Exam

Duration: 3 hours. All paper documents permitted. The numbers [n] in the margin next to questions are indications of duration and difficulty, not necessarily of the number of points you might earn from them. You must justify all your answers.

Exercise 1 (First-Order Logic with Transitive Reflexive Relations). We consider the first-order logic FO($\downarrow^*, (P_a)_{a \in \Sigma}$) over finite unranked trees labelled by some finite alphabet Σ along with the descendant relation \downarrow^* .

[1] 1. Give a closed first-order formula ψ_1 enforcing that the sequence of labels along any branch is in $(ab)^+$. *Hint: You can use the following first-order formula:*

$$\begin{split} x \downarrow^+ y \stackrel{\text{def}}{=} x \downarrow^* y \land x \neq y , & x \downarrow y \stackrel{\text{def}}{=} x \downarrow^+ y \land \neg \exists z (x \downarrow^+ z \land z \downarrow^+ y) ,\\ \operatorname{root}(x) \stackrel{\text{def}}{=} \neg \exists y (y \downarrow^+ x) , & \operatorname{leaf}(x) \stackrel{\text{def}}{=} \neg \exists y (x \downarrow^+ y) .\\ \psi_1 \stackrel{\text{def}}{=} \exists x (P_a(x) \land \operatorname{root}(x)) \\ & \land \forall x (P_a(x) \Rightarrow \exists y (P_b(y) \land x \downarrow y)) \\ & \land \forall y (P_b(y) \Rightarrow \operatorname{leaf}(y) \lor \exists x (P_a(x) \land y \downarrow x)) . \end{split}$$

[1] 2. Give a closed first-order formula ψ_2 enforcing that every branch starting from an *a*-labelled position contains a *b*-labelled position. *Hint: You can use the following first-order formula:*

$$branch(x, y) \stackrel{def}{=} x \downarrow^* y \land leaf(y)$$
.

$$\psi_2 \stackrel{\text{def}}{=} \forall x \forall y \big((\mathsf{branch}(x, y) \land P_a(x)) \Rightarrow \exists z (x \downarrow^+ z \land z \downarrow^* y \land P_b(z)) \big) .$$

3. Let $\Sigma = \{a, b, c\}$ and consider the formula

$$\begin{split} \psi &\stackrel{\text{def}}{=} \forall x \forall z \big((P_a(x) \land x \neq z \land \mathsf{branch}(x, z)) \\ &\Rightarrow \exists y \big(x \downarrow^+ y \land y \downarrow^* z \land P_c(y) \land \forall z (x \downarrow^+ z \land z \downarrow^+ y \Rightarrow P_b(z)) \big) \big) \,. \end{split}$$

(a) Give an equivalent PDL node formula.

[2]

$$\left[\downarrow^*\right]\left(a \Rightarrow \left[(\downarrow; b?)^*; \downarrow; (a \lor (b \land \mathsf{leaf}))?\right]\bot\right)$$

(b) Give a complete deterministic (bottom-up) finite hedge automaton for the set of models of ψ .

- Let $Q \stackrel{\text{def}}{=} \{q_{\perp}, q_a, q_c\}$ and $Q_f \stackrel{\text{def}}{=} \{q_a, q_c\}$. The intuition is for
 - $t \to^* q_\perp$ iff $t \not\models \psi$,
 - $t \to^* q_a$ iff $t \models \psi$ and there is a branch with label in $b^* a \Sigma^* + b^+$, and
 - $t \to^* q_c$ if $t \models \psi$ and every branch has a prefix in b^*c .

We use regular expressions over Q to describe the horizontal languages in the rules of Δ :

$$\begin{aligned} a(q_c^*) &\to q_a & a(Q^* \cdot (q_a + q_\perp) \cdot Q^*) \to q_\perp \\ b(q_c^+) &\to q_c & b(\varepsilon + (q_a + q_c)^* \cdot q_a \cdot (q_a + q_c)^*) \to q_a & b(Q^* \cdot q_\perp \cdot Q^*) \to q_\perp \\ c((q_a + q_c)^*) \to q_c & c(Q^* \cdot q_\perp \cdot Q^*) \to q_\perp \end{aligned}$$

Based on: TD 5 Ex. 2 (Propositional Dynamic Logic). We work with unranked trees over a finite alphabet Σ .

- 1. We write $p \prec p'$ for two positions p and p' of a tree $t \in T(\Sigma)$ if p is visited before p' in a pre-order traversal of t. (Hence \prec is a total order on Pos(t)).
- [1] Define a PDL path formula π such that $\llbracket \pi \rrbracket_t = \{(p, p') \in \operatorname{Pos}(t) \times \operatorname{Pos}(t) \mid p \prec p'\}$ for all $t \in T(\Sigma)$.

We start by defining a path formula for successors in a pre-order traversal, and then take its transitive closure:

succ
$$\stackrel{\text{def}}{=} (\downarrow; \text{first}?) + (\text{leaf}?; (\text{last}?;\uparrow)^*; \rightarrow)$$

 $\pi \stackrel{\text{def}}{=} \text{succ}^+$

[2] 2. Define a PDL path formula π' such that $\llbracket (\pi')^* \rrbracket_t = \{(p, p') \in \operatorname{Pos}(t) \times \operatorname{Pos}(t) \mid t(p) = t(p')\}$ and $\llbracket \pi' \rrbracket_t$ is a function for all $t \in T(\Sigma)$.

We build a new path formula on top of succ, which wraps around the root when we reach the rightmost leaf of t:

$$\begin{split} \mathsf{lastleaf} &\stackrel{\mathrm{def}}{=} [\mathsf{succ}] \bot \\ \mathsf{wrap} &\stackrel{\mathrm{def}}{=} \mathsf{succ} + (\mathsf{lastleaf}?;\uparrow^*;\mathsf{root}?) \\ \pi' &\stackrel{\mathrm{def}}{=} \sum_{a \in \Sigma} a?;\mathsf{wrap}; (\neg a?;\mathsf{wrap})^*;a? \end{split}$$

[3]

Based on: TATA Ex. 1.6 Exercise 3 (Deterministic Top-Down Tree Automata). Let t be a tree in $T(\mathcal{F})$ for some finite ranked alphabet \mathcal{F} with maximal arity k, and let $\Pi \stackrel{\text{def}}{=} \left(\bigcup_{1 \le n \le k} \mathcal{F}_n \times \{1, \ldots, n\}\right)^* \cdot \mathcal{F}_0$. The path language Paths $(t) \subseteq \Pi$ is defined by

$$\operatorname{Paths}(a) \stackrel{\text{def}}{=} \{a\} \qquad \text{if } a \in \mathcal{F}_0 \text{ is a constant,}$$
$$\operatorname{Paths}(f(t_1, \dots, t_n)) \stackrel{\text{def}}{=} \bigcup_{1 \le i \le n} \{(f, i)\} \cdot \operatorname{Paths}(t_i) \qquad \text{if } f \in \mathcal{F}_n \text{ for some } 1 \le n \le k.$$

We lift this to $\operatorname{Paths}(L) \stackrel{\text{def}}{=} \bigcup_{t \in L} \operatorname{Paths}(t)$ for any $L \subseteq T(\mathcal{F})$.

1.6

[4] 1. Show that if $L \subseteq T(\mathcal{F})$ is recognisable, then Paths(L) is recognisable over the alphabet $\Sigma \stackrel{\text{def}}{=} \mathcal{F}_0 \cup \bigcup_{1 \leq n \leq k} \mathcal{F}_n \times \{1, \dots, n\}$. *Hint: Start with a co-accessible top-down NFTA for L.* Let $\mathcal{A} = \langle Q, \mathcal{F}, Q_f, \Delta \rangle$ be a top-down NFTA with $L(\mathcal{A}) = L$. Without loss of

Let $\mathcal{A} = \langle Q, \mathcal{F}, Q_f, \Delta \rangle$ be a top-down NFTA with $L(\mathcal{A}) = L$. Without loss of generality, \mathcal{A} is co-accessible: $\forall q \in Q, \exists t \in T(\mathcal{F}), q \to_{\mathcal{A}}^* t$.

We construct $\mathcal{A}' = \langle Q', \Sigma, \delta, I, F \rangle$ a NFA with state set $Q' \stackrel{\text{def}}{=} Q \uplus \{q_\ell\}$, initial state set $I \stackrel{\text{def}}{=} Q_f$, accepting state set $F \stackrel{\text{def}}{=} \{q_\ell\}$, and transition set

$$\delta \stackrel{\text{def}}{=} \{ (q, (f, i), q_i) \mid 0 < i \le n \le k, \ f \in \mathcal{F}_n, \ (q \to f(q_1, \dots, q_n)) \in \Delta \} \\ \cup \{ (q, a, q_\ell) \mid a \in \mathcal{F}_0, \ (q \to a) \in \Delta \} .$$

We denote by $L_q(\mathcal{A}') \stackrel{\text{def}}{=} \{ w \in \Sigma^* \mid q \xrightarrow{w}_{\mathcal{A}'} q_\ell \}$ the word language recognised by $q \in Q$ in \mathcal{A}' ; then $L(\mathcal{A}') = \bigcup_{q \in I} L_q(\mathcal{A}')$.

Paths $(L) \subseteq L(\mathcal{A}')$: We prove by induction on $t \in T(\mathcal{F})$ that, if $q \to_{\mathcal{A}}^{*} t$, then Paths $(t) \subseteq L_q(\mathcal{A}')$. Thus, if $t \in L$, then $q \in Q_f = I$, and Paths $(t) \subseteq L(\mathcal{A}')$.

- For the base case where $t = a \in \mathcal{F}_0$, $a \to q$ implies $(q, a, q_\ell) \in \delta$ and thus $a \in L_q(\mathcal{A}')$.
- For the induction step where $t = f(t_1, \ldots, t_n), f \in \mathcal{F}_n$ for some $1 \le n \le k$, we have the reduction $q \to_{\mathcal{A}} f(q_1, \ldots, q_n) \to_{\mathcal{A}}^* t$ for some $f(q_1, \ldots, q_n) \to q$ in Δ . We apply the induction hypothesis on each $q_i \to_{\mathcal{A}}^* t_i$ for $1 \le i \le n$:

$$\operatorname{Paths}(f(t_1, \dots, t_n)) = \bigcup_{1 \le i \le n} \{(f, i)\} \cdot \operatorname{Paths}(t_i) \quad \text{by def.}$$
$$\subseteq \bigcup_{1 \le i \le n} \{(f, i)\} \cdot L_{q_i}(\mathcal{A}') \quad \text{by ind. hyp.}$$
$$\subseteq L_q(\mathcal{A}') \quad \forall 1 \le i \le n, (q, (f, i), q_i) \in \delta.$$

 $L(\mathcal{A}') \subseteq \operatorname{Paths}(L)$: First note that $L(\mathcal{A}') \subseteq \Pi$. We show by induction on $w \in \Pi$ that, for all $q \in Q$, if $w \in L_q(\mathcal{A}')$, then there exists $t \in T(\mathcal{F})$ such that $w \in \operatorname{Paths}(t)$ and $q \to_{\mathcal{A}}^* t$. Then, $w \in L(\mathcal{A}')$ occurs when $q \in I = Q_f$ and thus there exists $t \in L$ with $w \in \operatorname{Paths}(t)$.

- For the base case where $w = a \in \mathcal{F}_0$, $w \in L_q(\mathcal{A}')$ requires $(q, a, q_\ell) \in \delta$, hence $t \stackrel{\text{def}}{=} a$ fits: $w \in \{a\} = \text{Paths}(t)$ and $q \to_{\mathcal{A}} a$.
- For the induction step, $w = (f, i)w_i$ for some $1 \le i \le n \le k, f \in \mathcal{F}_n$, and $w_i \in \Pi$. Then there exists $q_i \in Q$ such that $(q, (f, i), q_i) \in \delta$ and $w_i \in L_{q_i}(\mathcal{A}')$; therefore there is a rule $q \to f(q_1, \ldots, q_i, \ldots, q_n)$ in Δ for some $q_1, \ldots, q_{i-1}, q_{i+1}, \ldots, q_n \in Q$. By induction hypothesis, there exists $t_i \in T(\mathcal{F})$ such that $w_i \in \operatorname{Paths}(t_i)$ and $q_i \to_{\mathcal{A}}^* t_i$. For all $j \in$ $\{1, \ldots, n\} \setminus \{i\}$, as the state q_j is co-accessible, there exist a tree t_j such that $q_j \to_{\mathcal{A}}^* t_j$. Letting $t \stackrel{\text{def}}{=} f(t_1, \ldots, t_n)$, we have therefore $q \to_{\mathcal{A}}^* t$ and $(f, i) \cdot w_i \in \operatorname{Paths}(t)$ as desired.
- 2. The path closure of a word language $L' \subseteq \Pi$ is

$$\overline{L'} \stackrel{\text{def}}{=} \{ t \in T(\mathcal{F}) \mid \text{Paths}(t) \subseteq L' \} .$$

[3] Show that if $L' \subseteq \Pi$ is recognisable, then $\overline{L'} \subseteq T(\mathcal{F})$ is recognisable by a deterministic top-down tree automaton.

Let $\mathcal{A}' = \langle Q', \Sigma, \delta, I, F \rangle$ be a DFA recognising $L' \subseteq \Pi$. Observe that L' is *prefix*: if $ww' \in L'$ and $w \in L'$ for some $w, w' \in \Sigma^*$, then $w' = \varepsilon$; this is because the symbols of \mathcal{F}_0 act as end-of-word markers. Thus without loss of generality, F is a singleton $\{q_\ell\}$.

We construct a deterministic top-down tree automaton $\mathcal{A} = \langle Q, \mathcal{F}, Q_f, \Delta \rangle$ with $Q \stackrel{\text{def}}{=} Q' \setminus \{q_\ell\}, Q_f \stackrel{\text{def}}{=} I$, and

$$\Delta \stackrel{\text{def}}{=} \{q \to a \mid a \in \mathcal{F}_0, \, \delta(q, a) = q_\ell\} \\ \cup \{q \to f(\delta(q, (f, 1)), \dots, \delta(q, (f, n))) \mid f \in \mathcal{F}_n \text{ and } \forall 1 \le i \le n, \delta(f, i) \text{ is defined}\}$$

We show by induction on $t \in T(\mathcal{F})$ that, for all $q \in Q$, $\operatorname{Paths}(t) \subseteq L_q(\mathcal{A}')$, if and only if $q \to_{\mathcal{A}}^* t$. Then, $t \in \overline{L'}$, if and only if $\operatorname{Paths}(t) \subseteq L'$, if and only if $\operatorname{Paths}(t) \subseteq L_q(\mathcal{A}')$ for some $q \in I$, if and only if $q \to_{\mathcal{A}}^* t$ for some $q \in Q_f$, if and only if $t \in L(\mathcal{A})$.

- For the base case $t = a \in \mathcal{F}_0$, $\operatorname{Paths}(a) = \{a\} \subseteq L_q(\mathcal{A}')$ if and only if $\delta(q, a) = q_\ell$, if and only if $(q \to a) \in \delta$ as desired.
- For the induction step, let $t = f(t_1, \ldots, t_n)$ for some $1 \le n \le k, f \in \mathcal{F}_n$, and each $t_i \in T(\mathcal{F})$. Then $\operatorname{Paths}(t) = \bigcup_{1 \le i \le n} \{(f, i)\} \cdot \operatorname{Paths}(t_i) \subseteq L_q(\mathcal{A}')$ if and only if $\operatorname{Paths}(t_i) \subseteq L_{\delta(q,(f,i))}(\mathcal{A}')$ for all $1 \le i \le n$. By induction hypothesis, this is if and only if $\delta(q, (f, i)) \to_{\mathcal{A}}^* t_i$ for each i, which is if and only if $q \to_{\mathcal{A}} f(\delta(q, (f, 1)), \ldots, \delta(q, (f, n))) \to_{\mathcal{A}}^* f(t_1, \ldots, t_n) = t$ as desired.

[2] 3. Deduce that $L \subseteq T(\mathcal{F})$ is recognisable by a deterministic top-down tree automaton if and only if L is recognisable and *path closed*, i.e. $L = \overline{\text{Paths}(L)}$.

If L is recognisable by a deterministic top-down tree automaton \mathcal{A} , then L is recognisable and the automaton \mathcal{A}' constructed in Question 1 for $L' \stackrel{\text{def}}{=} \operatorname{Paths}(L)$ is a DFA. If we apply the construction of Question 2 to \mathcal{A}' we obtain \mathcal{A} back! Hence $L = L(\mathcal{A}) = \operatorname{Paths}(L)$.

Conversely, if L is recognisable and path closed, then by Question 1 Paths(L) is recognised by a word automaton \mathcal{A}' , which we can determinise to obtain by Question 2 a deterministic top-down tree automaton for $\overline{\text{Paths}(L)} = L$.

[1] 4. Show that it is decidable whether a recognisable tree language is path closed.

This is clearly decidable since by questions 1 and 2 we can build a deterministic top-down tree \mathcal{A}_d automaton of exponential size with $L(\mathcal{A}_d) = \overline{\operatorname{Paths}(L)}$. As $L \subseteq \overline{\operatorname{Paths}(L)}$ always holds, it suffices to check whether $L(\mathcal{A}_d) \subseteq L(\mathcal{A})$, i.e. whether $L(\mathcal{A}) \cap (T(\mathcal{F}) \setminus L(\mathcal{A}_d)) = \emptyset$. Observe that complementing \mathcal{A}_d is trivial, hence this last inclusion test is in polynomial time in the size of \mathcal{A} and \mathcal{A}_d , hence in EXP overall.

5. Let $\mathcal{F} \stackrel{\text{def}}{=} \{ \wedge^{(2)}, \vee^{(2)}, \perp^{(0)}, \top^{(0)} \}$ and $L \stackrel{\text{def}}{=} \{ t \in T(\mathcal{F}) \mid e(t) = \top \}$ be the set of trees that evaluate to \top according to:

$$e(\wedge(t_1,t_2)) \stackrel{\text{def}}{=} e(t_1) \wedge e(t_2), \quad e(\vee(t_1,t_2)) \stackrel{\text{def}}{=} e(t_1) \vee e(t_2), \quad e(\bot) \stackrel{\text{def}}{=} \bot, \quad e(\top) \stackrel{\text{def}}{=} \top$$

[1] Show that L is not recognised by any deterministic top-down tree automaton.

Indeed, $t_1 \stackrel{\text{def}}{=} \lor (\bot, \top)$ and $t_2 \stackrel{\text{def}}{=} \lor (\top, \bot)$ are in L. Thus $(\lor, 1) \bot \in \text{Paths}(t_1)$ and $(\lor, 2) \bot \in \text{Paths}(t_2)$ show that $t_3 \stackrel{\text{def}}{=} \lor (\bot, \bot) \in \overline{\text{Paths}(L)}$ although it does not belong to L.

[2] 6. Show that L is not recognised by any finite union of deterministic top-down tree automata.

Assume $L = \bigcup_{1 \le i \le n} L_i$ where each L_i is recognised by a deterministic top-down tree automaton. Consider the trees

$$t_0 \stackrel{\text{def}}{=} \lor (\top, \bot) , \qquad t_{m+1} \stackrel{\text{def}}{=} \lor (\bot, t_m) .$$

As all of these infinitely many trees belong to L, there must be $1 \leq i \leq n$ such that $t_j \in L_i$ and $t_k \in L_i$ for j < k. Hence $(\lor, 2)^{j-1}(\lor, 2) \perp \in \operatorname{Paths}(t_j) \subseteq \operatorname{Paths}(L_i)$ and $(\lor, 2)^{\ell}(\lor, 1) \perp \in \operatorname{Paths}(t_k) \subseteq \operatorname{Paths}(L_i)$ for all $\ell < j$ imply that $t'_j \in L_i = \operatorname{Paths}(L_i)$ where

$$t_0' \stackrel{\mathrm{def}}{=} \lor (\bot, \bot) \;, \qquad \qquad t_{m+1}' \stackrel{\mathrm{def}}{=} \lor (\bot, t_m') \;.$$

This contradicts $L_i \subseteq L$.