MPRI 2-27-1 Exam

Duration: 3 hours
 Paper documents are allowed. The numbers in front of questions are indicative of hardness or duration.

1 Two-level Syntax

Exercise 1 (Derivation trees). In a tree adjoining grammar $\mathcal{G}=\left\langle N, \Sigma, T_{\alpha}, T_{\beta}, S\right\rangle$, the trees in $L_{T}(\mathcal{G})$ are called derived trees. We are interested here in another tree structure, called a derivation tree, for which we propose a formalisation here. Let us assume for simplicity that all the foot nodes of auxiliary trees have the 'na' null adjunction annotation.

For an elementary tree $\gamma \in T_{\alpha} \uplus T_{\beta}$, we define its contents $c(\gamma)$ to be a finite sequence over the alphabet $Q \stackrel{\text { def }}{=}\left\{q_{A} \mid A \in N \uplus N \downarrow\right\}$. Formally, we enumerate for this the labels in Q of its nodes in position order; the nodes labelled by $\Sigma \cup N^{\mathrm{na}}$ are ignored.

Consider for instance the TAG \mathcal{G}_{1} with $N \stackrel{\text { def }}{=}\{\mathrm{S}, \mathrm{NP}, \mathrm{VP}\}, \Sigma \stackrel{\text { def }}{=}\{V B Z \diamond, N N P \diamond, N N S \diamond, R B \diamond\}$, $T_{\alpha} \stackrel{\text { def }}{=}\{$ eats, Bill, mushrooms $\}, T_{\beta} \stackrel{\text { def }}{=}\{$ possibly $\}$, and $S \stackrel{\text { def }}{=} \mathrm{S}$, where the elementary trees are shown below:

Then eats has contents $c($ eats $)=q_{\mathrm{S}}, q_{\mathrm{NP} \downarrow}, q_{\mathrm{VP}}, q_{\mathrm{NP} \downarrow}, c($ Bill $)=q_{\mathrm{NP}}, c($ mushrooms $)=q_{\mathrm{NP}}$, and $c($ possibly $)=q_{\mathrm{VP}}$.

We now define a finite ranked alphabet $\mathcal{F} \stackrel{\text { def }}{=} T_{\alpha} \uplus T_{\beta} \uplus\left\{\varepsilon^{(0)}\right\}$. For an elementary tree $\gamma \in T_{\alpha} \uplus T_{\beta}$, its rank is $r(\gamma) \stackrel{\text { def }}{=}|c(\gamma)|$ the length of its contents. For the symbol ε, its rank is $r(\varepsilon) \stackrel{\text { def }}{=} 0$. For a TAG $\mathcal{G}=\left\langle N, \Sigma, T_{\alpha}, T_{\beta}, S\right\rangle$, we construct a finite tree automaton $\mathcal{A}_{\mathcal{G}} \stackrel{\text { def }}{=}\left\langle Q, \mathcal{F}, \delta, q_{S \downarrow}\right\rangle$ where Q and \mathcal{F} are defined as above and

$$
\begin{aligned}
\delta & \stackrel{\text { def }}{=}\left\{\left(q_{A \downarrow}, \alpha^{(r(\alpha))}, c(\alpha)\right) \mid A \downarrow \in N \downarrow, \alpha \in T_{\alpha}, \operatorname{rl}(\alpha)=A\right\} \\
& \cup\left\{\left(q_{A}, \beta^{(r(\beta))}, c(\beta)\right) \mid A \in N, \beta \in T_{\beta}, \operatorname{rl}(\beta)=A\right\} \\
& \cup\left\{\left(q_{A}, \varepsilon^{(0)}\right) \mid A \in N\right\}
\end{aligned}
$$

where 'rl' returns the root label of the tree.
[1] 1. Give the finite automaton $\mathcal{A}_{\mathcal{G}_{1}}$ associated with the example TAG \mathcal{G}_{1}.

Solution:

$$
\begin{aligned}
Q=\{ & \left.q_{\mathrm{S} \downarrow}, q_{\mathrm{NP} \downarrow}, q_{\mathrm{S}}, q_{\mathrm{VP}}, q_{\mathrm{NP}}\right\}, \\
\mathcal{F}=\{ & \text { eats } \left.^{(4)}, \text { Bill }^{(1)}, \text { mushrooms }^{(1)}, \text { possibly }^{(1)}, \varepsilon^{(0)}\right\}, \\
\delta=\{ & \left(q_{\mathrm{S} \downarrow}, \text { eats }^{(4)}, q_{\mathrm{S}}, q_{\mathrm{NP} \downarrow}, q_{\mathrm{VP}}, q_{\mathrm{NP} \downarrow}\right) \\
& \left(q_{\mathrm{NP} \downarrow}, \text { Bill }^{(1)}, q_{\mathrm{NP}}\right) \\
& \left(q_{\mathrm{NP} \downarrow}, \text { mushrooms }^{(1)}, q_{\mathrm{NP}}\right) \\
& \left(q_{\mathrm{S}}, \varepsilon^{(0)}\right) \\
& \left(q_{\mathrm{VP}}, \text { possibly }^{(1)}, q_{\mathrm{VP}}\right), \\
& \left(q_{\mathrm{VP}}, \varepsilon^{(0)}\right) \\
& \left.\left(q_{\mathrm{NP}}, \varepsilon^{(0)}\right)\right\}
\end{aligned}
$$

[1] 2. Modify your automaton in order to also handle the trees real, fake, wants_to o_{0}, wants_to ${ }_{1} \in$ T_{β} shown below, where $T O \diamond, J J \diamond \in \Sigma$:

We call the resulting tree adjoining grammar \mathcal{G}_{2}.

Solution: Add someone ${ }^{(1)}$, real $^{(1)}$, fake ${ }^{(1)}$, and wants_to ${ }^{(3)}$ to \mathcal{F} and the rules

$$
\begin{aligned}
& \left(q_{\mathrm{NP}}, \text { real }^{(1)}, q_{\mathrm{NP}}\right) \\
& \left(q_{\mathrm{NP}}, \text { fake }^{(1)}, q_{\mathrm{NP}}\right) \\
& \left(q_{\mathrm{VP}}, \text { wants_}+o_{0}^{(1)}, q_{\mathrm{VP}}\right) \\
& \left(q_{\mathrm{VP}}, \text { wants_to }_{1}^{(2)}, q_{\mathrm{VP}}, q_{\mathrm{NP} \downarrow}\right)
\end{aligned}
$$

to δ.
[1] 3. The intention that our finite automaton generates the derivation language $L_{D}(\mathcal{G}) \stackrel{\text { def }}{=}$ $L\left(\mathcal{A}_{\mathcal{G}}\right)$ of \mathcal{G}. Can you figure out what should be the derivation tree of 'Bill possibly wants to eat mushrooms'?

Solution:

[2] 4. Give a PDL node formula φ_{2} such that $L\left(\mathcal{A}_{\mathcal{G}_{2}}\right)=\left\{t \in T(\mathcal{F}) \mid t\right.$, root $\left.\models \varphi_{2}\right\}$.

Solution:

$$
\begin{aligned}
& \varphi_{1} \stackrel{\text { def }}{=} \varphi_{S \downarrow} \wedge\left[\downarrow^{*}\right]\left(\quad \text { eats } \Longrightarrow\left\langle\downarrow ; \text { first? } ; \varphi_{\mathrm{S}} ? ; \rightarrow ; \varphi_{\mathrm{NP} \downarrow} ? ; \rightarrow ; \varphi_{\mathrm{VP}} ? ; \rightarrow ; \varphi_{\mathrm{NP} \downarrow} ?\right\rangle\right. \text { last } \\
& \text { wants_to }_{0} \Longrightarrow\left\langle\downarrow ; \text { first?; } \varphi_{\mathrm{VP}} ?\right\rangle \text { last } \\
& \text { wants_to }_{1} \Longrightarrow\left\langle\downarrow ; \text { first? } ; \varphi_{\mathrm{VP}} ? ; \rightarrow ; \varphi_{\mathrm{NP} \downarrow} ?\right\rangle \text { last } \\
& \text { Bill } \Longrightarrow\left\langle\downarrow ; \text { first?; } \varphi_{\mathrm{NP}} ?\right\rangle \text { last } \\
& \text { real } \Longrightarrow\left\langle\downarrow ; \text { first?; } \varphi_{\mathrm{NP}} ?\right\rangle \text { last } \\
& \text { fake } \Longrightarrow\left\langle\downarrow ; \text { first?; } \varphi_{\mathrm{NP}} ?\right\rangle \text { last } \\
& \text { mushrooms } \Longrightarrow\left\langle\downarrow ; \text { first?; } \varphi_{\mathrm{NP}} ?\right\rangle \text { last } \\
& \text { possibly } \Longrightarrow\left\langle\downarrow ; \text { first?; } \varphi_{\mathrm{VP}} ?\right\rangle \text { last } \\
& \varepsilon \Longrightarrow \text { leaf) }
\end{aligned}
$$

where

$$
\begin{array}{rlrl}
\varphi_{\mathrm{S} \downarrow} \downarrow & \stackrel{\text { def }}{=} \text { eats } & \varphi_{\mathrm{NP} \downarrow} \stackrel{\text { def }}{=} \text { Bill } \vee \text { mushrooms } \\
\varphi_{\mathrm{S}} \stackrel{\text { def }}{=} \varepsilon & \varphi_{\mathrm{VP}} \stackrel{\text { def }}{=} \text { possibly } \vee \text { wants_to }_{0} \vee \text { wants_to }_{1} \vee \varepsilon \quad \varphi_{\mathrm{NP}} \stackrel{\text { def }}{=} \text { real } \vee \text { fake } \vee \varepsilon
\end{array}
$$

1.1 Macro Tree Transducers

Let \mathcal{X} be a countable set of variables and \mathcal{Y} a countable set of parameters; we assume \mathcal{X} and \mathcal{Y} to be disjoint. For Q a ranked alphabet with arities greatser than zero, we abuse notations and write $Q(\mathcal{X})$ for the alphabet of pairs $(q, x) \in Q \times \mathcal{X}$ with $\operatorname{arity}(q, x) \stackrel{\text { def }}{=} \operatorname{arity}(q)-1$. This is just for convenience, and $(q, x)\left(t_{1}, \ldots, t_{n}\right)$ is really the term $q\left(x, t_{1}, \ldots, t_{n}\right)$.

Syntax. A macro tree transducer (NMTT) is a tuple $\mathcal{M}=\left(Q, \mathcal{F}, \mathcal{F}^{\prime}, \Delta, I\right)$ where Q is a finite set of states, all of arity $\geq 1, \mathcal{F}$ and \mathcal{F}^{\prime} are finite ranked alphabets, $I \subseteq Q_{1}$ is a set of root states of arity one, and Δ is a finite set of term rewriting rules of the form $q\left(f\left(x_{1}, \ldots, x_{n}\right), y_{1}, \ldots, y_{p}\right) \rightarrow e$ where $q \in Q_{1+p}$ for some $p \geq 0, f \in \mathcal{F}_{n}$ for some $n \in \mathbb{N}$,
and $e \in T\left(\mathcal{F}^{\prime} \cup Q\left(\mathcal{X}_{n}\right), \mathcal{Y}_{p}\right)$. Note that this imposes that any occurrence in e of a variable $x \in \mathcal{X}$ must be as the first argument of a state $q \in Q$.

Inside-Out Semantics. Given a NMTT, the inside-out rewriting relation over trees in $T\left(\mathcal{F} \cup \mathcal{F}^{\prime} \cup Q\right)$ is defined by: $t \xrightarrow{\mathrm{IO}} t^{\prime}$ if there exist a rule $q\left(f\left(x_{1}, \ldots, x_{n}\right), y_{1}, \ldots, y_{p}\right) \rightarrow e$ in Δ, a context $C \in C\left(\mathcal{F} \cup \mathcal{F}^{\prime} \cup Q\right)$, and two substitutions $\sigma: \mathcal{X} \rightarrow T(\mathcal{F})$ and $\rho: \mathcal{Y} \rightarrow T\left(\mathcal{F}^{\prime}\right)$ such that $t=C\left[q\left(f\left(x_{1}, \ldots, x_{n}\right), y_{1}, \ldots, y_{p}\right) \sigma \rho\right]$ and $t^{\prime}=C[e \sigma \rho]$. In other words, in inside-out rewriting, when applying a rewriting rule $q\left(f\left(x_{1}, \ldots, x_{n}\right), y_{1}, \ldots, y_{p}\right) \rightarrow e$, the parameters y_{1}, \ldots, y_{p} must be mapped to trees in $T\left(\mathcal{F}^{\prime}\right)$, with no remaining states from Q.

Similarily to context-free tree grammars, the inside-out transduction $\llbracket \mathcal{M} \rrbracket_{\text {IO }}$ realised by \mathcal{M} is defined through inside-out rewriting semantics:

$$
\llbracket \mathcal{M} \rrbracket_{\mathrm{IO}} \stackrel{\text { def }}{=}\left\{\left(t, t^{\prime}\right) \in T(\mathcal{F}) \times T\left(\mathcal{F}^{\prime}\right) \mid \exists q \in I . q(t) \xrightarrow{\mathrm{IO}}^{*} t^{\prime}\right\} .
$$

Example 1. Let $\mathcal{F} \stackrel{\text { def }}{=}\left\{a^{(1)}, \$^{(0)}\right\}$ and $\mathcal{F}^{\prime} \stackrel{\text { def }}{=}\left\{f^{(3)}, a^{(1)}, b^{(1)}, \$^{(0)}\right\}$. Consider the NMTT $\mathcal{M}=\left(\left\{q^{(1)}, q^{\prime(3)}\right\}, \mathcal{F}, \mathcal{F}^{\prime}, \Delta,\{q\}\right)$ with Δ the set of rules

$$
\begin{aligned}
q\left(a\left(x_{1}\right)\right) & \rightarrow q^{\prime}\left(x_{1}, \$, \$\right) & q^{\prime}\left(\$, y_{1}, y_{2}\right) & \rightarrow f\left(y_{1}, y_{1}, y_{2}\right) \\
q^{\prime}\left(a\left(x_{1}\right), y_{1}, y_{2}\right) & \rightarrow q^{\prime}\left(x_{1}, a\left(y_{1}\right), a\left(y_{2}\right)\right) & q^{\prime}\left(a\left(x_{1}\right), y_{1}, y_{2}\right) & \rightarrow q^{\prime}\left(x_{1}, a\left(y_{1}\right), b\left(y_{2}\right)\right) \\
q^{\prime}\left(a\left(x_{1}\right), y_{1}, y_{2}\right) & \rightarrow q^{\prime}\left(x_{1}, b\left(y_{1}\right), a\left(y_{2}\right)\right) & q^{\prime}\left(a\left(x_{1}\right), y_{1}, y_{2}\right) & \rightarrow q^{\prime}\left(x_{1}, b\left(y_{1}\right), b\left(y_{2}\right)\right)
\end{aligned}
$$

Then we have for instance the following derivation:

$$
\begin{aligned}
q(a(a(a(\$)))) & \xrightarrow{\mathrm{IO}} q^{\prime}(a(a(\$)), \$, \$) \\
& \xrightarrow{\mathrm{IO}} q^{\prime}(a(\$), b(\$), b(\$)) \\
& \xrightarrow{\mathrm{IO}} q^{\prime}(\$, a(b(\$)), b(b(\$))) \\
& \xrightarrow{\mathrm{IO}} f(a(b(\$)), a(b(\$)), b(b(\$)))
\end{aligned}
$$

showing that $(a(a(a(\$))), f(a(b(\$)), a(b(\$)), b(b(\$)))) \in \llbracket \mathcal{M} \rrbracket$.

Exercise 2 (Monadic trees). An NMTT \mathcal{M} is called linear and non-deleting if, in every rule $q\left(f\left(x_{1}, \ldots, x_{n}\right), y_{1}, \ldots, y_{p}\right) \rightarrow e$ in Δ, the term e is linear in $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\left\{y_{1}, \ldots, y_{p}\right\}$, i.e. each variable and each parameter occurs exactly once in the term e.

Let $\mathcal{F}^{\prime} \stackrel{\text { def }}{=}\left\{a^{(1)}, b^{(1)}, \$^{(0)}\right\}$. Observe that trees in $T\left(\mathcal{F}^{\prime}\right)$ are in bijection with contexts in $C\left(\mathcal{F}^{\prime}\right)$ and words over $\{a, b\}^{*}$. For a context C from $C\left(\mathcal{F}^{\prime}\right)$, we write C^{R} for its mirror context, read from the leaf to the root. For instance, if $C=a(b(a(a(\square))))$, then $C^{R}=$ $a(a(b(a(\square))))$. Formally, let $n \in \mathbb{N}$ be such that dom $C=\left\{0^{m} \mid m \leq n\right\}$; then $C\left(0^{n}\right)=$ and $C\left(0^{m}\right) \in\{a, b\}$ for $m<n$. Then C^{R} is defined by $\operatorname{dom} C^{R} \stackrel{\text { def }}{=} \operatorname{dom} C, C^{R}\left(0^{n}\right) \stackrel{\text { def }}{=} \square$, and $C^{R}\left(0^{m}\right) \stackrel{\text { def }}{=} C^{R}\left(0^{n-m}\right)$ for all $m<n$.
[2] 1. Give a linear and non-deleting NMTT \mathcal{M} from \mathcal{F}^{\prime} to \mathcal{F}^{\prime} such that $\llbracket \mathcal{M} \rrbracket_{\mathrm{IO}}=\left\{\left(C[\$], C\left[C^{R}[\$]\right]\right) \mid\right.$ $\left.C \in C\left(\mathcal{F}^{\prime}\right)\right\}$. In terms of words over $\{a, b\}^{*}$, this transducer maps w to the palindrome $w w^{R}$. Is $\llbracket \mathcal{M} \rrbracket_{\mathrm{IO}}(T(\mathcal{F}))$ a recognisable tree language?

Solution: Let $\mathcal{M} \stackrel{\text { def }}{=}\left(Q, \mathcal{F}^{\prime}, \mathcal{F}^{\prime}, \Delta, I\right)$ where $Q \stackrel{\text { def }}{=}\left\{q_{i}^{(1)}, q^{(2)}\right\}, I \stackrel{\text { def }}{=}\left\{q_{i}\right\}$, and Δ is the set of rules

$$
\begin{array}{rlrl}
q_{i}(\$) & \rightarrow \$ & q_{i}\left(a\left(x_{1}\right)\right) & \rightarrow a\left(q\left(x_{1}, a(\$)\right)\right) \\
q\left(\$, y_{1}\right) & \rightarrow y_{1} & q\left(a\left(x_{1}\right), y_{1}\right) & \rightarrow a\left(q\left(x_{1}, a\left(y_{1}\right)\right)\right) \\
q\left(b\left(x_{1}\right), y_{1}\right) & \rightarrow b\left(q\left(x_{1}, b\left(x_{1}, b\left(y_{1}\right)\right)\right)\right) .
\end{array}
$$

We leave the proof of correctness to the reader.
This macro tree transducer is deterministic, and complete. Because a monadic tree language over \mathcal{F}^{\prime} is recognisable if and only if the corresponding word language over $\{a, b\}$ is recognisable, $\llbracket \mathcal{M} \rrbracket_{\mathrm{IO}}(T(\mathcal{F}))$ is not a recognisable tree language. In turn, this shows that recognisable tree languages are not closed under linear non-deleting macro transductions, not even the complete deterministic ones.

Exercise 3 (From derivation to derived trees). Consider again the tree adjoining grammar \mathcal{G}_{2} from Exercise 1.
[3] 1. Give a linear non-deleting NMTT \mathcal{M}_{2} that maps the derivation trees of \mathcal{G}_{2} to its derived trees. Formally, we want $\operatorname{dom}\left(\llbracket \mathcal{M}_{2} \rrbracket_{\mathrm{IO}}\right)=L_{D}\left(\mathcal{G}_{2}\right)$ and $\llbracket \mathcal{M}_{2} \rrbracket_{\mathrm{IO}}(T(\mathcal{F}))=L_{T}\left(\mathcal{G}_{2}\right)$.

Solution: We set $\mathcal{F}^{\prime} \stackrel{\text { def }}{=} N \uplus \Sigma, Q \stackrel{\text { def }}{=}\left\{q_{\mathrm{S} \downarrow}^{(1)}, q_{\mathrm{S}}^{(2)}, q_{\mathrm{NP} \downarrow}^{(1)}, q_{\mathrm{NP}}^{(2)}, q_{\mathrm{VP}}^{(2)}\right\}, I \stackrel{\text { def }}{=}\left\{q_{\mathrm{S}}^{(1)}\right\}$, and Δ :

$$
\begin{aligned}
& q_{\mathrm{S}}^{(2)}\left(\varepsilon, y_{1}\right) \rightarrow y_{1}
\end{aligned}
$$

$$
\begin{aligned}
& q_{\mathrm{NP}}^{(2)}\left(\varepsilon, y_{1}\right) \rightarrow y_{1}
\end{aligned}
$$

$$
\begin{aligned}
& q_{\mathrm{VP}}^{(2)}\left(\text { wants_to }_{0}\left(x_{1}\right), y_{1}\right) \rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& q_{\mathrm{VP}}^{(2)}\left(\text { wants_to }_{1}\left(x_{1}, x_{2}\right), y_{1}\right) \rightarrow \\
& V B Z \diamond \overbrace{\substack{q_{\mathrm{NP} \downarrow} \\
x_{2}}}^{\substack{x_{1}}} \\
& q_{\mathrm{VP}}^{(2)}\left(\varepsilon, y_{1}\right) \rightarrow y_{1}
\end{aligned}
$$

Exercise 4 (Context-free tree grammar). Let $\mathcal{M}=\left(Q, \mathcal{F}, \mathcal{F}^{\prime}, \Delta, I\right)$ be an NMTT and $\mathcal{A}=\left(Q^{\prime}, \mathcal{F}, \delta, I^{\prime}\right)$ be an NFTA.
[5] 1. Show that $L \stackrel{\text { def }}{=} \llbracket \mathcal{M} \rrbracket_{\mathrm{IO}}(L(\mathcal{A}))=\left\{t^{\prime} \in T\left(\mathcal{F}^{\prime}\right) \mid \exists t \in L(\mathcal{A}) \cdot\left(t, t^{\prime}\right) \in \llbracket \mathcal{M} \rrbracket_{\mathrm{IO}}\right\}$ is an insideout context-free tree language, i.e., show how to construct a CFTG $\mathcal{G}=\left(N, \mathcal{F}^{\prime}, S, R\right)$ such that $L_{\mathrm{IO}}(\mathcal{G})=L$.

Solution: Let

$$
N \stackrel{\text { def }}{=}\left(Q \times Q^{\prime}\right) \uplus\{S\}
$$

where each pair $\left(q^{(1+p)}, q^{\prime}\right)$ from $Q \times Q^{\prime}$ has arity p, and

$$
\begin{aligned}
& R \stackrel{\text { def }}{=}\left\{S \rightarrow\left(q, q^{\prime}\right)^{(0)} \mid q \in I, q^{\prime} \in I^{\prime}\right\} \\
& \cup\left\{\left(q, q^{\prime}\right)^{(p)}\left(y_{1}, \ldots, y_{p}\right) \rightarrow e\left[q_{i}^{\prime} / x_{i}\right]_{i} \quad \mid \exists n \cdot \exists f \in \mathcal{F}_{n} \cdot q^{(1+p)}\left(f\left(x_{1}, \ldots, x_{n}\right), y_{1}, \ldots, y_{n}\right) \rightarrow e \in \Delta\right. \\
& \left.\quad \text { and }\left(q^{\prime}, f, q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right) \in \delta\right\}
\end{aligned}
$$

where we abuse notation as indicated at the beginning of the section. For a tree $e \in T\left(N \cup \mathcal{F}^{\prime}\right)$, we let $N(e)=\left\{\left(q_{1}, q_{1}^{\prime}\right), \ldots,\left(q_{n}, q_{n}^{\prime}\right)\right\}$ be the set of symbols from N occurring inside e.
Let us show that, for all $k \in \mathbb{N}$, for all $e \in T\left(N \cup \mathcal{F}^{\prime}\right)$ with $N(e)=\left\{\left(q_{1}, q_{1}^{\prime}\right), \ldots,\left(q_{n}, q_{n}^{\prime}\right)\right\}$ and for all $t^{\prime} \in T\left(\mathcal{F}^{\prime}\right), e \stackrel{\mathrm{IO}_{\mathcal{G}}}{\Rightarrow} t^{k} t^{\prime}$ if and only if $\exists t_{1}, \ldots, t_{n} \in T(\mathcal{F})$ such that $e\left[t_{i} / q_{i}^{\prime}\right]_{1 \leq i \leq n} \stackrel{\text { IO }}{\Rightarrow}{ }_{\mathcal{M}}^{k}$ t^{\prime} and for all $1 \leq i \leq n, t_{i} \stackrel{\delta_{B}}{\Rightarrow}{ }_{\mathcal{A}} q_{i}^{\prime}$.
We prove the statement by induction, first over k the number of rewriting steps in \mathcal{G} and \mathcal{M}, and second over the term e. We only prove the 'if' direction, as the 'only if' one is similar.

If Assume $e \stackrel{\mathrm{IO}_{\mathcal{G}}}{\Rightarrow} t^{\prime}$.

$$
\begin{aligned}
& \text { If } \boldsymbol{e}=\boldsymbol{f}\left(e_{1}, \ldots, \boldsymbol{e}_{m}\right) \text { for some } m \in \mathbb{N} \text { and } f \in \mathcal{F}_{m}^{\prime} \text {, then this rewrite can be } \\
& \text { decomposed as }
\end{aligned}
$$

$$
e=f\left(e_{1}, \ldots, e_{m}\right) \stackrel{\text { IO }}{\mathcal{G}}_{k}^{\mathcal{G}} f\left(t_{1}^{\prime}, \ldots, t_{m}^{\prime}\right)=t^{\prime}
$$

where for all $1 \leq j \leq m, t_{j}^{\prime} \in T\left(\mathcal{F}^{\prime}\right)$ is such that

$$
e_{j} \stackrel{\mathrm{IO}_{\mathcal{G}}^{k_{j}}}{\Rightarrow} t_{j}^{\prime}
$$

and

$$
k=\sum_{1 \leq j \leq m} k_{j}
$$

Let $N\left(e_{j}\right)=\left\{\left(q_{j, 1}, q_{j, 1}^{\prime}\right), \ldots,\left(q_{j, n_{j}}, q_{j, n_{j}}^{\prime}\right)\right\}$; then $N(e)=\bigcup_{1 \leq j \leq m} N\left(e_{j}\right)$.
For each $1 \leq j \leq m$, by induction hypothesis on the subterms e_{j} since $k_{j} \leq k$, there exist $t_{j, 1}, \ldots, t_{j, n_{j}} \in T(\mathcal{F})$ such that

$$
e_{j}\left[t_{j, i} / q_{j, i}^{\prime}\right]_{1 \leq i \leq n_{j}} \stackrel{\text { IO }^{k_{j}}}{\mathcal{M}} t_{j}^{\prime}
$$

and

$$
t_{j, i}{\stackrel{\delta_{B}}{\Rightarrow}}_{\mathcal{A}}^{*} q_{j, i}^{\prime}
$$

for all $1 \leq i \leq n_{j}$. Thus

$$
f\left(e_{1}, \ldots, e_{m}\right)\left[t_{j, i} / q_{j, i}^{\prime}\right]_{1 \leq j \leq m, 1 \leq i \leq n_{j}} \stackrel{\text { IO }}{\mathcal{M}}_{k} f\left(t_{1}^{\prime}, \ldots, t_{m}^{\prime}\right)=t^{\prime}
$$

as desired.
If $\boldsymbol{e}=\left(\boldsymbol{q}, \boldsymbol{q}^{\prime}\right)^{(p)}\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{\boldsymbol{p}}\right)$ for some $p \in \mathbb{N}$ and $\left(q, q^{\prime}\right)^{(p)} \in Q \times Q^{\prime}$, then this rewrite can be decomposed as

$$
\begin{aligned}
e=\left(q, q^{\prime}\right)^{(p)}\left(e_{1}, \ldots, e_{p}\right) & \stackrel{\mathrm{IO}}{\mathcal{G}}_{k_{\mathcal{G}}^{\prime}}\left(q, q^{\prime}\right)^{(p)}\left(t_{1}^{\prime}, \ldots, t_{p}^{\prime}\right) \\
& \stackrel{\mathrm{IO}_{\mathcal{G}}}{\Rightarrow} e^{\prime}\left[q_{i}^{\prime} / x_{i}\right]_{1 \leq i \leq m}\left[t_{j}^{\prime} / y_{j}\right]_{1 \leq j \leq p} \\
& \stackrel{{ }^{\mathrm{IO}}}{k_{\mathcal{G}}^{\prime \prime}}
\end{aligned} t^{\prime}
$$

where for all $1 \leq j \leq m, t_{j}^{\prime} \in T\left(\mathcal{F}^{\prime}\right)$ is such that

$$
e_{j} \stackrel{\mathrm{IO}_{\mathcal{G}}^{k_{j}}}{k_{j}} t_{j}^{\prime}
$$

and $k^{\prime}=\sum_{1 \leq j \leq m} k_{j}$ and $k=1+k^{\prime}+k^{\prime \prime} ;$ also $N(e)=\left\{\left(q, q^{\prime}\right)\right\} \cup \bigcup_{1 \leq j \leq p} N\left(e_{j}\right)$ where $N\left(e_{j}\right)=\left\{\left(q_{j, 1}, q_{j, 1}^{\prime}\right), \ldots,\left(q_{j, n_{j}}, q_{j, n_{j}}^{\prime}\right)\right\}$. Such a rule application relies on the existence of $m \in \mathbb{N}$ and $f \in \mathcal{F}_{m}$ such that there are rules $q^{(1+p)}\left(f\left(x_{1}, \ldots, x_{m}\right), y_{1}, \ldots, y_{p}\right) \rightarrow e^{\prime} \in \Delta$ and $\left(q^{\prime}, f, q_{1}^{\prime}, \ldots, q_{m}^{\prime}\right) \in \delta$.

By induction hypothesis on $k_{j}<k$ for each $1 \leq j \leq p$, there exist $t_{j, 1}, \ldots, t_{j, n_{j}} \in T(\mathcal{F})$ such that

$$
e_{j}\left[t_{j, i} / q_{j, i}^{\prime}\right]_{1 \leq i \leq n_{j}} \stackrel{\mathrm{IO}_{\mathcal{M}} k_{j}}{\Rightarrow} t_{j}^{\prime}
$$

and

$$
t_{j, i}{\stackrel{\delta_{B}}{\Rightarrow}}_{\mathcal{A}}^{*} q_{j, i}^{\prime}
$$

for all $1 \leq i \leq n_{j}$.

Furthermore, $N\left(e^{\prime}\left[t_{j}^{\prime} / y_{j}\right]_{1 \leq j \leq p}\left[q_{i}^{\prime} / x_{i}\right]_{1 \leq i \leq m}\right)=\left\{\left(q_{1}, q_{1}^{\prime}\right), \ldots,\left(q_{m}, q_{m}^{\prime}\right)\right\}$ and by induction hypothesis over $k^{\prime \prime}<k$, there exist $t_{1}, \ldots, t_{m} \in T(\mathcal{F})$ such that

$$
e^{\prime}\left[t_{j}^{\prime} / y_{j}\right]_{1 \leq j \leq p}\left[t_{i} / x_{i}\right]_{1 \leq i \leq m} \stackrel{\mathrm{IO}}{\mathcal{M}}_{k_{\mathcal{M}}^{\prime \prime}}^{t^{\prime}}
$$

and

$$
t_{i}{\stackrel{\delta_{B}}{\Rightarrow}}_{\mathcal{A}}^{*} q_{i}^{\prime}
$$

for all $1 \leq i \leq m$. Note that, because $\left(q^{\prime}, f, q_{1}^{\prime}, \ldots, q_{m}^{\prime}\right) \in \delta$, the latter imply

$$
f\left(t_{1}, \ldots, t_{m}\right) \stackrel{\delta_{B}}{\Rightarrow}{ }_{\mathcal{A}}^{*} f\left(q_{1}^{\prime}, \ldots, q_{m}^{\prime}\right){\stackrel{\delta_{B}}{\Rightarrow}}_{\mathcal{A}} q^{\prime}
$$

Thus, in \mathcal{M}, we have the rewrite

$$
\begin{aligned}
& e\left[f\left(t_{1}, \ldots, t_{m}\right) / q\right]\left[t_{j, i}^{\prime} / q_{j, i}^{\prime}\right]_{1 \leq j \leq m, 1 \leq i \leq n_{i}} \\
& =q^{(1+p)}\left(f\left(t_{1}, \ldots, t_{m}\right), e_{1}\left[t_{1, i}^{\prime} / q_{1, i}^{\prime}\right]_{1 \leq i \leq n_{1}}, \ldots, e_{m}\left[t_{m, i}^{\prime} / q_{m, i}^{\prime}\right]_{1 \leq i \leq n_{m}}\right) \\
& =q^{(1+p)}\left(f\left(x_{1}, \ldots, x_{m}\right), e_{1}\left[t_{1, i}^{\prime} / q_{1, i}^{\prime}\right]_{1 \leq i \leq n_{1}}, \ldots, e_{m}\left[t_{m, i}^{\prime} / q_{m, i}^{\prime}\right]_{1 \leq i \leq n_{m}}\right)\left[t_{1} / x_{1}, \ldots, t_{m} / x_{m}\right] \\
& \stackrel{\text { IO }}{ }_{{ }^{k^{\prime}}}^{\mathcal{M}} q^{(1+p)}\left(f\left(x_{1}, \ldots, x_{m}\right), t_{1}^{\prime}, \ldots, t_{p}^{\prime}\right)\left[t_{1} / x_{1}, \ldots, t_{m} / x_{m}\right] \\
& \stackrel{\text { IO }}{\mathcal{M}}_{\Longrightarrow}^{\mathcal{M}} e^{\prime}\left[t_{i} / x_{i}\right]_{1 \leq i \leq m}\left[t_{j}^{\prime} / y_{j}\right]_{1 \leq j \leq p} \\
& \stackrel{\text { IO }}{\mathcal{M}}_{=}^{k^{\prime \prime}} t^{\prime}
\end{aligned}
$$

as desired.

2 Scope Ambiguities and Propositional Attitudes

Exercise 5. One considers the two following signatures:

```
(\mp@subsup{\Sigma}{\textrm{ABS}}{}) SUZY :NP
    BILL : NP
        MUSHROOM : N
        A :N->(NP->S)->S
        \mp@subsup{\textrm{A}}{inf}{}:N->(NP->\mp@subsup{S}{inf}{})->\mp@subsup{S}{inf}{}
        EAT :NP}->NP->\mp@subsup{S}{inf}{
            TO :(NP }->\mp@subsup{S}{\mathrm{ inf }}{})->V
                WANT: VP}->NP->
```

$$
\begin{array}{cr}
\left(\Sigma_{\mathrm{S}-\mathrm{FORM}}\right) & \text { Suzy }: \text { string } \\
\text { Bill }: \text { string } \\
& \text { mushroom }: \text { string } \\
\boldsymbol{a}: \text { string } \\
\text { eat }: \text { string } \\
\text { to }: \text { string } \\
& \text { wants }: \text { string }
\end{array}
$$

where, as usual, string is defined to be $o \rightarrow o$ for some atomic type o.
One then defines a morphism $\left(\mathcal{L}_{\mathrm{SYNT}}: \Sigma_{\mathrm{ABS}} \rightarrow \Sigma_{\mathrm{S} \text {-FORM }}\right)$ as follows:

$$
\begin{aligned}
\left(\mathcal{L}_{\text {SYNT }}\right) & \\
N P & :=\text { string } \\
S & :=\text { string } \\
S_{\text {inf }} & :=\text { string } \\
V P & :=\text { string } \\
\text { SUZY } & :=\text { Suzy } \\
\text { BILL } & :=\text { Bill } \\
\text { MUSHROOM } & :=\text { mushroom } \\
\mathrm{A} & :=\lambda x y . y(\boldsymbol{a}+x) \\
\mathrm{A}_{\text {inf }} & :=\lambda x y . y(\boldsymbol{a}+x) \\
\text { EAT } & :=\lambda x y \cdot y+\text { eat }+x \\
\text { TO } & :=\lambda x . \boldsymbol{t o}+(x \epsilon) \\
\text { WANT } & :=\lambda x y . y+\boldsymbol{w a n t s}+x
\end{aligned}
$$

where, as usual, the concatenation operator $(+)$ is defined as functional composition, and the empty word (ϵ) as the identity function.
[1] 1. Give two different terms, say t_{0} and t_{1}, such that:

$$
\mathcal{L}_{\mathrm{SYNT}}\left(t_{0}\right)=\mathcal{L}_{\mathrm{SYNT}}\left(t_{1}\right)=\text { Bill }+ \text { wants }+ \text { to }+ \text { eat }+\boldsymbol{a}+\text { mushroom }
$$

Solution:

$$
\begin{aligned}
t_{0} & =\text { WANT }\left(\operatorname{TO}\left(\lambda x \cdot \text { A }_{\text {inf }} \operatorname{MUSHROOM}(\lambda y \cdot \operatorname{EAT} y x)\right)\right) \text { BILL } \\
t_{1} & =\operatorname{A~MUSHROOM}(\lambda y \cdot \text { WANT }(\operatorname{TO}(\lambda x \cdot \text { EAT } y x)) \text { BILL })
\end{aligned}
$$

Exercise 6. One considers a third signature :

```
( }\mp@subsup{\Sigma}{\textrm{L}-\textrm{FORM}}{})\mathrm{ suzy : ind
                        bill : ind
mushroom : ind }->\mathrm{ prop
                        eat: ind }->\mathrm{ ind }->\mathrm{ prop
                    want : ind }->\mathrm{ prop }->\mathrm{ prop
```

One then defines a morphism $\left(\mathcal{L}_{\text {SEM }}: \Sigma_{\mathrm{ABS}} \rightarrow \Sigma_{\mathrm{L}-\mathrm{FORM}}\right)$ as follows:

$$
\begin{aligned}
&\left(\mathcal{L}_{\text {SEM }}\right) \\
& N P:=\text { ind } \\
& N:=\text { ind } \rightarrow \text { prop } \\
& S:=\text { prop } \\
& S_{\text {inf }}:=\text { prop } \\
& V P:=\text { ind } \rightarrow \text { prop } \\
& \text { SUZY }:=\text { suzy } \\
& \text { BILL }:=\text { bill } \\
& \text { MUSHROOM }:=\text { mushroom } \\
& \mathrm{A}:=\lambda x y \cdot \exists z \cdot(x z) \wedge(y z) \\
& \mathrm{A}_{\text {inf }}:=\lambda x y \cdot \exists z \cdot(x z) \wedge(y z) \\
& \text { EAT }:=\lambda x y \cdot \text { eat } y x \\
& \text { TO }:=\lambda x \cdot x \\
& \text { WANT }:=\lambda x y \cdot \text { want } y(x y)
\end{aligned}
$$

[1] 1. Compute the different semantic interpretations of the sentence Bill wants to eat a mushroom, i.e., compute $\mathcal{L}_{\mathrm{SEM}}\left(t_{0}\right)$ and $\mathcal{L}_{\mathrm{SEM}}\left(t_{1}\right)$.

Solution:

$$
\begin{aligned}
& \mathcal{L}_{\text {SEM }}\left(t_{0}\right)=\text { want bill }(\exists z .(\text { mushroom } z) \wedge(\text { eat bill } z)) \\
& \mathcal{L}_{\text {SEM }}\left(t_{1}\right)=\exists z .(\text { mushroom } z) \wedge(\text { want bill }(\text { eat bill } z))
\end{aligned}
$$

Exercise 7. One extends Σ_{ABS} and $\mathcal{L}_{\mathrm{SYNT}}$, respectively, as follows:

$$
\begin{array}{ll}
\left(\Sigma_{\mathrm{ABS}}\right) & \text { WANT2 }: N P \rightarrow V P \rightarrow N P \rightarrow S \\
\left(\mathcal{L}_{\mathrm{SYNT}}\right) & \text { WANT2 }:=\lambda x y z . z+\text { wants }+x+y
\end{array}
$$

[1] 1. Extend $\mathcal{L}_{\text {SEM }}$ accordingly in order to allow for the analysis of a sentence such as Bill wants Suzy to eat a mushroom.

Solution:

$$
\left(\mathcal{L}_{\mathrm{SEM}}\right) \quad \text { WANT } 2:=\lambda x y z . \text { want } z(y x)
$$

Exercise 8. One extends Σ_{ABS} as follows:

$$
\begin{array}{r}
\left(\Sigma_{\mathrm{ABS}}\right) \quad \text { EVERYONE }:(N P \rightarrow S) \rightarrow S \\
\text { THINK }: S \rightarrow N P \rightarrow S
\end{array}
$$

in order to allow for the analysis of the following sentence:
(1) everyone thinks Bill wants to eat a mushroom.
[3] 1. Extend $\Sigma_{\text {S-FORM }}, \mathcal{L}_{\text {SYNT }}, \Sigma_{\mathrm{L}-\mathrm{FORM}}$, and $\mathcal{L}_{\text {SEM }}$ accordingly.

Solution:

$$
\begin{array}{ll}
\left(\Sigma_{\mathrm{S}-\mathrm{FORM}}\right) & \begin{array}{l}
\text { everyone }: \text { string } \\
\\
\\
\text { thinks }: \text { string } \\
\left(\mathcal{L}_{\text {SYNT }}\right)
\end{array} \\
& \text { EVERYONE }:=\lambda x . x \text { everyone } \\
& \text { THINK }:=\lambda x y . y+\text { thinks }+x \\
\left(\Sigma_{\text {L-FORM }}\right) & \text { human }: \text { ind } \rightarrow \text { prop } \\
& \text { think }: \text { ind } \rightarrow \text { prop } \rightarrow \text { prop } \\
\left(\mathcal{L}_{\text {SEM }}\right) & \text { EVERYONE }:=\lambda x . \forall y .(\text { human } y) \rightarrow(x y) \\
& \text { THINK }:=\lambda x y . \operatorname{think} y x
\end{array}
$$

[2] 2. Give the several λ-terms that correspond to the different parsings of sentence (1).

Solution: There are four such terms:
EVERYONE $\left(\lambda x\right.$. THINK (WANT (TO $\left(\lambda z\right.$. $_{\text {inf }} \operatorname{MUSHROOM}(\lambda y$. EAT $\left.\left.y z)\right)\right)$ BiLL $\left.) x\right)$ EVERYONE $(\lambda x$. THINK (A MUSHROOM $(\lambda y$. WANT (TO $(\lambda z$. EAT $y z))$ BILL $)) x)$ $\operatorname{EVERYONE}(\lambda x$. A MUSHROOM $(\lambda y$. THINK (WANT (TO $(\lambda z$. EAT $y z))$ BILL) $x))$ A MUSHROOM $(\lambda y$. EVERYONE $(\lambda x$. THINK (WANT (TO $(\lambda z$. EAT $y z))$ BILL) $x))$

