
Courcelle’s Theorem

Home assignment to hand in before or on October 10, 2017.
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Electronic versions (PDF only) can be sent by email to 〈sylvain.schmitz@lsv.fr〉;
paper versions should be handed in on the 10th or put in my mailbox at LSV,

ENS Paris-Saclay. No delays. The numbers in the margins next to exercises

are indications of time and difficulty, not necessarily of the points you might earn

answering them.

We show in this homework a landmark result in graph algorithmics, where monadic
second-order logic and tree automata play a central role, namely Courcelle’s Theorem.

Theorem 1 (Courcelle’s Theorem). Fix a counting MSO sentence ϕ on graphs and a
natural number k > 0. The following problem can be solved in linear time O(f(|ϕ|, k)·|G|)
for some computable function f :

input: A graph G of treewidth at most k.

question: Is G a model of ϕ, i.e. G |= ϕ?

Importantly, neither k nor ϕ are part of the input in the above problem, ensuring f(k, |ϕ|)
is a constant. Put differently, Courcelle’s Theorem proves that counting MSO model-
checking on graphs is fixed parameter tractable (FPT), where the formula and treewidth
are taken as parameters.

The properties and algorithmics of treewidth are studied in more details in MPRI
course 2.29.1 Graph Algorithms, while results closely related to Courcelle’s Theorem are
applied to the modelling and verification of concurrent and distributed systems in MPRI
course 2.8.1 Non-Sequential Theory of Distributed Systems.

1 Counting MSO on Ranked Trees

Counting MSO (CMSO) is an extension of monadic second-order logic, where we can
furthermore measure the cardinality of sets quantified by second-order variables.

Syntax. Let X1 and X2 be two infinite countable disjoint sets of first-order and second-
order variables. The set of CMSO formulæ on trees over a ranked alphabet F is defined
by the abstract syntax

ψ ::= x ↓i x′ | Pf (x) | x = x′ | x ∈ X | cardq,r(X) | ¬ψ | ψ ∧ ψ | ∃x.ψ | ∃X.ψ
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where 1 ≤ i ≤ m, f ∈ F , x, x′ ∈ X1, X ∈ X2, and q > r ≥ 0. Free variables are defined
as usual; a sentence is a formula without free variables. The size of a CMSO formula is
its term size, with q, r encoded in unary.

Semantics. Given a tree t ∈ T (F) (seen as a function from a set of positions Pos(t) ⊆
N∗>0 to F), and two valuations ν1:X1 → Pos(t) and ν2:X2 → 2Pos(t), we say that t
satisfies ψ and write t |=ν1,ν2 ψ in the following situations: first, the relations specific to
trees in T (F):

t |=ν1,ν2 x ↓i x′ if ν1(x
′) = ν1(x) i ,

t |=ν1,ν2 Pf (x) if t(ν1(x)) = f ,

then the usual MSO constucts:

t |=ν1,ν2 x = x′ if ν1(x) = ν1(x
′) ,

t |=ν1,ν2 x ∈ X if ν1(x) ∈ ν2(X) ,

t |=ν1,ν2 ¬ψ if t 6|=ν1,ν2 ψ ,

t |=ν1,ν2 ψ ∧ ψ′ if t |=ν1,ν2 ψ and t |=ν1,ν2 ψ
′ ,

t |=ν1,ν2 ∃x.ψ if ∃p ∈ Pos(t), t |=ν1[x 7→p],ν2 ψ ,

t |=ν1,ν2 ∃X.ψ if ∃P ⊆ Pos(t), t |=ν1,ν2[X 7→P ] ψ ,

and finally the counting predicates:

t |=ν1,ν2 cardq,r(X) if |ν2(X)| ≡ rmod q .

When ψ is a sentence, satisfaction does not depend on the valuations ν1 and ν2, and we
write more simply t |= ψ.

Exercise 1 (From CMSO to NFTA). The inductive construction of an NFTA Aψ for
an MSO formula ψ seen in class can be extended to handle CMSO formulæ as well. We
only need to consider an additional base case for a CMSO formula ψ

def
= cardq,r(X) with

a single free second-order variable X ∈ X2.

1. Show how to construct an NFTA Acardq,r(X) over the ranked alphabet F × {0, 1}[1]

where each (f (n), b) ∈ Fn × {0, 1} has arity n, such that

t ∈ L(Acardq,r(X)) if and only if |{p ∈ Pos(t) : π2(t(p)) = 1}| ≡ rmod q (∗)

where ‘π2’ denotes the projection F × {0, 1} → {0, 1}.

2. Assume F contains at least one constant and one symbol of arity greater than 0.[2]

Show that any NFTA satisfying (∗) must have at least q states.

Using the constructions seen in class and the previous questions, we obtain an algorithm
for constructing NFTA from CMSO formulæ:
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Fact 1. Let ψ be a CMSO sentence over T (F). We can construct an NFTA Aψ of size
g(|ψ|) for some computable function g such that, for all t ∈ T (F), t |= ψ if and only if
t ∈ L(Aψ).

Exercise 2 (Relations in CMSO). Let F be a finite ranked alphabet. Consider a CMSO
formula ψ(x1, . . . , xr) with r free first-order variables (and no other free variable). It
defines an r-ary relation on the positions of a tree t ∈ T (F):

JψKt
def
= {(p1, . . . , pr) ∈ (Pos(t))r : t |=ν1[x1 7→p1,...,xr 7→pr],ν2 ψ(x1, . . . , xr)} .

1. Let ψ(x1, x2) be a CMSO formula. Define a CMSO formula tcψ(z1, z2) such that[2]

for all t ∈ T (F), JtcψKt = JψK+t the transitive closure of JψKt.

2. The document order � on a tree t ∈ T (F) is the smallest transitive relation on[3]

Pos(t) such that p � p i for all i ∈ N>0 and p i p′ � p j for all i < j ∈ N>0 and
p′ ∈ N∗>0.

(a) Show that � is a strict total order on Pos(t).

(b) Provide a CMSO formula x1 � x2 with J�Kt =� for all t ∈ T (F).

2 Treewidth

We consider in this assignment (finite undirected simple) graphs G = (V,E), defined by
a finite set V of vertices and a symmetric irreflexive set E ⊆ V × V of edges. We shall
use a definition of treewidth that is easier to manipulate in our tree setting, based on a
graph algebra.

Sourced Graphs. Let k > 0 and Yk
def
= {y1, . . . , y2k} be a set of 2k sources. A k-

sourced graph (V,E, s) is a finite graph (V,E) together with an injective partial function
s:Yk → V with a domain of cardinal |dom s| ≤ k (see Figure 1 for an example, where
the vertices in the range rng s of s appear in red); a graph can be seen as a sourced
graph where s has an empty domain.

Fusion. Given two k-sourced graphs G = (V,E, s) and G′ = (V ′, E′, s′) and a subset
Y ⊆ Yk of cardinal |Y | ≤ k, their Y -fusion G⊕Y G′ is a k-sourced graph where

1. the vertices of G and G′ with the same sources are identified, and

2. we then forget the sources from Y ; these remain as plain vertices.

An example of a fusion is displayed in Figure 2.
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y1

y2

y4

Figure 1: A 3-sourced graph with dom s = {y1, y2, y4}.

y1

y2

y2 y3

y4

y4

⊕{y1,y4} =

y2
y3

Figure 2: Example of a fusion; here F = {y2, y4} and the forgotten {y1, y4} appear in
khaki.

In order to define this formally, we consider the intersection F
def
= (dom s) ∩ (dom s′)

of the domains of s, s′; then G⊕Y G′ = (V ′′, E′′, s′′) where

V ′′
def
= V ] (V ′ \ s′(F )) ,

E′′
def
= E ∪ {(v, v′), (v′, v) : ((v, v′) ∈ E′ and v′ ∈ (V ′ \ s′(F )))

or (∃y ∈ F . (v, s′(y)) ∈ E′ and v′ = s(y)} ,

dom s′′
def
= ((dom s) ∪ (dom s′)) \ Y ,

s′′(y)
def
=

{
s(y) if y ∈ (dom s) \ Y
s′(y) if y ∈ (dom s) \ (F ∪ Y ) .

Exercise 3 (Graph Algebra). Let k > 0. We let Bk
def
= {(V,E, s) k-sourced graph :

|V | ≤ k + 1} denote the set of k-sourced graphs of size at most k + 1; those graphs are
called bags and this is a finite set up to isomorphism for every fixed k. We define the
finite ranked alphabet Σk

def
= Bk ∪ {⊕Y : Y ⊆ Yk and |Y | ≤ k}, where the bags of Bk are

treated as atomic symbols of arity 0 and the ‘⊕Y ’ symbols have arity 2.
A term t ∈ T (Σk) denotes a k-sourced graph γ(t) defined by γ(B)

def
= B for all B ∈ Bk

and γ(t1 ⊕Y t2)
def
= γ(t1)⊕Y γ(t2). A graph G has treewidth k if k is minimal such that

G = γ(t) for some term t ∈ Σk. Clearly, a graph G = (V,E) has treewidth at most |V |.
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1. Let k = 2; what is the graph denoted by the term (B1⊕{y2} B2)⊕{y1,y3} (B1⊕{y2}[1]

B2), where B1 and B2 are displayed in Figure 3?

y1

y2 y2

y3
B1 B2

Figure 3: Two 2-sourced bags for Exercise 3.1.

2. A graph (V,E) in which V 6= ∅ and any two vertices are connected by exactly one[3]

path is tree-shaped. Show that any tree-shaped graph can be denoted by a term
over Σ1. Is any graph denoted by a term over Σ1 tree-shaped?

Exercise 4 (CMSO on T (Σk)). The aim of this exercise is to write CMSO formulæ on
terms in T (Σk), which denote interesting properties of the denoted graph.

Notations. Observe that, up to isomorphism, the vertex set of a bag in Bk can be
taken as a subset of {0, . . . , k}. We are going to see the vertex set V and the edge set E
in any bag (V,E, s) from Bk as predicates: for all 0 ≤ i, j ≤ k, V (i) holds if the vertex
is defined and E(i, j) holds if V (i) and V (j) hold and the edge is defined.

1. For 0 ≤ i, j ≤ k and 1 ≤ n ≤ 2k, define CMSO formulæ Vi(x) (resp. Ei,j(x), resp.[1]

Yi,n(x)) such that, for all t ∈ T (F), p ∈ JViKt (resp. p ∈ JEi,jKt, resp. p ∈ JYi,nKt)
if and only if p is labelled by a bag B = (V,E, s) where V (i) (resp. E(i, j), resp.
s(yn) = i) holds.

2. The idea in the following will be to identify each vertex in γ(t) by a representative:
a pair (p, i) where V (i) holds in the bag labelling position p ∈ Pos(t). We denote
by γ(p, i) the vertex in γ(t) represented by (p, i).

An issue with this idea is that two representatives (p, i) and (p′, j) might identify

the same vertex of γ(t). For instance, if B
def
= ({0, 1}, {(0, 1), (1, 0)}, {y1 7→ 0}),

then t
def
= B ⊕{y1} B denotes a path of length three, whose middle vertex occurs at

index 0 in both copies of B (at positions 1 and 2) in t; formally γ(1, 0) = γ(2, 0).

For 0 ≤ i, j ≤ k, define a CMSO formula eqi,j(x1, x2) with two free first-order[3]

variables such that, for all t ∈ T (F), (p, p′) ∈ Jeqi,jKt if and only if γ(p, i) = γ(p′, j).

3. For 0 ≤ i, j ≤ k, define a CMSO formula ei,j(x1, x2) such that, for all t ∈ T (F),[1]

(p, p′) ∈ Jei,jKt if and only if there is an edge in the resulting graph γ(t) between
γ(p, i) and γ(p′, j).

4. Given a vertex of γ(t), we want to choose a canonical representative (p, i), where
p is chosen minimal with respect to the document order� among all the positions
p′ such that γ(p, i) = γ(p′, j) for some 0 ≤ j ≤ k.
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Define a CMSO formula canonicali(x) such that, for all t ∈ T (F), p ∈ JcanonicaliKt[1]

if and only if (p, i) is a canonical representative in γ(t).

Computing Treewidths. Although deciding whether the treewidth of a graph is at
most k is NP-complete when k is part of the input, when k is considered as fixed this
can be checked in linear time and a term in Σk can be computed:

Fact 2. Let k > 0. If G has treewidth at most k, then a term t ∈ T (Σk) denoting
G = γ(t) can be computed in time O(h(k) · |G|) for some computable function h.

3 Counting MSO on Graphs

Syntax. The set of CMSO formulæ on graphs is defined by the abstract syntax

ϕ ::= e(x, x′) | x = x′ | x ∈ X | cardq,r(X) | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∃X.ϕ

where x, x′ ∈ X1, X ∈ X2, and q, r ∈ N.

Semantics. The semantics on graphs G = (V,E) are similar to those on trees, with a
binary relation ‘e’ denoting the edge relation; now ν1:X1 → V and ν2:X2 → 2V and

G |=ν1,ν2 e(x, x
′) if (ν1(x), ν1(x

′)) ∈ E .

Exercise 5 (Graph Properties in CMSO). Let us get acquainted with CMSO on graphs.

1. Define a CMSO sentence ϕ3c such that G |= ϕ3c if and only if G is 3-colourable.[1]

2. Define a CMSO sentence ϕEc such that G |= ϕEc if and only if G has an Eulerian[1]

cycle.

Exercise 6 (Interpreting Graphs in Trees). The aim of this objective is to construct
from a CMSO formulæ ϕ on graphs a CMSO sentence ψ on trees in T (Σk), which encodes
the same property.

We shall proceed by induction on ϕ. The translation has to handle CMSO formulæ
with free variables, and the correction of the translation will need to translate between
valuations in graphs and in trees.

first-order variables: we manipulate in ψ the representatives defined in Exercise 4: in
order to represent a first-order variable from ϕ in a tree t, we need in ψ both a first-
order variable ranging over positions of t and an index 0 ≤ i ≤ k. The translation
therefore maintains a variable index I: fv1(ψ)→ {0, . . . , k}, which gives the index
associated to each free first-order variable of ψ.

second-order variables: we also use representatives, and each variable X ∈ X2 of ϕ is
encoded as k+1 second-order variables X0, . . . , Xk in ψ, such that a representative
(p, i) for p in the valuation of Xi will stand for a vertex in the valuation of X.

6
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The outcome of this exercise is a family of translations ΨI(ϕ) such that, assuming
G = γ(t),

G |=ν′1,ν
′
2
ϕ if and only if t |=ν1,ν2 ΨI(ϕ) , (†)

where

ν ′1(x)
def
= γ(ν1(x), I(x)) , ν ′2(X)

def
= {γ(p, i) : 0 ≤ i ≤ k and p ∈ ν2(Xi)} . (‡)

To give you a taste of the translation, here are a few cases:

ΨI(e(x1, x2))
def
= eI(x1),I(x2)(x1, x2) , (using ei,j from Exercise 4.3)

ΨI(¬ϕ)
def
= ¬ΨI(ϕ) ,

ΨI(ϕ ∧ ϕ′)
def
= ΨI(ϕ) ∧ΨI(ϕ

′) ,

ΨI(∃x.ϕ)
def
= ∃x.

∨
0≤i≤k

Vi(x) ∧ΨI[x 7→i](ϕ) .

1. Define ΨI(x1 = x2) and prove it correct.[1]

2. Define ΨI(∃X.ϕ) and ΨI(cardq,r(X)) and prove it correct, assuming by induction[2]

hypothesis that ΨI(ϕ) is correct. Hint: You need to ensure |ν ′2(X)| =
∑

0≤i≤k |ν2(Xi)|.

3. Define ΨI(x ∈ X) and prove it correct.[1]

Exercise 7 (Proof of Courcelle’s Theorem). We arrive at last to the proof of Courcelle’s
Theorem. Let us fix k > 0 and a CMSO sentence ϕ on graphs.

Algorithm. We perform a number of pre-treatments:

Step 1. Construct a CMSO sentence Ψ(ϕ) such that, for all graphs G and all terms
t ∈ T (Σk) with G = γ(t), G |= ϕ if and only if t |= Ψ(ϕ), using Exercise 6.

Step 2. Construct a NFTA AΨ(ϕ) such that for all t ∈ T (Σk), t |= Ψ(ϕ) if and only
if t ∈ L(AΨ(ϕ)), using Fact 1.

Step 3. Determinise the NFTA AΨ(ϕ), yielding an equivalent DFTA Ad
Ψ(ϕ).

The algorithm proving Courcelle’s Theorem then processes its input graph G:

Step 4. Compute a term t ∈ T (Σk) with γ(t) = G using Fact 2.

Step 5. Check whether t ∈ L(Ad
Ψ(ϕ)), which is an instance of the Membership Prob-

lem for DFTA.

Complete the proof by justifying the correctness of the algorithm and the complexity[1]

statement of Theorem 1.
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