∈ Runs(S)?

Basics of Model Checking 6

universal linear time model-checking written LMC∀(L): does w |= ϕ for all w ∈
Runs(S)?

existential branching time model-checking written BMC∃(L): does t |= ϕ for
some t ∈ Trees(S)?

universal branching time model-checking written BMC∀(L): does t |= ϕ for all
t ∈ Trees(S)?

Since our logics are usually closed under negation, observe that the existential
and universal variants are complement of each other. In the case of branching
time, if |I| ≤ 1, then the existential and universal problems coincide—this is not
true for linear time behaviours, why? Finally, in the case of paths, as discussed in
Remark 1.4, the linear time and branching time variants are equivalent.

Complexity-wise, we will always assume that the input transition system is rep-
resented ‘efficiently,’ using for instance a sparse adjacency matrix, so that the size
|S| of S will be defined as |S| + |T |. The size |ϕ| of the formula ϕ is simply the
number of nodes in the syntactic tree of ϕ. We may sometimes call the complexity
of the above decision problem the combined complexity of the model-checking
problem.

In many examples, specifications might be rather simple, and we are more inter-
ested in the question of how a model-checking algorithm scales to large systems.
If we fix the formula ϕ, we obtain a different decision problem for every ϕ. We will
say that a model-checking problem of a logic L is in a complexity class C in data
complexity if the problem is in C for every formula ϕ of L. The model-checking
problem is C-complete in data complexity if it is in C in data complexity, and there
is a formula ϕ such that it is C-hard.

1.2 First-Order Logic

We consider the logic FO(AP, <), whose formulas are defined by the following
grammar:

ϕ ::= p(x) | x = y | x < y | ¬ϕ | ϕ ∨ ϕ | ∃x . ϕ

where p ranges over AP and x, y are variables from some countable set Var.
A formula is closed if every variable is bound to an existential quantifier. We

freely use the derived connectives ∧, ∀, . . . as usual. We want to interpret formulas
over temporal models, and for this we need to see them as structures over which
we can interprete the symbols p ∈ AP, =, and <. This is done in the obvious way
by considering the ordered set of points.

Let M = (T, <, h) be a temporal model, ϕ a FO(AP, <) formula, and ν: Var→ T
be an assignment of first-order variables to points. The relation M |=ν ϕ is defined
inductively by

M |=ν p(x) iff ν(x) ∈ h(p) ,

M |=ν x = y iff ν(x) = ν(y) ,

M |=ν x < y iff ν(x) < ν(y) ,

M |=ν ¬ϕ iff M 6|=ν ϕ ,

M |=ν ϕ ∨ ψ iff M |=ν ϕ or M |=ν ψ ,

M |=ν ∃x . ϕ iff ∃i ∈ T .M |=ν[x 7→i] ϕ .

Basics of Model Checking 7

where ν[x 7→ i] maps x to i and y 6= x to ν(y).
A temporal model satisfies a closed formula ϕ, written M |= ϕ, if M |= ϕ for

some/any assignment ν.
For various reasons, FO is not a logic of choice for specification. First, FO for-

mulæ can quickly become difficult to write and to read. Second, the complexity of
decision problems rises very quickly: the various model-checking problems intro-
duced in Section 1.1.4 are all TOWER-complete (Stockmeyer, 1974) in combined
complexity, i.e. require time (or space) resources bounded by a tower of exponen-
tials whose height depends on the size of the input.

1.3 Modal Logic

As a preliminary to the temporal logics we will study in this course, we shall start
with a very simple modal logic ML. The formulæ of ML are defined by the abstract
syntax

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ♦ϕ

where p ranges over AP. Note that, unlike in FO, there are no explicit variables.
The semantics in terms of a temporal model M = (T, <, h) are relative to a time

point i in T: the model satisfies ϕ in i, written M, i |= ϕ, in the following inductive
cases:

M, i |= p iff i ∈ h(p) ,

M, i |= ¬ϕ iff M, i 6|= ϕ ,

M, i |= ϕ ∨ ψ iff M, i |= ϕ or M, i |= ψ ,

M, i |= ♦ϕ iff ∃i′ ∈ T . i < i′ and M, i′ |= ϕ .

The intention is for ♦ϕ to implicitly quantify on some <-related point where ϕ
should hold. Further logical connectives can be defined as usual, e.g. > def

= p∨¬p,
ϕ ∧ ψ def

= ¬(¬ϕ ∨ ¬ψ), etc. More interestingly, the dual �ϕ def
= ¬♦¬ϕ allows to

quantify universally: M, i |= �ϕ iff for all i′ ∈ T, if i < i′, then M, i′ |= ϕ.
Over pointed temporal frames, i.e. temporal frames with a distinguished point

i0 (like 0 in (N, <) or the root of a tree), we write M |= ϕ whenever M, i0 |= ϕ.

Example 1.5. Let us consider a specification for a server answering some requests.
As in Example 1.2, we set AP

def
= {a, r, h}.

Let us first work with universal linear time model checking. We can express the
following properties: the server never halts:

�¬h (1.6)

in all runs, the server always receives at least one request:

♦r (1.7)

in all runs, infinitely many acknowledgements are sent:

�♦a (1.8)

in all runs, every request is eventually followed by an acknowledgement:

�(r =⇒ ♦a) . (1.9)

Basics of Model Checking 8

Observe that the transition system of Figure 1.1 satisfies formulæ (1.6) and (1.7),
but violates (1.8) and (1.9): (1.4) is a counter-model for both.

When moving our attention to branching time model-checking, some unex-
pected effect occurs. Indeed, the tree in Figure 1.2 satisfies all of (1.6–1.9): at
every position where r holds, just choose the upward branch to find an a imme-
diately after. Note that the lowest branch in that tree yields the counter-model
run (1.4), but somehow the proposed formulæ fail to forbid this run when using
branching time semantics.

1.3.1 Standard Translation into First-Order

For every ML formula ϕ, there is a FO(AP, <) formula STx(ϕ) with a single free
variable x, such that over all temporal models M and points i

M, i |= ϕ iff M |=ν[x 7→i] STx(ϕ) (1.10)

for some/any assignment ν. Indeed, it suffices to implement the Tarski-style se-
mantics of ML into first-order logic:

STx(p)
def
= p(x) ,

STx(¬ϕ)
def
= ¬STx(ϕ) ,

STx(ϕ ∨ ψ)
def
= STx(ϕ) ∨ STx(ψ) ,

STx(♦ϕ)
def
= ∃y.x < y ∧ STy(ϕ) .

Exercise 1.1 (Standard Translation to FO). Translate the formulæ from Exam-
ple 1.5 into equivalent first-order formulæ.

The standard translation can be performed in logarithmic space, and entails the
decidability of all the model-checking problems for ML. However, as we are going
to see in the next two subsections, the general complexity bounds for FO are much
higher than those we can establish when restricting our attention to ML.

Exercise 1.2 (Transitive Frames). Show that the following formulæ ϕ are valid
over all time flows, i.e. that, for every temporal model M and point i, M, i |= ϕ:

�(p =⇒ q) =⇒ (�p =⇒ �q) (K)

♦♦p =⇒ ♦p (4)

1.3.2 Model-Checking Branching Behaviours

Let us focus for a moment on the model-checking problems for ML over branching
time behaviours of finite transition systems.

Direct Semantics

The first remark is that the semantics of ML can be reformulated directly in terms
of the transition system S = (S, T, I,AP, `) and states s ∈ S:

S, s |= p iff p ∈ `(s)
S, s |= ¬ϕ iff S, s 6|= ϕ

S, s |= ϕ ∨ ψ iff S, s |= ϕ or S, s |= ψ

S, s |= ♦ϕ iff ∃s′.(s, s′) ∈ T+ and S, s′ |= ϕ

Basics of Model Checking 9

where T+ denotes the transitive closure of T .
One can indeed check by induction on ϕ that

S, s |= ϕ iff tree(s), s |= ϕ . (1.11)

The non-trivial case of the induction occurs for formulæ ♦ϕ: by definition, tree(s), s |=
♦ϕ iff there exists a point ss1 · · · sn such that tree(s), ss1 · · · sn |= ϕ. However,
the latter satisfaction relation holds iff tree(sn), sn |= ϕ (because the subtree at
ss1 · · · sn of tree(s) is isomorphic to tree(sn)), which by induction hypothesis is iff
S, sn |= ϕ.

Complexity

The main result pertaining to the branching time model-checking problems is their
tractability:

Theorem 1.6. BMC∃(ML) and BMC∀(ML) are P-complete.

The P-easiness part of the statement was observed by Clarke et al. (1986) (and
generalised by Arnold and Crubille (1988) to the alternation-free fragment of the
modal µ-calculus):

Proposition 1.7. The branching-time model-checking problems for finite transition
systems S and ML formulæ ϕ can be answered in O(|S| · |ϕ|).

Proof. Define for a transition system S = (S, T, I,AP, `) the satisfaction set of a
ML formula ϕ as the subset of S that satisfies ϕ, i.e. as

JϕKS
def
= {s ∈ S | S, s |= ϕ} . (1.12)

Then existential model-checking reduces to checking JϕKS ∩ I 6= ∅ and universal
model-checking to checking I ⊆ JϕKS.

An O(|S| · |ϕ|) algorithm can then compute JϕKS by induction on ϕ, where each
step can be performed in O(|S|):

JpKS = {s ∈ S | p ∈ `(s)} ,
J¬ϕKS = S \ JϕKS ,

Jϕ ∨ ψKS = JϕKS ∪ JψKS ,

J♦ϕKS = (T−1)+
(
JϕKS

)
.

This last computation of the transitive pre-image of JϕKS by T can use for instance
a depth-first search algorithm.

The P-hardness of BMC∃(ML) entails however that the problem is unlikely to be
efficiently parallelisable (see Schnoebelen, 2003, Theorem 3.8):

Proposition 1.8. BMC∃(ML) and BMC∀(ML) are P-hard.

Proof. The proof exhibits a reduction in logarithmic space from the circuit value
problem to BMC∃(ML). In fact, we reduce from a retricted variant of the circuit
value problem, where the circuit is monotone (only ‘and’ and ‘or’ gates), alternating
(along every branch of the circuit, we alternate between ‘and’ and ‘or’ gates), and
synchronised (the circuit is organised into layers where each gate leads to gates
of the next layer and all the branches have the same length); this variant is still

Basics of Model Checking 10

layer 4:

layer 3:

layer 2:

layer 1:

layer 0:

∧

∨ ∨ ∨

∧ ∧ ∧ ∧ ∧

∨ ∨ ∨

0 1

Figure 1.3: A monotone alternating synchronised Boolean circuit.

P-complete (Greenlaw et al., 1995, Theorem 6.2.5). We illustrate the reduction
on the particular instance of Figure 1.3.

Note that any Boolean circuit C can be seen as a finite transition system SC

with the gates as states and the input gate as initial state. Furthermore, we use
AP

def
= {1} and label the 1 exit gate by it, and all the other states by the empty set.

The additional restriction to monotone alternating synchronous circuits allows
us to compute the value of the circuit in ML. The formula only depends on the
number of layers and on the labelling (by ‘and’ or ‘or’) of the entry gate; in the
case of Figure 1.3, the value of C is 1 if and only if

SC |= �♦�♦1 .

1.3.3 Model-Checking Linear Behaviours

Let us turn now to linear time behaviours. As mentioned earlier, linear time be-
haviours can be irregular, and as a consequence, the model-checking problems
tend to be harder:

Theorem 1.9. LMC∃(ML) is NP-complete and LMC∀(ML) is coNP-complete.

Proof of NP-easiness. We shall not develop this proof in full. The crux of the argu-
ment is a small model property of ML over linear temporal models: if a formula
ϕ is satisfied by some infinite word in Σω, then there exists an ultimately pe-
riodic word uvω where u and v are finite words in Σ∗ of polynomial length in
|ϕ| (Ono and Nakamura, 1980; Sistla and Clarke, 1985). This can be refined into
non-deterministically finding a ultimately periodic word in Runs(S) with polyno-
mial representation, and then checking in polynomial time using Remark 1.4 and
Proposition 1.7 that this word is a model of ϕ.

Proof of NP-hardness. We reduce from the propositional satisfiability problem 3SAT.
Given a 3SAT instance, i.e. a propositional formula Ψ =

∧
1≤i≤m `i1 ∨ `i2 ∨ `i3 over

the set of variables {x1, . . . , xn}, where the literals `ij are either positive ‘xk ’ or
negative ‘¬xk ’, we construct a finite transition system Sn and a ML formula ϕΨ

such that there exists a run in Runs(Sn) that satisfies ϕΨ iff Ψ is satisfiable.
The transition system Sn over AP

def
= {x1, x̄1, . . . , xn, x̄n} is depicted in Fig-

ure 1.4. Any run over Sn describes an assignment of the variables xk ∈ {x1, . . . , xn},

Basics of Model Checking 11

to true if we go through the state with label {xk} and to false if we go through
the state with label {x̄k}. The purpose of the formula ϕΨ is to check whether the

{x1}

{x̄1}

{x2}

{x̄2}

{xn}

{x̄n}

Figure 1.4: The transition system Sn. The runs in Runs(Sn) are in bijection with
assignments of {x1, . . . , xn}.

assignment described by the run in Sn satisfies Ψ. We define therefore

ϕΨ
def
=

∧
1≤i≤m

♦`′i1 ∨ ♦`′i2 ∨ ♦`′i3

where `′ij
def
= xk if `ij = xk and `′ij

def
= x̄k if `ij = ¬xk.

Exercise 1.3 (Trichotomous Frames). A time flow (T, <) is linear if the relation <
is total, i.e. if for all points i 6= j, i < j or j < i; a temporal model M = (T, <, h)
is then linear if (T, <) is linear.

Show that the following formula is valid over all linear temporal models at every
point:

♦p ∧ ♦q =⇒ ♦(p ∧ ♦q) ∨ ♦(p ∧ q) ∨ ♦(q ∧ ♦p) (.3)

Conversely, consider a time flow (T, <) and a point i, and assume M, i |= .3 for
all temporal models over (T, <). Consider the generated subframe Ti at i, i.e.
consider the restriction of T to the points j such that i < j. Show that Ti is linear.

Basics of Model Checking 12

Chapter 2

References

Arnold, A. and Crubille, P., 1988. A linear algorithm to solve fixed-point equa-
tions on transition systems. Information Processing Letters, 29(2):57–66. doi:10.1016/
0020-0190(88)90029-4. Cited on page 9.

Baier, C. and Katoen, J.P., 2008. Principles of Model Checking. MIT Press.

Clarke, E.M., Emerson, E.A., and Sistla, A.P., 1986. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Program-
ming Languages and Systems, 8(2):244–263. doi:10.1145/5397.5399. Cited on page 9.

Diekert, V. and Gastin, P., 2008. First-order definable languages. In Flum, J., Grädel, E.,
and Wilke, T., editors, Logic and Automata: History and Perspectives, volume 2 of Texts
in Logic and Games, pages 261–306. Amsterdam University Press. http://dare.uva.nl/
document/154959#page=262.

Greenlaw, R., Hoover, H.J., and Ruzzo, W.L., 1995. Limits to Parallel Computation: P-
Completeness Theory. Oxford University Press. Cited on page 10.

Ono, H. and Nakamura, A., 1980. On the size of refutation Kripke models for some linear
modal and tense logics. Studia Logica, 39(4):325–333. doi:10.1007/BF00713542. Cited
on page 10.

Schnoebelen, Ph., 2003. The complexity of temporal logic model checking. In Balbiani,
Ph., Suzuki, N.Y., Wolter, F., and Zakharyaschev, M., editors, AiML’02), 4th Workshop on
Advances in Modal Logics, pages 393–436. King’s College Publication. http://www.lsv.fr/
Publis/PAPERS/PDF/Sch-aiml02.pdf. Cited on page 9.

Sistla, A.P. and Clarke, E.M., 1985. The complexity of propositional linear temporal
logics. Journal of the ACM, 32(3):733–749. doi:10.1145/3828.3837. Cited on page 10.

Stockmeyer, L.J., 1974. The complexity of decision problems in automata theory and logic.
PhD thesis, MIT, Department of Electrical Engineering, MIT. Cited on page 7.

van Glabbeek, R.J., 2001. The linear time—branching time spectrum I. the seman-
tics of concrete, sequential processes. In Bergstra, J.A., Ponse, A., and Smolka, S.A.,
editors, Handbook of Process Algebra, chapter 1, pages 3–99. Elsevier. doi:10.1016/
B978-044482830-9/50019-9. Cited on page 5.

13

http://dx.doi.org/10.1016/0020-0190(88)90029-4
http://dx.doi.org/10.1016/0020-0190(88)90029-4
http://dx.doi.org/10.1145/5397.5399
http://dare.uva.nl/document/154959#page=262
http://dare.uva.nl/document/154959#page=262
http://dx.doi.org/10.1007/BF00713542
http://www.lsv.fr/Publis/PAPERS/PDF/Sch-aiml02.pdf
http://www.lsv.fr/Publis/PAPERS/PDF/Sch-aiml02.pdf
http://dx.doi.org/10.1145/3828.3837
http://dx.doi.org/10.1016/B978-044482830-9/50019-9
http://dx.doi.org/10.1016/B978-044482830-9/50019-9

	Logical Specifications
	System Behaviours
	Time Flows
	Linear Time Behaviours
	Branching Time Behaviours
	The Model-Checking Problem(s)

	First-Order Logic
	Modal Logic
	Standard Translation into First-Order
	Model-Checking Branching Behaviours
	Model-Checking Linear Behaviours

	References

