
MPRI 2-27-1 November 29, 2017

MPRI 2-27-1 Exam

Duration: 3 hours
Paper documents are allowed. The numbers in front of questions are indicative
of hardness or duration.

1 Model-Theoretic Syntax

Exercise 1 (Propositional Dynamic Logic). Recall that the syntax of PDL can be seen as
follows. Let A be a countable set of atomic predicates. Then PDL formulæ can be defined
by the abstract syntax:

ϕ ::= a | > | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ (node formulæ)

α ::= ϕ? | ↓ | ↑ | → | ← (atomic paths)

π ::= α | π + π | π; π | π∗ (path formulæ)

where a ranges over A. Put differently, path formulæ are built as rational languages over
an alphabet of atomic paths.

The semantics of a node formula on a tree structure M = 〈W, ↓,→, (Pa)a∈A〉 is a set of
tree nodes JϕK = {w ∈ W |M, w |= ϕ}, while the semantics of a path formula is a binary
relation over W :

JaK def
= {w ∈ W | Pa(w)} J↓K def

= ↓ Jπ1 + π2K
def
= Jπ1K ∪ Jπ2K

J>K def
= W J→K def

= → Jπ1; π2K
def
= Jπ1K # Jπ2K

J¬ϕK def
= W\JϕK J↑K def

= (↓)−1 Jπ∗K def
= JπK?

Jϕ1 ∨ ϕ2K
def
= Jϕ1K ∪ Jϕ2K J←K def

= (→)−1

J〈π〉ϕK def
= JπK−1(JϕK) Jϕ?K def

= {(w,w) ∈ W ×W | w ∈ JϕK} ,

where ‘#’ denotes relational composition: for two binary relations R and R′ over W , R#R′ =
{(w,w′′) ∈ W ×W | ∃w′ ∈ W, (w,w′) ∈ R ∧ (w′, w′′) ∈ R′}.

1.[2] Prove the following equivalences:

〈π1; π2〉ϕ ≡ 〈π1〉〈π2〉ϕ
〈π1 + π2〉ϕ ≡ (〈π1〉ϕ) ∨ (〈π2〉ϕ)

〈π∗〉ϕ ≡ ϕ ∨ 〈π; π∗〉ϕ
〈ϕ1?〉ϕ2 ≡ ϕ1 ∧ ϕ2 .

MPRI 2-27-1 November 29, 2017

Solution: For any tree structure:

J〈π1; π2〉ϕK = Jπ1; π2K−1(JϕK)

=
(
Jπ1K # Jπ2K

)−1
(JϕK)

=
(
Jπ2K−1 # Jπ1K−1

)
(JϕK) (4!)

= Jπ1K−1
(
Jπ2K−1(JϕK)

)
(4!)

= J〈π1〉〈π2〉ϕK
J〈π1 + π2〉ϕK = Jπ1 + π2K−1(JϕK)

=
(
Jπ1K ∪ Jπ2K

)−1
(JϕK)

=
(
Jπ1K−1 ∪ Jπ2K−1

)
(JϕK)

= Jπ1K−1(JϕK) ∪ Jπ2K−1(JϕK)
= J〈π1〉ϕ ∨ 〈π2〉ϕK

J〈π∗〉ϕK = Jπ∗K−1(JϕK)
= (JπK∗)−1(JϕK)
= JπK0(JϕK) ∪ (JπK+)−1(JϕK)
= JϕK ∪ (JπK # JπK∗)−1(JϕK)
= Jϕ ∨ 〈π; π∗〉ϕK

J〈ϕ1?〉ϕ2K = Jϕ1?K−1(Jϕ2K)
= {(w,w) | w ∈ Jϕ1K}−1(Jϕ2K)
= {(w,w) | w ∈ Jϕ1K}(Jϕ2K)
= Jϕ1K ∩ Jϕ2K
= Jϕ1 ∧ ϕ2K .

2.[2] Let us assume that we distinguish three disjoint subsets of labels: nonterminal labels in
N ⊆ A, part-of-speech labels Θ ⊆ A, and an open lexicon L ⊆ A. For example, in the
tree in Figure 1 below, we have {S, NP, VP, PP} ⊆ N , {PRP, VBD, DT, NN, IN} ⊆
Θ, and {He, hurled, the, ball, into, basket} ⊆ L.

Give a PDL formula ensuring that its models are labelled consistently with this style
of constituent analysis.

MPRI 2-27-1 November 29, 2017

S
[hurled]

NP
[he]

PRP?
[he]

He?

VP?
[hurled]

VP?
[hurled]

VBD?

[hurled]

hurled?

NP
[ball]

DT
[the]

the?

NN?
[ball]

ball?

PP
[into]

IN?
[into]

into?

NP
[basket]

DT
[the]

the?

NN?
[basket]

basket?

Figure 1: Example of a constituent tree. The head children are starred. The lexical heads
of internal nodes are indicated between brackets.

Solution: Consider the following node formula to be evaluated at the root:

root ∧ S (the root is labelled by ‘S’)

∧ [↓∗; internal?; (¬〈↓〉leaf)?]
∨
A∈N

A ∧ ∧
p∈(N∪Θ∪L)\{A}

¬p

 (grammatical categories)

∧ [↓∗; (〈↓〉leaf)?]
∨
θ∈Θ

θ ∧ ∧
p∈(N∪Θ∪L)\{θ}

¬p ∧ [↓](first ∧ last)

 (part-of-speech categories)

∧ [↓∗; leaf?]
∧

p∈N∪Θ

¬p

∧ [↓∗]

∨
a∈L

a =⇒ leaf ∧
∧

b∈L\{a}

¬b

 (lexicon elements)

The formula ensures that exactly one of the propositions from N ∪ Θ labels every
internal node, and none labels any leaves. Furthermore, Θ-labelled nodes are exactly
the ones with a leaf child, and that child must be unique. Finally, L-labelled nodes
must be leaves (but not all leaves must have a label in L, so that the lexicon is open).

3.[3] Recall from the lecture notes that a head percolation function h:N → {l, r}× (N]Θ)∗

provides for a given parent label A ∈ N a pair (d,X1 · · ·Xn) consisting of a direction d
and a list of potential head labels X1 · · ·Xn. The intended semantics of such a function
is to identify the head child of an A-labelled node w ∈ W . The direction indicates
whether we should process the list of children of w left-to-right (l) or right-to-left (r).
If X1 appears among the children of w, then its leftmost (in case of l, and rightmost

MPRI 2-27-1 November 29, 2017

in case of r) occurrence is the head child of w. Otherwise, if X2 appears among the
children, then its leftmost (in case of l, and rightmost in case of r) occurrence is the
head child of w. . . If none of X1, . . . , Xn appears among the children of w, then its
leftmost (in case of l, and rightmost in case of r) child is considered as its head. For
instance, the function

h(S) = (r,TO IN VP S SBAR · · ·)
h(VP) = (l,VBD VBN VBZ VB VBG VP · · ·)
h(NP) = (r,NN NNP NNS NNPS JJR CD · · ·)
h(PP) = (l, IN TO VBG VBN · · ·)

would result in the starred head children in Figure 1.

Given a head percolation function h, provide a PDL path formula πh s.t. (w,w′) ∈ JπhK
iff w is the parent of w′ and w′ is the head child of w. Your formula should also consider
the case where w is labelled by a part-of-speech tag in Θ.

Solution: Define the path formula

πh
def
=

(∑
A∈N

A?; πh(A)

)
+

(∑
θ∈Θ

θ?; ↓

)

where we move to the first child in case of l and to the last child in case of r

πl,X1···Xn

def
= ↓; first?; π′l,X1···Xn

πr,X1···Xn

def
= ↓; last?; π′r,X1···Xn

and π′l,X1···Xn
is defined by induction over n:

π′l,ε
def
= >?

π′l,X1·X2···Xn

def
= ((¬X1?;→)∗;X1) +

(
(¬〈→∗〉X1)?;π′l,X2···Xn

)
and π′r,X1···Xn

is defined similarly.

4.[1] Provide a PDL path formula πlex that holds between a node and its lexical head. The
formula should allow to recover the lexical heads as indicated between brackets in
Figure 1.

Solution: Define the formula by

πlex
def
= π∗h; leaf?

MPRI 2-27-1 November 29, 2017

5.[1] Consider L(ϕ) the set of trees that satisfy the PDL node formula ϕ at their root.
Assuming A to be finite, justify why yield(L(ϕ)) is a context-free word language.

Solution: As seen in class, for a PDL formula ϕ, one can construct a 2ATA Aϕ
that recognises the ‘completion’ of the first-child next-sibling encoding fcns(L(ϕ))
over {#} ∪ 2A × {0, 1}, and by a theorem by Vardi this 2ATA can be converted into
an equivalent nondeterministic tree automaton. Thus this encoding fcns(L(ϕ)) is a
regular tree language.

4! In general for an unranked tree language L, yield(fcns(L)) might be different from
yield(L); furthermore, the completion means that the yield of fcns(L(ϕ)) is a sequence
of ‘#’ symbols.

We can however apply a linear bottom-up tree transduction τ (which preserves reg-
ularity) to recover the yield of the original trees in L(ϕ). Pick two new symbols f, g
not in 2A. Namely, the transducer has two states q# and q and rules

#(0) → q#(#(0))

#(2)(q(x1), q#(x2))→ q(x1)

(a, b)(2)(q#(x1), q#(x2))→ q(a(0))

(a, b)(2)(q#(x1), q(x2))→ q(f (2)(a(0), x2))

(a, b)(2)(q(x1), q#(x2))→ q(g(1)(x1))

(a, b)(2)(q(x1), q(x2))→ q(f (2)(x1, x2))

for all a ∈ 2A and b ∈ {0, 1}. The result is to replace left children labelled by ‘#’ by
their parent label—which were leaf nodes in the trees in L(ϕ) before the encoding—
and to remove right children labelled by ‘#’ entirely. Thus the image τ(fcns(L(ϕ)))
by this linear bottom-up transduction is also a regular tree language, and therefore
yield(τ(fcns(L(ϕ)))) is a context-free word language. But this is exactly yield(L(ϕ)).

Exercise 2 (Relational PDL). We extend the syntax of PDL to allow for ‘relational paths’.

To simplify matters, we shall only consider binary relational paths. Define ε
def
= >?. Then

binary relational paths are defined by the following abstract syntax:

β ::= α : ε | ε : α (atomic relations)

ρ ::= β | ρ+ ρ | ρ; ρ | ρ∗ (relational paths)

and adding the construction 〈ρ〉 to the syntax of node formulæ. Put differently, relational
paths are constructed as rational relations over atomic paths. The semantics of a relational
path on a tree structure M = 〈W, ↓,→, (Pa)a∈A〉 is a 4-ary relation in W 4, i.e. a binary

MPRI 2-27-1 November 29, 2017

relation on paths, defined by:

Jα : εK def
= {(w,w′, w′′, w′′) | (w,w′) ∈ JαK ∧ w′′ ∈ W}

Jε : αK def
= {(w,w,w′, w′′) | w ∈ W ∧ (w′, w′′) ∈ JαK}

for atomic relations, while the sematics for ‘+’, ‘;’, and ‘∗’ are the obvious ones when seeing
JρK as a binary relation on pairs of nodes. Finally,

J〈ρ〉K def
= {w ∈ W | ∃w′, w′′ ∈ W, (w,w′, w, w′′) ∈ JρK} ,

meaning that we should find two paths starting from w and related by ρ.

1.[1] Provide a relational path formula ρ` such that

Jρ`K = {(w1, w
′
1, w2, w

′
2) | ∃n ∈ N, w1 ↓n w′1 ∧ w2 ↓n w′2} .

Intuitively, ρ` relates two paths (w1, w
′
1) and (w2, w

′
2), both in J↓∗K, such that w′1 is as

far below w1 as w′2 is below w2.

Solution: Define
ρ`

def
=
(
(↓ : ε); (ε : ↓)

)∗
2.[2] Deduce that relational PDL allows to define some non-regular tree languages.

Solution: The tree language {f(gn(a), gn(b)) | n ≥ 0} is well-known to be non-

regular (a simple pumping argument suffices). Let A
def
= {p, p′} and f

def
= p ∧ p′,

g
def
= p∧¬p′, a def

= ¬p∧ p′, and b
def
= ¬p∧¬p′. This language is defined by the following

formula:

f ∧ 〈↓; (first ∧ 〈↓∗〉a)?;→〉last

ensuring the root is labelled by f and has exactly two children, the first dominating
an a

∧ [↓; ↓∗; (¬leaf)?](g ∧ [↓](first ∧ last))

ensuring all the non-leaf nodes below the root are labelled by g and have a single
child

∧ 〈ρ`; (a? : ε); (ε : b?)〉

ensuring the two g-branches have the same length, with one ending in an a (necessarily
a leaf since otherwise it would be labelled g) and the other with a b (also a leaf).

MPRI 2-27-1 November 29, 2017

3.[3] Recall from the classes that some natural languages, including Swiss German, exhibit

cross-serial dependencies of the form Lcross
def
= {anbmcndm | n,m > 0}. Provide a

relational PDL node formula ϕcross such that yield(L(ϕcross)) = Lcross.

Solution: There are multiple ways around this question. Here is one solution: we
define the tree language

L
def
= {f

(
g(a,2)n · a, g(b,2)m · b, g(c,2)n · c, g(d,2)m · d

)
| n,m > 0}

over F def
= {a(0), b(0), c(0), d(0), g(2), f (2)}. Clearly yield(L) = Lcross. It remains to define

L using a relational PDL formula.

We define for this

ρac
def
= ((g ∧ 〈↓; first?〉a)? : ε); (↓ : ε); (ε : (g ∧ 〈↓; first?〉c)?); (ε : ↓)

ρbd
def
= ((g ∧ 〈↓; first?〉b)? : ε); (↓ : ε); (ε : (g ∧ 〈↓; first?〉d)?); (ε : ↓)

which describe ‘synchronised’ steps in the g(a,2) and g(c,2) branches and g(b,2)
and g(d,2) ones, respectively. It remains to force the trees to be in T (F):

ϕF
def
= [↓∗]

∨
f∈F

f ∧
(∧
g∈F\{f}

¬g
)
∧

{
〈↓; first?;→k; last?〉> if f ∈ Fk, k > 0

[↓]⊥ if f ∈ F0

and finally to make sure the a, b, c, and d branches are in the correct order and are
pairwise related by ρac and ρbd:

ϕcross
def
= ϕF ∧ f ∧

(
〈↓; first?; (〈↓∗〉a)?;→; (〈↓∗〉b)?;→; (〈↓∗〉c)?;→; (〈↓∗〉d)?〉>

)
∧ 〈(↓ : ε); (ε : ↓); ρ∗ac; (a? : ε); (ε : c?)〉
∧ 〈(↓ : ε); (ε : ↓); ρ∗bd; (b? : ε); (ε : d?)〉 .

4.[4] Show that the satisfiability problem for relational PDL is undecidable.

Hint: Reduce from the Post Correspondence Problem.

Solution: Only one person attempted this question (successfully). I’ll let the others
think about it.

2 Event Semantics and Adverbial Modification

Exercise 3. One considers the three following signatures:

MPRI 2-27-1 November 29, 2017

(ΣABS) john : NP
mary : NP

kissed : NP → NP → V
kissed◦ : NP → NP → V◦

not : (NP → S◦)→ (NP → S)
e-clos : V → S
e-clos◦ : V◦ → S◦

(ΣS-FORM) John : string
Mary : string
kissed : string

kiss : string
did : string
not : string

(ΣL-FORM) j,m : e
kiss,past : v→ t

agent,patient : v→ e→ t

In ΣABS, the atomic type NP stands for the syntactic category of noun phrases, the
atomic types S and S◦ for the syntactic category of sentences (positive and negative),
and the atomic type V and V◦, the syntactic categories of “open” sentences (positive and
negative). The reason for distinguishing between the categories of positive and negative
(open) sentences is merely syntactic. Without such a distinction, the surface realization of
a negative expression such as:

not (kissedmary) john

would be:

∗John did not kissed Mary

Without this distinction, it would also be possible to iterate negation. This would allow
the following ungrammatical sentences to be generated:

∗John did not did not kissed Mary
∗John did not did not did not kissed Mary

...

In ΣS-FORM, as usual, string is defined to be o→ o for some atomic type o. This allows
concatenation (+) to be defined as functional composition, and the empty word (ε) as the
identity.

In ΣL-FORM, the atomic type e stands for the semantic category of entities, the atomic
types t for the semantic category of truth values, and the atomic types v for the semantic
category of events.

MPRI 2-27-1 November 29, 2017

One then defines two morphism (LSYNT : ΣABS → ΣS-FORM, and LSEM : ΣABS →
ΣL-FORM) as follows:

(LSYNT) john := John
mary := Mary

kissed := λxy. y + kissed + x
kissed◦ := λxy. y + kiss + x

not := λfx. x+ did + not + (f ε)
e-clos, e-clos◦ := λx. x

(LSEM) john := j
mary := m

kissed, kissed◦ := λxye. (kiss e) ∧ (agent e y) ∧ (patient e x) ∧ (past e)
not := λpx.¬(p x)

e-clos, e-clos◦ := λp.∃e. p e

These two morphisms are such that:

LSYNT(e-clos (kissedmary john)) = John + kissed + Mary

LSEM(e-clos (kissedmary john)) = ∃e. (kiss e) ∧ (agent e j) ∧ (patient em) ∧ (past e)

The last term may be paraphrased as follows: there is an event e such that: e is a
kissing event; the agent of this kissing event is John; the patient of this kissing event is
Mary; and this event e happened in the past.

1.[1] Give a term t such that

LSYNT(t) = John + did + not + kiss + Mary ,

then compute LSEM(t).

Solution:

t = not (λx.e-clos◦ (kissed◦mary x)) john.

LSEM(t) = ¬(∃e. (kiss e) ∧ (agent e j) ∧ (patient em) ∧ (past e))

2.[2] Suppose that one modifies ΣABS and LSEM as follows:

(ΣABS)
...

not : (NP → V◦)→ (NP → V)
...

(LSEM)
...

not := λpxe.¬(p x e)
...

MPRI 2-27-1 November 29, 2017

What would be wrong?

Solution:

Let t = e-clos (not (λx.kissed◦mary x) john). We would have

LSYNT(t) = John + did + not + kiss + Mary ,

and
LSEM(t) = ∃e.¬((kiss e) ∧ (agent e j) ∧ (patient em) ∧ (past e)).

This last term does not assert that there is no past kissing event between John and
Mary, but that there is an event which is not a past kissing event between John and
Mary. Consequently, in a situation where John kissed both Mary and Sue, we would
consider “John did not kiss Mary” to be true.

Exercise 4. One extends ΣABS, ΣS-FORM, ΣL-FORM, LSYNT, and LSEM, respectively, as
follows:

(ΣABS) hour : Nu

one : Nu → NP τ

for : NP τ → ((V → V)→ S)→ S
for◦ : NP τ → ((V◦ → V◦)→ S)→ S
for◦◦ : NP τ → ((V◦ → V◦)→ S◦)→ S◦

where Nu is the syntactic category of nouns that name units of measurement, and NP τ is
the syntactic the category of noun phrases that denote time intervals ;

(ΣS-FORM) hour : string
one : string
for : string

(ΣL-FORM) hour : i→ n→ t
1 : n

duration : v→ i→ t

where i and n stand for the semantic categories of time intervals and scalar quantities,
respectively.

(LSYNT) hour := hour
one := λx.one + x

for, for◦, for◦◦ := λxf. f (λy. y + for + x)

MPRI 2-27-1 November 29, 2017

(LSEM) hour := λxy.hourx y
one := λpt. p t 1

for, for◦, for◦◦ := λpq.∃t. (p t) ∧ (q (λpe. (p e) ∧ (duration e t)))

1.[4] Give two different terms, say t0 and t1, such that:

LSYNT(t0) = LSYNT(t1) = John + did + not + kiss + Mary + for + one + hour

Solution:

t0 = for◦ (onehour)
(λq.not (λx.e-clos◦ (q (kissed◦mary x))) john)

t1 = not (λx. for◦◦ (onehour)
(λq.e-clos◦ (q (kissed◦mary x))))

john

2.[2] Compute LSEM(t0) and LSEM(t1).

Solution:

LSEM(t0) =
∃t. (hour t 1)∧¬(∃e. (kiss e)∧ (agent e j)∧ (patient em)∧ (past e)∧ (duration e t))

LSEM(t1) =
¬(∃t. (hour t 1)∧(∃e. (kiss e)∧(agent e j)∧(patient em)∧(past e)∧(duration e t)))

3.[1] Explain the difference between LSEM(t0) and LSEM(t1).

Solution: t0 and t1 correspond respectively to the following interpretations:

1. For one hour, it was not the case that John kissed Mary.

2. It was not the case that John kissed Mary for one hour.

	Model-Theoretic Syntax
	Event Semantics and Adverbial Modification

