MPRI 2-27-1 Exam

Duration: 3 hours

Paper documents are allowed. The numbers in front of questions are indicative of hardness or duration.

1 Model-Theoretic Syntax

Exercise 1 (Propositional Dynamic Logic). Recall that the syntax of PDL can be seen as follows. Let A be a countable set of atomic predicates. Then PDL formulæ can be defined by the abstract syntax:

$$
\begin{array}{lr}
\varphi::=a|\top| \neg \varphi|\varphi \vee \varphi|\langle\pi\rangle \varphi & \text { (node formulæ) } \\
\alpha::=\varphi ?|\downarrow| \uparrow|\rightarrow| \leftarrow & \text { (atomic paths) } \\
\pi::=\alpha|\pi+\pi| \pi ; \pi \mid \pi^{*} & \text { (path formulæ) }
\end{array}
$$

where a ranges over A. Put differently, path formulæ are built as rational languages over an alphabet of atomic paths.

The semantics of a node formula on a tree structure $\mathfrak{M}=\left\langle W, \downarrow, \rightarrow,\left(P_{a}\right)_{a \in A}\right\rangle$ is a set of tree nodes $\llbracket \varphi \rrbracket=\{w \in W \mid \mathfrak{M}, w \models \varphi\}$, while the semantics of a path formula is a binary relation over W :

$$
\begin{array}{ccc}
\llbracket a \rrbracket \stackrel{\text { def }}{=}\left\{w \in W \mid P_{a}(w)\right\} & \llbracket \downarrow \rrbracket \stackrel{\text { def }}{=} \downarrow & \llbracket \pi_{1}+\pi_{2} \rrbracket \stackrel{\text { def }}{=} \llbracket \pi_{1} \rrbracket \cup \llbracket \pi_{2} \rrbracket \\
\llbracket \top \rrbracket \stackrel{\text { def }}{=} W & \llbracket \rightarrow \rrbracket \stackrel{\text { def }}{=} \rightarrow & \llbracket \pi_{1} ; \pi_{2} \rrbracket \stackrel{\text { def }}{=} \llbracket \pi_{1} \rrbracket g \llbracket \pi_{2} \rrbracket \\
\llbracket \neg \varphi \rrbracket \stackrel{\text { def }}{=} W \backslash \llbracket \varphi \rrbracket & \llbracket \uparrow \rrbracket \stackrel{\text { def }}{=}(\downarrow)^{-1} & \llbracket \pi^{*} \rrbracket \stackrel{\text { def }}{=} \llbracket \pi \rrbracket^{\star} \\
\llbracket \varphi_{1} \vee \varphi_{2} \rrbracket \stackrel{\text { def }}{=} \llbracket \varphi_{1} \rrbracket \cup \llbracket \varphi_{2} \rrbracket & \llbracket \leftarrow \rrbracket \stackrel{\text { def }}{=}(\rightarrow)^{-1} & \llbracket \varphi ? \rrbracket \stackrel{\text { def }}{=}\{(w, w) \in W \times W \mid w \in \llbracket \varphi \rrbracket\},
\end{array}
$$

where ' 9 ', denotes relational composition: for two binary relations R and R^{\prime} over $W, R \circ R^{\prime}=$ $\left\{\left(w, w^{\prime \prime}\right) \in W \times W \mid \exists w^{\prime} \in W,\left(w, w^{\prime}\right) \in R \wedge\left(w^{\prime}, w^{\prime \prime}\right) \in R^{\prime}\right\}$.
[2] 1. Prove the following equivalences:

$$
\begin{aligned}
\left\langle\pi_{1} ; \pi_{2}\right\rangle \varphi & \equiv\left\langle\pi_{1}\right\rangle\left\langle\pi_{2}\right\rangle \varphi \\
\left\langle\pi_{1}+\pi_{2}\right\rangle \varphi & \equiv\left(\left\langle\pi_{1}\right\rangle \varphi\right) \vee\left(\left\langle\pi_{2}\right\rangle \varphi\right) \\
\left\langle\pi^{*}\right\rangle \varphi & \equiv \varphi \vee\left\langle\pi ; \pi^{*}\right\rangle \varphi \\
\left\langle\varphi_{1} ?\right\rangle \varphi_{2} & \equiv \varphi_{1} \wedge \varphi_{2} .
\end{aligned}
$$

Solution: For any tree structure:

$$
\begin{align*}
\llbracket\left\langle\pi_{1} ; \pi_{2}\right\rangle \varphi \rrbracket & =\llbracket \pi_{1} ; \pi_{2} \rrbracket^{-1}(\llbracket \varphi \rrbracket) \\
& =\left(\llbracket \pi_{1} \rrbracket ; \llbracket \pi_{2} \rrbracket\right)^{-1}(\llbracket \varphi \rrbracket) \\
& =\left(\llbracket \pi_{2} \rrbracket^{-1} ; \llbracket \pi_{1} \rrbracket^{-1}\right)(\llbracket \varphi \rrbracket) \tag{©}\\
& =\llbracket \pi_{1} \rrbracket^{-1}\left(\llbracket \pi_{2} \rrbracket^{-1}(\llbracket \varphi \rrbracket)\right) \\
& \left.=\llbracket \pi_{1}\right\rangle\left\langle\pi_{2}\right\rangle \varphi \rrbracket \\
\llbracket\left\langle\pi_{1}+\pi_{2}\right\rangle \varphi \rrbracket & =\llbracket \pi_{1}+\pi_{2} \rrbracket^{-1}(\llbracket \varphi \rrbracket) \\
& =\left(\llbracket \pi_{1} \rrbracket \cup \llbracket \pi_{2} \rrbracket\right)^{-1}(\llbracket \varphi \rrbracket) \\
& =\left(\llbracket \pi_{1} \rrbracket^{-1} \cup \llbracket \pi_{2} \rrbracket^{-1}\right)(\llbracket \varphi \rrbracket) \\
& =\llbracket \pi_{1} \rrbracket^{-1}(\llbracket \varphi \rrbracket) \cup \llbracket \pi_{2} \rrbracket^{-1}(\llbracket \varphi \rrbracket) \\
& =\llbracket\left\langle\pi_{1}\right\rangle \varphi \vee\left\langle\pi_{2}\right\rangle \varphi \rrbracket \\
\llbracket\left\langle\pi^{*}\right\rangle \varphi \rrbracket & =\llbracket \pi^{*} \rrbracket^{-1}(\llbracket \varphi \rrbracket) \\
& =\left(\llbracket \pi \rrbracket^{*}\right)^{-1}(\llbracket \varphi \rrbracket) \\
& =\llbracket \pi \rrbracket^{0}(\llbracket \varphi \rrbracket) \cup\left(\llbracket \pi \rrbracket^{+}\right)^{-1}(\llbracket \varphi \rrbracket) \\
& =\llbracket \varphi \rrbracket \cup\left(\llbracket \pi \rrbracket q \llbracket \pi \rrbracket^{*}\right)^{-1}(\llbracket \varphi \rrbracket) \\
& =\llbracket \varphi \vee\left\langle\pi ; \pi^{*}\right\rangle \varphi \rrbracket \\
\llbracket\left\langle\varphi_{1} ?\right\rangle \varphi_{2} \rrbracket & =\llbracket \varphi_{1} ? \rrbracket^{-1}\left(\llbracket \varphi_{2} \rrbracket\right) \\
& =\left\{(w, w) \mid w \in \llbracket \varphi_{1} \rrbracket\right\}^{-1}\left(\llbracket \varphi_{2} \rrbracket\right) \\
& =\left\{(w, w) \mid w \in \llbracket \varphi_{1} \rrbracket\right\}\left(\llbracket \varphi_{2} \rrbracket\right) \\
& =\llbracket \varphi_{1} \rrbracket \cap \llbracket \varphi_{2} \rrbracket \\
& =\llbracket \varphi_{1} \wedge \varphi_{2} \rrbracket .
\end{align*}
$$

2. Let us assume that we distinguish three disjoint subsets of labels: nonterminal labels in $N \subseteq A$, part-of-speech labels $\Theta \subseteq A$, and an open lexicon $L \subseteq A$. For example, in the tree in Figure 1 below, we have $\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}, \mathrm{PP}\} \subseteq N,\{\mathrm{PRP}, \mathrm{VBD}, \mathrm{DT}, \mathrm{NN}, \mathrm{IN}\} \subseteq$ Θ, and $\{$ He, hurled, the, ball, into, basket $\} \subseteq L$.

Give a PDL formula ensuring that its models are labelled consistently with this style of constituent analysis.

Figure 1: Example of a constituent tree. The head children are starred. The lexical heads of internal nodes are indicated between brackets.

Solution: Consider the following node formula to be evaluated at the root:

$$
\begin{aligned}
& \operatorname{root} \wedge S \\
& \wedge\left[\downarrow^{*} ; \text { internal } ? ;(\neg\langle\downarrow\rangle \text { leaf }) ?\right] \bigvee_{A \in N}\left(A \wedge \bigwedge_{p \in(N \cup \Theta \cup L) \backslash\{A\}} \neg p\right) \\
& \wedge\left[\downarrow^{*} ;(\langle\downarrow\rangle \text { leaf }) ?\right] \bigvee_{\theta \in \Theta}\left(\theta \bigwedge_{p \in(N \cup \Theta \cup L) \backslash\{\theta\}} \neg p \wedge[\downarrow](\text { first } \wedge \text { last) })\right. \text { (part-of-speech categories) } \\
& \wedge\left[\downarrow^{*} ; \text { leaf? }\right] \bigwedge_{p \in N \cup \Theta} \neg p \\
& \wedge\left[\downarrow^{*}\right]\left(\bigvee_{a \in L} a \Longrightarrow \operatorname{leaf} \wedge \bigwedge_{b \in L \backslash\{a\}} \neg b\right) \\
& \text { (the root is labelled by ' } S \text { ') } \\
& \text { (grammatical categories) }
\end{aligned}
$$

The formula ensures that exactly one of the propositions from $N \cup \Theta$ labels every internal node, and none labels any leaves. Furthermore, Θ-labelled nodes are exactly the ones with a leaf child, and that child must be unique. Finally, L-labelled nodes must be leaves (but not all leaves must have a label in L, so that the lexicon is open).
[3] 3. Recall from the lecture notes that a head percolation function $h: N \rightarrow\{l, r\} \times(N \uplus \Theta)^{*}$ provides for a given parent label $A \in N$ a pair ($d, X_{1} \cdots X_{n}$) consisting of a direction d and a list of potential head labels $X_{1} \cdots X_{n}$. The intended semantics of such a function is to identify the head child of an A-labelled node $w \in W$. The direction indicates whether we should process the list of children of w left-to-right (l) or right-to-left (r). If X_{1} appears among the children of w, then its leftmost (in case of l, and rightmost
in case of r) occurrence is the head child of w. Otherwise, if X_{2} appears among the children, then its leftmost (in case of l, and rightmost in case of r) occurrence is the head child of $w \ldots$ If none of X_{1}, \ldots, X_{n} appears among the children of w, then its leftmost (in case of l, and rightmost in case of r) child is considered as its head. For instance, the function

$$
\begin{aligned}
h(\mathrm{~S}) & =(r, \text { TO IN VP S SBAR } \cdots) \\
h(\mathrm{VP}) & =(l, \text { VBD VBN VBZ VB VBG VP } \cdots) \\
h(\mathrm{NP}) & =(r, \text { NN NNP NNS NNPS JJR CD } \cdots) \\
h(\mathrm{PP}) & =(l, \text { IN TO VBG VBN } \cdots)
\end{aligned}
$$

would result in the starred head children in Figure 1.
Given a head percolation function h, provide a PDL path formula π_{h} s.t. $\left(w, w^{\prime}\right) \in \llbracket \pi_{h} \rrbracket$ iff w is the parent of w^{\prime} and w^{\prime} is the head child of w. Your formula should also consider the case where w is labelled by a part-of-speech tag in Θ.

Solution: Define the path formula

$$
\pi_{h} \stackrel{\text { def }}{=}\left(\sum_{A \in N} A ? ; \pi_{h(A)}\right)+\left(\sum_{\theta \in \Theta} \theta ? ; \downarrow\right)
$$

where we move to the first child in case of l and to the last child in case of r

$$
\begin{aligned}
& \pi_{l, X_{1} \cdots X_{n}} \stackrel{\text { def }}{=} \downarrow ; \text { first? } ; \pi_{l, X_{1} \cdots X_{n}}^{\prime} \\
& \pi_{r, X_{1} \cdots X_{n}} \stackrel{\text { def }}{=} \downarrow ; \text { last?; } \pi_{r, X_{1} \cdots X_{n}}^{\prime}
\end{aligned}
$$

and $\pi_{l, X_{1} \cdots X_{n}}^{\prime}$ is defined by induction over n :

$$
\begin{aligned}
& \pi_{l, \varepsilon}^{\prime} \stackrel{\text { def }}{=} \mathrm{T} ? \\
& \pi_{l, X_{1} \cdot X_{2} \cdots X_{n}}^{\prime} \stackrel{\text { def }}{=}\left(\left(\neg X_{1} ? ; \rightarrow\right)^{*} ; X_{1}\right)+\left(\left(\neg\left\langle\rightarrow^{*}\right\rangle X_{1}\right) ? ; \pi_{l, X_{2} \cdots X_{n}}^{\prime}\right)
\end{aligned}
$$

and $\pi_{r, X_{1} \cdots X_{n}}^{\prime}$ is defined similarly.
[1] 4. Provide a PDL path formula $\pi_{\text {lex }}$ that holds between a node and its lexical head. The formula should allow to recover the lexical heads as indicated between brackets in Figure 1.

Solution: Define the formula by

$$
\pi_{\text {lex }} \stackrel{\text { def }}{=} \pi_{h}^{*} ; \text { leaf? }
$$

[1] 5. Consider $L(\varphi)$ the set of trees that satisfy the PDL node formula φ at their root. Assuming A to be finite, justify why yield $(L(\varphi))$ is a context-free word language.

Solution: As seen in class, for a PDL formula φ, one can construct a 2ATA \mathcal{A}_{φ} that recognises the 'completion' of the first-child next-sibling encoding $\overline{\mathrm{fcns}(L(\varphi))}$ over $\{\#\} \cup 2^{A} \times\{0,1\}$, and by a theorem by Vardi this 2ATA can be converted into an equivalent nondeterministic tree automaton. Thus this encoding $\overline{\mathrm{fcns}(L(\varphi))}$ is a regular tree language.
\triangle In general for an unranked tree language L, yield $(\operatorname{fcns}(L))$ might be different from yield (L); furthermore, the completion means that the yield of $\overline{f c n s}(L(\varphi))$ is a sequence of '\#' symbols.

We can however apply a linear bottom-up tree transduction τ (which preserves regularity) to recover the yield of the original trees in $L(\varphi)$. Pick two new symbols f, g not in 2^{A}. Namely, the transducer has two states $q_{\#}$ and q and rules

$$
\begin{aligned}
\#^{(0)} & \rightarrow q_{\#}\left(\#^{(0)}\right) \\
\#^{(2)}\left(q\left(x_{1}\right), q_{\#}\left(x_{2}\right)\right) & \rightarrow q\left(x_{1}\right) \\
(a, b)^{(2)}\left(q_{\#}\left(x_{1}\right), q_{\#}\left(x_{2}\right)\right) & \rightarrow q\left(a^{(0)}\right) \\
(a, b)^{(2)}\left(q_{\#}\left(x_{1}\right), q\left(x_{2}\right)\right) & \rightarrow q\left(f^{(2)}\left(a^{(0)}, x_{2}\right)\right) \\
(a, b)^{(2)}\left(q\left(x_{1}\right), q_{\#}\left(x_{2}\right)\right) & \rightarrow q\left(g^{(1)}\left(x_{1}\right)\right) \\
(a, b)^{(2)}\left(q\left(x_{1}\right), q\left(x_{2}\right)\right) & \rightarrow q\left(f^{(2)}\left(x_{1}, x_{2}\right)\right)
\end{aligned}
$$

for all $a \in 2^{A}$ and $b \in\{0,1\}$. The result is to replace left children labelled by ' $\#$ ' by their parent label-which were leaf nodes in the trees in $L(\varphi)$ before the encodingand to remove right children labelled by ' $\#$ ' entirely. Thus the image $\tau(\overline{\mathrm{fcns}(L(\varphi))})$ by this linear bottom-up transduction is also a regular tree language, and therefore yield $(\tau(\overline{\mathrm{fcns}(L(\varphi))}))$ is a context-free word language. But this is exactly yield $(L(\varphi))$.

Exercise 2 (Relational PDL). We extend the syntax of PDL to allow for 'relational paths'. To simplify matters, we shall only consider binary relational paths. Define $\varepsilon \stackrel{\text { def }}{=} T$?. Then binary relational paths are defined by the following abstract syntax:

$$
\begin{align*}
& \beta::=\alpha: \varepsilon \mid \varepsilon: \alpha \tag{atomicrelations}\\
& \rho::=\beta|\rho+\rho| \rho ; \rho \mid \rho^{*} \tag{relationalpaths}
\end{align*}
$$

and adding the construction $\langle\rho\rangle$ to the syntax of node formulæ. Put differently, relational paths are constructed as rational relations over atomic paths. The semantics of a relational path on a tree structure $\mathfrak{M}=\left\langle W, \downarrow, \rightarrow,\left(P_{a}\right)_{a \in A}\right\rangle$ is a 4 -ary relation in W^{4}, i.e. a binary
relation on paths, defined by:

$$
\begin{aligned}
& \llbracket \alpha: \varepsilon \rrbracket \stackrel{\text { def }}{=}\left\{\left(w, w^{\prime}, w^{\prime \prime}, w^{\prime \prime}\right) \mid\left(w, w^{\prime}\right) \in \llbracket \alpha \rrbracket \wedge w^{\prime \prime} \in W\right\} \\
& \llbracket \varepsilon: \alpha \rrbracket \stackrel{\text { def }}{=}\left\{\left(w, w, w^{\prime}, w^{\prime \prime}\right) \mid w \in W \wedge\left(w^{\prime}, w^{\prime \prime}\right) \in \llbracket \alpha \rrbracket\right\}
\end{aligned}
$$

for atomic relations, while the sematics for ' $+^{\prime}$, ';', and ${ }^{(*)}$ are the obvious ones when seeing $\llbracket \rho \rrbracket$ as a binary relation on pairs of nodes. Finally,

$$
\llbracket\langle\rho\rangle \rrbracket \stackrel{\text { def }}{=}\left\{w \in W \mid \exists w^{\prime}, w^{\prime \prime} \in W,\left(w, w^{\prime}, w, w^{\prime \prime}\right) \in \llbracket \rho \rrbracket\right\}
$$

meaning that we should find two paths starting from w and related by ρ.
[1] 1. Provide a relational path formula ρ_{ℓ} such that

$$
\llbracket \rho_{\ell} \rrbracket=\left\{\left(w_{1}, w_{1}^{\prime}, w_{2}, w_{2}^{\prime}\right) \mid \exists n \in \mathbb{N}, w_{1} \downarrow^{n} w_{1}^{\prime} \wedge w_{2} \downarrow^{n} w_{2}^{\prime}\right\} .
$$

Intuitively, ρ_{ℓ} relates two paths $\left(w_{1}, w_{1}^{\prime}\right)$ and $\left(w_{2}, w_{2}^{\prime}\right)$, both in $\llbracket \downarrow^{*} \rrbracket$, such that w_{1}^{\prime} is as far below w_{1} as w_{2}^{\prime} is below w_{2}.

Solution: Define

$$
\rho_{\ell} \stackrel{\text { def }}{=}((\downarrow: \varepsilon) ;(\varepsilon: \downarrow))^{*}
$$

[2] 2. Deduce that relational PDL allows to define some non-regular tree languages.

Solution: The tree language $\left\{f\left(g^{n}(a), g^{n}(b)\right) \mid n \geq 0\right\}$ is well-known to be nonregular (a simple pumping argument suffices). Let $A \stackrel{\text { def }}{=}\left\{p, p^{\prime}\right\}$ and $f \stackrel{\text { def }}{=} p \wedge p^{\prime}$, $g \stackrel{\text { def }}{=} p \wedge \neg p^{\prime}, a \stackrel{\text { def }}{=} \neg p \wedge p^{\prime}$, and $b \stackrel{\text { def }}{=} \neg p \wedge \neg p^{\prime}$. This language is defined by the following formula:

$$
f \wedge\left\langle\downarrow ;\left(\text { first } \wedge\left\langle\downarrow^{*}\right\rangle a\right) ? ; \rightarrow\right\rangle \text { last }
$$

ensuring the root is labelled by f and has exactly two children, the first dominating an a

$$
\wedge\left[\downarrow ; \downarrow^{*} ;(\neg \text { leaf }) ?\right](g \wedge[\downarrow](\text { first } \wedge \text { last }))
$$

ensuring all the non-leaf nodes below the root are labelled by g and have a single child

$$
\wedge\left\langle\rho_{\ell} ;(a ?: \varepsilon) ;(\varepsilon: b ?)\right\rangle
$$

ensuring the two g-branches have the same length, with one ending in an a (necessarily a leaf since otherwise it would be labelled g) and the other with a b (also a leaf).
[3] 3. Recall from the classes that some natural languages, including Swiss German, exhibit cross-serial dependencies of the form $L_{\text {cross }} \stackrel{\text { def }}{=}\left\{a^{n} b^{m} c^{n} d^{m} \mid n, m>0\right\}$. Provide a relational PDL node formula $\varphi_{\text {cross }}$ such that yield $\left(L\left(\varphi_{\text {cross }}\right)\right)=L_{\text {cross }}$.

Solution: There are multiple ways around this question. Here is one solution: we define the tree language

$$
L \stackrel{\text { def }}{=}\left\{f\left(g(a, \square)^{n} \cdot a, g(b, \square)^{m} \cdot b, g(c, \square)^{n} \cdot c, g(d, \square)^{m} \cdot d\right) \mid n, m>0\right\}
$$

over $\mathcal{F} \stackrel{\text { def }}{=}\left\{a^{(0)}, b^{(0)}, c^{(0)}, d^{(0)}, g^{(2)}, f^{(2)}\right\}$. Clearly yield $(L)=L_{\text {cross }}$. It remains to define L using a relational PDL formula.
We define for this

$$
\begin{aligned}
& \rho_{a c} \stackrel{\text { def }}{=}((g \wedge\langle\downarrow ; \text { first? }\rangle a) ?: \varepsilon) ;(\downarrow: \varepsilon) ;(\varepsilon:(g \wedge\langle\downarrow ; \text { first? } ?\rangle) ?) ;(\varepsilon: \downarrow) \\
& \left.\rho_{b d} \stackrel{\text { def }}{=}((g \wedge\langle\downarrow ; \text { first? }\rangle b) ?: \varepsilon) ;(\downarrow: \varepsilon) ;(\varepsilon:(g \wedge\langle\downarrow ; \text { first? }\rangle\rangle) ?\right) ;(\varepsilon: \downarrow)
\end{aligned}
$$

which describe 'synchronised' steps in the $g(a, \square)$ and $g(c, \square)$ branches and $g(b, \square)$ and $g(d, \square)$ ones, respectively. It remains to force the trees to be in $T(\mathcal{F})$:

$$
\varphi_{\mathcal{F}} \stackrel{\text { def }}{=}\left[\downarrow^{*}\right] \bigvee_{f \in \mathcal{F}} f \wedge\left(\bigwedge_{g \in \mathcal{F} \backslash\{f\}} \neg g\right) \wedge \begin{cases}\left.\left\langle\downarrow ; \text { first } ? ; \rightarrow^{k} ; \text { last? }\right\rangle\right\rangle & \text { if } f \in \mathcal{F}_{k}, k>0 \\ {[\downarrow] \perp} & \text { if } f \in \mathcal{F}_{0}\end{cases}
$$

and finally to make sure the a, b, c, and d branches are in the correct order and are pairwise related by $\rho_{a c}$ and $\rho_{b d}$:

$$
\begin{aligned}
\varphi_{\text {cross }} & \stackrel{\text { def }}{=} \varphi_{\mathcal{F}} \wedge f \wedge\left(\left\langle\downarrow ; \text { first } ? ;\left(\left\langle\downarrow^{*}\right\rangle a\right) ? ; \rightarrow ;\left(\left\langle\downarrow^{*}\right\rangle b\right) ? ; \rightarrow ;\left(\left\langle\downarrow^{*}\right\rangle c\right) ? ; \rightarrow ;\left(\left\langle\downarrow^{*}\right\rangle d\right) ?\right\rangle \top\right) \\
& \wedge\left\langle(\downarrow: \varepsilon) ;(\varepsilon: \downarrow) ; \rho_{a c}^{*} ;(a ?: \varepsilon) ;(\varepsilon: c ?)\right\rangle \\
& \wedge\left\langle(\downarrow: \varepsilon) ;(\varepsilon: \downarrow) ; \rho_{b d}^{*} ;(b ?: \varepsilon) ;(\varepsilon: d ?)\right\rangle
\end{aligned}
$$

[4] 4. Show that the satisfiability problem for relational PDL is undecidable.
Hint: Reduce from the Post Correspondence Problem.

Solution: Only one person attempted this question (successfully). I'll let the others think about it.

2 Event Semantics and Adverbial Modification

Exercise 3. One considers the three following signatures:

```
( \(\left.\Sigma_{\mathrm{ABS}}\right)\) JOHN : NP
    MARY: NP
        KISSED : \(N P \rightarrow N P \rightarrow V\)
        KISSED。 \(: N P \rightarrow N P \rightarrow V_{\circ}\)
            NOT : \(\left(N P \rightarrow S_{\circ}\right) \rightarrow(N P \rightarrow S)\)
        E-CLOS: \(V \rightarrow S\)
        E-CLOS。: \(V_{\circ} \rightarrow S_{\circ}\)
( \(\left.\Sigma_{\text {S-FORM }}\right)\) John : string
    Mary : string
    kissed : string
        kiss : string
        did : string
        not : string
( \(\Sigma_{\text {L-FORM }}\) ) \(\mathbf{j}, \mathbf{m}: e\)
            kiss, past : \(\mathrm{v} \rightarrow \mathrm{t}\)
    agent, patient : \(v \rightarrow e \rightarrow t\)
```

In Σ_{ABS}, the atomic type $N P$ stands for the syntactic category of noun phrases, the atomic types S and $S \circ$ for the syntactic category of sentences (positive and negative), and the atomic type V and V_{0}, the syntactic categories of "open" sentences (positive and negative). The reason for distinguishing between the categories of positive and negative (open) sentences is merely syntactic. Without such a distinction, the surface realization of a negative expression such as:
NOT (KISSED MARY) JOHN
would be:

> *John did not kissed Mary

Without this distinction, it would also be possible to iterate negation. This would allow the following ungrammatical sentences to be generated:
*John did not did not kissed Mary
*John did not did not did not kissed Mary

In $\Sigma_{\text {S-FORM }}$, as usual, string is defined to be $o \rightarrow o$ for some atomic type o. This allows concatenation $(+)$ to be defined as functional composition, and the empty word (ϵ) as the identity.

In $\Sigma_{\mathrm{L}-\mathrm{FORM}}$, the atomic type e stands for the semantic category of entities, the atomic types t for the semantic category of truth values, and the atomic types v for the semantic category of events.

One then defines two morphism $\left(\mathcal{L}_{\text {SYNT }}: \Sigma_{\mathrm{ABS}} \rightarrow \Sigma_{\text {S－FORM }}\right.$ ，and $\mathcal{L}_{\text {SEM }}: \Sigma_{\mathrm{ABS}} \rightarrow$ $\left.\Sigma_{\text {L－FORM }}\right)$ as follows：

```
\(\left(\mathcal{L}_{\text {SYNT }}\right) \quad\) JOHN \(:=\) John
    MARY \(:=\) Mary
    KISSED \(:=\lambda x y . y+\) kissed \(+x\)
KISSED \(0:=\lambda x y . y+\boldsymbol{k i s s}+x\)
    NOT \(:=\lambda f x . x+\boldsymbol{d i d}+\boldsymbol{n o t}+(f \epsilon)\)
        E-CLOS, E-CLOS \(:=\lambda x . x\)
\(\left(\mathcal{L}_{\text {SEM }}\right) \quad\) JOHN \(:=\mathbf{j}\)
    MARY := m
    KISSED, KISSED。 \(:=\lambda x y e .(\) kiss \(e) \wedge(\) agent \(e y) \wedge(\) patient \(e x) \wedge(\) past \(e)\)
    NOT \(:=\lambda p x . \neg(p x)\)
        \(\mathrm{E}-\mathrm{CLOS}, \mathrm{E}-\mathrm{CLOS}\) 。 \(:=\lambda p\). \(\exists e . p e\)
```

These two morphisms are such that：

$$
\mathcal{L}_{\text {SYNT }}(\text { E-CLOS }(\text { KISSED MARY JOHN }))=\text { John }+ \text { kissed }+ \text { Mary }
$$

$\mathcal{L}_{\text {SEM }}(\mathrm{E}-\mathrm{CLOS}($ KISSED MARY JOHN $))=\exists e .(\boldsymbol{k i s s} e) \wedge($ agent $e \mathbf{j}) \wedge($ patient $e \mathbf{m}) \wedge($ past $e)$
The last term may be paraphrased as follows：there is an event e such that：e is a kissing event；the agent of this kissing event is John；the patient of this kissing event is Mary；and this event e happened in the past．
［1］1．Give a term t such that

$$
\mathcal{L}_{\mathrm{SYNT}}(t)=\boldsymbol{J o h n}+\boldsymbol{d i d}+\boldsymbol{n o t}+\boldsymbol{k i s s}+\boldsymbol{M a r y}
$$

then compute $\mathcal{L}_{\text {SEM }}(t)$ ．

Solution：

$t=\operatorname{NOT}(\lambda x$ ．E－CLOS。 $($ KISSED。MARY $x))$ JOHN．
$\mathcal{L}_{\text {SEM }}(t)=\neg(\exists e .($ kiss $e) \wedge($ agent $e \mathbf{j}) \wedge($ patient $e \mathbf{m}) \wedge($ past $e))$
［2］2．Suppose that one modifies Σ_{ABS} and $\mathcal{L}_{\mathrm{SEM}}$ as follows：

$$
\begin{gathered}
\left(\Sigma_{\mathrm{ABS}}\right) \quad \vdots \\
\\
\\
\text { NOT }:\left(N P \rightarrow V_{0}\right) \rightarrow(N P \rightarrow V)
\end{gathered}
$$

$\left(\mathcal{L}_{\text {SEM }}\right) \quad \vdots$

$$
\text { NOT }:=\lambda p x e . \neg(p x e)
$$

What would be wrong?

Solution:

Let $t=\mathrm{E}-\mathrm{CLOS}(\operatorname{NOT}(\lambda x$. KISSED。MARY $x)$ JOHN). We would have

$$
\mathcal{L}_{\mathrm{SYNT}}(t)=\text { John }+ \text { did }+ \text { not }+ \text { kiss }+ \text { Mary }
$$

and

$$
\mathcal{L}_{\text {SEM }}(t)=\exists e \neg((\text { kiss } e) \wedge(\text { agent } e \mathbf{j}) \wedge(\text { patient } e \mathbf{m}) \wedge(\text { past } e)) .
$$

This last term does not assert that there is no past kissing event between John and Mary, but that there is an event which is not a past kissing event between John and Mary. Consequently, in a situation where John kissed both Mary and Sue, we would consider "John did not kiss Mary" to be true.

Exercise 4. One extends $\Sigma_{\mathrm{ABS}}, \Sigma_{\mathrm{S} \text {-FORM }}, \Sigma_{\mathrm{L}-\mathrm{FORM}}, \mathcal{L}_{\mathrm{SYNT}}$, and $\mathcal{L}_{\text {SEM }}$, respectively, as follows:

$$
\begin{aligned}
\left(\Sigma_{\mathrm{ABS}}\right) \quad \text { HOUR } & : N_{u} \\
\text { ONE } & : N_{u} \rightarrow N P_{\tau} \\
\text { FOR } & : N P_{\tau} \rightarrow((V \rightarrow V) \rightarrow S) \rightarrow S \\
\mathrm{FOR}_{\circ} & : N P_{\tau} \rightarrow\left(\left(V_{\circ} \rightarrow V_{\circ}\right) \rightarrow S\right) \rightarrow S \\
\mathrm{FOR}_{\circ \circ} & : N P_{\tau} \rightarrow\left(\left(V_{\circ} \rightarrow V_{\circ}\right) \rightarrow S_{\circ}\right) \rightarrow S_{\circ}
\end{aligned}
$$

where N_{u} is the syntactic category of nouns that name units of measurement, and $N P_{\tau}$ is the syntactic the category of noun phrases that denote time intervals;

$$
\begin{array}{cc}
\left(\Sigma_{\text {S-FORM }}\right) & \begin{array}{c}
\text { hour }: \text { string } \\
\text { one }: \text { string } \\
\text { for }: \text { string }
\end{array} \\
& \\
\left(\Sigma_{\text {L-FORM }}\right) & \text { hour }: \mathrm{i} \rightarrow \mathrm{n} \rightarrow \mathrm{t} \\
& 1: \mathrm{n} \\
& \text { duration }: \mathrm{v} \rightarrow \mathrm{i} \rightarrow \mathrm{t}
\end{array}
$$

where i and n stand for the semantic categories of time intervals and scalar quantities, respectively.

$$
\begin{aligned}
&\left(\mathcal{L}_{\text {SYNT }}\right) \text { HOUR } \\
&:=\text { hour } \\
& \text { ONE }:=\lambda x . \text { one }+x \\
&{\text { FOR }, \text { FOR }_{\circ}, \text { FOR }_{\circ \circ}}:=\lambda x f . f(\lambda y . y+\text { for }+x)
\end{aligned}
$$

$\left(\mathcal{L}_{\text {SEM }}\right) \quad$ HOUR $:=\lambda x y$ ．hour $x y$

$$
\mathrm{ONE}:=\lambda p t . p t 1
$$

$$
\text { FOR, } \mathrm{FOR}_{\circ}, \operatorname{FOR}_{\circ} \circ:=\lambda p q . \exists t .(p t) \wedge(q(\lambda p e .(p e) \wedge(\text { duration } e t)))
$$

［4］1．Give two different terms，say t_{0} and t_{1} ，such that：

$$
\mathcal{L}_{\mathrm{SYNT}}\left(t_{0}\right)=\mathcal{L}_{\mathrm{SYNT}}\left(t_{1}\right)=\text { John }+ \text { did }+ \text { not }+ \text { kiss }+ \text { Mary }+ \text { for }+ \text { one }+ \text { hour }
$$

Solution：

```
to FOOR。 (ONE HOUR)
    ( }\lambdaq.\operatorname{NOT}(\lambdax.E-CLOS。(q(KISSED。MARY x))) JOHN
t
    (\lambdaq.E-CLOS
    JOHN
```

［2］2．Compute $\mathcal{L}_{\text {SEM }}\left(t_{0}\right)$ and $\mathcal{L}_{\text {SEM }}\left(t_{1}\right)$ ．

Solution：

$\mathcal{L}_{\mathrm{SEM}}\left(t_{0}\right)=$
$\exists t .($ hour $t 1) \wedge \neg(\exists e .($ kiss $e) \wedge($ agent $e \mathbf{j}) \wedge($ patient $e \mathbf{m}) \wedge($ past $e) \wedge($ duration $e t))$
$\mathcal{L}_{\mathrm{SEM}}\left(t_{1}\right)=$
$\neg(\exists t .($ hour $t 1) \wedge(\exists e .($ kiss $e) \wedge($ agent $e \mathbf{j}) \wedge($ patient $e \mathbf{m}) \wedge($ past $e) \wedge($ duration $e t)))$
［1］3．Explain the difference between $\mathcal{L}_{\mathrm{SEM}}\left(t_{0}\right)$ and $\mathcal{L}_{\mathrm{SEM}}\left(t_{1}\right)$ ．

Solution：t_{0} and t_{1} correspond respectively to the following interpretations：
1．For one hour，it was not the case that John kissed Mary．
2．It was not the case that John kissed Mary for one hour．

