MPRI 2-27-1 November 23rd, 2016

MPRI 2-27-1 Exam

Duration: 3 hours
Written documents are allowed. The numbers in front of questions are indica-
tive of hardness or duration.

1 Right Linear Monadic CFTGs

The motivation for this section is to understand tree insertion grammars, a restriction of
tree adjoining grammars defined by Schabes and Waters in 1995. We shall work with the
more convenient (and cleaner) framework of context-free tree grammars, and study the
corresponding formalism of single-sided linear monadic context-free tree grammars (recall
that tree adjoining grammars are roughly equivalent to linear monadic context-free tree
grammars). To further simplify matters, we shall work with right grammars.

Definition 1 (Right Contexts). We work with three disjoint ranked alphabets:
e Ny is a nullary nonterminal alphabet consisting of symbols of rank 0,
e Ny is a right nonterminal alphabet consisting of symbols of rank 1, and
e F is a ranked terminal alphabet.

We use Ag, By, ... to denote elements of Ny, Ag, Bg, ... for elements of Ng, and f®, ...
for elements of Fj, the sub-alphabet of F with symbols of rank k. Let us define N def NoWNg

and V& N w F; then e, eq, ... denote trees in T'(V') and ¢,tq,... terminal trees in T'(F).

The set of right contexts Cr(V') is made of contexts C' where O is the rightmost leaf.
In other words, O is a right context in Cz(V), and if X*) is a symbol of arity & > 0in V/,
C'is a right context in Cg(V), and ey, . .., ex_; are trees in T(V) then X®(ey, ..., ex_1,C)
is also a right context in Cr(V).

Definition 2 (Right Linear Monadic CFTGs). A right linear monadic context-free
tree grammar is a tuple G = (Ny, Ng, F, Sy, R) where Ny, Ng, and F are as above,
So € Ny is the ariom, and R is a finite set of rules of form:

e Ay — e with Ay € Ny and e € T(V), or

o Agr(y) — Cly] with Agr € Ng and C € Cgr(V); y is called the parameter of the rule.

MPRI 2-27-1 November 23rd, 2016

The tree language of G is

L) (teT(F) |5 L ¢}

Exercise 1 (Yields and Branches). Given a tree language L C T'(F), let Yield(L) oo

U,e;, Yield(t) and define inductively
Yield(a®) & ¢ Yield(f® (¢, ..., t) 2 Yield(#;) - - - Yield (¢, .
Hence Yield(t) € F§ is a word over Foy, and Yield(L) C F{ is a word language over F.
[1] 1. What is the word language Yield(L(G)) of the CFTG with rules
SD — AR((0))
(a f(2 a®,)))
FE OO, Ar(F2 6, 1))

A(y)—>y

where No < {So}, Np & {Ag}, and F < {f@ a© 5O)7

Solution: This is the language of even-length palindromes over {a, b} suffixed with
a ¢ Yield(L(G)) = {ww’c | w € {a,b}*} where -# denotes the mirror operation on
words.

[2] 2. Show that there exists a right linear monadic CFTG G such that L(G) is not a regular
tree language.

Hint: Recall that, if L C T(F) is a regular tree language, then its set of branches
Branches(L) is a regular word language over F. We define Branches(L) C F* by
lef .
Branches(L) = J,.; Branches(t) and in turn
lef (K lef .
Branches(a'”) = {a} Branches(f®(t,,... 1)) = U {f} - Branches(t;) .

1<5<k

Solution: Consider the right linear monadic CFTG with rules

Sy — AR(C(O))
Ag(y) = o (AR(G(D(CU)))
Ar(y) — bD (AW (1))
Ar(y) =y

MPRI 2-27-1 November 23rd, 2016

where N, & {So}, Nr oo {Agr}, and F dof QN ONCONS

Its yield language {c} is uninteresting, but
Branches(L(G)) = {ww'c | w € {a,b}*}

is not a regular word language, and thus L(G) is not a regular tree language. This

could be generalised to arbitrary context-free word languages (assuming £(® belongs
to F).

Exercise 2 (Tree Insertion Grammars). Consider the tree adjoining grammar depicted
below. Note that its sole auxiliary tree f; is of the form C[VP}?] where C is a right
context; this grammar is actually a right tree insertion grammar.

S NP NP VP
/ N\ [[/ N\
NP}, VP NNP NNS RB VP}®

/N [[[

VBZ NPJ| Donald lves really

[

tells

(a1) (a2) (as) (B1)

[1] 1. Provide an equivalent right linear monadic CEFTG.

Solution: It suffices to apply the translation from TAGs to linear monadic CFTG
from Section 5.1.3 of the lecture notes:

S| — 8@ (NP, VP(VPO(VBZW (telisV), NP)))
NP| — NPO(NNPWY(Donald®))
NP| — NPO(NNSW (lies®))
VP(y) — VP(VP@(RBW (really®),))
VP(y) =y,

with No & {S], NP}, Ng & {VP}, and F & {S®@ vP® VBZ®, tells®, NPO,

NNP® | Donald® , NNSW | lies® RBW, really®}.

Of course, the language of the TAG is regular, so other solutions are possible—but

MPRI 2-27-1 November 23rd, 2016

somewhat less elegant. For instance,

qs — S (QNP;QVP>
qvp — VPO (RB(l)(really(O)), qvp)
qve — VPA(VBZW (tells®), qnp)
qnvp — NPO(NNPY (Donald®))
(

qnp = NPO(NNSD (1ies))

with No % {gs, qvp, qvp} and Np < 0.

[1] 2. Complete the TIG or your CFTG (in a linguistically informed manner) in order to also
generate the sentence ‘Donald tells the best lies.’

Solution: It’s qulcker to modify the right TIG with an additional auxiliary tree (55 =
NP®(DTD (thel?), JISW (best¥), NP™); it makes sense to force the presence of
‘the’ before a superlative, though it does not capture e.g. ‘his best efforts’. Adding null
adjunction annotations forbids to stack superlatives (one would expect a coordination
for this, as in ‘the best and cleverest lies’).

Modifying the CFTG involves introducing new right nonterminals NP in several
places.

Exercise 3 (Context-Free Word Languages). We show in this exercise that, although right
linear monadic CFTGs can generate non-regular tree languages, their expressive power is
just as limited as that of finite tree automata when it comes to word languages.

[3] 1. Show for any context-free language L, there is a right linear monadic context-free tree

grammar G' with L\ {e} = Yield(L(G")).

Solution: This can be argued from well-known theorems: if L is context-free, then
L\ {e} is the yield Yield(L(.A)) of some finite tree automaton A (c.f. Definition 3.6 of

the lecture notes, where ¢ is also handled by having £(*) in F), which in turn is a right

linear monadic CFTG with Ny o Q, Nr o () and the same set of rules. Alternatively,

we can re-prove it from scratch:

Without loss of generality, we can assume we are given a CFG G = (N, X, P, S)
in Chomsky normal form with L\ {e} = L(G): the productions in P are of the
foorm A — BD or A — a with A,B,D € N and a € ¥. We define the CFTG

MPRI 2-27-1 November 23rd, 2016

G = (N,0, F,S, R) with F L5y {f®Y where the symbols in ¥ are nullary, and the
set of rules

RE {A— f®(B,D)| A— BD € P}
U{A—=ad9|A=aecP}.

Let us show that L(G) C Yield(L(G')): we prove by induction over n that, for all

Ae N and w € ¥ if A=*w in G, then there exists t € T'(F) such that A £ ¢ in
G’ and Yield(t) = w. This will show that, for any w € L(G), there exists t € L(G’)
with Yield(t) = w.

base case for n = 1: then A = a =w € X, and t = a’ fits;

induction step for n > 1: then we have a derivation A = BD =""! w for a pro-
duction A — BD € P. Thus B =™ w; and D =" wy with ny +ny =n —1
and wywy = w. By induction hypothesis on ny, ny < n, there exist t1,ty € T(F)

such that B &~ ¢, D ™ ¢, Yield(t:) = wy, and Yield(tz) = w,. Therefore,
t L @2, 1,) fits since A L (B, D) £ @, D) & f@(t;,t,) =t and

Conversely, let us show that L(G) D Yield(L(G")): we prove by induction over n that,

forall A€ N and t € T(F),if A= tin G, then A = Yield(¢) in G. This will show
that, for any t € L(G'), Yield(t) € L(G).

base case for n = 1: then A = (0 = t, and A = a holds in G.

induction step for n > 1: then A £ f@(B,D) £ t for a production A —

BD € P. Thus t = f®(t;,t,) such that B gnl ty, D gnz to, and ny + ny =
n — 1. By induction hypothesis, B =* Yield(¢;) and D =* Yield(ty) in G.
Hence A = BD =" Yield(t;)Yield(ty) = Yield(¢).

[1] 2. Let us extend Yield(-) to terminal contexts ¢ € C(F) C T(F w{O}) by Yield(O) e
Show that, for all terminal right contexts ¢ € Cgr(F) and all t € Cr(F) U T(F),

Yield(c[t]) = Yield(c) - Yield(¢) .

Solution: We proceed by induction over terminal right contexts:

for the base case ¢ = O: then ¢[t] = t and thus Yield(c[t]) = Yield(t) = Yield(c)Yield(¢);

(6]

MPRI 2-27-1 November 23rd, 2016

for the induction step ¢ = f®)(t,, ..., t,_1,¢) for some k > 0, f® € F, ¢ €
Cr(F), and t,...,tx—1 € T(F): by induction hypothesis, for all t € Cgr(F) U
T(F), Yield(c'[t]) = Yield(¢')Yield(t). Thus for all t € Cg(F) UT(F),

Yield(c[t]) = Yield(f®(t,, ..., tx_1, c[t]))
= Yield(y) - - - Yield(¢x_1)Yield(c[t])
— Yield(t1) - - - Yield(t,_,) Yield(¢') Yield(¢)
= Yield(c) - Yield(?) .

3. Show the converse: for any right linear monadic CFTG, Yield(L(G)) is a context-free
word language over Fy.

Hint: You might use the fact that G is linear to restrict your attention to 10 derivations:
by Theorem 5.9 and Proposition 5.13 of the lecture notes, L(G) = Lio(G).

Solution: Let G = (Ny, Ng, F, So, R) be a right linear monadic CFTG. We let E
denote the set of subtrees and subcontexts appearing inside right-hand-sides of rules
in R: formally,

E¥sub({e e T(V) | Ay = e € R}YU{C € Ca(V) | Ar(y) — C[y] € R})

where for any S C Cr(V)UT(V)

Sub(S) € {e € Cr(V)UT(V) | 3C € Cr(V).C[e] € S} .

We define ¢/ & (N', Fo, [S0], P) a word context-free grammar with nonterminals
N {le] | e € E} U{[So]} and with productions:

PE {9 = a|a® € Fyn E}
u {[O] = &}
U {[f®(er,...,ex)] = [e1] - [ex] | k>0, f®(er,...,ex) € E,eq € T(V)UCg(V),
e, ...,ex € T(V)}
U {[Ao] — [e] | Ao — e € R}
U {[Ar(e)] = [C][e] | Ar(e) € E, Ar(y) — Cly] € R,e € T(V)UCRr(V)} .

Let us show that Yield(L(G)) D L(G'). We prove for this by induction over n that,
for all e € CR(F)NE (resp. e € T(V)N E or e = Sp), if [e] =" w in G’, then there

exists t € Cr(F) (resp. t € T(F)) such that e £ ¢ and Yield(t) = w. Then, by
setting e = Sy, the statement follows.

MPRI 2-27-1 November 23rd, 2016

base case n = 1 for ¢ = a®: then w = a, and t % ¢© fits.
base case n =1 for e = O: then w = ¢, and ¢ ' O fits.

induction step n > 0 for e = f® (e, ... ep): if[e] = [fF(er,...,ex)] = [e1] - - [ex] ="
w, thenforall1 < j <k, [e;] =™ w; withni;+- - -4+n, =n—1land w, - - - wy, = w.
By induction hypothesis on n; < n, there exists t; € Cr(F)UT'(F) with e, =4 T
for each 1 < j < k. Therefore, t %) (t1,...,tg) fits.

induction step n > 0 for e = Ay: then [e] = [4¢] = [¢/] =" w for some Ay — ¢
in R. By induction hypothesis, there exists ¢ € Cr(F) U T(F) with ¢’ = ¢
and Yield(t') = w, hence ¢ LY fits.

induction step n > 0 for e = Ag(€¢'): if [¢] = [Ar(¢))] = [C][¢/] =" ! w for some
Agr(y) — Cly] € R, then [C] =" w; and [¢/] =" w, for some ny + ny =
n — 1 and wyws = w. By induction hypothe81s there exist 01 E Cr(F)
and ty € Cr(F) UT(F) such that C :> c1, Yleld(cl) — wl, e :> t2, and

Yield(t,) = ws. Thus letting t < ¢;[to] fits: Ao(e’) = Cle] & Clts] & c1[ta]
and Yield(cq[ta]) = Yield(¢p)Yield(t2) = wywy = w by Question 2 above.

Conversely, let us show that Yield(L(G)) € L(G’). We prove for this by induction
over (e,n) € (E'USy) x N ordered lexicographically (with n being most significant)
that, 1f e € Cr(V)NE (resp. T(V)NE or e = Sy) and for all t € Cg(F) (resp. T(F)),

ifedl ¢t using 10 derivations in G, then [e] =* Yield() in G'.

case ¢ = a(¥ and n = 0: then [¢] = [a(¥] = a = Yield(e) in G'.

case e = 0 and n = 0: then [e] = [0] = ¢ = Yield(e) in G

case e = fF)(ey,...,e;) and n > 0: thene gn t using IO derivations implies e; gnj
tjfor 1 <j<kwithn=mn +---4+n;and t = f(k)(tl,...,tj). Using the
induction hypothesis on (e;,n;) shows [e;] =* Yield(¢;) in G', hence [e] =
le1] - - - [ex] =* Yield(t1) - - - Yield(t) = Yield(t).

n—1
case ¢ = Ag and n > 0: then e = Ay EiQPE S using rule Ag — ¢’ in R. As €' €
E., we can apply the induction hypothesis on (¢/,n — 1) to show [¢/]| =* Yield(t)
in G', and using the production [Ay] — [¢/] we get [e] = [Ag] =" Yield(t).

case e = Ag(¢’) and n > 0: then e = Ag(e) 2™ Ag(cy) =4 Cle] £ cole] =t
since we are using 1O derivations, with ny +ns =n—1 and Ag(y) — C[y] € R.

Ase € Eand e & ¢1, by induction hypothesis on (¢/,n;), [¢/] =* Yield(¢;)

MPRI 2-27-1 November 23rd, 2016

in G'. Similarly, C € E and C gnz 2, and by induction hypothesis on (C, ns),
[C] =* Yield(cz) in G'. Finally, [Ag(e')] — [C][€/] is a production of P, hence
le] = [Ar(€)] = [C]le/] =* Yield(cy)Yield(c;) = Yield(coler]) = Yield(t) by
Question 2 above.

[1] 4. Show that the word membership problem for right linear monadic CFTGs can be
solved in polynomial time (this problem is, given w € F§ and G a right linear monadic
CFTG, whether w € Yield(L(G))).

Solution: It suffices to observe that the previous construction results in a CFG G’
of quadratic size in |G|, on which we can apply the O(|G’| - |w|?) algorithm seen in
class (c.f. Lemma 3.8 in the lecture notes, where the word automaton for {w} has
|Q| = |w| + 1 states). Beware that one could imagine that Question 3 holds but that
the CFGs we obtain are not of polynomial size (or even not constructible at all!), so
it’s not enough to just assume Question 3.

The quadratic blow-up in the construction of G’ can be avoided by the usual trick:
add Ng to N’ and split the productions [Ag(e)] — [C][e] into [Ag(e)] — Ag [e] and

Note that, by Theorem 5.9 and Proposition 5.13 of the lecture notes, L(G) = Lio(G)
since G is linear, and we could try to apply Proposition 5.14 and Proposition 5.15 of
the lecture notes to obtain an algorithm running in O(|G|-|Q|”TP*1), by constructing
a tree automaton with |Q| = O(Jw|?) states with Yield(L(A)) = {w}. This is not
polynomial due to the D and M in the exponent, and quite a bit of work would be
involved in order to show that we can bound those.

2 Scope ambiguities and covert moves in ACGs
Exercise 4. One considers the two following signatures:

(EABS) TRACE : NPyp
MOVE : NPyp — (NP — S) — Syp
MAN : N
HELP : N
EVERY : N — Syp — S
SOME : N — Syp — S
NEEDS : NP —- NP — S

MPRI 2-27-1

November 23rd, 2016

(3s-ForM) /man/ : string
[help/ : string

Jevery/ : string

/some/ : string

/meeds/ : string

where, as usual, string is defined to be 0 — o for some atomic type o.

One then defines a morphism (Lsynt : Xaps — Xs.rorm) as follows:

(Lsynr) N
NP

S

NPyp

Snp

TRACE
MOVE
MAN
HELP
EVERY
SOME
NEEDS

= string
= string
= string

= string — string
= string — string

= A\T.T

= Aryz.y (x 2)

= /man/
:= /help/

= \ry.y (/every/ + x)
= Ary.y (/some/ + x)
= \zy.y + /needs/ + x

where, as usual, the concatenation operator (+) is defined as functional composition.

[1] 1. Give two different terms, say ¢, and ¢;, such that:

Lsynt(to) = Lsynt(t1) = /every/ + /man/ + [needs/ + [some/ + [help/

Solution:

to = EVERY MAN (MOVE TRACE (Az. SOME HELP (MOVE TRACE (Ay. NEEDS y x))))
t1 = SOME HELP (MOVE TRACE (Ay. EVERY MAN (MOVE TRACE (Az. NEEDS y x))))

Exercise 5. One considers a third signature :

(X1-ForRM) man : ind — prop
help : ind — prop
needs : ind — ind — prop

MPRI 2-27-1

November 23rd, 2016

where the intended intuitive interpretation of the binary relation needs is that (needsab)
means that b is needed by a.

One then defines a morphism (Lsgy @ Xaps — Lr.roru) as follows:

(Lsem) N

NPyp
Snp

TRACE :
MOVE :

MAN
HELP
EVERY
SOME

:= ind — prop
NP = ...
S =

prop

:=ind — ind
:= ind — prop

= man
:= help
= Ary.Vz. (x z2) = (y2)
= Ary. Jz. (x 2) A (y 2)

NEEDS : o

. Complete the above semantic interpretation (i.e., provide interpretations for NP, TRACE,

2| 1. Complete the ab tic interpretati i.e., provide interpretations for NP
MOVE, and NEEDS) in such a way that Lsgn(fo) and Lsgy(t1) yield two different plau-
sible semantic interpretations of the sentence every man needs some help.

Solution:

Then:

NP :=ind
TRACE (= \z.T
MOVE = Azyz.y (2 2)
NEEDS := A\xy.needsyx

Lsem(ty) = Va. (manz) — (Jy. (helpy) A (need z y))
Lsem(t1) = Jy. (helpy) A (Vz. (manz) — (need z y))

Exercise 6. One extends Yags, Xs.rorM, LsynT, and Lsgm, respectively, as follows:

YABS)

XS FORM)

(

(
(Lsynt)
(Lsem)

S—= S8
/possibly/ : string

POSSIBLY :

POSSIBLY := Az.z + /possibly/

POSSIBLY = \z. 0%

MPRI 2-27-1 November 23rd, 2016

2] 1. How many terms u are there such that:

Lsynt(u) = /every/ + /man/ + /needs/ + /some/ + [help/ + /possibly/

Solution: There are six such terms:

Uy = POSSIBLY (EVERY MAN (MOVE TRACE (Az. SOME HELP (MOVE TRACE (Ay. NEEDSy x)))))
11 = EVERY MAN (MOVE TRACE (A\z. POSSIBLY (SOME HELP (MOVE TRACE (Ay. NEEDS y x)))))
U = EVERY MAN (MOVE TRACE (Az. SOME HELP (MOVE TRACE (\y. POSSIBLY (NEEDS y x)))))
u3 = POSSIBLY (SOME HELP (MOVE TRACE (A\y. EVERY MAN (MOVE TRACE (A\z. NEEDS y x)))))
u4 = SOME HELP (MOVE TRACE (\y. POSSIBLY (EVERY MAN (MOVE TRACE (A\x. NEEDS y x)))))

)

U5 = SOME HELP (MOVE TRACE (\y. EVERY MAN (MOVE TRACE (Az. POSSIBLY (NEEDS y &

2] 2. Give three such terms together with their semantic interpretations.

Solution:
Lspm(ug) = O(Ve. (manz) — (Jy. (helpy) A (need zy)))
Lspm(up) = V. (manz) — O(Jy. (helpy) A (need z y))
Lspym(uz) = V. (manx) — (Jy. (helpy) A O(need z y))
Lsen(us) = 0(Fy. (helpy) A (Vz. (manz) — (need zy)))
Lspn(ug) = Jy. (helpy) A O(Vz. (manz) — (need z y))
Lspym(us) = Jy. (helpy) A (Vo. (manx) — O(need z y))

	Right Linear Monadic CFTGs
	Scope ambiguities and covert moves in ACGs

