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Exam

Duration: 3 hours. All paper documents permitted. The numbers [n] in the margin

next to questions are indications of duration and difficulty, not necessarily of the

number of points you might earn from them. You must justify all your answers.

Exercise 1 (First-Order Logic with Transitive Reflexive Relations). We consider the
first-order logic FO(↓∗, (Pa)a∈Σ) over finite unranked trees labelled by some finite alpha-
bet Σ along with the descendant relation ↓∗.

1. Give a closed first-order formula ψ1 enforcing that the sequence of labels along any[1]

branch is in (ab)+. Hint: You can use the following first-order formulæ:

x ↓+ y
def
= x ↓∗ y ∧ x 6= y , x ↓ y def

= x ↓+ y ∧ ¬∃z(x ↓+ z ∧ z ↓+ y) ,

root(x)
def
= ¬∃y(y ↓+ x) , leaf(x)

def
= ¬∃y(x ↓+ y) .

ψ1
def
= ∃x(Pa(x) ∧ root(x))

∧ ∀x(Pa(x)⇒∃y(Pb(y) ∧ x ↓ y))

∧ ∀y(Pb(y)⇒ leaf(y) ∨ ∃x(Pa(x) ∧ y ↓ x)) .

2. Give a closed first-order formula ψ2 enforcing that every branch starting from an[1]

a-labelled position contains a b-labelled position. Hint: You can use the following
first-order formula:

branch(x, y)
def
= x ↓∗ y ∧ leaf(y) .

ψ2
def
= ∀x∀y

(
(branch(x, y) ∧ Pa(x))⇒∃z(x ↓+ z ∧ z ↓∗ y ∧ Pb(z))

)
.

3. Let Σ = {a, b, c} and consider the formula

ψ
def
= ∀x∀z

(
(Pa(x) ∧ x 6= z ∧ branch(x, z))

⇒∃y
(
x ↓+ y ∧ y ↓∗ z ∧ Pc(y) ∧ ∀z(x ↓+ z ∧ z ↓+ y⇒ Pb(z))

))
.

(a) Give an equivalent PDL node formula.[2]

[↓∗]
(
a⇒

[
(↓; b?)∗; ↓; (a ∨ (b ∧ leaf))?

]
⊥
)
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(b) Give a complete deterministic (bottom-up) finite hedge automaton for the set[3]

of models of ψ.

Let Q
def
= {q⊥, qa, qc} and Qf

def
= {qa, qc}. The intuition is for

• t→∗ q⊥ iff t 6|= ψ,

• t→∗ qa iff t |= ψ and there is a branch with label in b∗aΣ∗ + b+, and

• t→∗ qc if t |= ψ and every branch has a prefix in b∗c.

We use regular expressions over Q to describe the horizontal languages in the
rules of ∆:

a(q∗c )→ qa a(Q∗ · (qa + q⊥) ·Q∗)→ q⊥

b(q+
c )→ qc b(ε+ (qa + qc)

∗ · qa · (qa + qc)
∗)→ qa b(Q∗ · q⊥ ·Q∗)→ q⊥

c((qa + qc)
∗)→ qc c(Q∗ · q⊥ ·Q∗)→ q⊥

Exercise 2 (Propositional Dynamic Logic). We work with unranked trees over a finiteBased on:
TD 5 Ex. 2

alphabet Σ.

1. We write p ≺ p′ for two positions p and p′ of a tree t ∈ T (Σ) if p is visited before
p′ in a pre-order traversal of t. (Hence ≺ is a total order on Pos(t)).

Define a PDL path formula π such that JπKt = {(p, p′) ∈ Pos(t)× Pos(t) | p ≺ p′}[1]

for all t ∈ T (Σ).

We start by defining a path formula for successors in a pre-order traversal, and
then take its transitive closure:

succ
def
= (↓; first?) +

(
leaf?; (last?; ↑)∗;→

)
π

def
= succ+

2. Define a PDL path formula π′ such that J(π′)∗Kt = {(p, p′) ∈ Pos(t) × Pos(t) |[2]

t(p) = t(p′)} and Jπ′Kt is a function for all t ∈ T (Σ).

We build a new path formula on top of succ, which wraps around the root when
we reach the rightmost leaf of t:

lastleaf
def
= [succ]⊥

wrap
def
= succ + (lastleaf?; ↑∗; root?)

π′
def
=
∑
a∈Σ

a?; wrap; (¬a?; wrap)∗; a?
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Exercise 3 (Deterministic Top-Down Tree Automata). Let t be a tree in T (F) for someBased on:
TATA Ex. 1.6

finite ranked alphabet F with maximal arity k, and let Π
def
=
(⋃

1≤n≤k Fn×{1, . . . , n}
)∗ ·

F0. The path language Paths(t) ⊆ Π is defined by

Paths(a)
def
= {a} if a ∈ F0 is a constant,

Paths(f(t1, . . . , tn))
def
=
⋃

1≤i≤n
{(f, i)} · Paths(ti) if f ∈ Fn for some 1 ≤ n ≤ k.

We lift this to Paths(L)
def
=
⋃
t∈L Paths(t) for any L ⊆ T (F).

1. Show that if L ⊆ T (F) is recognisable, then Paths(L) is recognisable over the[4]

alphabet Σ
def
= F0 ∪

⋃
1≤n≤k Fn × {1, . . . , n}.

Hint: Start with a co-accessible top-down NFTA for L.

Let A = 〈Q,F , Qf ,∆〉 be a top-down NFTA with L(A) = L. Without loss of
generality, A is co-accessible: ∀q ∈ Q, ∃t ∈ T (F), q →∗A t.

We construct A′ = 〈Q′,Σ, δ, I, F 〉 a NFA with state set Q′
def
= Q]{q`}, initial state

set I
def
= Qf , accepting state set F

def
= {q`}, and transition set

δ
def
= {(q, (f, i), qi) | 0 < i ≤ n ≤ k, f ∈ Fn, (q → f(q1, . . . , qn)) ∈ ∆}
∪ {(q, a, q`) | a ∈ F0, (q → a) ∈ ∆} .

We denote by Lq(A′)
def
= {w ∈ Σ∗ | q w−→A′ q`} the word language recognised by

q ∈ Q in A′; then L(A′) =
⋃
q∈I Lq(A′).

Paths(L) ⊆ L(A′): We prove by induction on t ∈ T (F) that, if q →∗A t, then
Paths(t) ⊆ Lq(A′). Thus, if t ∈ L, then q ∈ Qf = I, and Paths(t) ⊆ L(A′).
• For the base case where t = a ∈ F0, a→ q implies (q, a, q`) ∈ δ and thus
a ∈ Lq(A′).
• For the induction step where t = f(t1, . . . , tn), f ∈ Fn for some 1 ≤ n ≤ k,

we have the reduction q →A f(q1, . . . , qn)→∗A t for some f(q1, . . . , qn)→
q in ∆. We apply the induction hypothesis on each qi →∗A ti for 1 ≤ i ≤ n:

Paths(f(t1, . . . , tn)) =
⋃

1≤i≤n
{(f, i)} · Paths(ti) by def.

⊆
⋃

1≤i≤n
{(f, i)} · Lqi(A′) by ind. hyp.

⊆ Lq(A′) ∀1 ≤ i ≤ n, (q, (f, i), qi) ∈ δ .

L(A′) ⊆ Paths(L): First note that L(A′) ⊆ Π. We show by induction on w ∈ Π
that, for all q ∈ Q, if w ∈ Lq(A′), then there exists t ∈ T (F) such that
w ∈ Paths(t) and q →∗A t. Then, w ∈ L(A′) occurs when q ∈ I = Qf and
thus there exists t ∈ L with w ∈ Paths(t).
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• For the base case where w = a ∈ F0, w ∈ Lq(A′) requires (q, a, q`) ∈ δ,
hence t

def
= a fits: w ∈ {a} = Paths(t) and q →A a.

• For the induction step, w = (f, i)wi for some 1 ≤ i ≤ n ≤ k, f ∈ Fn,
and wi ∈ Π. Then there exists qi ∈ Q such that (q, (f, i), qi) ∈ δ and
wi ∈ Lqi(A′); therefore there is a rule q → f(q1, . . . , qi, . . . , qn) in ∆
for some q1, . . . , qi−1, qi+1, . . . , qn ∈ Q. By induction hypothesis, there
exists ti ∈ T (F) such that wi ∈ Paths(ti) and qi →∗A ti. For all j ∈
{1, . . . , n} \ {i}, as the state qj is co-accessible, there exist a tree tj such

that qj →∗A tj . Letting t
def
= f(t1, . . . , tn), we have therefore q →∗A t and

(f, i) · wi ∈ Paths(t) as desired.

2. The path closure of a word language L′ ⊆ Π is

L′
def
= {t ∈ T (F) | Paths(t) ⊆ L′} .

Show that if L′ ⊆ Π is recognisable, then L′ ⊆ T (F) is recognisable by a deter-[3]

ministic top-down tree automaton.

Let A′ = 〈Q′,Σ, δ, I, F 〉 be a DFA recognising L′ ⊆ Π. Observe that L′ is prefix : if
ww′ ∈ L′ and w ∈ L′ for some w,w′ ∈ Σ∗, then w′ = ε; this is because the symbols
of F0 act as end-of-word markers. Thus without loss of generality, F is a singleton
{q`}.
We construct a deterministic top-down tree automaton A = 〈Q,F , Qf ,∆〉 with

Q
def
= Q′ \ {q`}, Qf

def
= I, and

∆
def
= {q → a | a ∈ F0, δ(q, a) = q`}
∪ {q → f(δ(q, (f, 1)), . . . , δ(q, (f, n))) | f ∈ Fn and ∀1 ≤ i ≤ n, δ(f, i) is defined} .

We show by induction on t ∈ T (F) that, for all q ∈ Q, Paths(t) ⊆ Lq(A′), if
and only if q →∗A t. Then, t ∈ L′, if and only if Paths(t) ⊆ L′, if and only if
Paths(t) ⊆ Lq(A′) for some q ∈ I, if and only if q →∗A t for some q ∈ Qf , if and
only if t ∈ L(A).

• For the base case t = a ∈ F0, Paths(a) = {a} ⊆ Lq(A′) if and only if
δ(q, a) = q`, if and only if (q → a) ∈ δ as desired.

• For the induction step, let t = f(t1, . . . , tn) for some 1 ≤ n ≤ k, f ∈ Fn,
and each ti ∈ T (F). Then Paths(t) =

⋃
1≤i≤n{(f, i)} · Paths(ti) ⊆ Lq(A′)

if and only if Paths(ti) ⊆ Lδ(q,(f,i))(A′) for all 1 ≤ i ≤ n. By induction
hypothesis, this is if and only if δ(q, (f, i)) →∗A ti for each i, which is if and
only if q →A f(δ(q, (f, 1)), . . . , δ(q, (f, n)))→∗A f(t1, . . . , tn) = t as desired.
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3. Deduce that L ⊆ T (F) is recognisable by a deterministic top-down tree automaton[2]

if and only if L is recognisable and path closed, i.e. L = Paths(L).

If L is recognisable by a deterministic top-down tree automaton A, then L is

recognisable and the automaton A′ constructed in Question 1 for L′
def
= Paths(L)

is a DFA. If we apply the construction of Question 2 to A′ we obtain A back!
Hence L = L(A) = Paths(L).

Conversely, if L is recognisable and path closed, then by Question 1 Paths(L)
is recognised by a word automaton A′, which we can determinise to obtain by
Question 2 a deterministic top-down tree automaton for Paths(L) = L.

4. Show that it is decidable whether a recognisable tree language is path closed.[1]

This is clearly decidable since by questions 1 and 2 we can build a deterministic
top-down tree Ad automaton of exponential size with L(Ad) = Paths(L). As
L ⊆ Paths(L) always holds, it suffices to check whether L(Ad) ⊆ L(A), i.e. whether
L(A) ∩ (T (F) \ L(Ad)) = ∅. Observe that complementing Ad is trivial, hence this
last inclusion test is in polynomial time in the size of A and Ad, hence in EXP
overall.

5. Let F def
= {∧(2),∨(2),⊥(0),>(0)} and L

def
= {t ∈ T (F) | e(t) = >} be the set of trees

that evaluate to > according to:

e(∧(t1, t2))
def
= e(t1) ∧ e(t2) , e(∨(t1, t2))

def
= e(t1) ∨ e(t2) , e(⊥)

def
= ⊥ , e(>)

def
= > .

Show that L is not recognised by any deterministic top-down tree automaton.[1]

Indeed, t1
def
= ∨(⊥,>) and t2

def
= ∨(>,⊥) are in L. Thus (∨, 1)⊥ ∈ Paths(t1) and

(∨, 2)⊥ ∈ Paths(t2) show that t3
def
= ∨(⊥,⊥) ∈ Paths(L) although it does not

belong to L.

6. Show that L is not recognised by any finite union of deterministic top-down tree[2]

automata.

Assume L =
⋃

1≤i≤n Li where each Li is recognised by a deterministic top-down
tree automaton. Consider the trees

t0
def
= ∨(>,⊥) , tm+1

def
= ∨(⊥, tm) .

As all of these infinitely many trees belong to L, there must be 1 ≤ i ≤ n such that
tj ∈ Li and tk ∈ Li for j < k. Hence (∨, 2)j−1(∨, 2)⊥ ∈ Paths(tj) ⊆ Paths(Li) and

(∨, 2)`(∨, 1)⊥ ∈ Paths(tk) ⊆ Paths(Li) for all ` < j imply that t′j ∈ Li = Paths(Li)
where

t′0
def
= ∨(⊥,⊥) , t′m+1

def
= ∨(⊥, t′m) .

This contradicts Li ⊆ L.
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