Courcelle's Theorem

Home assignment to hand in before or on October 10, 2017.

Electronic versions (PDF only) can be sent by email to \langle sylvain.schmitz@lsv.fr \rangle ; paper versions should be handed in on the 10th or put in my mailbox at LSV, ENS Paris-Saclay. **No delays**. The numbers in the margins next to exercises are indications of time and difficulty, not necessarily of the points you might earn answering them.

We show in this homework a landmark result in graph algorithmics, where monadic second-order logic and tree automata play a central role, namely *Courcelle's Theorem*.

Theorem 1 (Courcelle's Theorem). Fix a counting MSO sentence φ on graphs and a natural number k > 0. The following problem can be solved in linear time $O(f(|\varphi|, k) \cdot |G|)$ for some computable function f:

input: A graph G of treewidth at most k. **question:** Is G a model of φ , i.e. $G \models \varphi$?

Importantly, neither k nor φ are part of the input in the above problem, ensuring $f(k, |\varphi|)$ is a constant. Put differently, Courcelle's Theorem proves that counting MSO modelchecking on graphs is *fixed parameter tractable* (FPT), where the formula and treewidth are taken as parameters.

The properties and algorithmics of treewidth are studied in more details in MPRI course 2.29.1 *Graph Algorithms*, while results closely related to Courcelle's Theorem are applied to the modelling and verification of concurrent and distributed systems in MPRI course 2.8.1 *Non-Sequential Theory of Distributed Systems*.

1 Counting MSO on Ranked Trees

Counting MSO (CMSO) is an extension of monadic second-order logic, where we can furthermore measure the cardinality of sets quantified by second-order variables.

Syntax. Let \mathcal{X}_1 and \mathcal{X}_2 be two infinite countable disjoint sets of first-order and secondorder variables. The set of *CMSO formulæ on trees* over a ranked alphabet \mathcal{F} is defined by the abstract syntax

$$\psi ::= x \downarrow_i x' \mid P_f(x) \mid x = x' \mid x \in X \mid \operatorname{card}_{q,r}(X) \mid \neg \psi \mid \psi \land \psi \mid \exists x.\psi \mid \exists X.\psi$$

where $1 \leq i \leq m, f \in \mathcal{F}, x, x' \in \mathcal{X}_1, X \in \mathcal{X}_2$, and $q > r \geq 0$. Free variables are defined as usual; a *sentence* is a formula without free variables. The *size* of a CMSO formula is its term size, with q, r encoded in unary.

Semantics. Given a tree $t \in T(\mathcal{F})$ (seen as a function from a set of positions $\operatorname{Pos}(t) \subseteq \mathbb{N}_{>0}^*$ to \mathcal{F}), and two valuations $\nu_1: \mathcal{X}_1 \to \operatorname{Pos}(t)$ and $\nu_2: \mathcal{X}_2 \to 2^{\operatorname{Pos}(t)}$, we say that t satisfies ψ and write $t \models_{\nu_1,\nu_2} \psi$ in the following situations: first, the relations specific to trees in $T(\mathcal{F})$:

$t \models_{\nu_1,\nu_2} x \downarrow_i x'$	if $\nu_1(x') = \nu_1(x) i$,
$t \models_{\nu_1,\nu_2} P_f(x)$	$\text{if } t(\nu_1(x)) = f ,$

then the usual MSO constucts:

$t \models_{\nu_1,\nu_2} x = x'$	if $\nu_1(x) = \nu_1(x')$,
$t \models_{\nu_1, \nu_2} x \in X$	if $\nu_1(x) \in \nu_2(X)$,
$t\models_{\nu_1,\nu_2}\neg\psi$	if $t \not\models_{\nu_1,\nu_2} \psi$,
$t \models_{\nu_1,\nu_2} \psi \land \psi'$	if $t \models_{\nu_1,\nu_2} \psi$ and $t \models_{\nu_1,\nu_2} \psi'$,
$t \models_{\nu_1,\nu_2} \exists x.\psi$	if $\exists p \in \operatorname{Pos}(t), t \models_{\nu_1[x \mapsto p], \nu_2} \psi$,
$t \models_{\nu_1,\nu_2} \exists X.\psi$	if $\exists P \subseteq \operatorname{Pos}(t), t \models_{\nu_1, \nu_2[X \mapsto P]} \psi$,

and finally the counting predicates:

t

$$\models_{\nu_1,\nu_2} \operatorname{card}_{q,r}(X) \qquad \text{if } |\nu_2(X)| \equiv r \operatorname{mod} q \; .$$

When ψ is a sentence, satisfaction does not depend on the valuations ν_1 and ν_2 , and we write more simply $t \models \psi$.

Exercise 1 (From CMSO to NFTA). The inductive construction of an NFTA \mathcal{A}_{ψ} for an MSO formula ψ seen in class can be extended to handle CMSO formulæ as well. We only need to consider an additional base case for a CMSO formula $\psi \stackrel{\text{def}}{=} \operatorname{card}_{q,r}(X)$ with a single free second-order variable $X \in \mathcal{X}_2$.

[1] 1. Show how to construct an NFTA $\mathcal{A}_{\operatorname{card}_{q,r}(X)}$ over the ranked alphabet $\mathcal{F} \times \{0,1\}$ where each $(f^{(n)}, b) \in \mathcal{F}_n \times \{0,1\}$ has arity n, such that

$$t \in L(\mathcal{A}_{\operatorname{card}_{q,r}(X)})$$
 if and only if $|\{p \in \operatorname{Pos}(t) : \pi_2(t(p)) = 1\}| \equiv r \mod q$ (*)

where ' π_2 ' denotes the projection $\mathcal{F} \times \{0, 1\} \to \{0, 1\}$.

[2] 2. Assume \mathcal{F} contains at least one constant and one symbol of arity greater than 0. Show that any NFTA satisfying (*) must have at least q states.

Using the constructions seen in class and the previous questions, we obtain an algorithm for constructing NFTA from CMSO formulæ: **Fact 1.** Let ψ be a CMSO sentence over $T(\mathcal{F})$. We can construct an NFTA \mathcal{A}_{ψ} of size $g(|\psi|)$ for some computable function g such that, for all $t \in T(\mathcal{F})$, $t \models \psi$ if and only if $t \in L(\mathcal{A}_{\psi})$.

Exercise 2 (Relations in CMSO). Let \mathcal{F} be a finite ranked alphabet. Consider a CMSO formula $\psi(x_1, \ldots, x_r)$ with r free first-order variables (and no other free variable). It defines an r-ary relation on the positions of a tree $t \in T(\mathcal{F})$:

 $\llbracket \psi \rrbracket_t \stackrel{\text{def}}{=} \{ (p_1, \dots, p_r) \in (\text{Pos}(t))^r : t \models_{\nu_1[x_1 \mapsto p_1, \dots, x_r \mapsto p_r], \nu_2} \psi(x_1, \dots, x_r) \} .$

- [2] 1. Let $\psi(x_1, x_2)$ be a CMSO formula. Define a CMSO formula $\operatorname{tc}_{\psi}(z_1, z_2)$ such that for all $t \in T(\mathcal{F})$, $[\![\operatorname{tc}_{\psi}]\!]_t = [\![\psi]\!]_t^+$ the transitive closure of $[\![\psi]\!]_t$.
- [3] 2. The document order \ll on a tree $t \in T(\mathcal{F})$ is the smallest transitive relation on $\operatorname{Pos}(t)$ such that $p \ll pi$ for all $i \in \mathbb{N}_{>0}$ and $pip' \ll pj$ for all $i < j \in \mathbb{N}_{>0}$ and $p' \in \mathbb{N}_{>0}^*$.
 - (a) Show that \ll is a strict total order on Pos(t).
 - (b) Provide a CMSO formula $x_1 \ll x_2$ with $[\![\ll]\!]_t = \ll$ for all $t \in T(\mathcal{F})$.

2 Treewidth

We consider in this assignment (finite undirected simple) graphs G = (V, E), defined by a finite set V of vertices and a symmetric irreflexive set $E \subseteq V \times V$ of edges. We shall use a definition of treewidth that is easier to manipulate in our tree setting, based on a graph algebra.

Sourced Graphs. Let k > 0 and $\mathcal{Y}_k \stackrel{\text{def}}{=} \{y_1, \ldots, y_{2k}\}$ be a set of 2k sources. A k-sourced graph (V, E, s) is a finite graph (V, E) together with an injective partial function $s: \mathcal{Y}_k \to V$ with a domain of cardinal $|\text{dom } s| \leq k$ (see Figure 1 for an example, where the vertices in the range rng s of s appear in red); a graph can be seen as a sourced graph where s has an empty domain.

Fusion. Given two k-sourced graphs G = (V, E, s) and G' = (V', E', s') and a subset $Y \subseteq \mathcal{Y}_k$ of cardinal $|Y| \leq k$, their Y-fusion $G \oplus_Y G'$ is a k-sourced graph where

- 1. the vertices of G and G' with the same sources are identified, and
- 2. we then forget the sources from Y; these remain as plain vertices.

An example of a fusion is displayed in Figure 2.

Figure 1: A 3-sourced graph with dom $s = \{y_1, y_2, y_4\}$.

Figure 2: Example of a fusion; here $F = \{y_2, y_4\}$ and the forgotten $\{y_1, y_4\}$ appear in khaki.

In order to define this formally, we consider the intersection $F \stackrel{\text{def}}{=} (\text{dom } s) \cap (\text{dom } s')$ of the domains of s, s'; then $G \oplus_Y G' = (V'', E'', s'')$ where

$$V'' \stackrel{\text{def}}{=} V \uplus (V' \setminus s'(F)) ,$$

$$E'' \stackrel{\text{def}}{=} E \cup \{(v, v'), (v', v) : ((v, v') \in E' \text{ and } v' \in (V' \setminus s'(F)))$$

or $(\exists y \in F . (v, s'(y)) \in E' \text{ and } v' = s(y)\} ,$

$$\operatorname{dom} s'' \stackrel{\text{def}}{=} ((\operatorname{dom} s) \cup (\operatorname{dom} s')) \setminus Y ,$$

$$s''(y) \stackrel{\text{def}}{=} \begin{cases} s(y) & \text{if } y \in (\operatorname{dom} s) \setminus Y \\ s'(y) & \text{if } y \in (\operatorname{dom} s) \setminus (F \cup Y) . \end{cases}$$

Exercise 3 (Graph Algebra). Let k > 0. We let $\mathcal{B}_k \stackrel{\text{def}}{=} \{(V, E, s) k \text{-sourced graph} : |V| \leq k+1\}$ denote the set of k-sourced graphs of size at most k+1; those graphs are called *bags* and this is a finite set up to isomorphism for every fixed k. We define the finite ranked alphabet $\Sigma_k \stackrel{\text{def}}{=} \mathcal{B}_k \cup \{\bigoplus_Y : Y \subseteq \mathcal{Y}_k \text{ and } |Y| \leq k\}$, where the bags of \mathcal{B}_k are treated as atomic symbols of arity 0 and the (\bigoplus_Y) symbols have arity 2.

A term $t \in T(\Sigma_k)$ denotes a k-sourced graph $\gamma(t)$ defined by $\gamma(B) \stackrel{\text{def}}{=} B$ for all $B \in \mathcal{B}_k$ and $\gamma(t_1 \oplus_Y t_2) \stackrel{\text{def}}{=} \gamma(t_1) \oplus_Y \gamma(t_2)$. A graph G has treewidth k if k is minimal such that $G = \gamma(t)$ for some term $t \in \Sigma_k$. Clearly, a graph G = (V, E) has treewidth at most |V|.

1. Let k = 2; what is the graph denoted by the term $(B_1 \oplus_{\{y_2\}} B_2) \oplus_{\{y_1,y_3\}} (B_1 \oplus_{\{y_2\}} B_2)$ [1] B_2), where B_1 and B_2 are displayed in Figure 3?

Figure 3: Two 2-sourced bags for Exercise 3.1.

2. A graph (V, E) in which $V \neq \emptyset$ and any two vertices are connected by exactly one [3]path is *tree-shaped*. Show that any tree-shaped graph can be denoted by a term over Σ_1 . Is any graph denoted by a term over Σ_1 tree-shaped?

Exercise 4 (CMSO on $T(\Sigma_k)$). The aim of this exercise is to write CMSO formulæ on terms in $T(\Sigma_k)$, which denote interesting properties of the denoted graph.

Notations. Observe that, up to isomorphism, the vertex set of a bag in \mathcal{B}_k can be taken as a subset of $\{0, \ldots, k\}$. We are going to see the vertex set V and the edge set E in any bag (V, E, s) from \mathcal{B}_k as predicates: for all $0 \leq i, j \leq k, V(i)$ holds if the vertex is defined and E(i, j) holds if V(i) and V(j) hold and the edge is defined.

- 1. For $0 \le i, j \le k$ and $1 \le n \le 2k$, define CMSO formulæ $V_i(x)$ (resp. $E_{i,j}(x)$, resp. [1] $Y_{i,n}(x)$ such that, for all $t \in T(\mathcal{F}), p \in \llbracket V_i \rrbracket_t$ (resp. $p \in \llbracket E_{i,j} \rrbracket_t$, resp. $p \in \llbracket Y_{i,n} \rrbracket_t$) if and only if p is labelled by a bag B = (V, E, s) where V(i) (resp. E(i, j), resp. $s(y_n) = i$ holds.
 - 2. The idea in the following will be to identify each vertex in $\gamma(t)$ by a representative: a pair (p, i) where V(i) holds in the bag labelling position $p \in Pos(t)$. We denote by $\gamma(p, i)$ the vertex in $\gamma(t)$ represented by (p, i).

An issue with this idea is that two representatives (p, i) and (p', j) might identify the same vertex of $\gamma(t)$. For instance, if $B \stackrel{\text{def}}{=} (\{0,1\}, \{(0,1), (1,0)\}, \{y_1 \mapsto 0\}),$ then $t \stackrel{\text{def}}{=} B \oplus_{\{y_1\}} B$ denotes a path of length three, whose middle vertex occurs at index 0 in both copies of B (at positions 1 and 2) in t; formally $\gamma(1,0) = \gamma(2,0)$.

- For $0 \leq i, j \leq k$, define a CMSO formula $eq_{i,j}(x_1, x_2)$ with two free first-order [3] variables such that, for all $t \in T(\mathcal{F})$, $(p, p') \in \llbracket eq_{i,j} \rrbracket_t$ if and only if $\gamma(p, i) = \gamma(p', j)$.
- 3. For $0 \leq i, j \leq k$, define a CMSO formula $e_{i,j}(x_1, x_2)$ such that, for all $t \in T(\mathcal{F})$, [1] $(p, p') \in \llbracket e_{i,j} \rrbracket_t$ if and only if there is an edge in the resulting graph $\gamma(t)$ between $\gamma(p, i)$ and $\gamma(p', j)$.
 - 4. Given a vertex of $\gamma(t)$, we want to choose a *canonical* representative (p, i), where p is chosen minimal with respect to the document order \ll among all the positions p' such that $\gamma(p, i) = \gamma(p', j)$ for some $0 \le j \le k$.

[1] Define a CMSO formula canonical_i(x) such that, for all $t \in T(\mathcal{F})$, $p \in [[canonical_i]]_t$ if and only if (p, i) is a canonical representative in $\gamma(t)$.

Computing Treewidths. Although deciding whether the treewidth of a graph is at most k is NP-complete when k is part of the input, when k is considered as *fixed* this can be checked in linear time and a term in Σ_k can be computed:

Fact 2. Let k > 0. If G has treewidth at most k, then a term $t \in T(\Sigma_k)$ denoting $G = \gamma(t)$ can be computed in time $O(h(k) \cdot |G|)$ for some computable function h.

3 Counting MSO on Graphs

Syntax. The set of CMSO formulæ on graphs is defined by the abstract syntax

$$\varphi ::= e(x, x') \mid x = x' \mid x \in X \mid \operatorname{card}_{q,r}(X) \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x.\varphi \mid \exists X.\varphi$$

where $x, x' \in \mathcal{X}_1, X \in \mathcal{X}_2$, and $q, r \in \mathbb{N}$.

Semantics. The semantics on graphs G = (V, E) are similar to those on trees, with a binary relation 'e' denoting the edge relation; now $\nu_1: \mathcal{X}_1 \to V$ and $\nu_2: \mathcal{X}_2 \to 2^V$ and

$$G \models_{\nu_1,\nu_2} e(x,x') \qquad \text{if } (\nu_1(x),\nu_1(x')) \in E$$

Exercise 5 (Graph Properties in CMSO). Let us get acquainted with CMSO on graphs.

- [1] 1. Define a CMSO sentence φ_{3c} such that $G \models \varphi_{3c}$ if and only if G is 3-colourable.
- [1] 2. Define a CMSO sentence φ_{Ec} such that $G \models \varphi_{Ec}$ if and only if G has an Eulerian cycle.

Exercise 6 (Interpreting Graphs in Trees). The aim of this objective is to construct from a CMSO formulæ φ on graphs a CMSO sentence ψ on trees in $T(\Sigma_k)$, which encodes the same property.

We shall proceed by induction on φ . The translation has to handle CMSO formulæ with free variables, and the correction of the translation will need to translate between valuations in graphs and in trees.

- **first-order variables:** we manipulate in ψ the *representatives* defined in Exercise 4: in order to represent a first-order variable from φ in a tree t, we need in ψ both a first-order variable ranging over positions of t and an index $0 \le i \le k$. The translation therefore maintains a *variable index* $I: fv_1(\psi) \to \{0, \ldots, k\}$, which gives the index associated to each free first-order variable of ψ .
- second-order variables: we also use representatives, and each variable $X \in \mathcal{X}_2$ of φ is encoded as k+1 second-order variables X_0, \ldots, X_k in ψ , such that a representative (p, i) for p in the valuation of X_i will stand for a vertex in the valuation of X.

The outcome of this exercise is a family of translations $\Psi_I(\varphi)$ such that, assuming $G = \gamma(t)$,

$$G \models_{\nu'_1,\nu'_2} \varphi \quad \text{if and only if} \quad t \models_{\nu_1,\nu_2} \Psi_I(\varphi) , \qquad (\dagger)$$

where

$$\nu_1'(x) \stackrel{\text{def}}{=} \gamma(\nu_1(x), I(x)) , \qquad \nu_2'(X) \stackrel{\text{def}}{=} \{\gamma(p, i) : 0 \le i \le k \text{ and } p \in \nu_2(X_i)\} .$$
(1)

To give you a taste of the translation, here are a few cases:

$$\Psi_{I}(e(x_{1}, x_{2})) \stackrel{\text{def}}{=} e_{I(x_{1}), I(x_{2})}(x_{1}, x_{2}) , \qquad (\text{using } e_{i,j} \text{ from Exercise 4.3})$$

$$\Psi_{I}(\neg \varphi) \stackrel{\text{def}}{=} \neg \Psi_{I}(\varphi) ,$$

$$\Psi_{I}(\varphi \land \varphi') \stackrel{\text{def}}{=} \Psi_{I}(\varphi) \land \Psi_{I}(\varphi') ,$$

$$\Psi_{I}(\exists x.\varphi) \stackrel{\text{def}}{=} \exists x. \bigvee_{0 \le i \le k} V_{i}(x) \land \Psi_{I[x \mapsto i]}(\varphi) .$$

[1] 1. Define $\Psi_I(x_1 = x_2)$ and prove it correct.

- [2] 2. Define $\Psi_I(\exists X.\varphi)$ and $\Psi_I(\operatorname{card}_{q,r}(X))$ and prove it correct, assuming by induction hypothesis that $\Psi_I(\varphi)$ is correct. *Hint: You need to ensure* $|\nu'_2(X)| = \sum_{0 \le i \le k} |\nu_2(X_i)|$.
- [1] 3. Define $\Psi_I(x \in X)$ and prove it correct.

Exercise 7 (Proof of Courcelle's Theorem). We arrive at last to the proof of Courcelle's Theorem. Let us fix k > 0 and a CMSO sentence φ on graphs.

Algorithm. We perform a number of pre-treatments:

- Step 1. Construct a CMSO sentence $\Psi(\varphi)$ such that, for all graphs G and all terms $t \in T(\Sigma_k)$ with $G = \gamma(t), G \models \varphi$ if and only if $t \models \Psi(\varphi)$, using Exercise 6.
- Step 2. Construct a NFTA $\mathcal{A}_{\Psi(\varphi)}$ such that for all $t \in T(\Sigma_k)$, $t \models \Psi(\varphi)$ if and only if $t \in L(\mathcal{A}_{\Psi(\varphi)})$, using Fact 1.
- Step 3. Determinise the NFTA $\mathcal{A}_{\Psi(\varphi)}$, yielding an equivalent DFTA $\mathcal{A}^{d}_{\Psi(\varphi)}$.

The algorithm proving Courcelle's Theorem then processes its input graph G:

- Step 4. Compute a term $t \in T(\Sigma_k)$ with $\gamma(t) = G$ using Fact 2.
- Step 5. Check whether $t \in L(\mathcal{A}^{d}_{\Psi(\varphi)})$, which is an instance of the Membership Problem for DFTA.
- [1] Complete the proof by justifying the correctness of the algorithm and the complexity statement of Theorem 1.