MPRI 2-27-1 Exam

Duration: 3 hours
 Written documents are allowed. The numbers in front of questions are indicative of hardness or duration.

1 Right Linear Monadic CFTGs

The motivation for this section is to understand tree insertion grammars, a restriction of tree adjoining grammars defined by Schabes and Waters in 1995. We shall work with the more convenient (and cleaner) framework of context-free tree grammars, and study the corresponding formalism of single-sided linear monadic context-free tree grammars (recall that tree adjoining grammars are roughly equivalent to linear monadic context-free tree grammars). To further simplify matters, we shall work with right grammars.

Definition 1 (Right Contexts). We work with three disjoint ranked alphabets:

- N_{0} is a nullary nonterminal alphabet consisting of symbols of rank 0 ,
- N_{R} is a right nonterminal alphabet consisting of symbols of rank 1 , and
- \mathcal{F} is a ranked terminal alphabet.

We use A_{0}, B_{0}, \ldots to denote elements of $N_{0}, A_{R}, B_{R}, \ldots$ for elements of N_{R}, and $f^{(k)}, \ldots$ for elements of \mathcal{F}_{k} the sub-alphabet of \mathcal{F} with symbols of rank k. Let us define $N \stackrel{\text { def }}{=} N_{0} \uplus N_{R}$ and $V \stackrel{\text { def }}{=} N \uplus \mathcal{F}$; then e, e_{1}, \ldots denote trees in $T(V)$ and t, t_{1}, \ldots terminal trees in $T(\mathcal{F})$.

The set of right contexts $\mathcal{C}_{R}(V)$ is made of contexts C where \square is the rightmost leaf. In other words, \square is a right context in $\mathcal{C}_{R}(V)$, and if $X^{(k)}$ is a symbol of arity $k>0$ in V, C is a right context in $\mathcal{C}_{R}(V)$, and e_{1}, \ldots, e_{k-1} are trees in $T(V)$ then $X^{(k)}\left(e_{1}, \ldots, e_{k-1}, C\right)$ is also a right context in $\mathcal{C}_{R}(V)$.

Definition 2 (Right Linear Monadic CFTGs). A right linear monadic context-free tree grammar is a tuple $\mathcal{G}=\left\langle N_{0}, N_{R}, \mathcal{F}, S_{0}, R\right\rangle$ where N_{0}, N_{R}, and \mathcal{F} are as above, $S_{0} \in N_{0}$ is the axiom, and R is a finite set of rules of form:

- $A_{0} \rightarrow e$ with $A_{0} \in N_{0}$ and $e \in T(V)$, or
- $A_{R}(y) \rightarrow C[y]$ with $A_{R} \in N_{R}$ and $C \in \mathcal{C}_{R}(V) ; y$ is called the parameter of the rule.

The tree language of \mathcal{G} is

$$
L(\mathcal{G}) \stackrel{\text { def }}{=}\left\{t \in T(\mathcal{F}) \mid S_{0} \stackrel{R^{\star}}{\Rightarrow} t\right\} .
$$

Exercise 1 (Yields and Branches). Given a tree language $L \subseteq T(\mathcal{F})$, let Yield $(L) \stackrel{\text { def }}{=}$ $\bigcup_{t \in L} \operatorname{Yield}(t)$ and define inductively

$$
\operatorname{Yield}\left(a^{(0)}\right) \stackrel{\text { def }}{=} a \quad \operatorname{Yield}\left(f^{(k)}\left(t_{1}, \ldots, t_{k}\right) \stackrel{\text { def }}{=} \operatorname{Yield}\left(t_{1}\right) \cdots \operatorname{Yield}\left(t_{k}\right)\right.
$$

Hence $\operatorname{Yield}(t) \in \mathcal{F}_{0}^{*}$ is a word over \mathcal{F}_{0}, and $\operatorname{Yield}(L) \subseteq \mathcal{F}_{0}^{*}$ is a word language over \mathcal{F}_{0}.
[1] 1. What is the word language $\operatorname{Yield}(L(\mathcal{G}))$ of the CFTG with rules

$$
\begin{aligned}
S_{0} & \rightarrow A_{R}\left(c^{(0)}\right) \\
A_{R}(y) & \rightarrow f^{(2)}\left(a^{(0)}, A_{R}\left(f^{(2)}\left(a^{(0)}, y\right)\right)\right) \\
A_{R}(y) & \rightarrow f^{(2)}\left(b^{(0)}, A_{R}\left(f^{(2)}\left(b^{(0)}, y\right)\right)\right) \\
A_{R}(y) & \rightarrow y
\end{aligned}
$$

where $N_{0} \stackrel{\text { def }}{=}\left\{S_{0}\right\}, N_{R} \xlongequal{\text { def }}\left\{A_{R}\right\}$, and $\mathcal{F} \stackrel{\text { def }}{=}\left\{f^{(2)}, a^{(0)}, b^{(0)}, c^{(0)}\right\}$?
Solution: This is the language of even-length palindromes over $\{a, b\}$ suffixed with a $c: \operatorname{Yield}(L(\mathcal{G}))=\left\{w w^{R} c \mid w \in\{a, b\}^{*}\right\}$ where \cdot^{R} denotes the mirror operation on words.
[2] 2. Show that there exists a right linear monadic CFTG \mathcal{G} such that $L(\mathcal{G})$ is not a regular tree language.
Hint: Recall that, if $L \subseteq T(\mathcal{F})$ is a regular tree language, then its set of branches $\operatorname{Branches}(L)$ is a regular word language over \mathcal{F}. We define $\operatorname{Branches}(L) \subseteq \mathcal{F}^{*}$ by $\operatorname{Branches}(L) \stackrel{\text { def }}{=} \bigcup_{t \in L} \operatorname{Branches}(t)$ and in turn

$$
\operatorname{Branches}\left(a^{(0)}\right) \stackrel{\text { def }}{=}\{a\} \quad \operatorname{Branches}\left(f^{(k)}\left(t_{1}, \ldots, t_{k}\right)\right) \stackrel{\text { def }}{=} \bigcup_{1 \leq j \leq k}\{f\} \cdot \operatorname{Branches}\left(t_{j}\right) .
$$

Solution: Consider the right linear monadic CFTG with rules

$$
\begin{aligned}
S_{0} & \rightarrow A_{R}\left(c^{(0)}\right) \\
A_{R}(y) & \rightarrow a^{(1)}\left(A_{R}\left(a^{(1)}(y)\right)\right) \\
A_{R}(y) & \rightarrow b^{(1)}\left(A_{R}\left(b^{(1)}(y)\right)\right) \\
A_{R}(y) & \rightarrow y
\end{aligned}
$$

where $N_{0} \stackrel{\text { def }}{=}\left\{S_{0}\right\}, N_{R} \stackrel{\text { def }}{=}\left\{A_{R}\right\}$, and $\mathcal{F} \stackrel{\text { def }}{=}\left\{a^{(1)}, b^{(1)}, c^{(0)}\right\}$.
Its yield language $\{c\}$ is uninteresting, but

$$
\operatorname{Branches}(L(\mathcal{G}))=\left\{w w^{R} c \mid w \in\{a, b\}^{*}\right\}
$$

is not a regular word language, and thus $L(\mathcal{G})$ is not a regular tree language. This could be generalised to arbitrary context-free word languages (assuming $\varepsilon^{(0)}$ belongs to \mathcal{F}).

Exercise 2 (Tree Insertion Grammars). Consider the tree adjoining grammar depicted below. Note that its sole auxiliary tree β_{1} is of the form $C\left[\mathrm{VP}_{*}^{\text {na }}\right]$ where C is a right context; this grammar is actually a right tree insertion grammar.

[1] 1. Provide an equivalent right linear monadic CFTG.

Solution: It suffices to apply the translation from TAGs to linear monadic CFTG from Section 5.1.3 of the lecture notes:

$$
\begin{aligned}
S \downarrow & \rightarrow \mathrm{~S}^{(2)}\left(N P \downarrow, \overline{V P}\left(\mathrm{VP}^{(2)}\left(\mathrm{VBZ}^{(1)}\left(\text { tells }^{(0)}\right), N P \downarrow\right)\right)\right) \\
N P \downarrow & \rightarrow \mathrm{NP}^{(1)}\left(\mathrm{NNP}^{(1)}\left(\text { Donald }^{(0)}\right)\right) \\
N P \downarrow & \rightarrow \mathrm{NP}^{(1)}\left(\mathrm{NNS}^{(1)}\left(\text { lies }^{(0)}\right)\right) \\
\overline{V P}(y) & \rightarrow \overline{V P}\left(\mathrm{VP}^{(2)}\left(\mathrm{RB}^{(1)}\left(\text { really }^{(0)}\right), y\right)\right) \\
\overline{V P}(y) & \rightarrow y,
\end{aligned}
$$

with $N_{0} \stackrel{\text { def }}{=}\{S \downarrow, N P \downarrow\}, N_{R} \stackrel{\text { def }}{=}\{\overline{V P}\}$, and $\mathcal{F} \stackrel{\text { def }}{=}\left\{\mathrm{S}^{(2)}, \mathrm{VP}^{(2)}, \mathrm{VBZ}^{(1)}\right.$, tells $^{(0)}, \mathrm{NP}^{(1)}$, $\mathrm{NNP}^{(1)}$, Donald ${ }^{(0)}$, $\mathrm{NNS}^{(1)}$, lies $^{(0)}$, RB $^{(1)}$, really $\left.^{(0)}\right\}$.
Of course, the language of the TAG is regular, so other solutions are possible - but
somewhat less elegant. For instance,

$$
\begin{aligned}
q_{S} & \rightarrow \mathrm{~S}^{(2)}\left(q_{N P}, q_{V P}\right) \\
q_{V P} & \rightarrow \mathrm{VP}^{(2)}\left(\mathrm{RB}^{(1)}\left(\text { really }^{(0)}\right), q_{V P}\right) \\
q_{V P} & \rightarrow \mathrm{VP}^{(2)}\left(\mathrm{VBZ}^{(1)}\left(\text { tells }^{(0)}\right), q_{N P}\right) \\
q_{N P} & \rightarrow \mathrm{NP}^{(1)}\left(\mathrm{NNP}^{(1)}\left(\text { Donald }^{(0)}\right)\right) \\
q_{N P} & \rightarrow \mathrm{NP}^{(1)}\left(\mathrm{NNS}^{(1)}\left(\text { lies }^{(0)}\right)\right)
\end{aligned}
$$

with $N_{0} \stackrel{\text { def }}{=}\left\{q_{S}, q_{N P}, q_{V P}\right\}$ and $N_{R} \stackrel{\text { def }}{=} \emptyset$.
[1] 2. Complete the TIG or your CFTG (in a linguistically informed manner) in order to also generate the sentence 'Donald tells the best lies.'

Solution: It's quicker to modify the right TIG with an additional auxiliary tree $\beta_{2} \stackrel{\text { def }}{=}$ $\mathrm{NP}^{(3) \mathrm{na}}\left(\mathrm{DT}^{(1)}\left(t h e^{(0)}\right), \mathrm{JJS}^{(1)}\left(\right.\right.$ best $\left.\left.^{(0)}\right), \mathrm{NP}_{*}^{\text {na }}\right)$; it makes sense to force the presence of 'the' before a superlative, though it does not capture e.g. 'his best efforts'. Adding null adjunction annotations forbids to stack superlatives (one would expect a coordination for this, as in 'the best and cleverest lies').
Modifying the CFTG involves introducing new right nonterminals $\overline{N P}$ in several places.

Exercise 3 (Context-Free Word Languages). We show in this exercise that, although right linear monadic CFTGs can generate non-regular tree languages, their expressive power is just as limited as that of finite tree automata when it comes to word languages.
[3] 1. Show for any context-free language L, there is a right linear monadic context-free tree $\operatorname{grammar} \mathcal{G}^{\prime}$ with $L \backslash\{\varepsilon\}=\operatorname{Yield}\left(L\left(\mathcal{G}^{\prime}\right)\right)$.

Solution: This can be argued from well-known theorems: if L is context-free, then $L \backslash\{\varepsilon\}$ is the yield $\operatorname{Yield}(L(\mathcal{A}))$ of some finite tree automaton \mathcal{A} (c.f. Definition 3.6 of the lecture notes, where ε is also handled by having $\varepsilon^{(0)}$ in \mathcal{F}), which in turn is a right linear monadic CFTG with $N_{0} \stackrel{\text { def }}{=} Q, N_{R} \stackrel{\text { def }}{=} \emptyset$ and the same set of rules. Alternatively, we can re-prove it from scratch:
Without loss of generality, we can assume we are given a $\mathrm{CFG} \mathcal{G}=\langle N, \Sigma, P, S\rangle$ in Chomsky normal form with $L \backslash\{\varepsilon\}=L(\mathcal{G})$: the productions in P are of the form $A \rightarrow B D$ or $A \rightarrow a$ with $A, B, D \in N$ and $a \in \Sigma$. We define the CFTG
$\mathcal{G}^{\prime}=\langle N, \emptyset, \mathcal{F}, S, R\rangle$ with $\mathcal{F} \stackrel{\text { def }}{=} \Sigma \uplus\left\{f^{(2)}\right\}$ where the symbols in Σ are nullary, and the set of rules

$$
\begin{aligned}
R & \stackrel{\text { def }}{=} \\
& \left\{A \rightarrow f^{(2)}(B, D) \mid A \rightarrow B D \in P\right\} \\
& \cup\left\{A \rightarrow a^{(0)} \mid A \rightarrow a \in P\right\}
\end{aligned}
$$

Let us show that $L(\mathcal{G}) \subseteq \operatorname{Yield}\left(L\left(\mathcal{G}^{\prime}\right)\right)$: we prove by induction over n that, for all $A \in N$ and $w \in \Sigma^{*}$, if $A \Rightarrow^{\star} w$ in \mathcal{G}, then there exists $t \in T(\mathcal{F})$ such that $A \xlongequal{R^{\star}} t$ in \mathcal{G}^{\prime} and $\operatorname{Yield}(t)=w$. This will show that, for any $w \in L(\mathcal{G})$, there exists $t \in L\left(\mathcal{G}^{\prime}\right)$ with $\operatorname{Yield}(t)=w$.
base case for $n=1$: then $A \Rightarrow a=w \in \Sigma$, and $t=a^{0}$ fits;
induction step for $n>1$: then we have a derivation $A \Rightarrow B D \Rightarrow^{n-1} w$ for a production $A \rightarrow B D \in P$. Thus $B \Rightarrow^{n_{1}} w_{1}$ and $D \Rightarrow^{n_{2}} w_{2}$ with $n_{1}+n_{2}=n-1$ and $w_{1} w_{2}=w$. By induction hypothesis on $n_{1}, n_{2}<n$, there exist $t_{1}, t_{2} \in T(\mathcal{F})$ such that $B \stackrel{R^{\star}}{\Rightarrow} t_{1}, D \stackrel{R^{\star}}{\Rightarrow} t_{2}$, Yield $\left(t_{1}\right)=w_{1}$, and Yield $\left(t_{2}\right)=w_{2}$. Therefore, $t \stackrel{\text { def }}{=} f^{(2)}\left(t_{1}, t_{2}\right)$ fits since $A \stackrel{R}{\Rightarrow} f^{(2)}(B, D) \stackrel{R^{\star}}{\Rightarrow} f^{(2)}\left(t_{1}, D\right) \stackrel{R^{\star}}{\Rightarrow} f^{(2)}\left(t_{1}, t_{2}\right)=t$ and $\operatorname{Yield}(t)=\operatorname{Yield}\left(t_{1}\right) \cdot \operatorname{Yield}\left(t_{2}\right)=w_{1} w_{2}=w$.

Conversely, let us show that $L(\mathcal{G}) \supseteq_{n_{n}} \operatorname{Yield}\left(L\left(\mathcal{G}^{\prime}\right)\right)$: we prove by induction over n that, for all $A \in N$ and $t \in T(\mathcal{F})$, if $A \stackrel{{ }^{2}}{\Rightarrow}{ }^{n} t$ in \mathcal{G}^{\prime}, then $A \Rightarrow \operatorname{Yield}(t)$ in \mathcal{G}. This will show that, for any $t \in L\left(\mathcal{G}^{\prime}\right)$, Yield $(t) \in L(\mathcal{G})$.
base case for $n=1$: then $A \xlongequal{R} a^{(0)}=t$, and $A \Rightarrow a$ holds in \mathcal{G}.
induction step for $n>1$: then $A \xlongequal[R]{\Rightarrow} f^{(2)}(B, D) \underset{n_{1}}{\stackrel{R}{n-1}} t$ for a production $A \rightarrow$ $B D \in P$. Thus $t=f^{(2)}\left(t_{1}, t_{2}\right)$ such that $B \stackrel{R}{\Rightarrow}{ }^{n_{1}} t_{1}, D \stackrel{R}{\Rightarrow}{ }^{n_{2}} t_{2}$, and $n_{1}+n_{2}=$ $n-1$. By induction hypothesis, $B \Rightarrow^{\star} \operatorname{Yield}\left(t_{1}\right)$ and $D \Rightarrow^{\star} \operatorname{Yield}\left(t_{2}\right)$ in \mathcal{G}. Hence $A \Rightarrow B D \Rightarrow^{\star} \operatorname{Yield}\left(t_{1}\right) Y i e l d\left(t_{2}\right)=\operatorname{Yield}(t)$.
[1] 2. Let us extend Yield (\cdot) to terminal contexts $c \in \mathcal{C}(\mathcal{F}) \subseteq T(\mathcal{F} \uplus\{\square\})$ by Yield($\square) \stackrel{\text { def }}{=} \varepsilon$. Show that, for all terminal right contexts $c \in \mathcal{C}_{R}(\mathcal{F})$ and all $t \in \mathcal{C}_{R}(\mathcal{F}) \cup T(\mathcal{F})$,

$$
\operatorname{Yield}(c[t])=\operatorname{Yield}(c) \cdot \operatorname{Yield}(t)
$$

Solution: We proceed by induction over terminal right contexts:
for the base case $c=\square$: then $c[t]=t$ and thus Yield $(c[t])=\operatorname{Yield}(t)=\operatorname{Yield}(c) \operatorname{Yield}(t)$;
for the induction step $c=f^{(k)}\left(t_{1}, \ldots, t_{k-1}, c^{\prime}\right)$ for some $k>0, f^{(k)} \in \mathcal{F}_{k}, c^{\prime} \in$ $\mathcal{C}_{R}(\mathcal{F})$, and $t_{1}, \ldots, t_{k-1} \in T(\mathcal{F})$: by induction hypothesis, for all $t \in \mathcal{C}_{R}(\mathcal{F}) \cup$ $T(\mathcal{F}), \operatorname{Yield}\left(c^{\prime}[t]\right)=\operatorname{Yield}\left(c^{\prime}\right) \operatorname{Yield}(t)$. Thus for all $t \in \mathcal{C}_{R}(\mathcal{F}) \cup T(\mathcal{F})$,

$$
\begin{aligned}
\operatorname{Yield}(c[t]) & =\operatorname{Yield}\left(f^{(k)}\left(t_{1}, \ldots, t_{k-1}, c^{\prime}[t]\right)\right) \\
& =\operatorname{Yield}\left(t_{1}\right) \cdots \operatorname{Yield}\left(t_{k-1}\right) \operatorname{Yield}\left(c^{\prime}[t]\right) \\
& =\operatorname{Yield}\left(t_{1}\right) \cdots \operatorname{Yield}\left(t_{k-1}\right) \operatorname{Yield}\left(c^{\prime}\right) \operatorname{Yield}(t) \\
& =\operatorname{Yield}(c) \cdot \operatorname{Yield}(t)
\end{aligned}
$$

[6] 3. Show the converse: for any right linear monadic CFTG, Yield $(L(\mathcal{G})$) is a context-free word language over \mathcal{F}_{0}.
Hint: You might use the fact that \mathcal{G} is linear to restrict your attention to IO derivations: by Theorem 5.9 and Proposition 5.13 of the lecture notes, $L(\mathcal{G})=L_{\mathrm{IO}}(\mathcal{G})$.

Solution: Let $\mathcal{G}=\left\langle N_{0}, N_{R}, \mathcal{F}, S_{0}, R\right\rangle$ be a right linear monadic CFTG. We let E denote the set of subtrees and subcontexts appearing inside right-hand-sides of rules in R : formally,

$$
E \stackrel{\text { def }}{=} \operatorname{Sub}\left(\left\{e \in T(V) \mid A_{0} \rightarrow e \in R\right\} \cup\left\{C \in \mathcal{C}_{R}(V) \mid A_{R}(y) \rightarrow C[y] \in R\right\}\right)
$$

where for any $S \subseteq \mathcal{C}_{R}(V) \cup T(V)$

$$
\operatorname{Sub}(S) \stackrel{\text { def }}{=}\left\{e \in \mathcal{C}_{R}(V) \cup T(V) \mid \exists C \in \mathcal{C}_{R}(V) . C[e] \in S\right\}
$$

We define $\mathcal{G}^{\prime} \stackrel{\text { def }}{=}\left\langle N^{\prime}, \mathcal{F}_{0},\left[S_{0}\right], P\right\rangle$ a word context-free grammar with nonterminals $N^{\prime} \stackrel{\text { def }}{=}\{[e] \mid e \in E\} \cup\left\{\left[S_{0}\right]\right\}$ and with productions:
$P \stackrel{\text { def }}{=}\left\{\left[a^{(0)}\right] \rightarrow a \mid a^{(0)} \in \mathcal{F}_{0} \cap E\right\}$
$\cup\{[\square] \rightarrow \varepsilon\}$
$\cup\left\{\left[f^{(k)}\left(e_{1}, \ldots, e_{k}\right)\right] \rightarrow\left[e_{1}\right] \cdots\left[e_{k}\right] \mid k>0, f^{(k)}\left(e_{1}, \ldots, e_{k}\right) \in E, e_{1} \in T(V) \cup \mathcal{C}_{R}(V)\right.$, $\left.e_{2}, \ldots, e_{k} \in T(V)\right\}$
$\cup\left\{\left[A_{0}\right] \rightarrow[e] \mid A_{0} \rightarrow e \in R\right\}$
$\cup\left\{\left[A_{R}(e)\right] \rightarrow[C][e] \mid A_{R}(e) \in E, A_{R}(y) \rightarrow C[y] \in R, e \in T(V) \cup \mathcal{C}_{R}(V)\right\}$.
Let us show that $\operatorname{Yield}(L(\mathcal{G})) \supseteq L\left(\mathcal{G}^{\prime}\right)$. We prove for this by induction over n that, for all $e \in \mathcal{C}_{R}(\mathcal{F}) \cap E$ (resp. $e \in T(V) \cap E$ or $e=S_{0}$), if $[e] \Rightarrow^{n} w$ in \mathcal{G}^{\prime}, then there exists $t \in \mathcal{C}_{R}(\mathcal{F})$ (resp. $t \in T(\mathcal{F})$) such that $e \stackrel{R^{\star}}{\Rightarrow} t$ and $\operatorname{Yield}(t)=w$. Then, by setting $e=S_{0}$, the statement follows.
base case $n=1$ for $e=a^{(0)}$: then $w=a$, and $t \stackrel{\text { def }}{=} a^{(0)}$ fits.
base case $n=1$ for $e=\square$: then $w=\varepsilon$, and $c^{\prime} \stackrel{\text { def }}{=} \square$ fits.
induction step $n>0$ for $e=f^{(k)}\left(e_{1}, \ldots, e_{k}\right)$: if $[e]=\left[f^{(k)}\left(e_{1}, \ldots, e_{k}\right)\right] \Rightarrow\left[e_{1}\right] \cdots\left[e_{k}\right] \Rightarrow^{n-1}$ w, then for all $1 \leq j \leq k,\left[e_{j}\right] \Rightarrow{ }^{n_{j}} w_{j}$ with $n_{1}+\cdots+n_{k}=n-1$ and $w_{1} \cdots w_{k}=w$. By induction hypothesis on $n_{j}<n$, there exists $t_{j} \in \mathcal{C}_{R}(\mathcal{F}) \cup T(\mathcal{F})$ with $e_{j} \stackrel{R^{\star}}{\Rightarrow} t_{j}$ for each $1 \leq j \leq k$. Therefore, $t \stackrel{\text { def }}{=} f^{(k)}\left(t_{1}, \ldots, t_{k}\right)$ fits.
induction step $n>0$ for $e=A_{0}$: then $[e]=\left[A_{0}\right] \Rightarrow\left[e^{\prime}\right] \Rightarrow^{n-1} w$ for some $A_{0} \rightarrow e$ in R. By induction hypothesis, there exists $t^{\prime} \in \mathcal{C}_{R}(\mathcal{F}) \cup T(\mathcal{F})$ with $e^{\prime} \stackrel{R^{\star}}{\Rightarrow} t^{\prime}$ and $\operatorname{Yield}\left(t^{\prime}\right)=w$, hence $t \stackrel{\text { def }}{=} t^{\prime}$ fits.
induction step $n>0$ for $e=A_{R}\left(e^{\prime}\right)$: if $[e]=\left[A_{R}\left(e^{\prime}\right)\right] \Rightarrow[C]\left[e^{\prime}\right] \Rightarrow{ }^{n-1} w$ for some $A_{R}(y) \rightarrow C[y] \in R$, then $[C] \Rightarrow^{n_{1}} w_{1}$ and $\left[e^{\prime}\right] \Rightarrow^{n_{2}} w_{2}$ for some $n_{1}+n_{2}=$ $n-1$ and $w_{1} w_{2}=w$. By induction hypothesis, there exist $c_{1} \in \mathcal{C}_{R}(\mathcal{F})$ and $t_{2} \in \mathcal{C}_{R}(\mathcal{F}) \cup T(\mathcal{F})$ such that $C \stackrel{R^{\star}}{\Rightarrow} c_{1}, Y \operatorname{ield}\left(c_{1}\right)=w_{1}, e^{\prime} \stackrel{R}{\Rightarrow} t_{2}$, and Yield $\left(t_{2}\right)=w_{2}$. Thus letting $t \stackrel{\text { def }}{=} c_{1}\left[t_{2}\right]$ fits: $A_{0}\left(e^{\prime}\right) \stackrel{R}{\Rightarrow} C\left[e^{\prime}\right] \stackrel{R^{\star}}{\Rightarrow} C\left[t_{2}\right] \stackrel{R^{\star}}{\Rightarrow} c_{1}\left[t_{2}\right]$ and $\operatorname{Yield}\left(c_{1}\left[t_{2}\right]\right)=\operatorname{Yield}\left(c_{1}\right) \operatorname{Yield}\left(t_{2}\right)=w_{1} w_{2}=w$ by Question 2 above.

Conversely, let us show that $\operatorname{Yield}(L(\mathcal{G})) \subseteq L\left(\mathcal{G}^{\prime}\right)$. We prove for this by induction over $(e, n) \in\left(E \cup S_{0}\right) \times \mathbb{N}$ ordered lexicographically (with n being most significant) that, if $e \in \mathcal{C}_{R}(V) \cap E$ (resp. $T(V) \cap E$ or $e=S_{0}$) and for all $t \in \mathcal{C}_{R}(\mathcal{F})$ (resp. $T(\mathcal{F})$), if $e \stackrel{R}{\Rightarrow} t$ using IO derivations in \mathcal{G}, then $[e] \Rightarrow^{\star} \operatorname{Yield}(t)$ in \mathcal{G}^{\prime}.
case $e=a^{(0)}$ and $n=0$: then $[e]=\left[a^{(0)}\right] \Rightarrow a=\mathrm{Yield}(e)$ in \mathcal{G}^{\prime}.
case $e=\square$ and $n=0$: then $[e]=[\square] \Rightarrow \varepsilon=\operatorname{Yield}(e)$ in \mathcal{G}^{\prime}.
case $e=f^{(k)}\left(e_{1}, \ldots, e_{k}\right)$ and $n \geq 0$: then $e \stackrel{R}{\Rightarrow} t$ using IO derivations implies $e_{j}{ }^{R}{ }^{R^{n_{j}}}$ t_{j} for $1 \leq j \leq k$ with $n=n_{1}+\cdots+n_{k}$ and $t=f^{(k)}\left(t_{1}, \ldots, t_{j}\right)$. Using the induction hypothesis on $\left(e_{j}, n_{j}\right)$ shows $\left[e_{j}\right] \Rightarrow^{\star} \operatorname{Yield}\left(t_{j}\right)$ in \mathcal{G}^{\prime}, hence $[e] \Rightarrow$ $\left[e_{1}\right] \cdots\left[e_{k}\right] \Rightarrow^{\star} \operatorname{Yield}\left(t_{1}\right) \cdots \operatorname{Yield}\left(t_{k}\right)=\operatorname{Yield}(t)$.
case $e=A_{0}$ and $n>0$: then $e=A_{0} \stackrel{R}{\Rightarrow} e^{\prime} \stackrel{R}{\Rightarrow}{ }^{n-1} t$ using rule $A_{0} \rightarrow e^{\prime}$ in R. As $e^{\prime} \in$ E, we can apply the induction hypothesis on $\left(e^{\prime}, n-1\right)$ to show $\left[e^{\prime}\right] \Rightarrow^{*} \operatorname{Yield}(t)$ in \mathcal{G}^{\prime}, and using the production $\left[A_{0}\right] \rightarrow\left[e^{\prime}\right]$ we get $[e]=\left[A_{0}\right] \Rightarrow^{*} \operatorname{Yield}(t)$.
case $e=A_{R}\left(e^{\prime}\right)$ and $n>0$: then $e=A_{R}\left(e^{\prime}\right) \stackrel{R^{n_{1}}}{\Rightarrow} A_{R}\left(c_{1}\right) \stackrel{R}{\Rightarrow} C\left[c_{1}\right] \stackrel{R}{\Rightarrow}{ }^{n_{2}} c_{2}\left[c_{1}\right]=t$ since we are using IO derivations, with $n_{1}+n_{2}=n-1$ and $A_{R}(y) \rightarrow C[y] \in R$. As $e^{\prime} \in E$ and $e^{\prime} \stackrel{R^{n_{1}}}{\Rightarrow} c_{1}$, by induction hypothesis on $\left(e^{\prime}, n_{1}\right),\left[e^{\prime}\right] \Rightarrow{ }^{*} \operatorname{Yield}\left(c_{1}\right)$
in \mathcal{G}^{\prime}. Similarly, $C \in E$ and $C \stackrel{R^{n_{2}}}{\Rightarrow} c_{2}$, and by induction hypothesis on $\left(C, n_{2}\right)$, $[C] \Rightarrow^{\star}$ Yield $\left(c_{2}\right)$ in \mathcal{G}^{\prime}. Finally, $\left[A_{R}\left(e^{\prime}\right)\right] \rightarrow[C]\left[e^{\prime}\right]$ is a production of P, hence $[e]=\left[A_{R}\left(e^{\prime}\right)\right] \Rightarrow[C]\left[e^{\prime}\right] \Rightarrow^{\star}$ Yield $\left(c_{2}\right)$ Yield $\left(c_{1}\right)=\operatorname{Yield}\left(c_{2}\left[c_{1}\right]\right)=\operatorname{Yield}(t)$ by Question 2 above.
[1] 4. Show that the word membership problem for right linear monadic CFTGs can be solved in polynomial time (this problem is, given $w \in \mathcal{F}_{0}^{*}$ and \mathcal{G} a right linear monadic CFTG, whether $w \in \operatorname{Yield}(L(\mathcal{G})))$.

Solution: It suffices to observe that the previous construction results in a $\mathrm{CFG} \mathcal{G}^{\prime}$ of quadratic size in $|\mathcal{G}|$, on which we can apply the $O\left(\left|\mathcal{G}^{\prime}\right| \cdot|w|^{3}\right)$ algorithm seen in class (c.f. Lemma 3.8 in the lecture notes, where the word automaton for $\{w\}$ has $|Q|=|w|+1$ states). Beware that one could imagine that Question 3 holds but that the CFGs we obtain are not of polynomial size (or even not constructible at all!), so it's not enough to just assume Question 3.

The quadratic blow-up in the construction of \mathcal{G}^{\prime} can be avoided by the usual trick: add N_{R} to N^{\prime} and split the productions $\left[A_{R}(e)\right] \rightarrow[C][e]$ into $\left[A_{R}(e)\right] \rightarrow A_{R}[e]$ and $A_{R} \rightarrow[C]$.
Note that, by Theorem 5.9 and Proposition 5.13 of the lecture notes, $L(\mathcal{G})=L_{\mathrm{IO}}(\mathcal{G})$ since \mathcal{G} is linear, and we could try to apply Proposition 5.14 and Proposition 5.15 of the lecture notes to obtain an algorithm running in $O\left(|\mathcal{G}| \cdot|Q|^{M+D+1}\right)$, by constructing a tree automaton with $|Q|=O\left(|w|^{2}\right)$ states with $\operatorname{Yield}(L(\mathcal{A}))=\{w\}$. This is not polynomial due to the D and M in the exponent, and quite a bit of work would be involved in order to show that we can bound those.

2 Scope ambiguities and covert moves in ACGs

Exercise 4. One considers the two following signatures:
$\left(\Sigma_{\mathrm{ABS}}\right) \quad$ TRACE $: N P_{N P}$
MOVE : $N P_{N P} \rightarrow(N P \rightarrow S) \rightarrow S_{N P}$
MAN : N
HELP : N
EVERY: $N \rightarrow S_{N P} \rightarrow S$
SOME : $N \rightarrow S_{N P} \rightarrow S$
NEEDS: $N P \rightarrow N P \rightarrow S$

```
(\mp@subsup{\Sigma}{\mathrm{ S-FORM }}{})\quad/man/: string
    /help/:string
    /every/: string
    /some/: string
    /needs/: string
```

where, as usual, string is defined to be $o \rightarrow o$ for some atomic type o.
One then defines a morphism $\left(\mathcal{L}_{\text {SYNT }}: \Sigma_{\mathrm{ABS}} \rightarrow \Sigma_{\text {S-FORM }}\right)$ as follows:

$$
\begin{aligned}
\left(\mathcal{L}_{\text {SYNT }}\right) & :=\text { string } \\
N P & :=\text { string } \\
S & :=\text { string } \\
N P_{N P} & :=\text { string } \rightarrow \text { string } \\
S_{N P} & :=\text { string } \rightarrow \text { string } \\
\text { TRACE } & :=\lambda x \cdot x \\
\text { MOVE } & :=\lambda x y z \cdot y(x z) \\
\text { MAN } & :=/ \text { man } / \\
\text { HELP } & :=/ \text { help } / \\
\text { EVERY } & :=\lambda x y \cdot y(/ \text { every } /+x) \\
\text { SOME } & :=\lambda x y \cdot y(/ \text { some } /+x) \\
\text { NEEDS } & :=\lambda x y \cdot y+/ \text { needs } /+x
\end{aligned}
$$

where, as usual, the concatenation operator $(+)$ is defined as functional composition.
[1] 1. Give two different terms, say t_{0} and t_{1}, such that:

$$
\mathcal{L}_{\mathrm{SYNT}}\left(t_{0}\right)=\mathcal{L}_{\mathrm{SYNT}}\left(t_{1}\right)=/ \text { every } /+/ \text { man } /+/ \text { needs } /+/ \text { some } /+/ \text { help } /
$$

Solution:

$$
\begin{aligned}
t_{0} & =\operatorname{EVERY} \text { MAN }(\operatorname{MOVE~TRACE}(\lambda x . \operatorname{SOME} \text { HELP }(\operatorname{MOVE~TRACE}(\lambda y . \operatorname{NEEDS} y x)))) \\
t_{1} & =\operatorname{SOME} \operatorname{HELP}(\operatorname{MOVE~TRACE}(\lambda y . \operatorname{EVERY} \operatorname{MAN}(\operatorname{MOVE} \operatorname{TRACE}(\lambda x \cdot \operatorname{NEEDS} y x))))
\end{aligned}
$$

Exercise 5. One considers a third signature :

$$
\begin{array}{ll}
\left(\Sigma_{\mathrm{L}-\mathrm{FORM}}\right) \quad \text { man }: \text { ind } \rightarrow \text { prop } \\
& \text { help }: \text { ind } \rightarrow \text { prop } \\
& \text { needs }: \text { ind } \rightarrow \text { ind } \rightarrow \text { prop }
\end{array}
$$

where the intended intuitive interpretation of the binary relation needs is that (needs $a b$) means that b is needed by a.

One then defines a morphism $\left(\mathcal{L}_{\text {SEM }}: \Sigma_{\mathrm{ABS}} \rightarrow \Sigma_{\mathrm{L}-\mathrm{FORM}}\right)$ as follows:

$$
\begin{aligned}
\left(\mathcal{L}_{\text {SEM }}\right) & :=\text { ind } \rightarrow \text { prop } \\
N P & :=\cdots \\
S & :=\text { prop } \\
N P_{N P} & :=\text { ind } \rightarrow \text { ind } \\
S_{N P} & :=\text { ind } \rightarrow \text { prop } \\
\text { TRACE } & :=\cdots \\
\text { MOVE } & :=\cdots \\
\text { MAN } & :=\text { man } \\
\text { HELP } & :=\text { help } \\
\text { EVERY } & :=\lambda x y . \forall z \cdot(x z) \rightarrow(y z) \\
\text { SOME } & :=\lambda x y . \exists z \cdot(x z) \wedge(y z) \\
\text { NEEDS } & :=\cdots
\end{aligned}
$$

[2] 1. Complete the above semantic interpretation (i.e., provide interpretations for $N P$, TRACE, MOVE, and NEEDS) in such a way that $\mathcal{L}_{\text {SEM }}\left(t_{0}\right)$ and $\mathcal{L}_{\text {SEM }}\left(t_{1}\right)$ yield two different plausible semantic interpretations of the sentence every man needs some help.

Solution:

$$
\begin{aligned}
N P & :=\text { ind } \\
\text { TRACE } & :=\lambda x \cdot x \\
\text { MOVE } & :=\lambda x y z \cdot y(x z) \\
\text { NEEDS } & :=\lambda x y \cdot \text { needs } y x
\end{aligned}
$$

Then:

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{SEM}}\left(t_{0}\right)=\forall x .(\operatorname{man} x) \rightarrow(\exists y \cdot(\operatorname{help} y) \wedge(\operatorname{need} x y)) \\
& \mathcal{L}_{\mathrm{SEM}}\left(t_{1}\right)=\exists y \cdot(\operatorname{help} y) \wedge(\forall x \cdot(\operatorname{man} x) \rightarrow(\operatorname{need} x y))
\end{aligned}
$$

Exercise 6. One extends $\Sigma_{\mathrm{ABS}}, \Sigma_{\mathrm{S} \text {-FORM }}, \mathcal{L}_{\mathrm{SYNT}}$, and $\mathcal{L}_{\text {SEM }}$, respectively, as follows:

$$
\begin{array}{ll}
\left(\Sigma_{\mathrm{ABS}}\right) & \text { POSSIBLY }: S \rightarrow S \\
\left(\Sigma_{\mathrm{S}-\mathrm{FORM}}\right) & / \text { possibly } /: \text { string } \\
\left(\mathcal{L}_{\text {SYNT }}\right) & \text { POSSIBLY }:=\lambda x \cdot x+/ \text { possibly } / \\
\left(\mathcal{L}_{\mathrm{SEM}}\right) & \text { POSSIBLY }:=\lambda x . \diamond x
\end{array}
$$

[2] 1. How many terms u are there such that:

$$
\mathcal{L}_{\mathrm{SYNT}}(u)=\mid \text { every } /+\mid \text { man } /+\mid \text { needs } /+\mid \text { some } /+\mid \text { help } /+\mid \text { possibly } /
$$

Solution: There are six such terms:

```
u}0=\operatorname{POSSIBLY}(\operatorname{EVERY MAN (MOVE TRACE ( }\lambdax.\operatorname{SOME HELP (MOVE TRACE ( }\lambday.\operatorname{NEEDS}yx))))
u
u}\mp@code{2}=\operatorname{EVERYMAN (MOVE TRACE ( }\lambdax.\operatorname{SOME HELP (MOVE TRACE ( }\lambday.\operatorname{Possibly (NEEDS }yx))))
u
u
u
```

[2] 2. Give three such terms together with their semantic interpretations.

Solution:

$$
\begin{aligned}
\mathcal{L}_{\text {SEM }}\left(u_{0}\right) & =\diamond(\forall x \cdot(\operatorname{man} x) \rightarrow(\exists y \cdot(\operatorname{help} y) \wedge(\text { need } x y))) \\
\mathcal{L}_{\mathrm{SEM}}\left(u_{1}\right) & =\forall x \cdot(\operatorname{man} x) \rightarrow \diamond(\exists y \cdot(\operatorname{help} y) \wedge(\text { need } x y)) \\
\mathcal{L}_{\mathrm{SEM}}\left(u_{2}\right) & =\forall x \cdot(\operatorname{man} x) \rightarrow(\exists y \cdot(\operatorname{help} y) \wedge \diamond(\text { need } x y)) \\
\mathcal{L}_{\mathrm{SEM}}\left(u_{3}\right) & =\diamond(\exists y \cdot(\operatorname{help} y) \wedge(\forall x .(\operatorname{man} x) \rightarrow(\text { need } x y))) \\
\mathcal{L}_{\mathrm{SEM}}\left(u_{4}\right) & =\exists y \cdot(\operatorname{help} y) \wedge \diamond(\forall x .(\operatorname{man} x) \rightarrow(\text { need } x y)) \\
\mathcal{L}_{\mathrm{SEM}}\left(u_{5}\right) & =\exists y \cdot(\operatorname{help} y) \wedge(\forall x .(\operatorname{man} x) \rightarrow \diamond(\text { need } x y))
\end{aligned}
$$

