MPRI 2-27-1 Exam

Duration: 3 hours

Paper documents are allowed. The numbers in front of questions are indicative of hardness or duration.

1 Two-level Syntax

Exercise 1 (Derivation trees). In a tree adjoining grammar $\mathcal{G} = \langle N, \Sigma, T_{\alpha}, T_{\beta}, S \rangle$, the trees in $L_T(\mathcal{G})$ are called *derived* trees. We are interested here in another tree structure, called a *derivation* tree, for which we propose a formalisation here. Let us assume for simplicity that all the foot nodes of auxiliary trees have the 'na' null adjunction annotation.

For an elementary tree $\gamma \in T_{\alpha} \uplus T_{\beta}$, we define its *contents* $c(\gamma)$ to be a finite sequence over the alphabet $Q \stackrel{\text{def}}{=} \{q_A \mid A \in N \uplus N \downarrow \}$. Formally, we enumerate for this the labels in Q of its nodes in position order; the nodes labelled by $\Sigma \cup N^{\text{na}}$ are ignored.

Consider for instance the TAG \mathcal{G}_1 with $N \stackrel{\text{def}}{=} \{S, NP, VP\}, \Sigma \stackrel{\text{def}}{=} \{VBZ \diamond, NNP \diamond, NNS \diamond, RB \diamond\}, T_{\alpha} \stackrel{\text{def}}{=} \{eats, Bill, mushrooms\}, T_{\beta} \stackrel{\text{def}}{=} \{possibly\}, \text{ and } S \stackrel{\text{def}}{=} S, \text{ where the elementary trees are shown below:}$

Then eats has contents $c(eats) = q_S, q_{NP\downarrow}, q_{VP}, q_{NP\downarrow}, c(Bill) = q_{NP}, c(mushrooms) = q_{NP},$ and $c(possibly) = q_{VP}$.

We now define a finite ranked alphabet $\mathcal{F} \stackrel{\text{def}}{=} T_{\alpha} \uplus T_{\beta} \uplus \{\varepsilon^{(0)}\}$. For an elementary tree $\gamma \in T_{\alpha} \uplus T_{\beta}$, its rank is $r(\gamma) \stackrel{\text{def}}{=} |c(\gamma)|$ the length of its contents. For the symbol ε , its rank is $r(\varepsilon) \stackrel{\text{def}}{=} 0$. For a TAG $\mathcal{G} = \langle N, \Sigma, T_{\alpha}, T_{\beta}, S \rangle$, we construct a finite tree automaton $\mathcal{A}_{\mathcal{G}} \stackrel{\text{def}}{=} \langle Q, \mathcal{F}, \delta, q_{S\downarrow} \rangle$ where Q and \mathcal{F} are defined as above and

$$\delta \stackrel{\text{def}}{=} \{ (q_{A\downarrow}, \alpha^{(r(\alpha))}, c(\alpha)) \mid A\downarrow \in N\downarrow, \alpha \in T_{\alpha}, \text{rl}(\alpha) = A \}$$

$$\cup \{ (q_A, \beta^{(r(\beta))}, c(\beta)) \mid A \in N, \beta \in T_{\beta}, \text{rl}(\beta) = A \}$$

$$\cup \{ (q_A, \varepsilon^{(0)}) \mid A \in N \}$$

where 'rl' returns the root label of the tree.

[1] 1. Give the finite automaton $\mathcal{A}_{\mathcal{G}_1}$ associated with the example TAG \mathcal{G}_1 .

```
Solution: Q = \{q_{\text{S}\downarrow}, q_{\text{NP}\downarrow}, q_{\text{S}}, q_{\text{VP}}, q_{\text{NP}}\},
\mathcal{F} = \{eats^{(4)}, Bill^{(1)}, mushrooms^{(1)}, possibly^{(1)}, \varepsilon^{(0)}\},
\delta = \{(q_{\text{S}\downarrow}, eats^{(4)}, q_{\text{S}}, q_{\text{NP}\downarrow}, q_{\text{VP}}, q_{\text{NP}\downarrow}),
(q_{\text{NP}\downarrow}, Bill^{(1)}, q_{\text{NP}}),
(q_{\text{NP}\downarrow}, mushrooms^{(1)}, q_{\text{NP}}),
(q_{\text{S}, \varepsilon^{(0)}}),
(q_{\text{VP}}, possibly^{(1)}, q_{\text{VP}}),
(q_{\text{VP}}, \varepsilon^{(0)}),
(q_{\text{NP}}, \varepsilon^{(0)})\}
```

[1] 2. Modify your automaton in order to also handle the trees real, fake, $wants_to_0$, $wants_to_1 \in T_\beta$ shown below, where $TO\diamondsuit$, $JJ\diamondsuit\in\Sigma$:

We call the resulting tree adjoining grammar \mathcal{G}_2 .

```
Solution: Add someone^{(1)}, real^{(1)}, fake^{(1)}, and wants\_to^{(3)} to \mathcal{F} and the rules  (q_{\mathrm{NP}}, real^{(1)}, q_{\mathrm{NP}})   (q_{\mathrm{NP}}, fake^{(1)}, q_{\mathrm{NP}})   (q_{\mathrm{VP}}, wants\_to_0^{(1)}, q_{\mathrm{VP}})   (q_{\mathrm{VP}}, wants\_to_1^{(2)}, q_{\mathrm{VP}}, q_{\mathrm{NP}}\downarrow)  to \delta.
```

[1] 3. The intention that our finite automaton generates the derivation language $L_D(\mathcal{G}) \stackrel{\text{def}}{=} L(\mathcal{A}_{\mathcal{G}})$ of \mathcal{G} . Can you figure out what should be the derivation tree of 'Bill possibly wants to eat mushrooms'?

[2] 4. Give a PDL node formula φ_2 such that $L(\mathcal{A}_{\mathcal{G}_2}) = \{t \in T(\mathcal{F}) \mid t, \text{root} \models \varphi_2\}.$

```
\begin{split} \textbf{Solution:} \\ \varphi_1 &\stackrel{\text{def}}{=} \varphi_{\text{S}\downarrow} \wedge [\downarrow^*] \big( \begin{array}{c} eats \implies \langle \downarrow; \text{first?}; \varphi_{\text{S}}?; \rightarrow; \varphi_{\text{NP}\downarrow}?; \rightarrow; \varphi_{\text{VP}}?; \rightarrow; \varphi_{\text{NP}\downarrow}? \rangle | \text{ast} \\ wants\_to_0 & \implies \langle \downarrow; \text{first?}; \varphi_{\text{VP}}? \rangle | \text{ast} \\ wants\_to_1 & \implies \langle \downarrow; \text{first?}; \varphi_{\text{VP}}?; \rightarrow; \varphi_{\text{NP}\downarrow}? \rangle | \text{ast} \\ Bill & \implies \langle \downarrow; \text{first?}; \varphi_{\text{NP}}? \rangle | \text{ast} \\ eal & \implies \langle \downarrow; \text{first?}; \varphi_{\text{NP}}? \rangle | \text{ast} \\ fake & \implies \langle \downarrow; \text{first?}; \varphi_{\text{NP}}? \rangle | \text{ast} \\ mushrooms & \implies \langle \downarrow; \text{first?}; \varphi_{\text{NP}}? \rangle | \text{ast} \\ possibly & \implies \langle \downarrow; \text{first?}; \varphi_{\text{VP}}? \rangle | \text{ast} \\ & \varepsilon & \implies | \text{eaf} \  \  \big) \\ \end{split} where  \varphi_{\text{S}\downarrow} \stackrel{\text{def}}{=} eats \quad \varphi_{\text{NP}\downarrow} \stackrel{\text{def}}{=} Bill \vee mushrooms \\ \varphi_{\text{S}} \stackrel{\text{def}}{=} \varepsilon \qquad \varphi_{\text{VP}} \stackrel{\text{def}}{=} possibly \vee wants\_to_0 \vee wants\_to_1 \vee \varepsilon \quad \varphi_{\text{NP}} \stackrel{\text{def}}{=} real \vee fake \vee \varepsilon \\ \end{cases}
```

1.1 Macro Tree Transducers

Let \mathcal{X} be a countable set of variables and \mathcal{Y} a countable set of parameters; we assume \mathcal{X} and \mathcal{Y} to be disjoint. For Q a ranked alphabet with arities greatser than zero, we abuse notations and write $Q(\mathcal{X})$ for the alphabet of pairs $(q, x) \in Q \times \mathcal{X}$ with $arity(q, x) \stackrel{\text{def}}{=} arity(q) - 1$. This is just for convenience, and $(q, x)(t_1, \ldots, t_n)$ is really the term $q(x, t_1, \ldots, t_n)$.

Syntax. A macro tree transducer (NMTT) is a tuple $\mathcal{M} = (Q, \mathcal{F}, \mathcal{F}', \Delta, I)$ where Q is a finite set of states, all of arity ≥ 1 , \mathcal{F} and \mathcal{F}' are finite ranked alphabets, $I \subseteq Q_1$ is a set of root states of arity one, and Δ is a finite set of term rewriting rules of the form $q(f(x_1, \ldots, x_n), y_1, \ldots, y_p) \to e$ where $q \in Q_{1+p}$ for some $p \geq 0$, $f \in \mathcal{F}_n$ for some $n \in \mathbb{N}$,

and $e \in T(\mathcal{F}' \cup Q(\mathcal{X}_n), \mathcal{Y}_p)$. Note that this imposes that any occurrence in e of a variable $x \in \mathcal{X}$ must be as the first argument of a state $q \in Q$.

Inside-Out Semantics. Given a NMTT, the *inside-out* rewriting relation over trees in $T(\mathcal{F} \cup \mathcal{F}' \cup Q)$ is defined by: $t \xrightarrow{\mathrm{IO}} t'$ if there exist a rule $q(f(x_1, \ldots, x_n), y_1, \ldots, y_p) \to e$ in Δ , a context $C \in C(\mathcal{F} \cup \mathcal{F}' \cup Q)$, and two substitutions $\sigma: \mathcal{X} \to T(\mathcal{F})$ and $\rho: \mathcal{Y} \to T(\mathcal{F}')$ such that $t = C[q(f(x_1, \ldots, x_n), y_1, \ldots, y_p)\sigma\rho]$ and $t' = C[e\sigma\rho]$. In other words, in inside-out rewriting, when applying a rewriting rule $q(f(x_1, \ldots, x_n), y_1, \ldots, y_p) \to e$, the parameters y_1, \ldots, y_p must be mapped to trees in $T(\mathcal{F}')$, with no remaining states from Q.

Similarly to context-free tree grammars, the *inside-out* transduction $[\![\mathcal{M}]\!]_{IO}$ realised by \mathcal{M} is defined through inside-out rewriting semantics:

$$[\![\mathcal{M}]\!]_{\mathrm{IO}} \stackrel{\mathrm{def}}{=} \{(t, t') \in T(\mathcal{F}) \times T(\mathcal{F}') \mid \exists q \in I . q(t) \xrightarrow{\mathrm{IO}}^* t' \} .$$

Example 1. Let $\mathcal{F} \stackrel{\text{def}}{=} \{a^{(1)}, \$^{(0)}\}$ and $\mathcal{F}' \stackrel{\text{def}}{=} \{f^{(3)}, a^{(1)}, b^{(1)}, \$^{(0)}\}$. Consider the NMTT $\mathcal{M} = (\{q^{(1)}, q'^{(3)}\}, \mathcal{F}, \mathcal{F}', \Delta, \{q\})$ with Δ the set of rules

$$q(a(x_1)) \to q'(x_1, \$, \$) \qquad q'(\$, y_1, y_2) \to f(y_1, y_1, y_2)$$

$$q'(a(x_1), y_1, y_2) \to q'(x_1, a(y_1), a(y_2)) \qquad q'(a(x_1), y_1, y_2) \to q'(x_1, a(y_1), b(y_2))$$

$$q'(a(x_1), y_1, y_2) \to q'(x_1, b(y_1), a(y_2)) \qquad q'(a(x_1), y_1, y_2) \to q'(x_1, b(y_1), b(y_2))$$

Then we have for instance the following derivation:

$$q(a(a(a(\$)))) \xrightarrow{\text{IO}} q'(a(a(\$)), \$, \$)$$

$$\xrightarrow{\text{IO}} q'(a(\$), b(\$), b(\$))$$

$$\xrightarrow{\text{IO}} q'(\$, a(b(\$)), b(b(\$)))$$

$$\xrightarrow{\text{IO}} f(a(b(\$)), a(b(\$)), b(b(\$)))$$

showing that $(a(a(a(\$))), f(a(b(\$)), a(b(\$)), b(b(\$)))) \in [\![\mathcal{M}]\!].$

Exercise 2 (Monadic trees). An NMTT \mathcal{M} is called *linear* and *non-deleting* if, in every rule $q(f(x_1,\ldots,x_n),y_1,\ldots,y_p) \to e$ in Δ , the term e is linear in $\{x_1,\ldots,x_n\}$ and $\{y_1,\ldots,y_p\}$, i.e. each variable and each parameter occurs exactly once in the term e.

Let $\mathcal{F}' \stackrel{\text{def}}{=} \{a^{(1)}, b^{(1)}, \$^{(0)}\}$. Observe that trees in $T(\mathcal{F}')$ are in bijection with contexts in $C(\mathcal{F}')$ and words over $\{a,b\}^*$. For a context C from $C(\mathcal{F}')$, we write C^R for its mirror context, read from the leaf to the root. For instance, if $C = a(b(a(a(\square))))$, then $C^R = a(a(b(a(\square))))$. Formally, let $n \in \mathbb{N}$ be such that dom $C = \{0^m \mid m \leq n\}$; then $C(0^n) = \square$ and $C(0^m) \in \{a,b\}$ for m < n. Then C^R is defined by dom $C^R \stackrel{\text{def}}{=} \text{dom } C$, $C^R(0^n) \stackrel{\text{def}}{=} \square$, and $C^R(0^m) \stackrel{\text{def}}{=} C^R(0^{n-m})$ for all m < n.

[2] 1. Give a linear and non-deleting NMTT \mathcal{M} from \mathcal{F}' to \mathcal{F}' such that $[\![\mathcal{M}]\!]_{IO} = \{(C[\$], C[C^R[\$]]) \mid C \in C(\mathcal{F}')\}$. In terms of words over $\{a,b\}^*$, this transducer maps w to the palindrome ww^R . Is $[\![\mathcal{M}]\!]_{IO}(T(\mathcal{F}))$ a recognisable tree language?

Solution: Let $\mathcal{M} \stackrel{\text{def}}{=} (Q, \mathcal{F}', \mathcal{F}', \Delta, I)$ where $Q \stackrel{\text{def}}{=} \{q_i^{(1)}, q^{(2)}\}, I \stackrel{\text{def}}{=} \{q_i\}, \text{ and } \Delta \text{ is the set of rules}$

$$q_i(\$) \to \$$$
 $q_i(a(x_1)) \to a(q(x_1, a(\$)))$ $q_i(b(x_1)) \to b(q(x_1, b(\$)))$
 $q(\$, y_1) \to y_1$ $q(a(x_1), y_1) \to a(q(x_1, a(y_1)))$ $q(b(x_1), y_1) \to b(q(x_1, b(y_1)))$.

We leave the proof of correctness to the reader.

This macro tree transducer is deterministic, and complete. Because a monadic tree language over \mathcal{F}' is recognisable if and only if the corresponding word language over $\{a,b\}$ is recognisable, $[\![\mathcal{M}]\!]_{\text{IO}}(T(\mathcal{F}))$ is not a recognisable tree language. In turn, this shows that recognisable tree languages are not closed under linear non-deleting macro transductions, not even the complete deterministic ones.

Exercise 3 (From derivation to derived trees). Consider again the tree adjoining grammar \mathcal{G}_2 from Exercise 1.

[3] 1. Give a linear non-deleting NMTT \mathcal{M}_2 that maps the derivation trees of \mathcal{G}_2 to its derived trees. Formally, we want dom($[\![\mathcal{M}_2]\!]_{IO}$) = $L_D(\mathcal{G}_2)$ and $[\![\mathcal{M}_2]\!]_{IO}(T(\mathcal{F})) = L_T(\mathcal{G}_2)$.

Solution: We set
$$\mathcal{F}' \stackrel{\text{def}}{=} N \uplus \Sigma$$
, $Q \stackrel{\text{def}}{=} \{q_{S\downarrow}^{(1)}, q_{S}^{(2)}, q_{NP\downarrow}^{(1)}, q_{NP}^{(2)}, q_{VP}^{(2)}\}$, $I \stackrel{\text{def}}{=} \{q_{S}^{(1)}\}$, and Δ :
$$q_{S\downarrow}^{(1)}(eats(x_1, x_2, x_3, x_4)) \to q_{S\downarrow}^{(2)}$$

$$x_1 \quad S$$

$$q_{NP\downarrow}^{(1)} \quad q_{VP\downarrow}^{(2)}$$

$$x_2 \quad x_3 \quad VP$$

$$VBZ \diamondsuit \quad q_{NP\downarrow}^{(1)}$$

$$x_4$$

$$q_{\mathrm{NP}\downarrow}^{(2)}(\varepsilon,y_1) \to y_1$$

$$q_{\mathrm{NP}\downarrow}^{(1)}(Bill(x_1)) \to q_{\mathrm{NP}}^{(2)}$$

$$x_1 \quad \mathrm{NP}$$

$$NP \to NNP \diamond$$

$$q_{\mathrm{NP}\downarrow}^{(1)}(mushrooms(x_1)) \to q_{\mathrm{NP}}^{(2)}$$

$$x_1 \quad \mathrm{NP} \to NNS \diamond$$

$$q_{\mathrm{NP}}^{(2)}(real(x_1),y_1) \to q_{\mathrm{NP}}^{(2)}$$

$$x_1 \quad \mathrm{NP} \to NNS \diamond$$

$$q_{\mathrm{NP}}^{(2)}(fake(x_1),y_1) \to q_{\mathrm{NP}}^{(2)}$$

$$x_1 \quad \mathrm{NP} \to y_1$$

$$q_{\mathrm{NP}}^{(2)}(\varepsilon,y_1) \to y_1$$

$$q_{\mathrm{NP}}^{(2)}(\varepsilon,y_1) \to y_1$$

$$q_{\mathrm{NP}}^{(2)}(wants_to_0(x_1),y_1) \to q_{\mathrm{NP}}^{(2)}$$

$$x_1 \quad \mathrm{VP} \to q_{\mathrm{NP}}^{(2)}$$

Exercise 4 (Context-free tree grammar). Let $\mathcal{M} = (Q, \mathcal{F}, \mathcal{F}', \Delta, I)$ be an NMTT and $\mathcal{A} = (Q', \mathcal{F}, \delta, I')$ be an NFTA.

[5] 1. Show that $L \stackrel{\text{def}}{=} [\![\mathcal{M}]\!]_{\text{IO}}(L(\mathcal{A})) = \{t' \in T(\mathcal{F}') \mid \exists t \in L(\mathcal{A}) . (t, t') \in [\![\mathcal{M}]\!]_{\text{IO}}\}$ is an inside-out context-free tree language, i.e., show how to construct a CFTG $\mathcal{G} = (N, \mathcal{F}', S, R)$ such that $L_{\text{IO}}(\mathcal{G}) = L$.

Solution: Let

$$N \stackrel{\text{def}}{=} (Q \times Q') \uplus \{S\}$$

where each pair $(q^{(1+p)}, q')$ from $Q \times Q'$ has arity p, and

$$R \stackrel{\text{def}}{=} \{ S \to (q, q')^{(0)} \mid q \in I, q' \in I' \}$$

$$\cup \{ (q, q')^{(p)}(y_1, \dots, y_p) \to e[q'_i/x_i]_i \mid \exists n . \exists f \in \mathcal{F}_n . q^{(1+p)}(f(x_1, \dots, x_n), y_1, \dots, y_n) \to e \in \Delta \}$$
and $(q', f, q'_1, \dots, q'_n) \in \delta \}$

where we abuse notation as indicated at the beginning of the section. For a tree $e \in T(N \cup \mathcal{F}')$, we let $N(e) = \{(q_1, q_1'), \dots, (q_n, q_n')\}$ be the set of symbols from N occurring inside e.

Let us show that, for all $k \in \mathbb{N}$, for all $e \in T(N \cup \mathcal{F}')$ with $N(e) = \{(q_1, q_1'), \dots, (q_n, q_n')\}$ and for all $t' \in T(\mathcal{F}')$, $e \stackrel{\mathrm{IQ}}{\Longrightarrow}_{\mathcal{G}}^k t'$ if and only if $\exists t_1, \dots, t_n \in T(\mathcal{F})$ such that $e[t_i/q_i']_{1 \leq i \leq n} \stackrel{\mathrm{IQ}}{\Longrightarrow}_{\mathcal{M}}^k t'$ and for all $1 \leq i \leq n$, $t_i \stackrel{\delta_B}{\Longrightarrow}_{\mathcal{A}}^* q_i'$.

We prove the statement by induction, first over k the number of rewriting steps in \mathcal{G} and \mathcal{M} , and second over the term e. We only prove the 'if' direction, as the 'only if' one is similar.

If Assume $e \stackrel{\text{IO}}{\Rightarrow}_{\mathcal{G}}^{k} t'$.

If $e = f(e_1, \ldots, e_m)$ for some $m \in \mathbb{N}$ and $f \in \mathcal{F}'_m$, then this rewrite can be decomposed as

$$e = f(e_1, \dots, e_m) \stackrel{\text{IO}}{\Longrightarrow}_{\mathcal{G}}^k f(t'_1, \dots, t'_m) = t'$$

where for all $1 \leq j \leq m, t'_j \in T(\mathcal{F}')$ is such that

$$e_j \stackrel{\mathrm{IO}}{\Longrightarrow}_{\mathcal{G}}^{k_j} t_j'$$

and

$$k = \sum_{1 \le j \le m} k_j \ .$$

Let $N(e_j) = \{(q_{j,1}, q'_{j,1}), \dots, (q_{j,n_j}, q'_{j,n_j})\};$ then $N(e) = \bigcup_{1 \le j \le m} N(e_j).$

For each $1 \leq j \leq m$, by induction hypothesis on the subterms e_j since $k_j \leq k$, there exist $t_{j,1}, \ldots, t_{j,n_j} \in T(\mathcal{F})$ such that

$$e_j[t_{j,i}/q'_{j,i}]_{1 \le i \le n_j} \stackrel{\mathrm{IO}}{\Longrightarrow}_{\mathcal{M}}^{k_j} t'_j$$

and

$$t_{j,i} \stackrel{\delta_B}{\Longrightarrow}^*_{\mathcal{A}} q'_{j,i}$$

for all $1 \le i \le n_i$. Thus

$$f(e_1,\ldots,e_m)[t_{j,i}/q'_{j,i}]_{1\leq j\leq m,1\leq i\leq n_j} \stackrel{\mathrm{IO}}{\Longrightarrow}_{\mathcal{M}}^k f(t'_1,\ldots,t'_m) = t'$$

as desired.

If $e = (q, q')^{(p)}(e_1, \ldots, e_p)$ for some $p \in \mathbb{N}$ and $(q, q')^{(p)} \in Q \times Q'$, then this rewrite can be decomposed as

$$e = (q, q')^{(p)}(e_1, \dots, e_p) \stackrel{\text{IO}}{\Longrightarrow}_{\mathcal{G}}^{k'} (q, q')^{(p)}(t'_1, \dots, t'_p)$$

$$\stackrel{\text{IO}}{\Longrightarrow}_{\mathcal{G}} e'[q'_i/x_i]_{1 \le i \le m} [t'_j/y_j]_{1 \le j \le p}$$

$$\stackrel{\text{IO}}{\Longrightarrow}_{\mathcal{G}}^{k''} t'$$

where for all $1 \leq j \leq m$, $t'_{j} \in T(\mathcal{F}')$ is such that

$$e_j \stackrel{\mathrm{IO}}{\Longrightarrow}_{\mathcal{G}}^{k_j} t_j'$$

and $k' = \sum_{1 \leq j \leq m} k_j$ and k = 1 + k' + k''; also $N(e) = \{(q, q')\} \cup \bigcup_{1 \leq j \leq p} N(e_j)$ where $N(e_j) = \{(q_{j,1}, q'_{j,1}), \dots, (q_{j,n_j}, q'_{j,n_j})\}$. Such a rule application relies on the existence of $m \in \mathbb{N}$ and $f \in \mathcal{F}_m$ such that there are rules $q^{(1+p)}(f(x_1, \dots, x_m), y_1, \dots, y_p) \to e' \in \Delta$ and $(q', f, q'_1, \dots, q'_m) \in \delta$.

By induction hypothesis on $k_j < k$ for each $1 \leq j \leq p$, there exist $t_{j,1}, \ldots, t_{j,n_j} \in T(\mathcal{F})$ such that

$$e_j[t_{j,i}/q'_{j,i}]_{1 \le i \le n_j} \stackrel{\mathrm{IO}}{\Longrightarrow}_{\mathcal{M}}^{k_j} t'_j$$

and

$$t_{j,i} \stackrel{\delta_B}{\Longrightarrow}^*_{\mathcal{A}} q'_{j,i}$$

for all $1 \leq i \leq n_j$.

Furthermore, $N(e'[t'_j/y_j]_{1 \leq j \leq p}[q'_i/x_i]_{1 \leq i \leq m}) = \{(q_1, q'_1), \dots, (q_m, q'_m)\}$ and by induction hypothesis over k'' < k, there exist $t_1, \dots, t_m \in T(\mathcal{F})$ such that

$$e'[t'_j/y_j]_{1 \le j \le p}[t_i/x_i]_{1 \le i \le m} \stackrel{\text{IO}}{\Longrightarrow}_{\mathcal{M}}^{k''} t'$$

and

$$t_i \stackrel{\delta_B}{\Longrightarrow}^*_{\mathcal{A}} q_i'$$

for all $1 \leq i \leq m$. Note that, because $(q', f, q'_1, \dots, q'_m) \in \delta$, the latter imply

$$f(t_1,\ldots,t_m) \stackrel{\delta_B}{\Longrightarrow}_{\mathcal{A}}^* f(q_1',\ldots,q_m') \stackrel{\delta_B}{\Longrightarrow}_{\mathcal{A}} q'$$
.

Thus, in \mathcal{M} , we have the rewrite

$$\begin{aligned} & e[f(t_{1},\ldots,t_{m})/q][t'_{j,i}/q'_{j,i}]_{1\leq j\leq m,1\leq i\leq n_{i}} \\ & = q^{(1+p)}(f(t_{1},\ldots,t_{m}),e_{1}[t'_{1,i}/q'_{1,i}]_{1\leq i\leq n_{1}},\ldots,e_{m}[t'_{m,i}/q'_{m,i}]_{1\leq i\leq n_{m}}) \\ & = q^{(1+p)}(f(x_{1},\ldots,x_{m}),e_{1}[t'_{1,i}/q'_{1,i}]_{1\leq i\leq n_{1}},\ldots,e_{m}[t'_{m,i}/q'_{m,i}]_{1\leq i\leq n_{m}})[t_{1}/x_{1},\ldots,t_{m}/x_{m}] \\ & \stackrel{\mathrm{IO}}{\Longrightarrow}_{\mathcal{M}}^{k'} q^{(1+p)}(f(x_{1},\ldots,x_{m}),t'_{1},\ldots,t'_{p})[t_{1}/x_{1},\ldots,t_{m}/x_{m}] \\ & \stackrel{\mathrm{IO}}{\Longrightarrow}_{\mathcal{M}} e'[t_{i}/x_{i}]_{1\leq i\leq m}[t'_{j}/y_{j}]_{1\leq j\leq p} \\ & \stackrel{\mathrm{IO}}{\Longrightarrow}_{\mathcal{M}}^{k'} t' \end{aligned}$$

as desired.

2 Scope Ambiguities and Propositional Attitudes

Exercise 5. One considers the two following signatures:

$$(\Sigma_{\text{ABS}}) \qquad \text{SUZY} : NP$$

$$\text{BILL} : NP$$

$$\text{MUSHROOM} : N$$

$$\text{A} : N \to (NP \to S) \to S$$

$$\text{A}_{inf} : N \to (NP \to S_{inf}) \to S_{inf}$$

$$\text{EAT} : NP \to NP \to S_{inf}$$

$$\text{TO} : (NP \to S_{inf}) \to VP$$

$$\text{WANT} : VP \to NP \to S$$

```
(\Sigma_{	ext{S-FORM}}) egin{aligned} oldsymbol{Suzy} : string \ oldsymbol{Bill} : string \ oldsymbol{mushroom} : string \ oldsymbol{a} : string \ oldsymbol{eat} : string \ oldsymbol{to} : string \ oldsymbol{wants} : string \end{aligned}
```

where, as usual, string is defined to be $o \rightarrow o$ for some atomic type o.

One then defines a morphism $(\mathcal{L}_{SYNT} : \Sigma_{ABS} \to \Sigma_{S\text{-}FORM})$ as follows:

$$(\mathcal{L}_{\text{SYNT}}) \qquad NP := string \\ N := string \\ S := string \\ VP := string \\ VP := string \\ \text{SUZY} := \textbf{Suzy} \\ \text{BILL} := \textbf{Bill} \\ \text{MUSHROOM} := \textbf{mushroom} \\ \text{A} := \lambda xy. \ y \ (\textbf{a} + x) \\ \text{A}_{inf} := \lambda xy. \ y \ (\textbf{a} + x) \\ \text{EAT} := \lambda xy. \ y + \textbf{eat} + x \\ \text{TO} := \lambda x. \ \textbf{to} + (x \ \epsilon) \\ \text{WANT} := \lambda xy. \ y + \textbf{wants} + x$$

where, as usual, the concatenation operator (+) is defined as functional composition, and the empty word (ϵ) as the identity function.

[1] 1. Give two different terms, say t_0 and t_1 , such that:

$$\mathcal{L}_{ ext{SYNT}}(t_0) = \mathcal{L}_{ ext{SYNT}}(t_1) = oldsymbol{Bill} + oldsymbol{wants} + oldsymbol{to} + oldsymbol{eat} + oldsymbol{a} + oldsymbol{mushroom}$$

Solution:

$$t_0 = \text{Want} \left(\text{TO} \left(\lambda x. \, \text{A}_{\textit{inf}} \, \text{MUSHROOM} \left(\lambda y. \, \text{EAT} \, y \, x \right) \right) \right) \text{Bill}$$

 $t_1 = \text{A MUSHROOM} \left(\lambda y. \, \text{Want} \left(\text{TO} \left(\lambda x. \, \text{EAT} \, y \, x \right) \right) \text{Bill} \right)$

Exercise 6. One considers a third signature:

```
\begin{array}{ll} (\Sigma_{\text{L-FORM}}) & \textbf{suzy}: \mathsf{ind} \\ & \mathbf{bill}: \mathsf{ind} \\ & \mathbf{mushroom}: \mathsf{ind} \to \mathsf{prop} \\ & \mathbf{eat}: \mathsf{ind} \to \mathsf{ind} \to \mathsf{prop} \\ & \mathbf{want}: \mathsf{ind} \to \mathsf{prop} \to \mathsf{prop} \end{array}
```

One then defines a morphism $(\mathcal{L}_{SEM} : \Sigma_{ABS} \to \Sigma_{L\text{-FORM}})$ as follows:

$$(\mathcal{L}_{ ext{SEM}})$$
 $NP := ext{ind}$ $N := ext{ind} o ext{prop}$ $S := ext{prop}$ $S_{inf} := ext{prop}$ $VP := ext{ind} o ext{prop}$ $SUZY := ext{suzy}$ $BILL := ext{bill}$ $MUSHROOM := ext{mushroom}$ $A := ext{} \lambda xy. \exists z. (xz) \wedge (yz)$ $A_{inf} := ext{} \lambda xy. \exists z. (xz) \wedge (yz)$ $EAT := ext{} \lambda xy. \exists z. (xz) \wedge (yz)$ $EAT := ext{} \lambda xy. \ eat \ yx$ $TO := ext{} \lambda x. \ WANT := ext{} \lambda xy. \ want \ y(xy)$

[1] 1. Compute the different semantic interpretations of the sentence *Bill wants to eat a mushroom*, i.e., compute $\mathcal{L}_{\text{SEM}}(t_0)$ and $\mathcal{L}_{\text{SEM}}(t_1)$.

```
Solution: \mathcal{L}_{\text{SEM}}(t_0) = \textbf{want bill} \left( \exists z. \left( \textbf{mushroom} \ z \right) \land \left( \textbf{eat bill} \ z \right) \right) \\ \mathcal{L}_{\text{SEM}}(t_1) = \exists z. \left( \textbf{mushroom} \ z \right) \land \left( \textbf{want bill} \left( \textbf{eat bill} \ z \right) \right)
```

Exercise 7. One extends Σ_{ABS} and \mathcal{L}_{SYNT} , respectively, as follows:

$$(\Sigma_{ABS})$$
 Want2: $NP \to VP \to NP \to S$
 (\mathcal{L}_{SYNT}) Want2:= $\lambda xyz.z + \boldsymbol{wants} + x + y$

[1] 1. Extend \mathcal{L}_{SEM} accordingly in order to allow for the analysis of a sentence such as *Bill* wants Suzy to eat a mushroom.

Solution:

$$(\mathcal{L}_{\text{SEM}})$$
 WANT2 := λxyz . want $z(yx)$

Exercise 8. One extends Σ_{ABS} as follows:

$$(\Sigma_{ABS})$$
 EVERYONE : $(NP \to S) \to S$
THINK : $S \to NP \to S$

in order to allow for the analysis of the following sentence:

- (1) everyone thinks Bill wants to eat a mushroom.
- [3] 1. Extend $\Sigma_{\text{S-FORM}}$, $\mathcal{L}_{\text{SYNT}}$, $\Sigma_{\text{L-FORM}}$, and \mathcal{L}_{SEM} accordingly.

Solution:

```
(\Sigma_{\text{S-FORM}}) \quad \begin{array}{ll} \boldsymbol{everyone} : \ \boldsymbol{string} \\ \boldsymbol{thinks} : \ \boldsymbol{string} \\ \\ (\mathcal{L}_{\text{SYNT}}) \quad \text{EVERYONE} := \lambda x. \, \boldsymbol{x} \, \boldsymbol{everyone} \\ \text{THINK} := \lambda xy. \, \boldsymbol{y} + \boldsymbol{thinks} + \boldsymbol{x} \\ \\ (\Sigma_{\text{L-FORM}}) \quad \begin{array}{ll} \mathbf{human} : \ \operatorname{ind} \rightarrow \operatorname{prop} \\ \mathbf{think} : \ \operatorname{ind} \rightarrow \operatorname{prop} \rightarrow \operatorname{prop} \\ \\ (\mathcal{L}_{\text{SEM}}) \quad \text{EVERYONE} := \lambda x. \, \forall y. \, (\mathbf{human} \, y) \rightarrow (x \, y) \\ \text{THINK} := \lambda xy. \, \mathbf{think} \, y \, x \\ \end{array}
```

[2] 2. Give the several λ -terms that correspond to the different parsings of sentence (1).

Solution: There are four such terms:

```
EVERYONE (\lambda x. \text{ THINK (WANT (TO } (\lambda z. \text{ A}_{inf} \text{ MUSHROOM } (\lambda y. \text{ EAT } y z))) \text{ BILL) } x) EVERYONE (\lambda x. \text{ THINK (A MUSHROOM } (\lambda y. \text{ WANT (TO } (\lambda z. \text{ EAT } y z)) \text{ BILL))} x) EVERYONE (\lambda x. \text{ A MUSHROOM } (\lambda y. \text{ THINK (WANT (TO } (\lambda z. \text{ EAT } y z)) \text{ BILL) } x)) A MUSHROOM (\lambda y. \text{ EVERYONE } (\lambda x. \text{ THINK (WANT (TO } (\lambda z. \text{ EAT } y z)) \text{ BILL) } x))
```