
MPRI M1-18 Tree Automata Techniques and Applications November 7, 2017

Exam

Duration: 3 hours. All paper documents permitted. The numbers [n] in the margin

next to questions are indications of duration and difficulty, not necessarily of the

number of points you might earn from them. You must fully justify all your

answers.

Exercise 1. Let us consider the ranked alphabet F def
= {f (2), g(1), a(0)}, and the family

of trees P
def
= {f(f(t, t′), gn(a)) | t, t′ ∈ T (F) ∧ n > 0}; a tree in P is thus of the form

f

f

t t′

g

...

g

a

We define the language L of all trees that do not contain a tree in P as a subtree:

L
def
= {t ∈ T (F) | ∀C ∈ C(F).∀t′ ∈ T (F).(t = C[t′]⇒ t′ 6∈ P)} .

1. Give an MSO sentence ψ over T (F) s.t. for all t ∈ T (F), t |= ψ if and only if t ∈ L.[1]

We start by defining a formula g+(x) s.t. t |=ν1 7→p g
+(x) if and only if the subtree

t|p belongs to {gn(a) | n > 0} (recall that we denote implications by ⊃):

g+(x)
def
= Pg(x) ∧ ∀y.x ↓∗1 y ⊃ (Pg(y) ∨ Pa(y)) .

We then define a formula P (x) s.t. t |=ν1 7→p P (x) if and only if the subtree t|p
belongs to P :

P (x)
def
= Pf (x) ∧ ∃y∃z.x ↓1 y ∧ x ↓2 z ∧ Pf (y) ∧ g+(z) .

Finally, it suffices to forbid P (x):

ψ
def
= ∀x.¬P (x) .

2. Give a PDL node formula ϕ s.t. for all t ∈ T (F), t, ε |= ϕ if and only if t ∈ L.[1]

ϕ
def
= ¬〈↓∗〉

(
f ∧ 〈↓〉(first ∧ f ∧ 〈→; g?; (↓; g?)∗; ↓〉a)

)

1

MPRI M1-18 Tree Automata Techniques and Applications November 7, 2017

3. Give a minimal DFTA A that recognises L.[4]

It suffices to construct a minimal complete DFTA for T (F) \ L and to exchange
the roles of the accepting and non-accepting states. Here is an automaton for the
complement language: A def

= (Q,F , δ, {qP }) where Q
def
= {qa, q+, qf , qg, qP } and δ is

defined by

a→ qa

g(qa)→ q+ g(q+)→ q+

g(qf)→ qg g(qg)→ qg

g(qP)→ qP

f(qf , q+)→ qP

f(qP , q)→ qP f(q, qP)→ qP (for all q ∈ Q)

f(q, q′)→ qf (in all the other cases of q, q′)

The automaton A is deterministic and complete by definition, hence the languages
of the states form a partition of T (F).

L(qa) = {a}
L(q+) = {gn(a) | n > 0}
L(qP) = T (F) \ L
L(qg) = {g(t) | t 6∈ L(qP)} \ L(q+)

L(qf) = {f(t, t′) | t, t′ ∈ T (F)} ∩ L

The languages L(qa) and L(q+) are obviously correct.

A tree belongs to L(qP) iff it belongs to P and no strict subtree belongs to P (rule
f(qf , q+)→ qP) or it has a subtree that belongs to P (other rules for qP).

A tree belongs to L(qg) iff it is of the form g(t) where t 6∈ L(qa) ∪ L(q+) ∪ L(qP),
thus since the languages form a partition of T (F), iff t ∈ L(qg) ∪ L(qf), which is
enforced by the rules g(qg)→ qg and g(qf)→ qg.

Finally, a tree belongs to L(qf) iff it is rooted by f and belongs to L, and this last
condition is equivalent to not belonging to L(qP), which is exactly what the rules
for qf do.

Regarding minimality, since the (L(q))q∈Q form a partition of T (F), the automaton
is minimal.

Alternatively, we could show that there are contexts C distinguishing some trees
t ∈ L(q) from t′ ∈ L(q′), i.e. with C[t] ∈ L and C[t′] ∈ T (F) \ L, for all q 6= q′ in
Q.

The empty context � distinguishes any tree t ∈ L(q) for q 6= qP from any tree
t′ ∈ L(qP). The context f(f(a, a), g(�)) distinguishes g(f(a, a)) ∈ L(qg) from both
a ∈ L(qa) and g(a) ∈ L(q+). The context f(f(a, a),�) distinguishes a ∈ L(qa) from

2

MPRI M1-18 Tree Automata Techniques and Applications November 7, 2017

g(a) ∈ L(q+). The context f(�, g(a)) distinguishes g(f(a, a)) ∈ L(qg), a ∈ L(qa),
and g(a) ∈ L(q+) from f(a, a) ∈ L(qf).

Exercise 2 (Conditional PDL). We consider a fragment of PDL on an alphabet Σ calledInspired by
TD 6 Ex. 4

conditional PDL, with path formulæ restricted to the syntax

α ::=→ | ← | ↑ | ↓ (atomic paths)

π ::= α | ϕ? | (α;ϕ?)∗ | π + π | π;π (conditional paths)

The semantics are as in full PDL over unranked trees in T (Σ), with the shorthands

← def
= →−1 and ↑ def

= ↓−1.

The logic FO(↓∗,→∗, (Pa)a∈Σ) is defined by the abstract syntax

ψ ::= Pa(x) | x = y | x ↓∗ y | x→∗ y | ¬ψ | ψ ∧ ψ | ∃x.ψ

where x, y range over a countable set of first-order variables X and a ranges over Σ. The
semantics are as usual with MSO formulæ over unranked trees in T (Σ). To refresh your
memory if you had any doubt, here are the atomic cases:

t |=ν Pa(x) if t(ν(x)) = a ,

t |=ν x ↓∗ y if ∃p ∈ N∗>0.ν(x) · p = ν(y) ,

t |=ν x→∗ y if ∃p ∈ N∗>0.∃i ∈ N>0.∃j ∈ N.ν(x) = p · i ∧ ν(y) = p · (i+ j) .

We wish to show a translation from conditional PDL into FO(↓∗,→∗, (Pa)a∈Σ), in
the form of formulæ STx(ϕ) with a free variable x and formulæ STx,y(π) with two free
variables x and y, such that, for all t ∈ T (Σ) and all valuations ν,

t |=ν STx(ϕ) iff t, ν(x) |= ϕ, and t |=ν STx,y(π) iff t, ν(x), ν(y) |= π . (∗)

We proceed by induction on the conditional PDL formulæ; we only consider two cases
of this induction.

1. Give STx,y(↓).[1]

The position y is the closest strict descendent of x:

STx,y(↓)
def
= x ↓∗ y ∧ x 6= y ∧ ∀z.(x 6= z ∧ x ↓∗ z) ⊃ y ↓∗ z .

2. Give STx,y((α;ϕ?)∗).[2]

Let us first define STx,y(α
∗) for all atomic paths α:

STx,y(→∗)
def
= x→∗ y , STx,y(←∗)

def
= y →∗ x ,

STx,y(↑∗)
def
= y ↓∗ x , STx,y(↓∗)

def
= x ↓∗ y .

3

MPRI M1-18 Tree Automata Techniques and Applications November 7, 2017

Then x and y must be related by STx,y(α
∗) and every position along the way

except for x must satisfy ϕ:

STx,y((α;ϕ?)∗)
def
= STx,y(α

∗) ∧ ∀z.(x 6= z ∧ STx,z(α
∗) ∧ STz,y(α

∗)) ⊃ STz(ϕ) .

Exercise 3 (Bottom-up Tree Transducers). A bottom-up tree transducer (NUTT) is aInspired by
TD 3 Ex. 1 and

TATA Thm. 1.4.4 tuple U = (P,F ,F ′, Pf ,∆) where P is a finite set of states, each state being viewed
as a unary symbol, F and F ′ are finite ranked input and output alphabets, Pf ⊆ P
is a set of accepting states, and ∆ is a finite set of term rewriting rules of the form
f(p1(x1), . . . , pn(xn)) → p(u) where f ∈ Fn, p, p1, . . . , pn ∈ P , and u is a term in
T (F ′, {x1, . . . , xn}).

A NUTT U thus defines a rewriting system over T (F∪F ′∪P). The relation induced
by U is then

R(U)
def
= {(t, t′) ∈ T (F)× T (F ′) | ∃p ∈ Pf .t→∗U p(t′)} .

Show that recognisable tree languages are effectively closed under inverse NUTT[4]

transductions: given a finite tree automaton A = (Q,F ′, δ, Qf) and a NUTT U =
(P,F ,F ′, Pf ,∆), show how to compute an NFTA A′ over F such that

L(A′) = {t ∈ T (F) | ∃t′ ∈ L(A).(t, t′) ∈ R(U)} .

You can assume A to be complete deterministic.
Since U is processing trees bottom-up, it will be convenient to also viewA as a bottom-up
DFTA, with rules of the form f(q1, . . . , qn)→A q for (q, f, q1, . . . , qn) in δ.

We define A′ def= (Q× P,F , δ′, Qf × Pf) where δ′ is the set of rules

f((q1, p1), . . . , (qn, pn))→A′ (q, p)

such that n ≥ 0, f ∈ Fn,

f(p1, . . . , pn)→U p(u) ∈ ∆

for some u ∈ T (F ′, {x1, . . . , xn}), and

uσ →∗A q (†)

using the substitution σ:{x1, . . . , xn} → Q defined by σ(xi)
def
= qi for all 1 ≤ i ≤ n.

Equation (†) boils down to running the DFTA A on u where each xi-labelled leaf is
replaced by the state σ(xi); the obtained state q exists and is unique since A is a
complete DFTA.

We prove the correction of A′ by showing by induction over t ∈ T (F) that, for all
q ∈ Q and p ∈ P ,

∃t′ ∈ T (F ′) . t→∗U p(t′) and t′ →∗A q ⇔ t→∗A′ (q, p) . (‡)

4

MPRI M1-18 Tree Automata Techniques and Applications November 7, 2017

base case: t = a is a leaf in F0. By definition of δ′, there is a rule a→U p(u) in ∆ with
u ∈ T (F ′) and u→∗A q if and only if a→A′ (q, p) is a rule of δ′.

induction step: t = f(t1, . . . , tn) for some n > 0, f ∈ Fn, and t1, . . . , tn ∈ T (F). It
will be clearer to prove each implication of (‡) independently.

(⇒) There must be a rule f(p1(t1), . . . , pn(tn)) → p(t′) with ti →∗U pi(t′i) for all
1 ≤ i ≤ n and t′ = u[xi 7→ t′i]1≤i≤n →∗A q. Since A is complete deterministic,
this last rewriting can be decomposed using t′i →∗A qi for 1 ≤ i ≤ n and
uσ →∗A q for the substitution σ(xi) = qi for some q1, . . . , qn ∈ Q.

By definition of δ, this entails that there is a rule f((q1, p1), . . . , (qn, pn))→A′

(q, p). Furthermore, by induction hypothesis (‡), ti →∗A′ (qi, pi) for all 1 ≤
i ≤ n. This shows t→∗A′ (q, p).

(⇐) There must be a rule f((q1, p1), . . . , (qn, pn))→A′ (q, p) for some (qi, pi) such
that ti →∗A′ (qi, pi) for all 1 ≤ i ≤ n.

The rule implies by definition of δ that f(p1(x1), . . . , pn(xn)) →U p(u) for
some u ∈ T (F ′, {x1, . . . , xn}) such that u[xi 7→ qi]1≤i≤n →∗A q. Furthermore,
by induction hypothesis (‡), for all 1 ≤ i ≤ n there exists t′i such that ti →∗U
pi(t

′
i) and t′i →∗A qi. Thus t = f(t1, . . . , tn) →∗U p(u[xi 7→ t′i]1≤i≤n) and

u[xi 7→ t′i]1≤i≤n →∗A q.

To conclude, note that (t, t′) ∈ R(U) and t′ ∈ L(A) if and only if p ∈ Pf and q ∈ Qf
in (‡), which is if and only if t ∈ L(A′) as desired.

Exercise 4 (Alternating Word Automata). An alternating word automaton (AWA) is aInspired by
TD 6 Ex. 1

tuple A = (Q,Σ, δ, q0) where A is a finite set of states, Σ a finite alphabet, δ : Q×Σ→
B(Q) a transition function, and q0 ∈ Q an initial state, where B(Q) is the set of positive
Boolean formulæ over Q, defined by the abstract syntax

φ ::= ⊥ | > | q | φ ∨ φ | φ ∧ φ

where q ranges over Q.
An accepting run of A over a word w = a1 · · · an with n ≥ 0 and the ai ∈ Σ is an

unranked tree t ∈ T (Q) of height at most n, with root label q0 and such that, at all
its positions p ∈ dom t, if t(p) = q and p has m children, then {t(p1), . . . , t(pm)} |=
δ(q, a|p|+1). The language of A is the set of words with an accepting run.1

1. Given A = (Q,Σ, δ, q0) an AWA and w ∈ Σ∗, construct an NFHA A′ that recog-[3]

nises exactly the set of accepting runs in T (Q) of A on w.

1Note that, unlike in TD 6 Ex. 1, there is a single initial state and no accepting states; the latter
are handled instead through assignments ∅ |= δ(q, a). The definition here makes it easier to complement
AWA.

5

MPRI M1-18 Tree Automata Techniques and Applications November 7, 2017

Let w = a1 · · · an with ai ∈ Σ. We define A′ def
= (Q′, Q, δ′, {(q0, 0)}) where Q′

def
=

Q× {0, . . . , n− 1}. The transition relation δ′ has all the rules q(Rq,i)→ (q, i) for
q ∈ Q and 0 ≤ i < n, where the horizontal language Rq,i is defined by

Rq,n−1
def
= {{ε} | ∅ |= δ(q, an)}

and for i < n− 1

Rq,i
def
= {(q1, i+ 1) · · · (qm, i+ 1) | {q1, . . . , qm} |= δ(q, ai+1)}

Note that each Rq,i is closed under commutation.

Each set Rq,i is regular: one way to see this is that it is upwards-closed for
the scattered subword ordering: if q1 · · · qm ∈ Rq,i and q1 · · · qm ≤ q′1 · · · q′m′

then {q1, . . . , qm} ⊆ {q′1, . . . , q′m′}, and {q1, . . . , qm} |= δ(q, ai+1) therefore implies
{q′1, . . . , q′m′} |= δ(q, ai+1). By Haines’ Theorem, any upwards-closed set for the
scattered subword ordering over a finite alphabet is regular.

If you don’t know Haines’ Theorem, you can nevertheless show that Rq,i is regular
by looking at the sequences q1 · · · qm with no repetition such that {q1, . . . , qm} |=
δ(q, ai+1). There are finitely many of these. Then a word belongs to Rq,i if and
only if it is of the form w0q1w1 · · ·wmqmwm+1 where q1 · · · qm is a word without
repetition in Rq,i and each of the wi is in Q∗. This is easily described by a regular
expression.

Let t ∈ T (Q) be an accepting run ofA on w. Let us show that t ∈ L(A′) by showing

that ρ ∈ T (Q′) defined by dom ρ = dom t and ρ(p)
def
= (q, |p|) is an accepting run

of A′ on t. Indeed, at the root, ρ(ε) = (q0, 0) is accepting in A′. Furthermore, at
any position p ∈ dom ρ, t(p) = q and ρ(p) = (q, |p|) are such that the sequence of
children p1, . . . , pm of p form a word in Rq,|p| since {t(p1), . . . , t(pm)} |= δ(q, a|p|+1).

Let now t ∈ T (Q) be a tree accepted by A′, and ρ ∈ T (Q′) an accepting run
witnessing it. Let us show that t is an accepting run of A on w. By definition of
δ′, for all positions p ∈ dom t, ρ(p) = (t(p), |p|). Hence at the root, t(ε) = q0 since
ρ(ε) = (q0, 0). Furthermore, at all positions p ∈ dom t, if p has m children then
ρ(p1) · · · ρ(pm) ∈ Rq,|p| implies {t(p1), . . . , t(pm)} |= δ(q, a|p|+1). Hence t is indeed
an accepting execution of A on w.

2. Reduce the emptiness problem in NFTA to the membership problem in AWA over[4]

the singleton alphabet Σ
def
= {a}.

Let A = (Q,F , δ, Qf) be an NFTA. By the pumping lemma (actually a pigeonhole
argument suffices), if L(A) 6= ∅, then there exists a tree of height at most |Q| in
L(A). We build an instance 〈A′, a|Q|〉 of the membership problem in AWA, where

A′ def
= (Q′,Σ, δ′, q0) where Q′

def
= Q × F] {q0}. For a pair (q, f) in Q × Fn with

6

MPRI M1-18 Tree Automata Techniques and Applications November 7, 2017

n ≥ 0, we define the formula

δ′((q, f), a)
def
=

∨
(q,f,q1,...,qn)∈δ

∧
i∈{1,...,n}

∨
g∈F

(qi, g) .

Regarding the initial state q0, we make a disjunction over all possible pairs in
Qf ×F

δ′(q0, a)
def
=
∨
q∈Qf

∨
f∈F

δ′((q, f), a) .

Let us assume that L(A) is not empty. Then there exists a tree t ∈ L(A) with
height at most |Q|, i.e. |p| < |Q| for all p ∈ dom t. Thus there exists an accepting
run ρ ∈ T (Q) with dom ρ = dom t, ρ(ε) ∈ Qf , and every elementary tree in ρ is
consistent with δ.

We map the pair t, ρ to a tree t′ in T (Q× {0, . . . , |Q| − 1}) with domain dom t′
def
=

dom t,

t′(ε)
def
= (q0, 0) , t′(p)

def
= (q(p), t(p))

for all p ∈ dom t \ {ε}. It remains to show that t′ is an accepting run of A′ on a|Q|.
Let p be a position in domt′ other than ε. Then t(p) = f and ρ(p) = q for some
f ∈ Fn for some n and q ∈ Q. Since ρ is a run of A, p has n children p1, . . . , pn and
there exists a transition (q, f, q1, . . . , qn) ∈ δ with ρ(pi) = qi for all 1 ≤ i ≤ n; let
also t(pi) = gi ∈ F for all 1 ≤ i ≤ n. Thus {(q1, g1), . . . , (qn, gn)} |= δ′((q, f), a).
Finally, for p = ε, there exists ρ(ε) ∈ Qf and t(ε) ∈ Fn for some n such that, in a
similar way, the children satisfy {(ρ(1), t(1)), . . . , (ρ(n), t(n))} |= δ′((ρ(ε), t(ε)), a),
thus {(ρ(1), t(1)), . . . , (ρ(n), t(n))} |= δ′(q0, a) as desired.

Conversely, assume there is an accepting run t′ ∈ T (Q) of A′. Let us argue that
every position p 6= ε of t′ with t′(p) = q can be assumed to have exactly n children
for some (q, f, q1, . . . , qn) ∈ δ with ∀1 ≤ i ≤ n, t′(pi) = (qi, gi) and gi ∈ F . Indeed,
its list of children must satisfy q1 ∧ · · · ∧ qn for some (q, f, q1, . . . , qn) ∈ δ, hence
this list must contain at least one occurrence of every state in {q1, . . . , qn}. If pi is
a child position with t(pi) 6∈ {q1, . . . , qn}, then that entire subtree can be removed
and we still have an accepting tree. For a state q ∈ {q1, . . . , qn}, if its number of
occurrences among the children of p is larger than its number of occurrences in
q1, . . . , qn, then we can similarly remove some subtrees rooted by q and still obtain
an accepting run. Conversely, if it is smaller, then there is a child position pi with
t′(pi) = q, and that subtree can be duplicated as many times as needed to yield
another accepting tree where the numbers of occurrences coincide. At this point,
we know that the list of child labels of p can be assumed to be a permutation of
q1, . . . , qn. Finally, the children can be reordered such that t′(pi) = qi since the
ordering does not matter for acceptance. We can assume in the same way that the

7

MPRI M1-18 Tree Automata Techniques and Applications November 7, 2017

list of children of the root is such that t(i) = (qi, gi) for some (q, f, q1, . . . , qn) ∈ δ,
f ∈ F , and q ∈ Qf . This is all standard reasoning on alternating automata; you
could make these assumptions without justification.

Under these assumptions on t′, we exhibit a tree t ∈ T (F) and an accepting run
ρ ∈ T (Q) of A on t, thereby showing that L(A) is not empty. We define for this

dom t
def
= dom t′ and for all p 6= ε, t(p)

def
= f ∈ Fn for some n and ρ(p)

def
= q if

t′(p) = (q, f). By definition of δ′, for any such position p, there exists a transition
(q, f, q1, . . . , qn) ∈ δ such that ρ(pi) = qi for all 1 ≤ i ≤ n. Regarding the root
ε, we also know that there exists q ∈ Qf and f ∈ Fn for some n such that there
is a transition (q, f, q1, . . . , qn) ∈ δ with ρ(i) = qi for all 1 ≤ i ≤ n, thus defining

t(ε)
def
= f and ρ(ε)

def
= q ensures that t is a tree in L(A) with an accepting run ρ.

8

