Memo on Logics over Finite Trees

Sylvain Schmitz
ENS Paris-Saclay, France

We recall the syntax and semantics of two logics on finite trees: monadic second-order logic (MSO) and propositional dynamic logic (PDL). These are actually special cases of the same logics on finite relational structures, and we present the general framework.

1 Trees as Relational Structures

Relational Structures. We consider finite relational signatures $\sigma=\left(\left(R_{i}\right)_{1 \leq i \leq n}\right)$ where each relation symbol R_{i} has a fixed arity $r_{i}>0$. A σ-structure is a tuple $\mathfrak{M}=\left(|\mathfrak{M}|,\left(R_{i}^{M}\right)_{1 \leq i \leq n}\right)$ where $|\mathfrak{M}|$ is the domain and each $R_{i}^{\mathfrak{M}}$ is an 'interpretation' of R_{i} as a relation in $|\mathfrak{M}|^{r_{i}}$; when the particular structure is clear from the context, we omit the \mathfrak{M} superscripts in interpretation. A structure is finite if $|\mathfrak{M}|$ is finite.

Ranked Trees. Recall that a (finite ordered) ranked tree t over some finite ranked alphabet \mathcal{F} can be seen as a partial function from $\mathbb{N}_{>0}^{*}$ to \mathcal{F}. Let $k \stackrel{\text { def }}{=} \max _{\mathcal{F}_{i} \neq \emptyset} i$ be the maximal arity in \mathcal{F}. We consider a finite set of atomic predicates A; typically $A=\mathcal{F}$, but in some applications one prefers $2^{A}=\mathcal{F}$. We shall use $A \stackrel{\text { def }}{=} \mathcal{F}$ here.

Ranked trees t in $T(\mathcal{F})$ can be seen as relational structures with domain $\operatorname{Pos}(t)$ over the signature $\left(\downarrow_{1}, \ldots, \downarrow_{k},\left(P_{a}\right)_{a \in A}\right)$: we interpret the relations by

$$
\begin{array}{ll}
\downarrow_{i} \stackrel{\text { def }}{=}\left\{(p, p i) \in \operatorname{Pos}(t)^{2}\right\} & \text { for all } 1 \leq i \leq k \\
P_{a} \stackrel{\text { def }}{=}\{p \in \operatorname{Pos}(t) \mid t(p)=a\} & \text { for all } a \in A
\end{array}
$$

Other relational signatures are of course possible, for instance including

$$
\begin{gathered}
\downarrow \stackrel{\text { def }}{=}\left\{(p, p i) \in \operatorname{Pos}(t)^{2} \mid i \in \mathbb{N}_{>0}\right\}, \\
\downarrow^{*} \stackrel{\text { def }}{=}\left\{\left(p, p p^{\prime}\right) \in \operatorname{Pos}(t)^{2} \mid p^{\prime} \in \mathbb{N}_{>0}^{*}\right\} .
\end{gathered}
$$

Unranked Trees. An unranked tree t over a finite alphabet Σ can similarly be seen as a relational structure with domain $\operatorname{Pos}(t)$ for the signature $\left(\downarrow, \rightarrow,\left(P_{a}\right)_{a \in A}\right)$ and $A \stackrel{\text { def }}{=} \Sigma$: we interpret the relations by

$$
\begin{aligned}
& \downarrow \stackrel{\text { def }}{=}\left\{(p, p i) \in \operatorname{Pos}(t)^{2} \mid i \in \mathbb{N}_{>0}\right\}, \\
\rightarrow & \stackrel{\text { def }}{=}\left\{(p i, p(i+1)) \in \operatorname{Pos}(t)^{2} \mid i \in \mathbb{N}_{>0}\right\}, \\
P_{a} & \stackrel{\text { def }}{=}\{p \in \operatorname{Pos}(t) \mid t(p)=a\} \quad \text { for all } a \in A
\end{aligned}
$$

Again, other relational signature are possible.

2 Monadic Second-Order Logic \& Co.

Syntax. Consider a finite signature $\sigma=\left(\left(R_{i}\right)_{1 \leq i \leq n}\right)$. Let \mathcal{X}_{1} and \mathcal{X}_{2} be two infinite countable disjoint sets of first-order and second-order variables. The set of $\operatorname{MSO}(\sigma)$ formulæ is defined by the abstract syntax

$$
\psi::=R_{i}\left(x_{1}, \ldots, x_{r_{i}}\right)\left|x=x^{\prime}\right| x \in X|\neg \psi| \psi \wedge \psi|\exists x . \psi| \exists X . \psi
$$

where $1 \leq i \leq n, x, x^{\prime}, x_{1}, \cdots \in \mathcal{X}_{1}$, and $X \in \mathcal{X}_{2}$. The set of $\mathrm{FO}(\sigma)$ formulæ is defined by removing second-order quantification and $x \in X$ predicates:

$$
\psi::=R_{i}\left(x_{1}, \ldots, x_{r_{i}}\right)\left|x=x^{\prime}\right| \neg \psi|\psi \wedge \psi| \exists x . \psi
$$

Semantics. Given a σ-structure $\mathfrak{M}=\left(|\mathfrak{M}|,\left(R_{i}\right)_{1 \leq i \leq n}\right)$ and two valuations ν_{1} : $\mathcal{X}_{1} \rightarrow$ $|\mathfrak{M}|$ and $\nu_{2}: \mathcal{X}_{2} \rightarrow 2^{|\mathfrak{M}|}$, we say that \mathfrak{M} satisfies ψ and write $\mathfrak{M} \vDash{ }_{\nu_{1}, \nu_{2}} \psi$ in the following situations:

$$
\begin{aligned}
& \mathfrak{M} \vDash{ }_{\nu_{1}, \nu_{2}} R_{i}\left(x_{1}, \ldots, x_{r_{i}}\right) \quad \text { if }\left(\nu_{1}\left(x_{1}\right), \ldots, \nu_{1}\left(x_{r_{i}}\right)\right) \in R_{i}, \\
& \mathfrak{M} \mid{ }_{\nu_{1}, \nu_{2}} x=x^{\prime} \quad \text { if } \nu_{1}(x)=\nu_{1}\left(x^{\prime}\right) \text {, } \\
& \mathfrak{M} \vDash{ }_{\nu_{1}, \nu_{2}} x \in X \quad \text { if } \nu_{1}(x) \in \nu_{2}(X), \\
& \mathfrak{M} \neq_{\nu_{1}, \nu_{2}} \neg \psi \quad \text { if } \mathfrak{M} \not \models_{\nu_{1}, \nu_{2}} \psi \text {, } \\
& \mathfrak{M} \models{ }_{\nu_{1}, \nu_{2}} \psi \wedge \psi^{\prime} \quad \text { if } \mathfrak{M} \models_{\nu_{1}, \nu_{2}} \psi \text { and } \mathfrak{M} \vDash=_{\nu_{1}, \nu_{2}} \psi^{\prime} \text {, } \\
& \mathfrak{M}={ }_{\nu_{1}, \nu_{2}} \exists x \cdot \psi \quad \text { if } \exists w \in|\mathfrak{M}|, \mathfrak{M} \models_{\nu_{1}[x \mapsto w], \nu_{2}} \psi \text {, } \\
& \mathfrak{M} \models{ }_{\nu_{1}, \nu_{2}} \exists X . \psi \quad \text { if } \exists S \subseteq|\mathfrak{M}|, \mathfrak{M} \models{ }_{\nu_{1}, \nu_{2}[X \mapsto S]} \psi .
\end{aligned}
$$

Examples on Unranked Trees. Over finite unranked trees and the signature $\left(\downarrow, \rightarrow,\left(P_{a}\right)_{a \in A}\right)$, one typically defines the following first-order formulæ:

$$
\begin{aligned}
& \operatorname{root}(x) \stackrel{\text { def }}{=} \exists \exists y(y \downarrow x) \\
& \operatorname{first}(x) \stackrel{\text { def }}{=} \exists \exists y(y \rightarrow x)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{leaf}(x) \stackrel{\text { def }}{=} \neg \exists y(x \downarrow y) \\
& \operatorname{last}(x) \stackrel{\text { def }}{=} \neg \exists y(x \rightarrow y)
\end{aligned}
$$

and the following MSO formulæ:

$$
\begin{gathered}
x \downarrow^{*} y \stackrel{\text { def }}{=} \forall X .\left(x \in X \wedge\left(\forall z \forall z^{\prime}\left(z \in X \wedge z \downarrow z^{\prime} \Rightarrow z^{\prime} \in X\right)\right) \Rightarrow y \in X\right) \\
x \rightarrow^{*} y \stackrel{\text { def }}{=} \forall X .\left(x \in X \wedge\left(\forall z \forall z^{\prime}\left(z \in X \wedge z \rightarrow z^{\prime} \Rightarrow z^{\prime} \in X\right)\right) \Rightarrow y \in X\right) .
\end{gathered}
$$

Finally, we say that a tree t satisfies ψ if there exist ν_{1} and ν_{2} such that $t \models_{\nu_{1}, \nu_{2}} \psi$, and we define the language of ψ as $L(\psi) \stackrel{\text { def }}{=}\left\{t \in T(\Sigma) \mid \exists \nu_{1}, \nu_{2}, t \vDash{ }_{\nu_{1}, \nu_{2}} \psi\right\}$.

3 Propositional Dynamic Logic

Here we assume that all the relational symbols in $\sigma=\left(\left(R_{i}\right)_{1 \leq i \leq n},\left(P_{p}\right)_{p \in A}\right)$ to be either binary for all $\left(R_{i}\right)_{1 \leq i \leq n}$ or unary for all $\left(P_{p}\right)_{p \in A}$. The definitions can actually be extended to higher arities.

Syntax. There are two sorts of PDL formulæ: node formula hold in particular points of the structure (called 'worlds' in the modal logic literature), while path formula hold between points. We present here a version of PDL with converse

$$
\begin{array}{ll}
\varphi::=\top|p| \neg \varphi|\varphi \wedge \varphi|\langle\pi\rangle \varphi, & \text { (node formulæ) } \\
\pi::=R_{i}|\varphi ?| \pi^{-1}|\pi ; \pi| \pi+\pi \mid \pi^{*}, & \text { (path formulæ) }
\end{array}
$$

where p ranges over A and $1 \leq i \leq n$.
Semantics. A node formula φ is satisfied in a world $w \in|\mathfrak{M}|$ of a σ-structure $\mathfrak{M}=$ $\left(|\mathfrak{M}|,\left(R_{i}\right)_{1 \leq i \leq n},\left(P_{p}\right)_{p \in A}\right)$, denoted $\mathfrak{M}, w \mid=\varphi$, in the following situations:

```
\(\mathfrak{M}, w \mid=\top \quad\) always,
\(\mathfrak{M}, w \mid=p \quad\) if \(w \in P_{p}\),
\(\mathfrak{M}, w \vDash \neg \varphi \quad\) if \(\mathfrak{M}, w \not \vDash \varphi\),
\(\mathfrak{M}, w \vDash \varphi \wedge \varphi^{\prime} \quad\) if \(\mathfrak{M}, w \models \varphi\) and \(\mathfrak{M}, w \models \varphi^{\prime}\),
\(\mathfrak{M}, w \mid=\langle\pi\rangle \varphi \quad\) if \(\exists w^{\prime} \in|\mathfrak{M}|, \mathfrak{M}, w, w^{\prime} \models \pi\) and \(\mathfrak{M}, w^{\prime}=\varphi^{\prime}\).
```

Similarly, a path formula π is satisfied between two worlds w and w^{\prime} of \mathfrak{M}, denoted $\mathfrak{M}, w, w^{\prime} \models \pi$, in the following situations:

```
\(\mathfrak{M}, w, w^{\prime} \vDash R_{i} \quad\) if \(\left(w, w^{\prime}\right) \in R_{i}\),
\(\mathfrak{M}, w, w^{\prime} \models \varphi ? \quad\) if \(w=w^{\prime}\) and \(\mathfrak{M}, w \models \varphi\),
\(\mathfrak{M}, w, w^{\prime} \models \pi^{-1} \quad\) if \(\mathfrak{M}, w^{\prime}, w \models \pi\),
\(\mathfrak{M}, w, w^{\prime} \models \pi ; \pi^{\prime} \quad\) if \(\exists w^{\prime \prime} \in|\mathfrak{M}|, \mathfrak{M}, w, w^{\prime \prime} \models \pi\) and \(\mathfrak{M}, w^{\prime \prime}, w^{\prime} \models \pi^{\prime}\),
\(\mathfrak{M}, w, w^{\prime}=\pi+\pi^{\prime} \quad\) if \(\mathfrak{M}, w, w^{\prime} \models \pi\) or \(\mathfrak{M}, w, w^{\prime} \models \pi^{\prime}\),
\(\mathfrak{M}, w, w^{\prime} \mid=\pi^{*} \quad\) if \(\exists n \in \mathbb{N}, \exists w_{1}=w, w_{2}, \ldots, w_{n-1}, w_{n}=w^{\prime} \in|\mathfrak{M}|, \forall 1 \leq j<n, \mathfrak{M}, w_{j}, w_{j+1} \models \pi\).
```

Satisfaction Sets. Alternatively, we can define the semantics through satisfaction sets:

$$
\llbracket \varphi \rrbracket \mathfrak{M} \stackrel{\text { def }}{=}\{w \in|\mathfrak{M}| \mid \mathfrak{M}, w \models \varphi\} \quad \llbracket \pi \rrbracket_{\mathfrak{M}} \stackrel{\text { def }}{=}\left\{\left(w, w^{\prime}\right) \in|\mathfrak{M}|^{2} \mid \mathfrak{M}, w, w^{\prime} \models \pi\right\}
$$

One obtains for instance

$$
\llbracket\langle\pi\rangle \varphi \rrbracket_{\mathfrak{N}}=\left(\llbracket \pi \rrbracket_{\mathfrak{N}}\right)^{-1}\left(\llbracket \varphi \rrbracket_{\mathfrak{N}}\right), \quad \llbracket \pi^{*} \rrbracket_{\mathfrak{M}}=\llbracket \pi \rrbracket_{\mathfrak{n}}^{*} .
$$

Box Modalities. Finally, let us mention that the dual of the 'diamond' $\langle\pi\rangle$ is the ${ }^{`}$ box' $[\pi] \varphi \stackrel{\text { def }}{=} \neg\langle\pi\rangle \neg \varphi$:

$$
\mathfrak{M}, w \vDash[\pi] \varphi \text { if } \forall w^{\prime} \in|\mathfrak{M}|, \mathfrak{M}, w, w^{\prime} \models \pi \text { implies } \mathfrak{M}, w^{\prime} \models \varphi
$$

Examples on Unranked Trees. Over finite unranked trees and the signature $\left(\downarrow, \rightarrow,\left(P_{a}\right)_{a \in A}\right)$, one typically defines the following path formulæ

$$
\uparrow \stackrel{\text { def }}{=} \downarrow^{-1} \quad \leftarrow \stackrel{\text { def }}{=} \rightarrow^{-1}
$$

and node formulæ

$$
\begin{array}{ll}
\text { root } \stackrel{\text { def }}{=}[\uparrow] \perp & \text { leaf } \stackrel{\text { def }}{=}[\downarrow] \perp \\
\text { first } \stackrel{\text { def }}{=}[\leftarrow] \perp & \text { last } \stackrel{\text { def }}{=}[\rightarrow] \perp
\end{array}
$$

Finally, we say that a tree t satisfies φ, denoted $t \models \varphi$, if it satisfies it at the root, i.e. $\varphi, \varepsilon \models \varphi$. The language of φ is $L(\varphi) \stackrel{\text { def }}{=}\{t \in T(\Sigma) \mid t \models \varphi\}$ the set of trees that satisfy the formula.

