
MPRI course 2-27-1, year 2018–2019

Formal Aspects of Linguistic Modelling

Sylvain Schmitz
LSV, ENS Paris-Saclay & CNRS & Inria, Université Paris-Saclay
November 18, 2018 (r8905M)

These notes cover the first part of an introductory course on computational lin-
guistics, also known as MPRI 2-27-1: Logical and computational structures for
linguistic modelling. The course is subdivided into two parts: the first, which is
the topic of these notes, covers grammars, automata, and logics for syntax mod-
elling, while the second part focuses on logical approaches to semantics. Among
the prerequisites to the course are

• classical notions of formal language theory, in particular regular and context-
free languages, and more generally the Chomsky hierarchy,

• a basic command of English and French morphology and syntax, in order to
understand the examples;

• some acquaintance with logic and proof theory is also advisable.

These notes are based on numerous articles—and I have tried my best to pro-
vide stable hyperlinks to online versions in the references—, and on the excellent
material of Benoît Crabbé, Éric Villemonte de la Clergerie, and Philippe de Groote
who taught this course with me.

Several courses at MPRI provide an in-depth treatment of subjects we can only
hint at. The interested student should consider attending

MPRI 1-18: Tree automata and applications: tree languages and term rewriting
systems will be our basic tools in many models;

MPRI 2-16: Finite automata modelisation: only the basic theory of weighted au-
tomata is used in our course;

MPRI 2-26-1: Web data management: you might be surprised at how many con-
cepts are similar, from automata and logics on trees for syntax to description
logics for semantics.
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Chapter 1

Introduction

If linguistics is about the description and understanding of human language, a
computational linguist thrives in developing computational models of language.
By computational, we mean models that are not only mathematically elegant, but
also amenable to an algorithmic treatment.

Such models are certainly useful for practical applications in natural language
processing, which range from text mining, question answering, and text summari-
sation, to automated translation, and these technologies have a considerable im-
pact in our daily lives.

The case for computational linguistics is however not limited to its technolog-
ical applications. Consider that human brains have limited capacity for hold-
ing language information (think for instance of dictionaries and common turns
of phrase), and that being able to learn, understand, and produce a potentially
unbounded number of utterances, we need to rely on some form or other of
computation—quite an efficient one at that if you think about it.

A computational model, rather than a “mere” mathematical one, also allows for
experimentation, and thus validation or refinement of the model. For example, a
theoretical linguist might test her predictions about which sentences are grammat-
ical by parsing large corpora of presumably correct text—does the model under-
generate?—, or about the syntax rules of a particular phenomenon by generating
random sentences and checking against over-generation. As another example, a
psycholinguist might try to match some measured degree of linguistic difficulty of
sentences with various aspects of the model: frequency of the lexemes and of the
syntactic rules, type and size of the involved rules, degree of ambiguity, etc.
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Figure 1.1: The levels of linguistic description.
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1.1 Levels of Description

Language models are classically divided into several layers, first some specific to
speech processing: phonetics and phonology, then more generally applicable:
morphology, syntax, semantics, and pragmatics. This forms a pipeline as de-
picted in Figure 1.1, that inputs utterances in oral or written form and outputs
meaning representations in context.

1.1.1 From Text to Meaning

Let us give a quick overview of the phases from text to meaning.

Morphology. The purpose of morphology is to describe the mechanisms that
underlie the formation of words. Intuitively, one can recognise the existence of
a relation between the words sings and singing, and further find that the same
relation holds between dances and dancing. Beyond the simple enumeration of
words, we usually want to retrieve some linguistic information that will be helpful
for further processing: are we dealing with a noun or a verb (its category)? Is it
plural or singular (its number)? What is its part-of-speech (POS) tag? Modelling
morphology often involves (probabilistic) word automata and transducers.

This process is quite prone to ambiguity: in the sentence

Gator attacks puzzle experts

is attacks a verb in third person singular (VBZ) or a plural noun (NNS)? Is puzzle
a verb (VB) or a noun (NN)? Should crossword experts avoid Florida?

Syntax deals with the structure of sentences: how do we combine words into
phrases and sentences?

Constituents and Dependencies. Two main types of analysis are used by syntac-
ticians: one as constituents, where the sentence is split into phrases, themselves
further split until we reach the word level, as in

[[She] [watches [a bird]]]

Such a constituent analysis can also be represented as a tree, as on the left of
Figure 1.2. Here we introduced part-of-speech tags and syntactic categories to
label the internal nodes: for instance, VBZ stands for a verb conjugated in present
third person, NP stands for a noun phrase, and VP for a verb phrase.

S

NP

PRP

She

VP

VBZ

watches

NP

DT

a

NN

bird She watches a bird

PRP
VBZ

DT
NN

subj obj

det

Figure 1.2: Constituent (on the left) and dependency (on the right) analyses.

An alternative analysis, illustrated on the right of Figure 1.2, rather exhibits
the dependencies between words in the sentence: its head is the verb watches,
with two dependents She and bird, which play the roles of subject and object
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respectively. In turn, bird governs its determiner a. Again, additional labels can
decorate the nodes and relations in dependency structures, as shown in Figure 1.2.

Ambiguity. The following sentence is a classical example of a syntactic ambi-
guity, illustrated by the two derivation trees of Figure 1.3:

She watches a man with a telescope.

This is called a PP attachment ambiguity: who exactly is using a telescope?
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DT

a

NN

telescope

Figure 1.3: An ambiguous sentence.

Semantics studies meaning. We often use logical languages to describe mean-
ing, like the following (guarded) first-order sentence for “Every man loves a woman”:

∀x.man(x) ⊃ ∃y.love(x, y) ∧woman(y)

or the description logic statement

Man v ∃love.Woman .

Ambiguity is of course present as in every aspect of language: for instance, scope
ambiguities, as in this alternate reading of “Every man loves a woman”

∃y.woman(y) ∧ ∀x.man(x) ⊃ love(x, y)

where there exists one particular woman loved by every man in the world.
More difficulties arise when we attempt to build meaning representations com-

positionally, based on syntactic structures, and when intensional phenomena must
be modelled. The solutions often mix higher-order logics with possible-worlds
semantics and modalities.

Pragmatics considers the ways in which meaning is affected by the context of a
sentence: it includes the study of discourse and of referential expressions.

As usual, the models have to account for massive ambiguity, as in this anaphora
resolution:

Mary asks Eve about her father

where her might refer to Mary or Eve; only the context of the sentence will allow
to disambiguate.
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1.1.2 Ambiguity at Every Turn

The above succinct presentation should convince the reader that ambiguity perme-
ates every layer of the linguistic enterprise. To better emphasise the importance of
ambiguity, let us look at experimental results in real-world syntax grammars:

• Martin et al. (1987) presents a typical sentence found in a corpus, which
when generalised to arbitrary lengths n, exhibits a number of parses related
to the Catalan numbers Cn ∼ 4n

n3/2
√
π

.

• In more recent experiments with treebank-induced grammars, Moore (2004)
reports an average number of 7.2 × 1027 different derivations for sentences
of 5.7 words on average.

The rationale behind these staggering levels of ambiguity is that any formal gram-
mar that accounts for a realistic part of natural language, must allow for so many
constructions, that it also yields an enormous number of different analyses: ro-
bustness of the model comes at a steep price in ambiguity.

The practical answer to this issue is to refine the models with weights, allow-
ing to attach a grammaticality estimation to each structure. Those weights are
typically probabilities inferred from frequencies found in large corpora. Stochas-
tic methods are now ubiquitous in natural language processing (Manning and
Schütze, 1999), and no purely symbolic model is able to compete with statisti-
cal models on practical benchmarks.

1.1.3 Romantics and Revolutionaries

There is a historical chasm in linguistic modelling between symbolic models and
statistical models. This is an important topic, given the success the latter have
enjoyed since the eighties (have a look at Pereira, 2000; Steedman, 2011).

Taking the case of syntactic modelling for instance, symbolic models since Chom-
sky’s seminal work attempt to model the competence of native language speakers
to form syntactically correct sentences, by opposition with their actual perfor-
mance, i.e. the set of sentences uttered in real life. Here, what a linguist ought to
model are the rules of grammar, allowing to analyse any sentence, and not only
those seen before—mirroring the speaker’s ability to create new sentences.

Nevertheless, statistical models are trained over annotated real life corpora,
hence might be taken to be models of performance, inadequate as models of gram-
mar. There is however a simplification in this reasoning: although statistical mod-
els are indeed based on real life utterances, they are specifically designed (thanks
in particular to smoothing techniques) to allow for previously unseen inputs—
this is the very source of their robustness. We will discuss this topic further in
Chapter 5.

1.2 Models of Syntax

To conclude this introduction, here is a short presentation of the kinds of models
employed for describing syntax. Not every one will be covered in class, but there
are pointers to the relevant literature.
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Flavours of syntactic modelling. For each of the two kinds of analyses, using
constituents or dependencies, three different flavours of models can be distin-
guished:

generative models, which construct syntactic structures through rewrite systems;

model-theoretic approaches rather describe syntactic structures in a logical lan-
guage and allow any model of a formula as an answer;

proof-theoretic techniques establish the grammaticality of sentences through a
proof in some formal deduction system.

Finally, stochastic methods might be mixed with any of the previous frameworks (see
Manning and Schütze, 1999), allowing for more robust modelling. This gives rise
to twelve combinations—which should however not be distinguished too strictly,
as their borders are often quite blurry.

1.2.1 Constituent Syntax

Generative Syntax. The formal description of morpho-syntactic phenomena us-
ing rewrite systems can be traced back to 350BC and the Sanskrit grammar of
Pān. ini, the As.t.ādhyāyī. This large grammar employs contextual rewrite rules like

A→ B / C D (1.1)

for “rewrite A to B in the context C D”, i.e. the rewrite rule

CAD → CBD . (1.2)

The grammar already features auxiliary symbols (like the labels on the inner
nodes of Figure 1.2), and this type of formal systems is therefore already Turing-
complete.

The adoption of phrase-structure grammars to derive constituent structures
stems mostly from Chomsky’s Three Models for the Description of Language (1956),
which considers the suitability of finite automata, context-free grammars, and
transformational grammars for syntactic modelling.

Readers with a computer science background are likely to be rather familiar with
context-free grammars from a compilers or formal languages course; it is quite
interesting to see that the equivalent BNF notation (Backus, 1959) was developed
at roughly the same time to specify the syntax of ALGOL 60 (Ginsburg and Rice,
1962). The focus in linguistics applications is however on trees, for which tree
languages provide a more appropriate framework (Comon et al., 2007).

Model-Theoretic Syntax. Because the focus of linguistic models of syntax is on
trees, there is an alternative way of understanding a disjunction of context-free
production rules

A→ BC | DE . (1.3)

It posits that in a valid tree, a node labelled by A should feature two children,
labelled either by B and C or by D and E. In first-order logic, assuming A,B, . . .
to be predicates and using ↓ and→ to denote the child and right sibling relations,
this could be expressed as

∀x.A(x) ⊃ ∃y.∃z.x ↓ y ∧ x ↓ z ∧ y → z ∧
(
(B(y) ∧ C(z)) ∨ (D(y) ∧ E(z))

)
∧ ∀c.x ↓ c ⊃ c = y ∨ c = z .

(1.4)
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A constituent tree is valid if it satisfies the constraints stated by the grammar, and
a language is the set of models, in a logical sense, of the grammar. See the survey
by Pullum (2007) on the early developments of the model-theoretic approach.

Of course, the logical language of context-free rules is rather limited, and more
expressive logics can be employed: we will consider monadic second-order logic
and propositional dynamic logic in Chapter 3.

Proof-Theoretic Syntax. Yet another way of viewing a context-free rule like
(1.3) is as a deduction rules

A(xy) :− B(x), C(y). (1.5)

A(xy) :− D(x), E(y). (1.6)

(in Prolog-like syntax). Here the variables x and y range over finite strings, and
a sentence w is accepted by the grammar if the judgement S(w) (for “w ∈ L(S)”)
can be derived using the rules

B1(u1) . . . Bm(um)

A(u1 · · ·um)

{
A(x1 · · ·xm) :− B1(x1), . . . , Bm(xm) (1.7)

where u1, . . . , um are finite strings.
The interest of this proof-theoretic view is that it is readily generalisable beyond

context-free grammars, for instance by removing the restriction to monadic pred-
icates, as in multiple context-free grammars (Seki et al., 1991). It also encour-
ages annotations of proofs with terms (as with the Curry-Howard isomorphism) to
construct a semantic representation of the sentence, and thus provides an elegant
syntax/semantics interface.

1.2.2 Dependency Syntax

Dependency analyses take their roots in the work of Tesnière, and are especially
well-suited to language with “relaxed” word order, where discontinuities come
handy (Mel’čuk, 1988, e.g. Meaning-Text Theory for Czech). It also turns out that
several of the best statistical parsing systems today rely on dependencies rather
than constituents.

Generative Syntax. If we look at the dependency structure of Figure 1.2, we can
observe that it can be encoded through rewrite rules of the form

h→ L ∗ R (1.8)

where L is the list of left dependents and R that of right dependents of the head
word h, and ∗ marks the position of this word: more concretely, the rules

VBZ→ PRP ∗ NN (1.9)

PRP→ ∗ (1.10)

NN→ DT ∗ (1.11)

would allow to generate the dependency tree on the right of Figure 1.2. This
general idea has been put forward by Gaifman (1965) and Hays (1964).

Conversely, given a constituent tree like the one on the left of Figure 1.2, a
dependency tree can be recovered by identifying the head of each phrase as in Fig-
ure 1.4. Applying this transformation to a context-free grammar results in a head
lexicalised grammar, which is a fairly common idea in statistical parsing (e.g.
Charniak, 1997; Collins, 2003).
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S[watches]

NP[She]

PRP

She

VP[watches]

VBZ

watches

NP[bird]

DT

a

NN

bird

Figure 1.4: A head lexicalised constituent tree.

Model-Theoretic Syntax. As with constituency analysis, dependency structures
can be described in a model-theoretic framework. Here I do not know much
work on the subject, besides a constraint-solving approach for a (positive existen-
tial) logic: the topological dependency grammars of Duchier and Debusmann
(2001), along with related formalisms.

Proof-Theoretic Syntax. Regarding the proof-theoretic take on dependency syn-
tax, there is a very rich literature on categorial grammar. In the basic system of
Bar-Hillel (1953), categories are built using left and right quotients over a finite
set of symbols A:

γ ::= A | γ\γ | γ/γ (categories)

The proof system then features three deduction rules: one that looks up the possi-
ble categories associated to a word in a finite lexicon

Lexicon
w ` γ

and two rules to eliminate the \ and / connectors:

w1 ` γ1 w2 ` γ1\γ2 \E
w1 · w2 ` γ2

w1 ` γ2/γ1 w2 ` γ1
/E

w1 · w2 ` γ2

For instance, the dependencies from the right of Figure 1.2 can be described in
a lexicon over A def

= {s, n, d} by

She ` n watches ` (n\s)/n a ` d bird ` d\n

with a proof

She ` n
watches ` (s\n)/n

a ` d bird ` d\n
\E

a bird ` n
/E

watches a bird ` n\s
\E

She watches a bird ` s

By adding introduction rules to this proof system, Lambek (1958) has defined
the Lambek calculus, which can be viewed as a non-commutative variant of lin-
ear logic (e.g. Troelstra, 1992). As with constituency analyses, one of the interests
of proof-theoretic methods is that it provides an elegant way of building composi-
tional semantics interpretations.
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1.3 Further Reading

Interested readers will find a good general textbook on natural language process-
ing by Jurafsky and Martin (2009). The present notes have a strong bias towards
logical formalisms, but this is hardly representative of the general field of natu-
ral language processing. In particular, the overwhelming importance of statistical
approaches in the current body of research makes the textbook of Manning and
Schütze (1999) another recommended reference.

The main journal of natural language processing is Computational Linguistics.
As often in computer science, the main conferences of the field have equiva-
lent if not greater importance than journal outlets, and one will find among the
major conferences ACL (“Annual Meeting of the Association for Computational
Linguistics”), EACL (“European Chapter of the ACL”), NAACL (“North American
Chapter of the ACL”), and CoLing (“International Conference on Computational
Linguistics”). A very good point in favour of the ACL community is their early
adoption of open access; one will find all the ACL publications online at http:
//www.aclweb.org/anthology/.

The more mathematics-oriented linguistics community is scattered around sev-
eral sub-communities, each with its own meeting. Let me mention two special
interest groups of the ACL: SIGMoL on “Mathematics of Language” and SIGParse
on “natural language parsing”.

http://www.aclweb.org/anthology/
http://www.aclweb.org/anthology/
http://molweb.org/
http://www.cs.cmu.edu/~sigparse/
http://www.cs.cmu.edu/~sigparse/


Chapter 2

Context-Free Syntax

Syntax deals with how words are arranged into sentences. An important body of
linguistics proposes constituent analyses for sentences, where for instance

Those torn books are completely worthless.

can be decomposed into a noun phrase those torn books and a verb phrase are
completely worthless. These two constituents can be recursively decomposed until
we reach the individual words, effectively describing a tree:

S

NP

DT

Those

NP

AP

JJ

torn

NP

NNS

books

VP

VBP

are

AP

RB

completely

AP

JJ

worthless

Figure 2.1: A context-free derivation tree.

You have probably recognised in this example a derivation tree for a context-free
grammar (CFG). Context-free grammars, proposed by Chomsky (1956), consti-
tute the primary example of a generative formalism for syntax, which we take to
include all string- or term-rewrite systems.

2.1 Grammars

Definition 2.1 (Phrase-Structured Grammars). A phrase-structured grammar is
a tuple G = 〈N,Σ, P, S〉 where N is a finite nonterminal alphabet, Σ a finite termi-
nal alphabet disjoint from N , V = N ] Σ the vocabulary, P ⊆ V ∗ × V ∗ a finite set
of rewrite rules or productions, and S a start symbol or axiom in N .

A phrase-structure grammar defines a string rewrite system over V . Strings α in
V ∗ s.t. S =⇒? α are called sentential forms, whereas strings w in Σ∗ s.t. S =⇒? w
are called sentences. The language of G is its set of sentences, i.e.

L(G) = LG(S) LG(A) = {w ∈ Σ∗ | A =⇒? w} .

Different restrictions on the shape of productions lead to different classes of gram-
mars; we will not recall the entire Chomsky hierarchy (Chomsky, 1959) here, but
only define context-free grammars (aka type 2 grammars) as phrase-structured
grammars with P ⊆ N × V ∗.

13
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Example 2.2. The derivation tree of Figure 2.1 corresponds to the context-free
grammar with

N = {S,NP,AP,VP,DT, JJ,NNS,VBP,RB} ,
Σ = {those, torn, books, are, completely ,worthless} ,

P = { S→ NP VP, NP→ DT NP | AP NP | NNS,

VP→ VBP AP, AP→ RB AP | JJ,

DT→ Those, JJ→ torn | worthless,
NNS→ books, VBP→ are,

RB→ completely} ,
S = S .

Note that it also generates sentences such as Those books are torn. or Those com-
pletely worthless books are completely completely torn. Also note that this grammar
describes part-of-speech tagging information, based on the Penn TreeBank tagset
(Santorini, 1990). A different formalisation could set Σ = {DT, JJ,NNS,VBP,RB}
and delegate the POS tagging issues to an external device.

2.1.1 The Parsing Problem

Context-free grammars enjoy a number of nice computational properties:

• both their uniform membership problem—i.e. given 〈G, w〉 doesw ∈ L(G)—
and their emptiness problem—i.e. given 〈G〉 does L(G) = ∅—are P-complete
(Jones and Laaser, 1976),

• their fixed grammar membership problem—i.e. for a fixed G, given 〈w〉
doesw ∈ L(G)—is by very definition LOGCFL-complete (Sudborough, 1978),

• they have a natural notion of derivation trees, which constitute a local reg-
ular tree language (Thatcher, 1967).

The monograph of Grune and
Jacobs (2007) is a rather

exhaustive resource on
context-free parsing.

Recall that our motivation in context-free grammars lies in their ability to model
constituency through their derivation trees. Thus much of the linguistic interest
in context-free grammars revolves around a variant of the membership problem:
given 〈G, w〉, compute the set of derivation trees of G that yield w—the parsing
problem.

Parsing Techniques. Outside the realm of deterministicThe asymptotically best parsing
algorithm is that of Valiant

(1975), with complexity
Θ(B(|w|)) where B(n) is the
complexity of n-dimensional

Boolean matrix multiplication,
currently known to be in

O(n2.3728639) (Le Gall, 2014). A
converse reduction from Boolean

matrix multiplication to
context-free parsing by Lee

(2002) shows that any
improvement for one problem

would also yield one for the other.

parsing algorithms for
restricted classes of CFGs, for instance for LL(k) or LR(k) grammars (Knuth, 1965;
Kurki-Suonio, 1969; Rosenkrantz and Stearns, 1970)—which are often studied in
computer science curricula—, there exists quite a variety of methods for general
context-free parsing. Possibly the best known of these is the CKY algorithm (Cocke
and Schwartz, 1970; Kasami, 1965; Younger, 1967), which in its most basic form
works with complexity O(|G| |w|3) on grammars in Chomsky normal form. Both
the CKY algorithm(s) and the advanced methods (Earley, 1970; Lang, 1974; Gra-
ham et al., 1980; Tomita, 1986; Billot and Lang, 1989) can be seen as refinements
of the construction first described by Bar-Hillel et al. (1961) to prove the closure
of context-free languages under intersection with recognisable sets, which will be
central in these notes on syntax.
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Ambiguity and Parse Forests. The key issue in general parsing and parsing for
natural language applications is grammatical ambiguity: the existence of several
derivation trees sharing the same string yield.

The following sentence is a classical example of a PP attachment ambiguity,
illustrated by the two derivation trees of Figure 2.2:

She watches a man with a telescope.

S

NP

PRP

She

VP

VBZ

watches

NP

NP

DT

a

NN

man

PP

IN

with

NP

DT

a

NN

telescope

S

NP

PRP

She

VP

VP

VBZ

watches

NP

DT

a

NN

man

PP

IN

with

NP

DT

a

NN

telescope

Figure 2.2: An ambiguous sentence.

In the case of a cyclic CFG, with a nonterminal A verifying A =⇒+ A, the number
of different derivation trees for a single sentence can be infinite. For acyclic CFGs,
it is finite but might be exponential in the length of the grammar and sentence:

Example 2.3 (Wich, 2005). The grammar with rules

S → a S | a A | ε, A→ a S | a A | ε

has exactly 2n different derivation trees for the sentence an.

Such an explosive behaviour is not unrealistic for CFGs in natural languages:
Moore (2004) reports an average number of 7.2 × 1027 different derivations for
sentences of 5.7 words on average, using a CFG extracted from the Penn Treebank.

The solution in order to retain polynomial complexities is to represent all these
derivation trees as the language of a finite tree automaton (or using a CFG). This
is sometimes called a shared forest representation.

2.1.2 Background: Tree Automata

Because our focus in linguistics analyses is on trees, context-free grammars are
mostly useful as a means to define tree languages. Let us first recall basic defini-
tions on regular tree languages.

Definition 2.4 (Finite Tree Automata). A finite tree automaton See Comon et al. (2007).(NTA) is a tuple
A = 〈Q,F , δ, I〉 where Q is a finite set of states, F a ranked alphabet, δ a finite
transition relation in

⋃
nQ×Fn ×Qn, and I ⊆ Q a set of initial states.

The semantics of a NTA can be defined by term rewrite systems over F = Q]F
where the states in Q have arity 0: either bottom-up:

RB = {a(n)(q
(0)
1 , . . . , q(0)

n )→ q(0) | (q, a(n), q1, . . . , qn) ∈ δ}

L(A) = {t ∈ T (F) | ∃q ∈ I, t RB==⇒? q} ,
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or top-down:

RT = {q(0) → a(n)(q
(0)
1 , . . . , q(0)

n ) | (q, a(n), q1, . . . , qn) ∈ δ}

L(A) = {t ∈ T (F) | ∃q ∈ I, q RT==⇒? t} .

A tree language L ⊆ T (F) is regular if there exists an NTA A such that L = L(A).

Example 2.5. The 2n derivation trees for an in the grammar of Example 2.3 are
generated by theO(n)-sized automaton 〈{qS , qa, qε, q1, . . . , qn}, {S(2), A(2), S(1), A(1), a(0), ε(0)}, δ, {qS}〉
with rules

δ = {(qS , S(2), qa, q1), (qa, a
(0)), (qε, ε

(0))}
∪ {(qi, X, qa, qi+1) | 1 ≤ i < n,X ∈ {S(2), A(2)}}
∪ {(qn, X, qε) | X ∈ {S(1), A(1)}} .

It is rather easy to define the set of derivation trees of a CFG through an NTA.
The only slightly annoying point is that nonterminals in a CFG do not have a fixed
arity; for instance if A → BC | a are two productions, then an A-labelled node
in a derivation tree might have two children B and C or a single child a. This
motivates the notation A(r) for an A-labelled node with rank r.

Definition 2.6 (Derived Tree Language). Let G = 〈N,Σ, P, S〉 be a context-free
grammar and let m be its maximal right-hand side length. Its derived tree lan-
guage T (G) is defined as the language of the NTA A = 〈V ] {ε},F , δ, {S}〉, where

F def
= {a(0) | a ∈ Σ} ∪ {ε(0)} ∪ {A(1) | A→ ε ∈ P}
∪ {A(m) | m > 0 and ∃A→ X1 · · ·Xm ∈ P with ∀i.Xi ∈ V }

δ
def
= {(A,A(m), X1, . . . , Xm) | m > 0 ∧A→ X1 · · ·Xm ∈ P}
∪ {(A,A(1), ε) | A→ ε ∈ P}
∪ {(a, a(0)) | a ∈ Σ}
∪ {(ε, ε(0))} .

The class of derived tree languages of context-free grammars is a strict subclass
of the class of regular tree languages.

Exercise 2.1 (Local Tree Languages). Let(∗∗) F be a ranked alphabet and t a term of
T (F). We denote by r(t) the root symbol of t and by b(t) the set of local branches
of t, defined inductively by

r(a(0))
def
= a(0) b(a(0))

def
= ∅

r(f (n)(t1, . . . , tn))
def
= f (n) b(f (n)(t1, . . . , tn))

def
= {f (n)(r(t1), . . . , r(tn))} ∪

n⋃
i=1

b(ti) .

For instance b( f(g(a), f(a, b)) ) = {f(g, f), g(a), f(a, b)}.
A tree language L ⊆ T (F) is local if and only if there exist two sets R ⊆ F of

root symbols and B ⊆ b(T (F)) of local branches, such that t ∈ L iff r(t) ∈ R and
b(t) ⊆ B. Let

L(R,B) = {t ∈ T (F) | r(t) ∈ R and b(t) ⊆ B} ;

then a tree language L is local if and only if L = L(r(L), b(L)).
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1. Show that { f(g(a), g(b)) } is not a local tree language.

2. Show that any local tree language is the language of some NTA.

3. Show that a tree language included in T (F) is local with R ⊆ F>0 and
|R| = 1 if and only if it is the derived tree language of some CFG.

4. Show that any regular tree language is the homomorphic image of a local
tree language by an alphabetic tree morphism, i.e. the application of a rela-
belling to the tree nodes.

5. Given a tree language L, let Yield(L)
def
=
⋃
t∈L Yield(t) and define inductively

Yield(a(0))
def
= a and Yield(f (r)(t1, . . . , tr)

def
= Yield(t1) · · ·Yield(tr). Show

that, if L is a regular tree language, then Yield(L) is a context-free language.

2.2 Tabular Parsing

We briefly survey the principles of general context-free parsing using dynamic
or tabular algorithms. For more details, see the survey by Nederhof and Satta
(2004).

2.2.1 Parsing as Intersection

The basic construction underlying all the tabular parsing algorithms is the inter-
section grammar of Bar-Hillel et al. (1961). It consists in an intersection between
an (|w|+1)-sized automaton with language {w} and the CFG under consideration.
The intersection approach is moreover quite convenient if several input strings are
possible, for instance if the input of the parser is provided by a speech recognition
system. A landmark paper on the

importance of the construction of
Bar-Hillel et al. (1961) for
parsing is due to Lang (1994).

Theorem 2.7 (Bar-Hillel et al., 1961). Let G = 〈N,Σ, P, S〉 be a CFG and A =
〈Q,Σ, δ, I, F 〉 be a NFA. The set of derivation trees of G with a word of L(A) as yield is
generated by the NTA T = 〈(V ] {ε})×Q×Q,Σ ]N ] {ε}, δ′, {S} × I × F 〉 with

δ′ = {((A, q0, qm), A(m), (X1, q0, q1), . . . , (Xm, qm−1, qm))

| m ≥ 1, A→ X1 · · ·Xm ∈ P, q0, q1, . . . , qm ∈ Q}
∪ {((A, q, q), A(1), (ε, q, q)) | A→ ε ∈ P, q ∈ Q}
∪ {((ε, q, q), ε(0)) | q ∈ Q}
∪ {((a, q, q′), a(0)) | (q, a, q′) ∈ δ} .

The size of the resulting NTA is in O(|G| · |Q|m+1) where m is the maximal arity
of a nonterminal in N . We can further reduce this NTA to only keep useful states,
in linear time on a RAM machine. It is also possible to determinise and minimise
the resulting tree automaton.

In order to reduce the complexity of this construction to O(|G| · |Q|3), one can
put the CFG in quadratic form, so that P ⊆ N × V ≤2. This changes the shape of
trees, and thus the linguistic analyses, but the transformation is reversible:

Lemma 2.8. Given a CFG G = 〈Σ, N, P, S〉, one can construct in time O(|G|) an
equivalent CFG G′ = 〈Σ, N ′, P ′, S〉 in quadratic form s.t. V ⊆ V ′, LG(X) = LG′(X)
for all X in V , and |G′| ≤ 5 · |G|.
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Proof. For every production A→ X1 · · ·Xm of P with m ≥ 2, add productions

A→ [X1][X2 · · ·Xm]

[X2 · · ·Xm]→ [X2][X3 · · ·Xm]
...

[Xm−1Xm]→ [Xm−1][Xm]

and for all 1 ≤ i ≤ m

[Xi]→ Xi .

Thus an (m + 1)-sized production is replaced by m − 1 productions of size 3 and
m productions of size 2, for a total less than 5m. Formally,

N ′ = N ∪ {[β] | β ∈ V + and ∃A ∈ N,α ∈ V +, A→ αβ ∈ P}
∪ {[X] | X ∈ V and ∃A ∈ N,α, β ∈ V ∗, A→ αXβ ∈ P}

P ′ = {A→ α ∈ P | |α| ≤ 1}
∪ {A→ [X][β] | A→ Xβ ∈ P,X ∈ V and β ∈ V +}
∪ {[Xβ]→ [X][β] | [Xβ] ∈ N ′, X ∈ V and β ∈ V +}
∪ {[X]→ X | [X] ∈ N ′ and X ∈ V } .

Grammar G′ est clearly in quadratic form with N ⊆ N ′ and |G′| ≤ 5 · |G|. It remains
to show equivalence, which stems from LG(X) = LG′(X) for allX in V . Obviously,
LG(X) ⊆ LG′(X). Conversely, by induction on the length n of derivations in G′,
we prove that

X =⇒n
G′ w implies X =⇒?

G w (2.1)

[α] =⇒n
G′ w implies α =⇒?

G w (2.2)

for all X in V , w in Σ∗, and [α] in N ′\N . The base case n = 0 implies X in Σ and
the lemma holds. Suppose it holds for all i < n.

From the shape of the productions in G′, three cases can be distinguished for a
derivation

X =⇒G′ β =⇒n−1
G′w :

1. β = ε implies immediately X =⇒?
Gw = ε, or

2. β = Y in V implies X =⇒?
Gw by induction hypothesis (2.1), or

3. β = [Y ][γ] with [Y ] and [γ] in N ′ implies again X =⇒?
Gw by induction hypoth-

esis (2.2) and context-freeness, since in that case X → Y γ is in P .

Similarly, a derivation
[α] =⇒G′ β =⇒n−1

G′ w

implies α =⇒? w by induction hypothesis (2.1) if |α| = 1 and thus β = α, or by
induction hypothesis (2.2) and context-freeness if α = Y γ with Y in V and γ in
V +, and thus β = [Y ][γ].

2.2.2 Parsing as Deduction

In practice, we want to perform at least some of the reduction of the tree automa-
ton constructed by Theorem 2.7 on the fly, in order to avoid constructing states
and transitions that will be later discarded as useless.
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Bottom-Up Tabular Parsing. One way is to restrict ourselves to co-accessible
states, by which we mean states q of the NTA such that there exists at least one

tree t with t
RB==⇒? q. This is the principle underlying the classical CKY parsing

algorithm (but here we do not require the grammar to be in Chomsky normal
form).

We describe the algorithm using deduction rules (Pereira and Warren, 1983;
Sikkel, 1997), which conveniently represent how new tabulated items can be con-
structed from previously computed ones: in this case, items are states (A, q, q′) in
V ×Q×Q of the constructed NTA. Side conditions constrain how a deduction rule
can be applied.

(X1, q0, q1), . . . , (Xm, qm−1, qm)

(A, q0, qm)

{
A→ X1 · · ·Xm ∈ P
q0, q1, . . . , qm ∈ Q

(Internal)

(a, q, q′)

{
(q, a, q′) ∈ δ (Leaf)

The construction of the NTA proceeds by creating new states following the rules,
and transitions of δ′ as output to the deduction rules, i.e. an application of (Internal)
outputs if m ≥ 1 ((A, q0, qm), A(m), (X1, q0, q1), . . . , (Xm, qm−1, qm)), or if m = 0
((A, q0, q0), A(1), (ε, q0, q0)), and one of (Leaf) outputs ((a, q, q′), a(0)). We only
need to add states (ε, q, q) and transitions ((ε, q, q), ε(0)) for each q in Q in order to
obtain the co-accessible part of the NTA of Theorem 2.7.

The algorithm performs the deduction closure of the system; the intersection
itself is non-empty if an item in {S} × I × F appears at some point. The com-
plexity depends on the “free variables” in the premises of the rules and on the side
constraints; here it is dominated by the (Internal) rule, with at most |G| · |Q|m+1

applications.
We could similarly construct a system of top-down deduction rules that only

construct accessible states of the NTA, starting from (S, qi, qf ) with qi in I and qf
in F , and working its way towards the leaves.

Exercise 2.2. Give (∗)the deduction rules for top-down tabular parsing.

Earley Parsing. The algorithm of Earley (1970) uses a mix of accessibility and
co-accessibility. An Earley item is a triple (A → α · β, q, q′), q, q′ in Q and A → αβ
in P , constructed This invariant proves the

correctness of the algorithm. For
a more original proof using
abstract interpretation, see
Cousot and Cousot (2003).

iff

1. there exists both (i) a run of A starting in q and ending in q′ with label v and
(ii) a derivation α =⇒? v, and furthermore

2. there exists (i) a run in A from some qi in I to q with label u and (ii) a
derivation S =⇒

lm

? uAγ for some γ in V ∗.

(S → ·α, qi, qi)

{
S → α ∈ P
qi ∈ I

(Init)

(A→ α ·Bα′, q, q′)
(B → ·β, q′, q′)

{
B → β ∈ P (Predict)
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(A→ α · aα′, q, q′)
(A→ αa · α′, q, q′′)

{
(q′, a, q′′) ∈ δ (Scan)

(A→ α ·Bα′, q, q′)
(B → β·, q′, q′′)

(A→ αB · α′, q, q′′)
(Complete)

Rule (Init) initialises the accessibility information, which is propagated by (Predict).
Rule (Scan) initialises the co-accessibility information, which is propagated by
(Complete). The intersection is non empty if an item (S → α·, qi, qf ) is obtained
for some qi in I and qf in F .

The algorithm run as a recogniser works in O(|G|2 · |Q|3) regardless of the ar-
ity of symbols in G ((Complete) dominates this complexity), and can be further
optimised to run in O(|G| · |Q|3), which is the object of Exercise 2.3. This cubic
complexity in the size of the automaton can be understood as the effect of an
on-the-fly quadratic form transformation into G′ = 〈N ′,Σ, P ′, S′〉 with

N ′ = {S′} ] {[A→ α · β] | A→ αβ ∈ P}
P ′ = {S′ → [S → α·] | S → α ∈ P}
∪ {[A→ αB · α′]→ [A→ α ·Bα′] [B → β·] | B → β ∈ P}
∪ {[A→ αa · α′]→ [A→ α · aα′] a | a ∈ Σ}
∪ {[A→ ·α′]→ ε} .

Note that the transformation yields a grammar of quadratic size, but can be modi-
fied to yield one of linear size—this is the same simple trick as that of Exercise 2.3.
It is easier to output a NTA for this transformed grammar G′:

• create state ([S → ·α], qi, qi) and transition (([S → ·α], qi, qi), ε
(0)) when

applying (Init),

• create state ([B → ·β], q′, q′) and transition (([B → ·β], q′, q′), ε(0)) when
applying (Predict),

• create states ([A → αa · α′], q, q′′) and (a, q′, q′′), and transitions (([A → αa ·
α′], q, q′′), [A→ αa ·α′](2), ([A→ α ·aα′], q, q′), (a, q′, q′′)) and ((a, q′, q′′), a(0))
when applying (Scan),

• create state ([A→ αB · α′], q, q′′) and transition (([A→ αB · α′], q, q′′), [A→
αB ·α′](2), ([A→ α ·Bα′], q, q′), ([B → β·], q′, q′′) when applying (Complete).

We finally need to add states (S′, qi, qf ) for qi in I and qf in F , and transitions
((S′, qi, qf ), S′(1), ([S → α·], qi, qf ) for each S → α in P .

Exercise 2.3. How(∗) should the algorithm be modified in order to run in time O(|G|·
|Q|3) instead of O(|G|2 · |Q|3)?

Exercise 2.4. Show(∗) that the Earley recogniser works in time O(|G| · |Q|2) if the
grammar is unambiguous and the automaton deterministic.A related open problem is

whether fixed grammar
membership can be solved in time
O(|w|) if G is unambiguous. See
Leo (1991) for a partial answer

in the case where G is LR-Regular.



Chapter 3

Model-Theoretic Syntax

In contrast with the generative approaches of chapters 2 and 4, we take here a
different stance on how to formalise constituent-based syntax. Instead of a more
or less operational description using some string or term rewrite system, the trees
of our linguistic analyses are now models of logical formulæ.

3.1 Introduction

3.1.1 Model-Theoretic vs. Generative

The Most of this discussion is inspired
by Pullum and Scholz (2001).

connections between the classes of tree structures that can be singled out
through logical formulæ on the one hand and context-free grammars or finite tree
automata on the other hand are well-known, and we will survey some of these
bridges. Thus the interest of a model theoretic approach does not reside so much
in what can be expressed as in how it can be expressed.

Local vs. Global View. The model-theoretic approach simplifies the specification
of global properties of syntactic analyses. Let us consider for instance the problem
of finding the head of a constituent, which can be used to lexicalise CFGs. Re-
member that the solution there was to explicitly annotate each nonterminal with
the head information of its subtree—which is the only way to percolate the head
information up the trees in a context-free grammar. On the other hand, one can
write a logic formula postulating the existence of a unique head word for each
node of a tree (see (3.19) and (3.20)).

Gradience of Grammaticality. Agrammatical Practical aspects of the notion of
grammaticality gradience have
been investigated in the context of
property grammars, see e.g.
Duchier et al. (2009).

sentences can vary considerably in
their degree of agrammaticality. Rather than a binary choice between grammatical
and agrammatical, one would rather have a finer classification that would give
increasing levels of agrammaticality to the following sentences:

∗In a hole in in the ground there lived a hobbit.
∗In a hole in in ground there lived a hobbit.
∗Hobbit a ground in lived there a the hole in.

One way to achieve this finer granularity with generative syntax is to employ
weights as a measure of grammaticality. Note that it is not quite what we obtain
through probabilistic methods (cf. Chapter 5), because estimated probabilities are
not grammaticality judgements per se, but occurrence-based (although smoothing
techniques attempt to account for missing events).

21
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A natural way to obtain a gradience of grammaticality using model theoretic
methods is to structure formulæ as large conjunctions

∧
i ϕi, where each conjunct

ϕi implements a specific linguistic notion. A degree of grammaticality can be
derived from (possibly weighted) counts of satisfied conjuncts.

Open Lexicon. An underlying assumption of generative syntax is the presence of
a finite lexicon Σ. A specific treatment is required in automated systems in order
to handle unknown words.

This limitation is at odds with the diachronic addition of new words to lan-
guages, and with the grammaticality of sentences containing pseudo-words, as
for instance

Could you hand over the salt, please?
Could you smurf over the smurf, please?

Again, structuring formulæ in such a way that lexical information only further
constrains the linguistic trees makes it easy to handle unknown or pseudo-words,
which simply do not add any constraint.

Infinite Sentences. A debatable point is whether natural language sentences
should be limited to finite ones. An example illustrating why this question is not
so clear-cut is an expression for “mutual belief” that starts with the following:

Jones believes that iron rusts, and Smith believes that iron rusts, and Jones
believes that Smith believes that iron rusts, and Smith believes that Jones
believes that iron rusts, and Jones believes that Smith believes that Jones
believes that iron rusts, and. . .

Dealing with infinite sequences and trees requires to extend the semantics of
generative devices (CFGs, PDAs, etc.) and leads to complications. By contrast,
logics are not a priori restricted to finite models, and in fact the two examples
we will see are expressive enough to force the choice of either infinite or finite
models. Of course, for practical applications one might want to restrict oneself to
finite models.

Algorithmic Costs. Formulæ in the logics considered in this chapter are provably
more succinct than context-free grammars. The downfall is an algorithmic cost
increased in the same proportion, e.g. parsing can require exponential time for
PDL (Afanasiev et al., 2005), and non-elementary time for wMSO (Meyer, 1975;
Reinhardt, 2002).

3.1.2 Tree Structures

Before we turn to the two logical languages that we consider for model-theoretic
syntax, let us introduce the structures we will consider as possible models. Because
we work with constituent analyses, these will be labelled ordered trees. Given
a set A of labels, a tree structure is a tuple M = 〈W, ↓,→, (Pa)a∈A〉 where W is
a set of nodes, ↓ and→ are respectively the child and next-sibling relations over
W , and each Pa for a in A is a unary labelling relation over W . We take W to be
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isomorphic to some prefix-closed and predecessor-closed subset of N∗, where ↓ and
→ can then be defined by

↓ def
= {(w,wi) | i ∈ N ∧ wi ∈W} (3.1)

→ def
= {(wi,w(i+ 1)) | i ∈ N ∧ w(i+ 1) ∈W} . (3.2)

Note that (a) we do not limit ourselves to a single label per node, i.e. we actually
work on trees labelled by Σ

def
= 2A, (b) we do not bound the rank of our trees,

and (c) we do not assume the set of labels to be finite.

Binary Trees. See Comon et al. (2007,
Section 8.3.1).

One way to deal with unranked trees is to look at their encoding
as “first child/next sibling” binary trees. Formally, given a tree structure M =
〈W, ↓,→, (Pa)a∈A〉, we construct a labelled binary tree t, which is a partial func-
tion {0, 1}∗ → Σ with a prefix-closed domain. We define for this dom(t) = fcns(W )
and t(w) = {a ∈ A | Pa(fcns−1(w))} for all w ∈ dom(t), where

fcns(ε)
def
= ε fcns(w0)

def
= fcns(w)0 fcns(w(i+ 1))

def
= fcns(wi)1 (3.3)

for all w in N∗ and i in N and the corresponding inverse mapping is

fcns−1(ε)
def
= ε fcns−1(w0)

def
= fcns−1(w)0 fcns−1(w1)

def
= fcns−1(w) + 1 (3.4)

for all w in ε ∪ 0{0, 1}∗, under the understanding that (wi) + 1 = w(i + 1) for all
w in N∗ and i ∈ N. Observe that binary trees t produced by this encoding verify
dom(t) ⊆ 0{0, 1}∗.

The tree t can be seen as a binary structure fcns(M) = 〈dom(t), ↓0, ↓1, (Pa)a∈A〉,
defined by

↓0
def
= {(w,w0) | w0 ∈ dom(t)} (3.5)

↓1
def
= {(w,w1) | w1 ∈ dom(t)} (3.6)

Pa
def
= {w ∈ dom(t) | a ∈ t(w)} . (3.7)

The domains of our constructed binary trees are not necessarily predecessor-
closed, which can be annoying. Let # be a fresh symbol not in A; given t a
labelled binary tree, its closure t̄ is the tree with domain

dom(t̄)
def
= {ε, 1} ∪ {0w | w ∈ dom(t)} ∪ {0wi | w ∈ dom(t) ∧ i ∈ {0, 1}} (3.8)

and labels

t̄(w)
def
=

{
t(w′) if w = 0w′ ∧ w′ ∈ dom(t)

{#} otherwise.
(3.9)

Note that in t̄, every node is either a node not labelled by # with exactly two
children, or a #-labelled leaf with no children, or a #-labelled root with two
children, thus t̄ is a full (aka strict) binary tree.

3.2 Monadic Second-Order Logic

See Comon et al. (2007,
Section 8.4).

We consider the weak monadic second-order logic (wMSO), over tree structures
M = 〈W, ↓,→, (Pa)a∈A〉 and two infinite countable sets of first-order variables X1

and second-order variables X2. Its syntax is defined by

ψ ::= x = y | x ∈ X | x ↓ y | x→ y | Pa(x) | ¬ψ | ψ ∨ ψ | ∃x.ψ | ∃X.ψ
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where x, y range over X1, X over X2, and a over A. We write FV(ψ) for the set of
variables free in a formula ψ; a formula without free variables is called a sentence.

First-order variables are interpreted as nodes inW , while second-order variables
are interpreted as finite subsets of W (it would otherwise be the full second-order
logic). Let ν : X1 → W and µ : X2 → Pf (W ) be two corresponding assignments;
then the satisfaction relation is defined by

M |=ν,µ x = y if ν(x) = ν(y)

M |=ν,µ x ∈ X if ν(x) ∈ µ(X)

M |=ν,µ x ↓ y if ν(x) ↓ ν(y)

M |=ν,µ x→ y if ν(x)→ ν(y)

M |=ν,µ Pa(x) if Pa(ν(x))

M |=ν,µ ¬ψ if M 6|=ν,µ ψ

M |=ν,µ ψ ∨ ψ′ if M |=ν,µ ψ or M |=ν,µ ψ
′

M |=ν,µ ∃x.ψ if ∃w ∈W,M |=ν{x←w},µ ψ

M |=ν,µ ∃X.ψ if ∃U ⊆W,U finite ∧M |=ν,µ{X←U} ψ .

As usual, we define conjunctions as ψ ∧ ψ′ def
= ¬(¬ψ ∨ ¬ψ′), implications as ψ ⊃

ψ′
def
= ¬ψ ∨ ψ′, and equivalences as ψ ≡ ψ′ def

= ψ ⊃ ψ′ ∧ ψ′ ⊃ ψ.
Given a wMSO formula ψ, we are interested in two algorithmic problems: the

satisfiability problem, which asks whether there exist M and ν and µ s.t. M |=ν,µ

ψ, and the model-checking problem, which given M asks whether there exist ν
and µ s.t. M |=ν,µ ψ. By modifying the vocabulary to have labels in A ] FV(ψ),
these questions can be rephrased on a wMSO sentence ψ′:

ψ′
def
= ∃FV(ψ).ψ ∧

 ∧
x∈X1∩FV(ψ)

Px(x) ∧ ∀y.x 6= y ⊃ ¬Px(y)


∧

 ∧
X∈X2∩FV(ψ)

∀y.y ∈ X ≡ PX(y)

 .

In practical applications of model-theoretic techniques we restrict ourselves to fi-
nite models for these questions.

Example 3.1. Here are a few useful wMSO formulæ: To allow any label in a finite
set B ⊆ A:

PB(x)
def
=
∨
a∈B

Pa(x)

PB(X)
def
= ∀x.x ∈ X ⊃ PB(x) .

To check whether we are at the root or a leaf or similar constraints:

root(x)
def
= ¬∃y.y ↓ x

leaf(x)
def
= ¬∃y.x ↓ y

internal(x)
def
= ¬leaf(x)

children(x,X)
def
= ∀y.y ∈ X ≡ x ↓ y

x ↓0 y
def
= x ↓ y ∧ ¬∃z.z → y .
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To use the monadic transitive closure of a formula ψ(u, v) with u, v ∈ FV(ψ):
such a formula ψ(u, v) defines a binary relation over the model, and [TCu,v ψ(u, v)]
then defines the transitive reflexive closure of the relation:

x [TCu,v ψ(u, v)] y
def
= ∀X.(x ∈ X ∧ ∀uv.(u ∈ X ∧ ψ(u, v) ⊃ v ∈ X) ⊃ y ∈ X)

(3.10)
For example,

x ↓? y def
= x [TCu,v u ↓ v] y

x→? y
def
= x [TCu,v u→ v] y .

3.2.1 Linguistic Analyses in wMSO

See Rogers (1998) for a complete
analysis using wMSO. Monadic
second-order logic can also be
applied to queries in treebanks
(Kepser, 2004; Maryns and
Kepser, 2009).

Let us illustrate how we can work out a constituent-based analysis using wMSO.
Following the ideas on grammaticality expressed at the beginning of the chapter,
we define large conjunctions of formulæ expressing various linguistic constraints.

Basic Grammatical Labels. Let us fix two disjoint finite sets N of grammatical
categories and Θ of part-of-speech tags and distinguish a particular category S ∈
N standing for sentences, and let N ]Θ ⊆ A (we do not assume A to be finite).

Define the formula

labelsN,Θ
def
= ∀x.root(x) ⊃ PS(x) , (3.11)

which forces the root label to be S;

∧ ∀x.internal(x) ⊃
∨

a∈N]Θ

Pa(x) ∧
∧

b∈N]Θ\{a}

¬Pb(x) (3.12)

checks that every internal node has exactly one label from N ]Θ (plus potentially
others from A\(N ]Θ));

∧ ∀x.leaf(x) ⊃ ¬PN]Θ(x) (3.13)

forbids grammatical labels on leaves;

∧ ∀y.leaf(y) ⊃ ∃x.x ↓ y ∧ PΘ(x) (3.14)

expresses that leaves should have POS-labelled parents;

∧ ∀x.∃y0y1y2.x ↓? y0 ∧ y0 ↓ y1 ∧ y1 ↓ y2 ∧ leaf(y2) ⊃ PN (x) (3.15)
verifies that internal nodes at distance at least two from some leaf should have
labels drawn from N , and are thus not POS-labelled by (3.12), and thus cannot
have a leaf as a child by (3.13);

∧ ∀x.PΘ(x) ⊃ ¬∃yz.y 6= z ∧ x ↓ y ∧ x ↓ z (3.16)

discards trees where POS-labelled nodes have more than one child. The purpose
of labelsN,Θ is to restrict the possible models to trees with the particular shape we
use in constituent-based analyses.

Open Lexicon. Let us assume that some finite part of the lexicon is known, as
well as possible POS tags for each known word. One way to express this in an
open-ended manner is to define a finite set L ⊆ A disjoint from N and Θ, and a
relation pos ⊆ L×Θ. Then the formula

lexiconL,pos
def
= ∀x.

∧
`∈L

P`(x) ⊃

leaf(x) ∧
∧

`′∈L\{`}

¬P`′(x) ∧ ∀y.y ↓ x ⊃ Ppos(`)(y)


(3.17)
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makes sure that only leaves can be labelled by words, and that when a word is
known (i.e. if it appears in L), it should have one of its allowed POS tag as imme-
diate parent. If the current POS tagging information of our lexicon is incomplete,
then this particular constraint will not be satisfied. For an unknown word however,
any POS tag can be used.

Context-Free Constraints. It is of course easy to enforce some local constraints
in trees. For instance, assume we are given a CFG G = 〈N,Θ, P, S〉 describing the
“usual” local constraints between grammatical categories and POS tags. Assume ε
belongs to A; then the formula

grammarG
def
= ∀x.(Pε(x) ⊃ ¬PN]Θ]L(x)) ∧

∧
B∈N

PB(x) ⊃
∨

B→β∈P
∃y.x ↓0 y ∧ ruleβ(y)

(3.18)

forces the tree to comply with the rules of the grammar, where

ruleXβ(x)
def
= PX(x) ∧ ∃y.x→ y ∧ ruleβ(y) (for β 6= ε and X ∈ N ]Θ)

ruleX(x)
def
= PX(x) ∧ ¬∃y.x→ y (for X ∈ N ]Θ)

ruleε(x)
def
= Pε(x) ∧ leaf(x) .

Again, the idea is to provide a rather permissive set of local constraints, and to be
able to spot the cases where these constraints are not satisfied.

Non-Local Dependencies. Implementing local constraints as provided by a CFG
is however far from ideal. A much more interesting approach would be to take
advantage of the ability to use long-distance constraints, and to model subcate-
gorisation frames and modifiers.

The following examples also show that some of the typical features used for
training statistical models can be formally expressed using wMSO. This means that
treebank annotations can be computed very efficiently once a tree automaton has
been computed for the wMSO formulæ, in time linear in the size of the treebank.

Head Percolation. The first step is to find which child is the head among its
siblings; several heuristics have been developed to this end, and a simple way to
describe such heuristics is to use a head percolation function h : N → {l, r}×(N]
Θ)∗ that describes for a given parent label A a list of potential labels X1, . . . , Xn

in N ] Θ in order of priority and a direction d ∈ {l, r} standing for “leftmost” or
“rightmost”: such a value means that the leftmost (resp. rightmost) occurrence of
X1 is the head, this unless X1 is not among the children, in which case we should
try X2 and so on, and if Xn also fails simply choose the leftmost (resp. rightmost)
child (see e.g. Collins, 1999, Appendix A). For instance, the function

h(S) = (r,TO IN VP S SBAR · · · )
h(VP) = (l,VBD VBN VBZ VB VBG VP · · · )
h(NP) = (r,NN NNP NNS NNPS JJR CD · · · )
h(PP) = (l, IN TO VBG VBN · · · )

would result in the correct head annotations in Figure 5.1.
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Given such a head percolation function h, we can express the fact that a given
node is a head:

head(x)
def
= leaf(x) ∨

∨
B∈N
∃yY.y ↓ x ∧ children(y, Y ) ∧ PB(y) ∧ headh(B)(x, Y )

(3.19)

headd,Xβ(x, Y )
def
= ¬priorityd,X(x, Y ) ⊃ (headd,β(x, Y ) ∧ ¬PX(Y ))

headl,ε(x, Y )
def
= ∀y.y ∈ Y ⊃ x→? y

headr,ε(x, Y )
def
= ∀y.y ∈ Y ⊃ y →? x

priorityl,X(x, Y )
def
= PX(x) ∧ ∀y.y ∈ Y ∧ y →? x ⊃ ¬PX(y)

priorityr,X(x, Y )
def
= PX(x) ∧ ∀y.y ∈ Y ∧ x→? y ⊃ ¬PX(y) .

where β is a sequence in (N ]Θ)∗ and X a symbol in N ]Θ.

S
[>,hurled ,VBD]

NP
[S,he,PRP]

PRP
[NP,he,PRP]

He

VP
[S,hurled ,VBD]

VP
[VP,hurled ,VBD]

VBD
[VP,hurled ,VBD]

hurled

NP
[VP,ball ,NN]

DT
[NP,the,DT]

the

NN
[NP,ball ,NN]

ball

PP
[VP,into,IN]

IN
[VP,into,IN]

into

NP
[PP,basket ,NN]

DT
[NP,the,DT]

the

NN
[NP,basket ,NN]

basket

Figure 3.1: A derivation tree refined with lexical and parent information.

Lexicalisation. Using head information, we can also recover lexicalisation in-
formation:

lexicalise(x, y)
def
= leaf(y) ∧ x [TCu,v u ↓ v ∧ head(v)] y . (3.20)

This formula recovers the lexical information in Figure 5.1.

Exercise 3.1. Propose (∗)wMSO formulæ to recover the parent and lexical POS in-
formation in constituent trees, as illustrated in Figure 5.1.

Modifiers. Here is a first use of wMSO to extract information about a proposed
constituent tree: try to find which word is modified by another word. For instance,
for an adverb we could write something like

modifyRB(x, y)
def
= ∃x′y′z.z ↓ x ∧ PRB(z) ∧ lexicalise(x′, x) ∧ y′ ↓ x′

∧ ¬lexicalise(y′, x) ∧ lexicalise(y′, y) (3.21)

that finds a maximal head x′ and the lexical projection of its parent y′. This for-
mula finds for instance that really modifies likes in Figure 3.2.

Exercise 3.2. Modify (∗)(3.21) to make sure that any leaf with a parent tagged by
the POS RB modifies either a verb or an adjective.

Exercise 3.3. Consider (∗∗)the ε node in Figure 3.2: modify (3.20) to recover that
who lexicalises the bottommost NP node.
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S

WhNP

WP

who

S

VBZ

does

S

NP

NNP

Bill

VP

VB

think

S

NP

NNP

Bill

VP

RB

really

VP

VBZ

likes

NP

ε

Figure 3.2: Derivation tree for Who does Bill think Bill really likes?

3.2.2 MSO on Finite Binary Trees

See (Doner, 1970; Thatcher and
Wright, 1968; Rabin, 1969;

Meyer, 1975) for classical results
on wS2S, and more recently

(Rogers, 1996, 2003) for
linguistic applications.

The classical logics for trees do not use the vocabulary of tree structures M,
but rather that of binary structures 〈dom(t), ↓0, ↓1, (Pa)a∈A〉. The weak monadic
second-order logic over this vocabulary is called the weak monadic second-order
logic of two successors (wS2S); it is to the weak monadic theory of the infinite
labelled binary trees. The semantics of wS2S should be clear.

The interest of considering wS2S at this point is that it is well-known to have a
decidable satisfiability problem, and that for any wS2S sentence ψ one can con-
struct a tree automaton Aψ—with tower(|ψ|) as size—that recognises all the finite
models of ψ. More precisely, when working with finite binary trees and closed
formulæ ψ,See Comon et al. (2007,

Section 3.3)—their construction
is easily extended to handle

labelled trees. Using automata
over infinite trees, these can also

be handled (Rabin, 1969; Weyer,
2002).

L(Aψ) = {t̄ ∈ T (Σ ] {{#}}) | t finite ∧ t |= ψ} . (3.22)

Now, it is easy to translate any wMSO sentence ψ into a wS2S sentence ψ′ s.t.
M |= ψ iff fcns(M) |= ψ′. This formula simply has to interpret the ↓ and →
relations into their binary encodings: let

ψ′
def
= ψ ∧ ∃x.¬(∃z.z ↓0 x ∨ z ↓1 x) ∧ ¬(∃y.x ↓1 y)

∧ ∀x.∀y.(P#(x) ∧ (x ↓0 y ∨ x ↓1 y)) ⊃ P#(y) ∨ root(x) (3.23)
where the conditions ensure the root does not have any right child, and where ψ
uses the macros

x ↓ y def
= ∃x0.x ↓0 x0 ∧ (x0 [TCu,v u ↓1 v] y) (3.24)

x→ y
def
= x ↓1 y (3.25)

∃x.ψ def
= ∃x.¬P#(x) ∧ ψ (3.26)

∃X.ψ def
= ∃X.(∀x.x ∈ X ⊃ ¬P#(x)) ∧ ψ (3.27)

The conclusion of this construction is

Theorem 3.2. Satisfiability and model-checking for wMSO are decidable.

Exercise 3.4 (ω Successors). Show(∗) that the weak second-order logic of ω succes-

sors (wSωS), i.e. with ↓i
def
= {(w,wi) | wi ∈ W} defined for every i ∈ N, has

decidable satisfiability and model-checking problems.
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3.3 Propositional Dynamic Logic

An alternative take on model-theoretic syntax is to employ modal logics on tree
structures. Several properties of modal logics make them interesting to this end:
their decision problems are usually considerably simpler, and they allow to express
rather naturally how to hop from one point of interest to another.

Propositional dynamic logic on
ordered trees was first defined by
Kracht (1995). The name of PDL
on trees is due to Afanasiev et al.
(2005); this logic is also known
as Regular XPath in the XML
processing community (Marx,
2005). Various fragments have
been considered through the
years; see for instance Blackburn
et al. (1993, 1996); Palm
(1999); Marx and de Rijke
(2005).

Propositional dynamic logic (Fischer and Ladner, 1979) is a two-sorted modal
logic where the basic relations can be composed using regular operations: on tree
structures M = 〈W, ↓,→, (Pa)a∈A〉, its terms follow the abstract syntax

π ::= ↓ | → | π−1 | π;π | π + π | π∗ | ϕ? (path formulæ)

ϕ ::= a | > | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ (node formulæ)

where a ranges over A.
The semantics of a node formula on a tree structure M = 〈W, ↓,→, (Pa)a∈A〉

is a set of tree nodes JϕK = {w ∈ W | M, w |= ϕ}, while the semantics of a path
formula is a binary relation over W :

JaK def
= {w ∈W | Pa(w)} J↓K def

= ↓

J>K def
= W J→K def

=→

J¬ϕK def
= W\JϕK Jπ−1K def

= JπK−1

Jϕ1 ∨ ϕ2K
def
= Jϕ1K ∪ Jϕ2K Jπ1;π2K

def
= Jπ1K # Jπ2K

J〈π〉ϕK def
= JπK−1(JϕK) Jπ1 + π2K

def
= Jπ1K ∪ Jπ2K

Jπ∗K def
= JπK?

Jϕ?K def
= IdJϕK .

Finally, a tree M is a model for a PDL formula ϕ if its root is in JϕK, written
M, root |= ϕ.

We define the classical dual operators

⊥ def
= ¬> ϕ1 ∧ ϕ2

def
= ¬(¬ϕ1 ∨ ¬ϕ2) [π]ϕ

def
= ¬〈π〉¬ϕ . (3.28)

We also define

↑ def
= ↓−1 ← def

=→−1

root
def
= [↑]⊥ leaf

def
= [↓]⊥

first
def
= [←]⊥ last

def
= [→]⊥ .

Exercise 3.5 (Converses). (∗)Prove the following equivalences:

(π1;π2)−1 ≡ π−1
2 ;π−1

1 (3.29)

(π1 + π2)−1 ≡ π−1
1 + π−1

2 (3.30)

(π∗)−1 ≡ (π−1)∗ (3.31)

(ϕ?)−1 ≡ ϕ? . (3.32)

Exercise 3.6 (Reductions). (∗)Prove the following equivalences:

〈π1;π2〉ϕ ≡ 〈π1〉〈π2〉ϕ (3.33)

〈π1 + π2〉ϕ ≡ (〈π1〉ϕ) ∨ (〈π2〉ϕ) (3.34)

〈π∗〉ϕ ≡ ϕ ∨ 〈π;π∗〉ϕ (3.35)

〈ϕ1?〉ϕ2 ≡ ϕ1 ∧ ϕ2 . (3.36)
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3.3.1 Model-Checking

As with MSO, the main
application of PDL on trees is to

query treebanks (see e.g. Lai and
Bird, 2010).

The model-checking problem for PDL is rather easy to decide. Given a model
M = 〈W, ↓,→, (Pp)p∈A〉, we can compute inductively the satisfaction sets and
relations using standard algorithms. This is a P algorithm.

3.3.2 Satisfiability

See also (Blackburn et al., 2001,
Section 6.8) for a reduction from

a tiling problem and (Harel
et al., 2000, Chapter 8) for a

reduction from alternating Turing
machines.

Unlike the model-checking problem, the satisfiability problem for PDL is rather
demanding: it is EXPTIME-complete.

Theorem 3.3 (Fischer and Ladner, 1979). Satisfiability for PDL is EXPTIME-hard.

As with wMSO, it is more convenient to work on binary trees t of the form
〈dom(t), ↓0, ↓1, (Pa)a∈A]{0,1}〉 that encode our tree structures. Compared with the
wMSO case, we add two atomic predicates 0 and 1 that hold on left and right
children respectively. The syntax of PDL over such models simply replaces ↓ and
→ by ↓0 and ↓1; as with wMSO in Section 3.2.2 we can interpret these relations in
PDL by

↓ def
= ↓0; ↓∗1 → def

= ↓1 (3.37)

and translate any PDL formula ϕ into a formula

ϕ′
def
= ϕ ∧ ([↑∗; ↓∗; ↓0]0 ∧ ¬1) ∧ ([↑∗; ↓∗; ↓1]1 ∧ ¬0) ∧ [↑∗; root?; ↓1]⊥ (3.38)

that checks that ϕ holds, that the 0 and 1 labels are correct, and verifies M, w |= ϕ
iff fcns(M), fcns(w) |= ϕ′. The conditions in (3.38) ensure that the tree we are
considering is the image of some tree structure by fcns: we first go back to the
root by the path ↑∗; root?, and then verify that the root does not have a right child.

Normal Form. Let us write

↑0
def
= ↓−1

0 ↑1
def
=↓−1

1 ;

then using the equivalences of Exercise 3.5 we can reason on PDL with a restricted
path syntax

α ::= ↓0 | ↑0 | ↓1 | ↑1 (atomic relations)

π ::= α | π;π | π + π | π∗ | ϕ? (path formulæ)

and using the dualities of (3.28), we can restrict node formulæ to be of form

ϕ ::= a | ¬a | > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈π〉ϕ | [π]ϕ . (node formulæ)

Lemma 3.4. For any PDL formula ϕ, we can construct an equivalent formula ϕ′ in
normal form with |ϕ′| = O(|ϕ|).

Proof sketch. The normal form is obtained by “pushing” negations and converses
as far towards the leaves as possible, and can result in the worst-case in doubling
the size of ϕ due to the extra ¬ and −1 at the leaves.
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Fisher-Ladner Closure

The equivalences found in Exercise 3.6 and their duals allow to simplify PDL for-
mulæ into a reduced normal form we will soon see, which is a form of disjunctive
normal form with atomic propositions and atomic modalities for literals. In order
to obtain algorithmic complexity results, it will be important to be able to bound
the number of possible such literals, which we do now.

The Fisher-Ladner closure of a PDL formula in normal form ϕ is the smallest
set S of formulæ in normal form s.t.

1. ϕ ∈ S,

2. if ϕ1 ∨ ϕ2 ∈ S or ϕ1 ∧ ϕ2 ∈ S then ϕ1 ∈ S and ϕ2 ∈ S,

3. if 〈π〉ϕ′ ∈ S or [π]ϕ′ ∈ S then ϕ′ ∈ S,

4. if 〈π1;π2〉ϕ′ ∈ S then 〈π1〉〈π2〉ϕ′ ∈ S,

5. if [π1;π2]ϕ′ ∈ S then [π1][π2]ϕ′ ∈ S,

6. if 〈π1 + π2〉ϕ′ ∈ S then 〈π1〉ϕ′ ∈ S and 〈π2〉ϕ′ ∈ S,

7. if [π1 + π2]ϕ′ ∈ S then [π1]ϕ′ ∈ S and [π2]ϕ′ ∈ S,

8. if 〈π∗〉ϕ′ ∈ S then 〈π〉〈π∗〉ϕ′ ∈ S,

9. if [π∗]ϕ′ ∈ S then [π][π∗]ϕ′ ∈ S,

10. if 〈ϕ1?〉ϕ2 ∈ S or [ϕ1?]ϕ2 ∈ S then ϕ1 ∈ S.

We write FL(ϕ) for the Fisher-Ladner closure of ϕ.

Lemma 3.5. Let ϕ be a PDL formula in normal form. Its Fisher-Ladner closure is of
size |FL(ϕ)| ≤ |ϕ|.

�

;

;

?

ϕ1

∗

π1

π2

ϕ2

[ϕ1?;π∗
1 ;π2]ϕ2

ϕ2

[π2]ϕ2

[π∗
1 ][π2]ϕ2

[π1][π∗
1 ][π2]ϕ2

[ϕ1?;π∗
1 ][π2]ϕ2

[ϕ1?][π∗
1 ][π2]ϕ2

ϕ1

1
5

3

3

3

9

3

3

5

3
10

Figure 3.3: The surjection σ from positions in ϕ
def
= [ϕ1?;π∗1;π2]ϕ2 to FL(ϕ)

(dashed), and the rules used to construct FL(ϕ) (dotted).

Proof. We construct a surjection σ between positions p in the term ϕ and the for-
mulæ in S:

• for positions p spanning a node subformula span(p) = ϕ1, we can map to ϕ1

(this corresponds to cases 1—3 and 10 on subformulæ of ϕ′);
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• for positions p spanning a path subformula span(p) = π, we find the closest
ancestor spanning a node subformula (thus of form 〈π′〉ϕ1 or [π′]ϕ1). If π =
π′ we map p to the same 〈π′〉ϕ1 or [π′]ϕ1. Otherwise we consider the parent
position p′ of p, which is mapped to some formula σ(p′), and distinguish
several cases:

– for σ(p′) = 〈π1;π2〉ϕ2 we map p to 〈π1〉〈π2〉ϕ2 if span(p) = π1 and to
〈π2〉ϕ2 if span(p) = π2 (this matches case 4 and the further application
of 3);

– for σ(p′) = [π1;π2]ϕ2 we map p to [π1][π2]ϕ2 if span(p) = π1 and to
[π2]ϕ2 if span(p) = π2 (this matches case 5 and the further application
of 3);

– for σ(p′) = 〈π1 + π2〉ϕ2 and span(p) = πi with i ∈ {1, 2}, we map p to
〈πi〉ϕ2 (this matches case 6);

– for σ(p′) = [π1 + π2]ϕ and span(p) = πi with i ∈ {1, 2}, we map p to
[πi]ϕ2 (this matches case 7);

– for σ(p′) = 〈π∗〉ϕ2, span(p) = π and we map p to 〈π〉〈π∗〉ϕ2 (this
matches case 8);

– for σ(p′) = [π∗]ϕ2, span(p) = π and we map p to [π][π∗]ϕ2 (this matches
case 9).

The function σ we just defined is indeed surjective: we have covered every formula
produced by every rule. Figure 3.3 presents an example term and its mapping.

Reduced Formulæ

Reduced Normal Form. We try now to reduce formulæ into a form where any
modal subformula is under the scope of some atomic modality 〈α〉 or [α]. Given a
formula ϕ in normal form, this is obtained by using the equivalences of Exercise 3.6
and their duals, and by putting the formula into disjunctive normal form, i.e.

ϕ ≡
∨
i

∧
j

χi,j (3.39)

where each χi,j is of form

χ ::= a | ¬a | 〈α〉ϕ′ | [α]ϕ′ . (reduced formulæ)

Observe that all the equivalences we used can be found among the rules of the
Fisher-Ladner closure of ϕ:

Lemma 3.6. Given a PDL formula ϕ in normal form, we can construct an equivalent
formula

∨
i

∧
j χi,j where each χi,j is a reduced formula in FL(ϕ).

Two-Way Alternating Tree Automata

The presentation follows mostly
Calvanese et al. (2009).

We finally turn to the construction of a tree automaton that recognises the models
of a normal form formula ϕ. To simplify matters, we use a powerful model for this
automaton: a two-way alternating tree automaton (2ATA) over finite ranked
trees.



Logic and Linguistic Modelling 33

Definition 3.7. A two-way alternating tree automaton (2ATA) is a tuple A =
〈Q,Σ, qi, F, δ〉whereQ is a finite set of states, Σ is a ranked alphabet with maximal
rank k, qi ∈ Q is the initial state, and δ is a transition function from pairs of states
and symbols (q, a) in Q×Σ to positive Boolean formulæ f in B+({−1, . . . , k} ×Q),
defined by the abstract syntax

f ::= (d, q) | f ∨ f | f ∧ f | > | ⊥ ,

where d ranges over {−1, . . . , k} and q over Q. For a set J ⊆ {−1, . . . , k} ×Q and
a formula f , we say that J satisfies f and write J |= f if assigning > to elements
of J and ⊥ to those in {−1, . . . , k} × Q\J makes f true. A 2ATA is able to send
copies of itself to a parent node (using the direction −1), to the same node (using
direction 0), or to a child (using directions in {1, . . . , k}).

Given a labelled ranked ordered tree t over Σ, a run of A is a tree ρ labelled by
dom(t)×Q satisfying

1. ε is in dom(ρ) with ρ(ε) = (ε, qi),

2. if w is in dom(ρ), ρ(w) = (u, q) and δ(q, t(u)) = f , then there exists J ⊆
{−1, . . . , k} × Q of form J = {(d0, q0), . . . , (dn, qn)} s.t. J |= f and for all
0 ≤ i ≤ n we have

wi ∈ dom(ρ) ρ(wi) = (u′i, qi) u′i =


u(di − 1) if di > 0

u if di = 0

u′ where u = u′j otherwise

with each u′i ∈ dom(t).

A tree is accepted if there exists a run for it.

Theorem 3.8 (Vardi, 1998). Given a 2ATA A = 〈Q,Σ, qi, F, δ〉, deciding the empti-
ness of L(A) can be done in deterministic time |Σ| · 2O(k|Q|3).

Automaton of a Formula. Let ϕ be a formula in normal form. We want to
construct a 2ATA Aϕ = 〈Q,Σ, qi, δ〉 that recognises exactly the closed models of ϕ,
so that we can test the satisfiability of ϕ by Theorem 3.8. We assume wlog. that
A ⊆ Sub(ϕ). We define

Q
def
= FL(ϕ) ] {qi, qϕ, q#}

Σ
def
= {#(0),#(2)} ∪ {a(2) | a ⊆ A ] {0, 1}} .

The transitions of Aϕ are based on formula reductions. Let ϕ′ be a formula in
FL(ϕ) which is not reduced: then we can find an equivalent formula

∨
i

∧
j χi,j

where each χi,j is reduced. We define accordingly

δ(ϕ′, a)
def
=
∨
i

∧
j

(0, χi,j)
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for all such ϕ′ and all a ⊆ A, thereby staying in place and checking the various
χi,j . For a reduced formula χ in FL(ϕ), we set for all a ⊆ A ] {0, 1}

δ(p, a)
def
=

{
> if p ∈ a
⊥ otherwise

δ(¬p, a)
def
=

{
⊥ if p ∈ a
> otherwise

δ(〈↓0〉ϕ′, a)
def
= (1, ϕ′) δ([↓0]ϕ′, a)

def
= (1, ϕ′) ∨ (1, q#)

δ(〈↓1〉ϕ′, a)
def
= (2, ϕ′) δ([↓1]ϕ′, a)

def
= (2, ϕ′) ∨ (2, q#)

δ(〈↑0〉ϕ′, a)
def
= (−1, ϕ′) ∧ (0, 0) δ([↑0]ϕ′, a)

def
= ((−1, ϕ′) ∧ (0, 0)) ∨ (−1, q#) ∨ (0, 1)

δ(〈↑1〉ϕ′, a)
def
= (−1, ϕ′) ∧ (0, 1) δ([↑1]ϕ′, a)

def
= ((−1, ϕ′) ∧ (0, 1)) ∨ (−1, q#) ∨ (0, 0)

where the subformulæ 0 and 1 are used to check that the node we are coming from
was a left or a right son and q# checks that the node label is #:

δ(q#,#)
def
= > δ(q#, a)

def
= ⊥ .

The initial state qi checks that the root is labelled # and has ϕ for left son and
another # for right son:

δ(qi,#)
def
= (1, qϕ) ∧ (2, q#) δ(qi, a)

def
= ⊥

δ(qϕ, a)
def
= δ(ϕ, a) ∧ (2, q#) .

For any state q beside qi and q#

δ(q,#)
def
= ⊥ .

Corollary 3.9. Satisfiability of PDL can be decided in EXPTIME.

Proof sketch. Given a PDL formula ϕ, by Lemma 3.4 construct an equivalent for-
mula in normal form ϕ′ with |ϕ′| = O(|ϕ|). We then construct Aϕ′ with O(|ϕ|)
states by Lemma 3.5 and an alphabet of size at most 2O(|ϕ|), s.t. t̄ is accepted by
Aϕ′ iff t, root |= ϕ. By Theorem 3.8 we can decide the existence of such a tree
t̄ in time 2O(|ϕ|3). The proof carries to satisfiability on tree structures rather than
binary trees.

3.3.3 Expressiveness

Monadic Transitive Closure. PDL can be expressed in FO[TC1]See ten Cate and Segoufin
(2010).

the first-order
logic with monadic transitive closure. The translation can be expressed by in-
duction, yielding formulæ STx(ϕ) with one free variable x for node formulæ and
STx,y(π) with two free variables for path formulæ, such that M |=x 7→w STx(ϕ) iff
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w ∈ JϕKM and M |=x 7→u,y 7→v STx,y(π) iff u JπKM v:

STx(a)
def
= Pa(x)

STx(>)
def
= (x = x)

STx(¬ϕ)
def
= ¬STx(ϕ)

STx(ϕ1 ∨ ϕ2)
def
= STx(ϕ1) ∨ STx(ϕ2)

STx(〈π〉ϕ)
def
= ∃y.STx,y(π) ∧ STy(ϕ)

STx,y(↓)
def
= x ↓ y

STx,y(→)
def
= x→ y

STx,y(π
−1)

def
= STy,x(π)

STx,y(π1;π2)
def
= ∃z.STx,z(π1) ∧ STz,y(π2)

STx,y(π1 + π2)
def
= STx,y(π1) ∨ STx,y(π2)

STx,y(π
∗)

def
= [TCu,v STu,v(π)](x, y)

STx,y(ϕ?)
def
= (x = y) ∧ STx(ϕ) .

It is known that wMSO is strictly more expressive than FO[TC1] (ten Cate and
Segoufin, 2010, Theorem 2). Ten Cate and Segoufin also provide an extension of
PDL with a “within” modality that extracts the subtree at the current node; they
show that this extension is exactly as expressive as FO[TC1]. It is open whether
FO[TC1] is strictly more expressive than PDL without this extension.

Exercise 3.7 (Within modality). Let M = 〈W, ↓,→, (Pa)a∈A〉 be a tree structure
and p be a point in M. We define the substructure at p, noted M � p, as the
substructure induced by W � p

def
= {w ∈ W | p ↓? w}. The semantics of a PDLW

formula Wϕ is defined by M, w |= Wϕ iff M � w,w |= ϕ.
Propose (∗∗)a translation of PDLW formulæ into FO[TC1].

Conditional PDL. A particular fragment of PDL called conditional PDL (cPDL)
is equivalent to FO[↓?,→?]: See Marx (2005).

π ::= α | α∗ | π;π | π + π | (α;ϕ?)∗ | ϕ? (conditional paths)

The translation to FO[↓?,→?] is as above, with

STx,y(↓)
def
= x ↓? y ∧ x 6= y ∧ ∀z.x ↓? z ∧ x 6= z ⊃ y ↓? z

STx,y(↓∗)
def
= x ↓? y

STx,y((α;ϕ?)∗)
def
= STx,y(α

∗) ∧ ∀z.(STx,z(α
∗) ∧ STz,y(α

∗)) ⊃ STz(ϕ) .

An example of a PDL formula that is not first-order definable, and thus not
definable in cPDL, is [(↓; ↓)∗]a, which ensures that all the nodes situated at an even
distance from the root are labelled by a.

Exercise 3.8. Express (∗)the formulæ (3.12)–(3.21) in cPDL.
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3.4 Parsing as Intersection

TheSee Boral and Schmitz (2013) for
the complexity of PDL parsing
when the shape and labels of

trees is constrained by a CFG.

parsing as intersection framework readily applies to model-theoretic syntax.
Indeed, in both the wMSO and the PDL cases, given a formula ϕ, we can effectively
construct a non-deterministic tree automaton Aϕ that recognises exactly the set of
closed trees that satisfy ϕ. Given a sentence w to parse, it remains to intersect this
tree language L(Aϕ) with the set of closed binary trees with w as yield to recover
the set of parses of w:

Exercise 3.9. Fix(∗) a finite word w and a finite alphabet Γ of internal nodes. Define
a non-deterministic tree automaton that recognises the set of closed binary trees
with w as yield; more formally, it should recognise the tree language {t̄ ∈ T (Σ ]
{#}) | yield(t) = w}.



Chapter 4

Mildly Context-Sensitive Syntax

Recall that context-sensitive languages (aka type-1 languages) are defined by
phrase structure grammars with rules of form λAρ → λαρ with A in N , λ, ρ in
V ∗, and α in V +. Their expressive power is equivalent to that of linear bounded
automata (LBA), i.e. Turing machines working in linear space. Such grammars are
not very useful from a computational viewpoint: membership is PSPACE-complete,
and emptiness is undecidable.

Expressiveness. Still, for the purposes of constituent analysis of syntax, one
would like to use string- and tree-generating formalisms with greater expressive
power than context-free grammars. The rationale is twofold: See Pullum (1986).

• some natural language constructs are not context-free, the Swiss-German
account by Shieber (1985) being the best known example. Such fragments
typically involve so-called limited cross-serial dependencies, as in the lan-
guages {anbmcndm | n,m ≥ 0} or {ww | w ∈ {a, b}∗}—see the next para-
graph;

• the class of regular tree languages is not rich enough to account for the
desired linguistic analyses (e.g. Kroch and Santorini, 1991, for Dutch).

This second argument is actually the strongest: the class of tree structures and
how they are combined—which ideally should relate to how semantics compose—
in context-free grammars are not satisfactory from a linguistic modelling point of
view.

Cross-Serial Dependencies in Swiss-German. One of the first widely accepted
instance of a syntactic phenomenon in a natural language that exceeds the expres-
sive power of context-free grammar is due to Shieber (1985). The typical sentence
is as follows:
Jan säit das mer d’chind em Hans es huus haend wele laa hälfe aastriiche
Jan says that we the children-ACC Hans-DAT the house-ACC have wanted let help paint
‘Jan says that we have wanted to let the children help Hans paint the house’

In this sentence, one should distinguish between

a: noun phrases with accusative marking, like d’chind,

b: noun phrases with dative marking, like em Hans,

c: verbs with an accusative argument, like laa, and

37
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d: verbs with a dative argument, like hälfe.

Observe that the sentence above is of the form xabycdz where x stands for Jan säit
das mer, y for es huus haend wele, and z for aastriche. The core of the argument
is that this example is productive: for all k, there exist grammatical sentences of
the form xambnycodpz exist with m,n, o, p ≥ k, but those are constrained by the
dependencies between a’s and c’s on the one hand and b’s and d’s on the other
hand: one must have m = o and n = p for the sentence to be grammatically
correct. But then that means that any grammar for Swiss-German has a language
whose intersection with xa∗b∗yc∗d∗z is {xambnycmdn | m,n ≥ 0}, which is not
context-free: Swiss German as a whole is therefore not context-free either.

Mildly-Context Sensitive Syntax. Based on his experience with tree-adjoining
grammars (TAGs) and weakly equivalent formalisms (head grammars, a version
of combinatory categorial grammars, and linear indexed grammars; see Joshi
et al., 1991), Joshi (1985) proposed an informal definition of which properties a
class of formal languages should have for linguistic applications: mildly context-
sensitive languages (MCSLs) were ‘roughly’ defined as the extensions of context-
free languages that accommodate

1. limited cross-serial dependencies, while preserving

2. constant growth—a requisite nowadays replaced by semilinearity, which
requires the Parikh image of the language to be a semilinear subset of N|Σ|
(Parikh, 1966), and

3. polynomial time recognition for a fixed grammar.

A possible formal definition for MCSLs is the class of languages generated by mul-
tiple context-free grammars (MCFGs, Seki et al., 1991), or equivalently linear
context-free rewrite systems (LCFRSs, Weir, 1992), multi-component tree ad-
joining grammars (MCTAGs), and quite a few more.

We will however concentrate on two strict subclasses: tree adjoining languages
(TALs, Section 4.1) and well-nested MCSLs (wnMCSLs, Section 4.2); Figure 4.1 il-
lustrates the relationship between these classes. As in Section 2.1.1 our main focus
will be on the corresponding tree languages, representing linguistic constituency
analyses and sentence composition.

4.1 Tree Adjoining Grammars

Tree-adjoining grammars are a restricted class of term rewrite systems (we will
see later that they are more precisely a subclass of the linear monadic context-free
tree grammars). They have first been defined by Joshi et al. (1975) and subse-
quently extended in various ways; see Joshi and Schabes (1997) for the ‘standard’
definitions.

Definition 4.1 (Tree Adjoining Grammars). A tree adjoining grammar (TAG) is
a tuple G = 〈N,Σ, Tα, Tβ, S〉 where N is a finite nonterminal alphabet, Σ a finite
terminal alphabet with N ∩ Σ = ∅, Tα and Tβ two finite sets of finite initial and
auxiliary trees, where Tα ∪ Tβ is called the set of elementary trees, and S in N a
start symbol.

Given the nonterminal alphabet N , define
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Context-free languages

Tree-adjoining languages
(TAG, HG, CCG, LIG, . . . )

Well-nested mildly context-sensitive languages
(MCFGwn, Macro`, CCFG, ACG(2,3), . . . )

Mildly context-sensitive languages
(MCFG, LCFRS, MCTAG, ACG(2,4),. . . )

Indexed languages (IG, Macro, . . . )

Context-sensitive languages

Figure 4.1: Hierarchies between context-free and full context-sensitive languages.

A↓

A

α

subst−−−→
A

α

A

A
β

A?

adj−−→

A
β

A

Figure 4.2: Schematics for the substitution and adjunction operations.

• N↓ def
= {A↓ | A ∈ N} the ranked alphabet of substitution labels, all with

arity 0,

• Nna def
= {Ana | A ∈ N} the unranked alphabet of null adjunction labels,

• N?
def
= {A? | A ∈ N ∪ Nna} the ranked alphabet of foot variables, all with

arity 0.

In order to work on ranked trees, we add positive arities to N and Nna and null
arities to Σ0. Then the set Tα ∪ Tβ of elementary trees is a set of trees of height at
least one. They always have a root labelled by a symbol in N ∪Nna, and we define
accordingly rl(t) of a tree t as its unranked root label modulo na: rl(t)

def
= A if there

exists m in N>0, t(ε) = A(m) or t(ε) = Ana(m). Then

• Tα ⊆ T (N ∪ N↓ ∪ Nna ∪ Σ ∪ {ε(0)}) is a finite set of finite trees α with
nonterminal or null adjunction symbols as internal node labels, and terminal
symbols or ε or substitution symbols as leaf labels;

• Tβ ⊆ T (N ∪ N↓ ∪ Nna ∪ Σ ∪ {ε(0)}, N?) trees β[A?] are defined similarly,
except for the additional condition that they should have exactly one leaf,
called the foot node, labelled by a variable A?, which has to match the root
label A = rl(β). The foot node A? acts as a hole, and the auxiliary tree is
basically a context.

The semantics of a TAG is that of a finite term rewrite system with rules (see
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S

NP↓ VP

VBZ

likes

NP↓

NP

NNP

Bill

NP

NNS

mushrooms

VP

RB

really

VPna
?

(α1) (α2) (α3) (β1)

Figure 4.3: A tree adjoining grammar.

Figure 4.2)

RG
def
= {A↓ → α | α ∈ Tα ∧ rl(α) = A} (substitution)

∪ {A(m)(x1, . . . , xm)→ β[A(m)(x1, . . . , xm)] | m ∈ N>0, A
(m) ∈ Nm, β[A?] ∈ Tβ}

∪ {A(m)(x1, . . . , xm)→ β[Ana(m)(x1, . . . , xm)] | m ∈ N>0, A
(m) ∈ Nm, β[Ana

? ] ∈ Tβ} .
(adjunction)

A derivation starts with an initial tree in Tα and applies rules from RG until no
substitution node is left:

LT (G)
def
= {h(t) | ∃t ∈ T (N ∪ Σ ∪ {ε(0)}), ∃α ∈ Tα, rl(α) = S ∧ α RG

==⇒? t}

is the tree language of G, where the na annotations are disposed of, thanks to an
alphabetic tree homomorphism h generated by h(Ana(m))

def
= A(m) for all Ana(m) of

Nna, and h(X)
def
= X for all X in N ∪ Σ ∪ {ε(0)}. The string language of G is

L(G)
def
= yield(LT (G))

the set of yields of all its trees.

Example 4.2. Figure 4.3 presents a tree adjoining grammar with

N = {S,NP,VP,VBZ,NNP,NNS,RB} ,
Σ = {likes,Bill ,mushrooms, really} ,
Tα = {α1, α2, α3} ,
Tβ = {β1} ,
S = S .

Its sole S-rooted initial tree is α1, on which one can substitute α2 or α3 in order to
get Bill likes mushrooms or mushrooms likes mushrooms; the adjunction of β1 on the
VP node of α1 also yields Bill really likes mushrooms (see Figure 4.4) or mushrooms
really really really likes Bill. In the TAG literature, a tree in T (N ∪Nna∪Σ∪{ε(0)})
obtained through the substitution and adjunction operations is called a derived
tree, while a derivation tree records how the rewrites took place (see Figure 4.4
for an example; children of an elementary tree are shown in addressing order, with
plain lines for substitutions and dashed lines for adjunctions).

Example 4.3 (Copy Language). The copy language Lcopy
def
= {ww | w ∈ {a, b}∗}

is generated by the TAG of Figure 4.5 with N = {S}, Σ = {a, b}, Tα = {αε}, and
Tβ = {βa, βb}.

Exercise 4.1. Give(∗) a TAG for the language {anbmcndm | n,m ≥ 0}.
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S

NP

NNP

Bill

VP

RB

really

VP

VBZ

likes

NP

NNS

mushrooms

α1[likes]

α2[Bill ] β1[really ] α3[mushrooms]

Figure 4.4: A derived tree and the corresponding derivation tree for the TAG of
Example 4.2.

S

ε

Sna

a S

Sna
? a

Sna

b S

Sna
? b

(αε) (βa) (βb)

Figure 4.5: A TAG for Lcopy.

4.1.1 Linguistic Analyses Using TAGs

Starting in particular with Kroch and Joshi (1985)’s work, the body of literature on
linguistic analyses using TAGs and their variants is quite large. As significant evi-
dence of the practical interest of TAGs, the XTAG project (XTAG Research Group,
2001) has published a large TAG for English, with a few more than 1,000 ele-
mentary unanchored trees. This particular variant of TAGs, a lexicalised, feature-
based TAG, uses finite feature structures and lexical anchors. We will briefly
survey the architecture of this grammar, and give a short account of it how treats
some long-distance dependencies in English.

Lexicalised Grammar

See Kuhlmann and Satta (2012)
and Maletti and Engelfriet
(2012) about lexicalising
tree-adjoining grammars and
context-free tree grammars.

A TAG is lexicalised if all its elementary trees have at least one terminal symbol
as a leaf. In linguistic modelling, it will actually have one distinguished termi-
nal symbol, called the anchor, plus possibly some other terminal symbols, called
coanchors. An anchor serves as head word for at least a part of the elementary
tree, as likes for α1 in Figure 4.3. Coanchors serve for particles, prepositions, etc.,
whose use is mandatory in the syntactic phenomenon modelled by the elementary
tree, as by for α5 in Figure 4.6.

Subcategorisation Frames. A more principled organisation of
the trees for subcategorisation
frames and their various
instantiations can be obtained
thanks to a meta grammar
describing the set of elementary
trees (see e.g. Crabbé, 2005).

Each elementary tree then instantiates a subcate-
gorisation frame for its anchor, i.e. specifications of the number and categories of
the arguments of a word. For instance, to like is a transitive verb taking a NP sub-
ject and a NP complement, as instantiated by α1 in Figure 4.3; similarly, to think
takes a clausal S complement, as instantiated by β2 in Figure 4.6. These first two
examples are canonical instantiations of the subcategorisation frames of to like
and to think, but there are other possible instantiations, for instance interrogative
with α4 or passive with α5 for to like.
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S

NP↓ VP

VB

think

Sna
?

Sna

WhNP↓ S

NP↓ VP

VBZ

likes

NP

ε

S

NP↓ VP

VBD

liked

PP

IN

by

NP↓

WhNP

WP

who

Sna

VBZ

does

Sna
?

VP

VBP

are

VPna
?

(β2) (α4) (α5)

(α6) (β3) (β4)

Figure 4.6: More elementary trees for the tree adjoining grammar of Example 4.2.

Example 4.4. Extend the TAG of Figure 4.3 with the trees of Figure 4.6. This new
grammar is now able to generate

mushrooms are liked by Bill
mushrooms think Bill likes Bill
who does Bill really think Bill really likes

In a feature-based grammar, both the obligatory adjunction of a single β3 on the
S node of α4, and that of a single β4 on the VP node of α5 are controlled through
the feature structures, and there is no over-generation from this simple grammar.

Syntactic Lexicon. In practice, elementary trees as the ones of Figure 4.3 are
not present as such in the XTAG grammar. It rather contains unanchored versions
of these trees, with a specific marker � for the anchor position. For instance, α2 in
Figure 4.3 would be stored as a context NP(NNP(�)) and enough information to
know that Bill anchors this tree.

See Schabes and Shieber (1994)
for an alternative definition of
adjunction, which yields more

natural derivation trees. Among
the possible interfaces to

semantics, let us mention the use
of feature structures (Gardent

and Kallmeyer, 2003; Kallmeyer
and Romero, 2004), or better a

mapping from the derivation
structures to logical ones

(de Groote, 2001). See also
(Kallmeyer and Kuhlmann,
2012) on the extraction of

dependency analyses from TAG
derivations.

The anchoring information is stored in a syntactic lexicon associating with each
lexical entry classes of trees that it anchors. The XTAG project has developed a
naming ontology for these classes based on subcategorisation frame and type of
construction (e.g. canonical, passive, . . . ).

Long-Distance Dependencies

Let us focus on α4 in Figure 4.6. The ‘move’ of the object NP argument of likes
into sentence-first position as a WhNP is called a long-distance dependency. Ob-
serve that a CFG analysis would be difficult to come with, as this ‘move’ crosses
through the VP subtree of think—see the dotted dependency in the derived tree of
Figure 4.7. We leave the question of syntax/semantics interfaces using derivation
trees to later chapters.
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S

WhNP

WP

who

S

VBZ

does

S

NP

NNP

Bill

VP

VB

think

S

NP

NNP

Bill

VP

RB

really

VP

VBZ

likes

NP

ε

α4[likes]

α6[who] β2[think ]

α2[Bill ] β3[does]

α2[Bill ] β1[really ]

Figure 4.7: Derived and derivation trees for Who does Bill think Bill really likes?
using the TAG of Figures 4.3 and 4.6.

4.1.2 Background: Context-Free Tree Grammars

Context-free tree languages are an extension of regular tree languages proposed
by Rounds (1970):

Definition 4.5 (Context-Free Tree Grammars). See Gécseg and Steinby (1997,
Section 15) and Comon et al.
(2007, Section 2.5). Regarding
string languages, the set
yield(L(G)) of CFTGs
characterises the class of indexed
languages (Aho, 1968; Fischer,
1968). Context-free tree
languages are also defined
through top-down pushdown
tree automata (Guessarian,
1983).

A context-free tree grammar
(CFTG) is a tuple G = 〈N,F , S,R〉 consisting of a finite ranked nonterminal alpha-
bet N , a finite ranked terminal alphabet F , an axiom S(0) in N0, and a finite set of
rules R of form A(n)(y1, . . . , yn)→ e with e ∈ T (N ∪ F ,Yn) where Y is an infinite
countable set of parameters. The language of G is defined as

L(G)
def
= {t ∈ T (F) | S(0) R

=⇒? t}.

Observe that a regular tree grammar is simply a CFTG where every nontermi-
nal is of arity 0.

Example 4.6 (Squares). The CFTG with rules

S → A(a, f(a, f(a, a)))

A(y1, y2)→ A(f(y1, y2), f(y2, f(a, a))) | y1

has {an2 | n ≥ 1} for yield(L(G)): Note that

n−1∑
i=0

2i+ 1 = n+ 2

n−1∑
i=0

i = n2 (4.1)

and that if S =⇒n A(t1, t2), then yield(t1) = an
2

and yield(t2) = a2n+1.

Example 4.7 (Non-primes). The CFTG with rules

S → A(f(a, a))

A(y)→ A(f(y, a)) | B(y)

B(y)→ f(y,B(y)) | f(y, y)
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has {an | n ≥ 2 is not a prime} for yield(L(G)): in a derivation

S =⇒ A(f(a, a)) =⇒m A(t) =⇒ B(t) =⇒n C[B(t)] =⇒ t′

with t′ in T (F), we have yield(t) = a2+m, yield(C[B(t)]) = a(2+m)n, and finally
yield(t′) = a(2+m)(n+1).

Exercise 4.2 (Powers of 2). Give(∗) a CFTG with yield(L(G)) = {anba2n | n ≥ 1}.

Exercise 4.3 (Normal Form). Show(∗) that any CFTG can be put in a normal form
where every rule in R is either of form A(n)(y1, . . . , yn) → a(n)(y1, . . . , yn) with a
in Fn or of form A(n)(y1, . . . , yn)→ e with e in T (N,Yn).

IO and OI Derivations

IfSee Fischer (1968). we see derivations in a CFTG as evaluation in a recursive program with non-
terminals are functions, a natural way to define the semantics of a nonterminal
A(n) is for them to take fully derived trees in T (F) as parameters, i.e. to use call-
by-value semantics, or equivalently inside-out (IO) evaluation of the rewrite rules,
i.e. evaluation starting from the innermost nonterminals. The dual possibility is to
consider outside-in (OI) evaluation, which corresponds to call-by-name semantics.
Formally, for a set of rewrite rules R,

IO
=⇒ def

=
R
=⇒ ∩ {(C[A(n)(t1, . . . , tn)], C[t]) | C ∈ C(N ∪ F), A(n) ∈ Nn, t1, . . . , tn ∈ T (F)}

OI
=⇒ def

=
R
=⇒ ∩ {(C[A(n)(t1, . . . , tn), tn+1, . . . , tn+m−1], C[t, tn+1, . . . , tn+m−1])

| m ≥ 1, C ∈ Cm(F), A(n) ∈ Nn, t1, . . . tn+m−1 ∈ T (N ∪ F)} .

Example 4.8 (IO vs. OI). Consider the CFTG with rules

S → A(B) A(y)→ f(y, y)

B → g(B) B → a .

Then OI derivations are all of form

S
OI
=⇒ A(B)

f
=⇒
OI

(B,B)
OI
=⇒n+m f(gm(a), gn(a))

for some m,n in N, whereas the IO derivations are all of form

S
IO
=⇒ A(B)

IO
=⇒n A(gn(a))

IO
=⇒ f(gn(a), gn(a)) .

The two modes of derivation give rise to two tree languages LOI(G) and LIO(G),
both obviously included in L(G).

Theorem 4.9 (Fischer, 1968). For any CFTG G, LIO(G) ⊆ LOI(G) = L(G).

As seen with Example 4.8, the case LIO(G) ( LOI(G) can occur. Theorem 4.9
shows that can assume OI derivations whenever it suits us; for instance, a basic
observation is that OI derivations on different subtrees are independent:

Lemma 4.10. Let G = 〈N,F , S,R〉. If t1, . . . , tn are trees in T (N∪F), C is a context
in Cn(F), and t = C[t1, . . . , tn]

R
=⇒m t′ for some m, then there exist m1, . . . ,mn in N

and t′1, . . . , t
′
n in T (N ∪F) s.t. ti

R
=⇒mi t′i, m = m1 + · · ·+mn, and t′ = C[t′1, . . . , t

′
n].
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Proof. Let us proceed by induction on m. For the base case, the lemma holds
immediately for m = 0 by choosing mi = 0 and t′i = ti for each 1 ≤ i ≤ n.

For the induction step, consider a derivation t = C[t1, . . . , tn]
R
=⇒m t′

R
=⇒ t′′. By

induction hypothesis, we find m1, . . . ,mn and t′1, . . . , t
′
n with ti

R
=⇒mi t′i, m =∑n

i=1mi, and t′ = C[t′1, . . . , t
′
n]

R
=⇒ t′′. Since C ∈ Cn(F) is a linear term devoid of

nonterminal symbols, the latter derivation step stems from a rewrite occurring in
some t′i subtree. Thus ti

R
=⇒mi+1 t′′i for some t′′i s.t. t′′ = C[t′1, . . . , t

′′
i , . . . , t

′
n].

In contrast with Theorem 4.9, if we consider the classes of tree languages that
can be described by CFTGs using IO and OI derivations, we obtain incomparable
classes (Fischer, 1968).

4.1.3 TAGs as Context-Free Tree Grammars

Tree adjoining grammars can be seen as a special case of context-free tree gram-
mars with a few restrictions on the form of its rewrite rules. This is a folklore re-
sult, which was stated (at least) by Mönnich (1997), Fujiyoshi and Kasai (2000),
and Kepser and Rogers (2011), and which is made even more obvious with the
rewriting-flavoured definition we gave for TAGs.

Translation from TAGs to CFTGs. Given a TAG G = 〈N,Σ, Tα, Tβ, S〉, we con-
struct a CFTG G′ = 〈N ′,F , S↓, R ∪R′〉 with

N ′
def
= N↓ ∪ {Ā(1) | A ∈ N}

F def
= Σ0 ∪ {ε(0)} ∪N>0

R
def
= {A↓ → τ(α) | α ∈ Tα ∧ rl(α) = A}
∪ {Ā(1)(y)→ τ(β)[Ā(1)(y)] | β[A?] ∈ Tβ}
∪ {Ā(1)(y)→ τ(β)[y] | β[Ana

? ] ∈ Tβ}

R′
def
= {Ā(1)(y)→ y | Ā(1) ∈ N̄}

where τ : T (∆∪{�})→ T (∆′∪{�}) for ∆
def
= N↓∪Nna

>0∪N ∪Σ0 and ∆′
def
= N ′∪F

is a tree homomorphism generated by

τ(A(m)(x1, . . . , xm))
def
= Ā(1)(A(m)(x1, . . . , xm))

τ(Ana(m))
def
= A(m)(x1, . . . , xm)

and the identity for the other cases (i.e. for symbols in N↓ ∪ Σ0 ∪ {ε,�}).

Example 4.11. Consider again the TAG of Figure 4.5 for the copy language: we
obtain G′ = 〈N ′,F , S↓, R ∪R′〉 with N ′ = {S↓, S̄}, F = {S, a, b, ε}, and rules

R = {S↓ → S̄(S(ε)), (corresponding to αε)

S̄(y)→ S(a, S̄(S(y, a))), (corresponding to βa)

S̄(y)→ S(b, S̄(S(y, b)))} (corresponding to βb)

R′ = {S̄(y)→ y} .

Proposition 4.12. LT (G) = L(G′).
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Proof of LT (G) ⊆ L(G′). We first prove by induction on the length of derivations:

Claim 4.12.1. For all trees t in T (∆), t
RG
==⇒? t′ implies t′ is in T (∆) and τ(t)

R
=⇒?

τ(t′).

Proof of Claim 4.12.1. That T (∆) is closed under RG is immediate. For the second
part of the claim, we only need to consider the case of a single derivation step:

For a substitution C[A↓] RG
==⇒ C[α] occurs iff α is in Tα with rl(α) = A, which

implies τ(C[A↓]) = τ(C)[τ(A↓)] = τ(C)[A↓] R
=⇒ τ(C)[τ(α)] = τ(C[α]).

For an adjunction C[A(m)(t1, . . . , tm)]
RG
==⇒ C[β[A(m)(t1, . . . , tm)]] occurs iff β[A?]

is in Tβ, implying

τ(C[A(m)(t1, . . . , tm)]) = τ(C)[Ā(1)(A(m)(τ(t1), . . . , τ(tm)))]

R
=⇒ τ(C)[τ(β)[Ā(1)(A(m)(τ(t1), . . . , τ(tm)))]]

= τ(C[β[A(m)(t1, . . . , tm)]]) .

The case of a tree β[Ana
? ] is similar. [4.12.1]

Claim 4.12.2. If t is a tree in T (Nna ∪ F), then there exists a derivation τ(t)
R′
=⇒?

h(t) in G′.

Proof of Claim 4.12.2. We proceed by induction on t:

For a tree rooted by A(m):

τ(A(m)(t1, . . . , tm)) = Ā(1)(A(m)(τ(t1), . . . , τ(tm)))

R′
=⇒ A(m)(τ(t1), . . . , τ(tm))

R′
=⇒? A(m)(h(t1), . . . , h(tm)) (by ind. hyp.)

= h(A(m)(t1, . . . , tm)) .

For a tree rooted by Ana(m):

τ(Ana(m)(t1, . . . , tm)) = A(m)(τ(t1), . . . , τ(tm))

R′
=⇒? A(m)(h(t1), . . . , h(tm)) (by ind. hyp.)

= h(Ana(m)(t1, . . . , tm)) .

The case of a tree rooted by a in Σ ∪ {ε} is trivial. [4.12.2]

For the main proof: Let t be a tree in LT (G); there exist t′ in T (Nna ∪ F) and

α in Tα with rl(α) = S s.t. α
RG
==⇒? t′ and t = h(t′). Then S↓ R

=⇒ τ(α)
R
=⇒? τ(t′)

according to Claim 4.12.1, and then τ(t′)
R′
=⇒? t removes all its nonterminals

according to Claim 4.12.2.

Proof of L(G′) ⊆ LT (G). We proceed similarly for the converse proof. We first need
to restrict ourselves to well-formed trees (and contexts): we define the set L ⊆
T (∆′ ∪ {�}) as the language of all trees and contexts where every node labelled
Ā(1) in N̄ has A(m) in N as the label of its daughter—L is defined formally in the
proof of the following claim:
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Claim 4.12.3. The homomorphism τ is a bijection from T (∆ ∪ {�}) to L.

Proof of Claim 4.12.3. It should be clear that τ is injective and has a range in-
cluded in L. We can define τ−1 as a deterministic top-down tree transduction
from T (∆′ ∪ {�}) into T (∆ ∪ {�}) with L for domain, thus proving surjectivity:
Let T = 〈{q} ∪ {qA | A ∈ N},∆′ ∪ {�},∆ ∪ {�}, ρ, {q}〉 with rules

ρ = {q(A(1)(x))→ qA(x) | Ā(1) ∈ N̄}
∪ {qA(A(m)(x1, . . . , xm))→ A(m)(q(x1), . . . , q(xm)) | A(m) ∈ N}

∪ {q(A(m)(x1, . . . , xm))→ Ana(m)(q(x1), . . . , q(xm)) | A(m) ∈ N}
∪ {q(a(m)(x1, . . . , xm)→ a(m)(q(x1), . . . , q(xm)) | a(m) ∈ N↓ ∪ Σ ∪ {ε(0),�(0)}} .

We see immediately that JT K(t) = τ−1(t) for all t in L. [4.12.3]

Thanks to Claim 4.12.3, we can use τ−1 in our proofs. We obtain claims mirror-
ing Claim 4.12.1 and Claim 4.12.2 using the same types of arguments:

Claim 4.12.4. For all trees t in L, t R
=⇒? t′ implies t′ in L and τ−1(t)

RG
==⇒? τ−1(t′).

Claim 4.12.5. If t is a tree in L ∩ T (N̄ ∪ F), t′ a tree in T (F), and t R′
=⇒? t′, then

h(τ−1(t′)) = τ−1(t).

For the main proof, consider a derivation S↓ R
=⇒? t with t ∈ T (F) of G. We can

reorder this derivation so that S↓ R
=⇒ τ(α)

R
=⇒? τ(t′)

R′
=⇒? t for some α in Tα with

rl(α) = S and t′ in L ∩ T (N̄ ∪ F) (i.e. t′ does not contain any symbol from N↓).

By Claim 4.12.4, α
RG
==⇒? t′ and by Claim 4.12.5 h(t′) = τ−1(t). Since t belongs to

T (F), τ−1(t) = t, which shows that t belongs to LT (G).

From CFTGs to TAGs. The converse direction is more involved, because TAGs as
usually defined have locality restrictions (in a sense comparable to that of CFGs
generating only local tree languages) caused by their label-based selection mech-
anisms for the substitution and adjunction rules. This prompted the definition of
non-strict definitions for TAGs, where root and foot labels of auxiliary trees do
not have to match, where tree selection for substitution and adjunction is made
through selection lists attached to each substitution node or adjunction site, and
where elementary trees can be reduced to a leaf or a foot node (which does not
make much sense for strict TAGs due to the selection mechanism); see Kepser and
Rogers (2011).

Putting these considerations aside, the essential fact to remember is that TAGs
are ‘almost’ equivalent to linear, monadic CFTGs as far as tree languages are
concerned, and exactly for string languages: a CFTG is called

• linear if, for every rule A(n)(y1, . . . , yn) → e in R, the right-hand side e is
linear,

• monadic if the maximal rank of a non-terminal is 1.

Exercise 4.4 (Non-Strict TAGs). Definition 4.1 (∗∗∗)is a strict definition of TAGs.

1. Read the definition of non-strict TAGs given by Kepser and Rogers (2011).
Show that strict and non-strict TAGs derive the same string languages.
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2. Give a non-strict TAG for the regular tree language

S((A(a,�))∗ · b, (A(�, a))∗ · b) . (4.2)

3. Can you give a strict TAG for it? There are more trivial tree languages lying
beyond the reach of strict TAGs: prove that the two following finite lan-
guages are not TAG tree languages:

{A(a), B(a)} (4.3)

{a} (4.4)

Note that allowing distinct foot and root labels in auxiliary trees is useless
for these examples.

4.2 Well-Nested MCSLs

The class of well-nested MCSLs is at the junction of different extensions of context-
free languages that still lie below full context-sensitive ones Figure 4.1. This pro-
vides characterisations both in terms ofSee (Kuhlmann, 2013) for

related definitions in terms of
dependency syntax. • well-nested multiple context-free grammars (or equivalently well-nested

linear context-free rewrite systems) (Kanazawa, 2009), and in terms of

• linear macro grammars (Seki and Kato, 2008), a subclass of the macro
grammars of Fischer (1968), also characterised via linear context-free tree
grammars (Rounds, 1970) or linear macro tree transducers (Engelfriet and
Vogler, 1985).

We concentrate on this second view.

4.2.1 Linear CFTGs

As already seen with tree adjoining grammars, the case of linear CFTGs is of
particular interest. Intuitively, the relevance of linearity for linguistic modelling is
that arguments in a subcategorisation frame have a linear behaviour: they should
appear exactly the stated number of times (by contrast, modifiers can be added
freely).

Linear CFTGs enjoy a number of properties. For instance, unlike the general
case, for linear CFTGs the distinction between IO and OI derivations is irrelevant:See Kepser and Mönnich (2006).

Proposition 4.13. Let G = 〈N,F , S,R〉 be a linear CFTG. Then LIO(G) = LOI(G).

Proof. Consider a derivation S R
=⇒? t in a linear CFTG. Thanks to Theorem 4.9, we

can assume this derivation to be OI. Let us pick the last non-IO step within this OI
derivation:

S
OI
=⇒? C[A(n)(e1, . . . , en)]
rA=⇒ C[eA{y1 ← e1, . . . , yn ← en}]
IO
=⇒? t

using some rule rA : A(n)(y1, . . . , yn) → eA: one of the ei must contain a nonter-
minal, or that step would have been IO. By Lemma 4.10, we can ‘pull’ all the inde-
pendent rewrites occurring after this

rA=⇒ so that they occur before the
rA=⇒ rewrite,
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so that the next rewrite occurs outside the context C in eA{y1 ← e1, . . . , yn ← en}.
Since everything after this

rA=⇒ is IO, this rewrite has to involve an innermost non-
terminal, thus a nonterminal that was not introduced in eA, but one that already
appeared in some ei: in the context C:

eA{y1 ← e1, . . . , yi ← C ′[B(m)(e′1, . . . , e
′
m)], . . . , yn ← en}

rB=⇒ eA{y1 ← e1, . . . , yi ← C ′[eB{x1 ← e′1, . . . , xm ← e′m}], . . . , yn ← en}

for some rule rB : B(m)(x1, . . . , xm) → eB; this is only correct thanks to linearity:
in general, there is no way to force the various copies of ei to use the same rewrite
for B(m). Now this sequence is easily swapped: in the context C:

A(n)(e1, . . . , C
′[B(m)(e′1, . . . , e

′
m)], . . . , en)

rB=⇒ A(n)(e1, . . . , C
′[eB{x1 ← e′1, . . . , xm ← e′m}], . . . , en)

rA=⇒ eA{y1 ← e1, . . . , yi ← C ′[eB{x1 ← e′1, . . . , xm ← e′m}], . . . , yn ← en} .

Repeating this operation for every nonterminal that occurred in the ei’s yields a
derivation of the same length for S R

=⇒? t with a shorter OI prefix and a longer IO
suffix. Repeating the argument at this level yields a full IO derivation.

Proposition 4.13 allows to apply several results pertaining to IO derivations to
linear CFTGs. A simple one is an alternative semantics for IO derivations in a
CFTG G = 〈N,F , S,R〉: the semantics of a nonterminal A(n) can be recast as the
relation JA(n)K ⊆ (T (F))n+1:

JA(n)K(t1, . . . , tn)
def
=

⋃
(A(n)(y1,...,yn)→e)∈R

JeK(t1, . . . , tn)

where JeK ⊆ (T (F))n+1 is defined inductively for all subterms e in rule right-hand
sides—with n variables in the corresponding full term—by

Ja(m)(e1, . . . , em)K(t1, . . . , tn)
def
= {a(m)(t′1, . . . , t

′
m) | ∀1 ≤ i ≤ m.t′i ∈ JeiK(t1, . . . , tn)}

JB(m)(e1, . . . , em)K(t1, . . . , tn)
def
= {JB(m)K(t′1, . . . , t

′
m) | ∀1 ≤ i ≤ m.t′i ∈ JeiK(t1, . . . , tn)}

JyiK(t1, . . . , tn)
def
= {ti} .

The consequence of this definition is

LIO(G) = JS(0)K .

This semantics will be easier to employ in the following proofs concerned with IO
derivations (and thus applicable to linear CFTGs).

4.2.2 Parsing as Intersection

This section relies heavily on
Maneth et al. (2007).

Let us look into more algorithmic issues and consider the parsing problem for
linear CFTGs. In order to apply the parsing as intersection paradigm, we need two
main ingredients: the first is emptiness testing (Proposition 4.14), the second is
closure under intersection with regular sets (Proposition 4.15). We actually prove
these results for IO derivations in CFTGs rather than for linear CFTGs solely.

Proposition 4.14 (Emptiness). Given a CFTG G, one can decide whether LIO(G) = ∅
in O(|G|).
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Proof sketch. Given G = 〈N,F , S,R〉, we construct a context-free grammar G′ =
〈N ′, ∅, P, S〉 s.t. LIO(G) = ∅ iff L(G′) = ∅ and |G′| = O(|G|). Since emptiness of
CFGs can be tested in linear time, this will yield the result. We define for this

N ′
def
= N ∪

⋃
A(m)(y1,...,ym)→e∈R

Sub(e) ,

i.e. we consider both nonterminals and positions inside rule right hand sides as
nonterminals of G′, and

P ′
def
= {A→ e | A(m)(y1, . . . , ym)→ e ∈ R} (rules)

∪ {a(m)(e1, . . . , em)→ e1 · · · em | a ∈ F ∪ Y} (F - or Y-labelled positions)

∪ {A(m)(e1, . . . , em)→ Ae1 · · · em} . (N -labelled positions)

We note N -labelled positions with arity information and nonterminal symbols
without in order to be able to distinguish them. Note that terminal- or variable-
labelled positions with arity 0 give rise to empty rules, whereas for nonterminal-
labelled positions of arity 0 we obtain unit rules.

The constructed grammar is clearly of linear size; we leave the fixpoint induction

proof of X G′
=⇒? ε iff JXK 6= ∅ to the reader.

Proposition 4.15 (Closure under Intersection with Regular Tree Languages). Let
G be a (linear) CFTG with maximal nonterminal rank M and maximal number of
nonterminals in a right-hand side D, and A a NTA with |Q| states. Then we can con-
struct a (linear) CFTG G′ with LIO(G′) = LIO(G) ∩ L and |G′| = O(|G| · |Q|M+D+1).

Proof. Let G = 〈N,F , S,R〉 and A = 〈Q,F , δ, F 〉. We define G′ = 〈N ′,F , S′, R′〉
where

N ′
def
= {S′} ∪

⋃
m≤M

Nm ×Qm+1,

i.e. we add a new axiom and otherwise consider tuples of form 〈A(m), q0, q1, . . . , qm〉
as nonterminals of rank m. Informally, such a nonterminal tells us that, if the
trees plugged into parameters y1, . . . , ym of a rule from A are recognised in states
q1, . . . , qm of A, then the whole tree generated by A will be recognised in state q0

of A.
Before we define R′, let us first define a term rewriting system θq1,...,qm for every

tuple of states q1, . . . , qm ∈ Q with m ≤ M . This rewriting system is actually a
linear non-erasing bottom-up tree transducer from trees in T (F ]N,Y) to trees
in T (F ] N ′ ] Q,Y), where the symbols in Q have all arity 1. The set of rules of
θq1,...,qm is

yi → qi(yi) for all 1 ≤ i ≤ m
a(q′1(x1), . . . , q′n(xn))→ q(a(x1, . . . , xn)) for all (q, a, q′1, . . . , q

′
n) ∈ δ

B(q′1(x1), . . . , q′n(xn))→ q(〈B, q, q′1, . . . , q′n〉(x1, . . . , xn)) for all n, B ∈ Nn,

q, q′1, . . . , q
′
n ∈ Q .

The effect of θq1,...,qm is to relabel a tree in T (F]N,Y) with ‘guessed’ nonterminals
in N ′ consistent with the transitions of the automaton A.
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We can now define R′ by

R′
def
= {S′ → 〈S, qf 〉 | qf ∈ F}

∪ {〈A, q0, . . . , qm〉(m)(y1, . . . , ym)→ e′

| A(m)(y1, . . . , ym)→ e ∈ R ∧ e
θq1,...,qm=====⇒

?

q0(e′)} .

The intuition behind this definition is that G′ guesses that the trees passed as
yi parameters will be recognised by state qi of A, leading to a tree generated by
A(m) and recognised by q0. A computationally expensive point is the translation
of nonterminals in the right-hand side, where we actually guess an assignment of
states for its parameters.

We can already check that G′ is constructed through at most |R| · |Q|M+1 calls
to θ translations, each allowing at most |Q|D choices for the nonterminals in the
argument right-hand side. In fine, each rule of G is duplicated at most |Q|M+D+1

times.
For a tuple of states q1, . . . , qm in Qm, let us define the relation Jq1 · · · qmK ⊆

(T (F))m as the Cartesian product of the sets JqiK
def
= {t ∈ T (F) | qi

RT==⇒? t}. We
can check that, for all m ≤ M , all states q0, q1, . . . , qm of Q, and all nonterminals
A(m) of N ,

J〈A, q0, q1, . . . , qm〉K(Jq1 · · · qmK) = JA(m)K ∩ Jq0K .

This last equality proves the correctness of the construction.

See Gómez-Rodríguez et al.
(2010) for better bounds on
parsing wnMCSLs.

In order to use these results for string parsing, we merely need to construct,
given a string w and a ranked alphabet F , the ‘universal’ DTA with w as yield—it
has O(|w|2) states, thus we can obtain an O(|G| · |w|2(M+D+1)) upper bound for IO
parsing with CFTGs, even in the non linear case.
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Chapter 5

Probabilistic Syntax

Probabilistic approaches to syntax and parsing are helpful on (at least) two differ-
ent grounds:

1. the first is ambiguity issues; in order to choose between the various possible
parses of a sentence, like the PP attachment ambiguity of Figure 2.2, we
can resort to several techniques: heuristics, semantic processing, and what
interests us in this section, probabilities learnt from a corpus.

2. the second is robustness of the parser: rather than discarding a sentence
as agrammatical or returning a partial parse, a probabilistic parser with
smoothed probabilities will still propose several parses, with low probabili-
ties.

Smoothing and Hidden Variables. See Pereira (2000).The relevance of statistical models of syntax
has been a subject of heated discussion: Chomsky (1957) famously wrote

(1) Colorless green ideas sleep furiously.
(2)∗Furiously sleep ideas green colorless.

. . . It is fair to assume that neither sentence (1) nor (2) (nor indeed
any parts of these sentences) has ever occurred in an English discourse.
Hence, in any statistical model for grammaticality, these sentences will
be ruled out on identical grounds as equally ‘remote’ from English.
Yet (1), though nonsensical, is grammatical, while (2) is not.

The main issue with this statement is the ‘in any statistical model’ part, which
actually assumes a rather impoverished statistical model, unable to assign a non-
null probability to unseen events. The current statistical models are quite capable
of handling them, mainly through two techniques:

smoothing which consists in assigning some weight to unseen events (and nor-
malising probabilities). A very basic smoothing technique is called Laplace
smoothing, and simply adds 1 to the counts of occurrence of any unseen
event. Using such a technique over the Google books corpus from 1800 to
1954, Norvig trains a model where (1) is about 104 times more probable
than (2).

hidden variables where the model assumes the existence of hidden variables re-
sponsible for the observations. Pereira trains a model using the expectation
maximisation method on newspaper text, where (1) is about 2.105 times
more probable than (2).
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It remains that statistical language models are not modelling grammaticality itself,
but rely on an occurrence-based model as a proxy.

We will not go much into the details of learning algorithms (which is the subject
of another course at MPRI), but rather look at the algorithmics of weighted models.

5.1 Weighted and Probabilistic CFGs

The models we consider are actually weighted models defined over semirings, for
which probabilities are only one particular case.

5.1.1 Background: Semirings and Formal Power Series

Semirings

A semiring 〈K,⊕,�, 0K, 1K〉 is endowed with two binary operations, an addition
⊕ and a multiplication � such that

• 〈K,⊕, 0K〉 is a commutative monoid for addition with 0K for neutral element,

• 〈K,�, 1K〉 is a monoid for multiplication with 1K for neutral element,

• multiplication distributes over addition, i.e. a � (b ⊕ c) = (a � b) ⊕ (a � c)
and (a⊕ b)� c = (a� c)⊕ (b� c) for all a, b, c in K,

• 0K is a zero for multiplication, i.e. a� 0K = 0K � a = 0K for all a in K.

A semiring is commutative if 〈K,�, 1K〉 is a commutative monoid.
Among the main semirings of interest are the

Boolean semiring 〈B,∨,∧, 0, 1〉 where B = {0, 1},

probabilistic semiring 〈R≥0,+, ·, 0, 1〉 where R≥0 = [0,+∞) is the set of non-
negative reals (sometimes restricted to [0, 1] when in presence of a probabil-
ity distribution),

tropical semiring 〈R≥0 ] {+∞},min,+,+∞, 0〉,

rational semiring 〈Rat(∆∗),∪, ·, ∅, {ε}〉 where Rat(∆∗) is the set of rational sets
over some alphabet ∆. This is the only non-commutative example here.

Weighted Automata

A finite weighted automaton (or automaton with multiplicity, or K-automaton)
in a semiring K is a generalisation of a finite automaton: A = 〈Q,Σ,K, δ, I, F 〉
where δ ⊆ Q×Σ×K×Q is a finite weighted transition relation, and I and F are
maps from Q to K instead of subsets of Q. A run

ρ = q0
a1,k1−−−→ q1

a2,k2−−−→ q2 · · · qn−1
an,kn−−−→ qn

defines a monomial JρK = kw where w = a1 · · · an is the word label of ρ and
k = I(q0)k1 · · · knF (qn) its multiplicity. The behaviour JAK of A is the sum of the
monomials for all runs in A: it is a formal power series on Σ∗ with coefficients in
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K, i.e. a map Σ∗ → K. The coefficient of a word w in JAK is denoted 〈JAK, w〉 and
is the sum of the multiplicities of all the runs with w for word label:

〈JAK, a1 · · · an〉
def
=

∑
q0

a1,k1−−−→q1··· qn−1
an,kn−−−→qn

I(q0)k1 · · · knF (qn) .

A matrix K-representation for A is 〈I, µ, F 〉, where I is seen as a row matrix in
K1×Q, the morphism µ : Σ∗ → KQ×Q is defined by µ(a)(q, q′) = k iff (q, a, k, q′) ∈
δ, and F is seen as a column matrix in KQ×1. Then There is a notion of K-rational

series, which coincide with the
K-recognisable ones
(Schützenberger, 1961).〈JAK, w〉 = Iµ(w)F .

A series is K-recognisable if there exists a K-representation for it.
The support of a series JAK is supp(JAK) def

= {w ∈ Σ∗ | 〈JAK, w〉 6= 0K}. This
corresponds to the language of the underlying automaton of A.

Exercise 5.1 (Hadamard Product). Let K be a commutative semiring. Show (∗∗)that
K-recognisable series are closed under product: given two K-recognisable series
s and s′, show that s � s′ with 〈s� s′, w〉 = 〈s, w〉 � 〈s′, w〉 for all w in Σ∗ is
K-recognisable. What can you tell about the support of s� s′?

5.1.2 Weighted Grammars

Definition 5.1 (Weighted Context-Free Grammars). A weighted context-free gram-
mar The presentation of this section

follows closely Nederhof and
Satta (2008a).

G = 〈N,Σ, P, S, ρ〉 over a semiring K (K-CFG) is a context-free grammar
〈N,Σ, P, S〉 along with a mapping ρ : P → K, which is extended in a natural way
into a morphism from 〈P ∗, ·, ε〉 to 〈K,�, 1K〉. The weight of a leftmost derivation
α

π
=⇒
lm

? β is then defined as ρ(π). Considering leftmost derivations
is only important if 〈K,�, 1K〉 is
non-commutative.

It would be natural to define the weight of a

sentential form γ as the sum of the weights ρ(π) with S π
=⇒
lm

? γ, i.e.

ρ(γ)
def
=

∑
π∈P ∗,S

π
=⇒
lm

?γ

ρ(π) .

However this sum might be infinite in general, and lead to weights outside K. We
therefore restrict ourselves to acyclic K-CFGs, such that A =⇒+ A is impossible for
all A in N , ensuring that there exist only finitely many derivations for each sen-
tential form. An acyclic K-CFG G then defines a formal series JGK with coefficients
〈JGK, w〉 = ρ(w).

A K-CFG G is reduced if each nonterminal A in N\{S} is useful, which means
that there exist π1, π2 in P ∗, u, v in Σ∗, and γ in V ∗ such that S π1=⇒

lm

? uAγ
π2=⇒
lm

? uv

and ρ(π1π2) 6= 0K.
A R≥0-CFG G = 〈N,Σ, P, S, ρ〉 is a probabilistic context-free grammar (PCFG)

if ρ is a mapping P → [0, 1].

Exercise 5.2. A (∗∗)right linear K-CFG G has its productions in N × (Σ∗ ∪ Σ∗ · N).
Show that a series s over Σ is K-recognisable iff there exists an acyclic right linear
K-CFG for it.
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5.1.3 Probabilistic Grammars

Definition 5.1 makes no provision on the kind of probability distributions defined
by a PCFG. We define here two such conditions, properness and consistency (Booth
and Thompson, 1973).

A PCFG is proper if for all A in N ,∑
p=A→α∈P

ρ(p) = 1 , (5.1)

i.e. ρ can be seen as a mapping from N to Disc({p ∈ P | p = A → α}), where
for a finite set S, Disc(S) denotes the set of discrete distributions over S, i.e.
{p : S → [0, 1] |

∑
e∈S p(e) = 1}.

Partition Functions

The partition function Z maps each nonterminal A to

Z(A)
def
=

∑
w∈Σ∗,A

π
=⇒
lm

?w

ρ(π) . (5.2)

A PCFG is convergent if

Z(S) <∞ ; (5.3)

in particular, it is consistent if

Z(S) = 1 , (5.4)

i.e. ρ defines a discrete probability distribution over the derivations of terminal
strings. The intuition behind proper inconsistent grammars is that some of the
probability mass is lost into infinite, non-terminating derivations.

Equation (5.2) can be decomposed using commutativity of multiplication into

Z(A) =
∑

p=A→α∈P
ρ(p) · Z(α) for all A in N (5.5)

Z(a) = 1 for all a in Σ ] {ε} (5.6)

Z(Xβ) = Z(X) · Z(β) for all (X,β) in V × V ∗. (5.7)

This describes a monotone, continuous system of equations with the Z(A) for
A in N as variables. By Kleene’s Fixpoint Theorem, it has a smallest solution,
which is the partition function. Its solutions can be approximated through several
techniques, prominently fixpoint approximants and Newton’s method.See Nederhof and Satta (2008b)

for a comparison of the methods
that can be employed for

computing partition functions.
Example 5.2. Properness and consistency are two distinct notions. For instance,
the PCFG

S
q−→ S S

S
1−q−−→ a

is proper for all 0 ≤ q ≤ 1, but the equation x = qx2 + 1 − q has two roots 1 and
1−q
q , and thus if q ≤ 1

2 the grammar is consistent with Z(S) = 1, but otherwise
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Z(S) = 1−q
q < 1. Conversely,

S
q/(1−q)−−−−−→ A

A
q−→ AA

A
1−q−−→ a

is improper but consistent for 1
2 < q < 1.

See Booth and Thompson (1973); Gecse and Kovács (2010) for ways to check
for consistency, and Etessami and Yannakakis (2009) for ways to compute Z(A).
In general, Z(A) has to be approximated:

Remark 5.3 (Etessami and Yannakakis, 2009, Theorem 3.2). The partition func-
tion of S can be irrational even when ρ maps productions to rationals in [0, 1]:

S
1/6−−→ S S S S S

S
1/2−−→ a .

The associated equation is x = 1
6x

5 + 1
2 , which has no rational root.

Normalisation

Given Z(A) for all A in N , one can furthermore normalise any reduced conver-
gent PCFG G = 〈N,Σ, P, S, ρ〉 with Z(S) > 0 into a proper and consistent PCFG
G′ = 〈N,Σ, P, S, ρ′〉. Define for this

ρ′(p = A→ α)
def
=
ρ(p)Z(α)

Z(A)
. (5.8)

Exercise 5.3. Show (∗)that in a reduced convergent PCFG with Z(S) > 0, for each α
in V ∗, one has 0 < Z(α) <∞. (This justifies that (5.8) is well-defined.)

Exercise 5.4. Show (∗)that G′ is a proper PCFG.

Proposition 5.4. The grammar G′ defined by (5.8) is consistent if G is reduced and
convergent.

Proof. We rely for the proof on the following claim:

Claim 5.4.1. For all Y in V , π in P ∗, and w in Σ∗ with Y π
=⇒
lm

? w,

ρ′(π) =
ρ(π)

Z(Y )
. (5.9)

Proof of Claim 5.4.1. Note that, because G is reduced, Z(Y ) > 0 for all Y in V , so
all the divisions we perform are well-defined.

We prove the claim by induction over the derivation π. For the base case, in an
empty derivation π = ε, ρ′(ε) = ρ(ε) = 1 and Z(Y ) = 1 since Y is necessarily a
terminal, hence the claim holds. For the induction step, consider a derivation pπ

for some production p = A→ X1 · · ·Xm: A
p

=⇒
lm

X1 · · ·Xm
π

=⇒
lm

? w. This derivation
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can be decomposed using a derivationXi
πi=⇒
lm

? wi for each i, such that π = π1 · · ·πn
and w = w1 · · ·wn. By induction hypothesis, ρ′(πi) = ρ(πi)/Z(Xi). Hence

ρ′(pπ) = ρ′(p) ·
m∏
i=1

ρ′(πi)

=
ρ(p)Z(X1 · · ·Xm)

Z(A)
·
m∏
i=1

ρ′(πi) (by (5.8))

=
ρ(p)

Z(A)
·
m∏
i=1

Z(Xi) ·
m∏
i=1

ρ(πi)

Z(Xi)
(by ind. hyp.)

=
ρ(p)

Z(A)
·
m∏
i=1

ρ(πi)

=
ρ(pπ)

Z(A)
. [5.4.1]

Claim 5.4.1 shows that G′ is consistent, since

Z ′(S) =
∑

w∈Σ∗,S
π

=⇒
lm

?w

ρ′(π) =
∑

w∈Σ∗,S
π

=⇒
lm

?w

ρ(π)

Z(S)
=
Z(S)

Z(S)
= 1 .

Remark 5.5. Note that Claim 5.4.1 also yields for all w in Σ∗

ρ′(w) =
∑

S
π

=⇒
lm

?w

ρ′(π) =
∑

S
π

=⇒
lm

?w

ρ(π)

Z(S)
=
ρ(w)

Z(S)
, (5.10)

thus the ratios between derivation weights are preserved by the normalisation
procedure.

Example 5.6. Considering again the first grammar of Example 5.2, if q > 1
2 , then

ρ′ with ρ′(p1) = q Z(S)2

Z(S) = 1− q and ρ′(p2) = q fits.

5.2 Learning PCFGs

We rely on an annotated corpus for supervised learning. We consider for this the
Penn Treebank (Marcus et al., 1993) as an example of such an annotated corpus,
made of n trees.

Maximum Likelihood Estimation. Assuming the treebank to be well-formed,
i.e. that the labels of internal nodes and those of leaves are disjoint, we can collect
all the labels of internal tree nodes as nonterminals, all the labels of tree leaves
as terminals, and all elementary subtrees (i.e. all the subtrees of height one) as
productions. Introducing a new start symbol S′ with productions S′ → S for each
label S of a root node ensures a unique start symbol. The treebank itself can then
be seen as a multiset of leftmost derivations D = {π1, . . . , πn}.

Let C(p, π) be the count of occurrences of production p inside derivation π,
and C(A, π) =

∑
p=A→α∈P C(p, π). Summing over the entire treebank, we get
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C(p,D) =
∑

π∈D C(p, π) and C(A,D) =
∑

π∈D C(A, π). The estimated probabil-
ity of a production is then (see e.g. Chi and Geman, 1998)

ρ(p = A→ α) =
C(p,D)

C(A,D)
. (5.11)

Exercise 5.5. Show (∗∗)that the obtained PCFG is proper and consistent.

Smoothing. The statistical distribution of
words in corpora can be
approximated by Zipf’s Law (see
Manning and Schütze, 1999,
Section 1.4.3).

Maximum likelihood estimations are accurate if there are enough
occurrences in the training corpus. Nevertheless, some valid sequences of tags
or of pairs of tags and words will invariably be missing, and be assigned a zero
probability. Furthermore, the estimations are also unreliable for observations with
low occurrence counts—they overfit the available data.

The idea of smoothing See Jurafsky and Martin (2009,
Section 4.5) and Manning and
Schütze (1999, Chapter 6).

is to compensate data sparseness by moving some of the
probability mass from the higher counts towards the lower and null ones. This
can be performed in rather crude ways (for instance add 1 to the counts on the
numerator of (5.11) and normalise, called Laplace smoothing), or more involved
ones that take into account the probability of observations with a single occurrence
(Good-Turing discounting).

Preprocessing the Treebank. The PCFG estimated from a treebank is typically
not very good: the linguistic annotations are too coarse-grained, and nonterminals
do not capture enough context to allow for a precise parsing. Refining nontermi-
nals allows to capture some hidden state information from the treebank.

Refining Nonterminals. For instance, PP attachment ambiguities are typically
resolved as high attachments (i.e. to the VP) when the verb expects a PP comple-
ment, as with the following hurled. . . into construction, and a low attachment (i.e.
to the NP) otherwise, as in the following sip of . . . construction:

[NP He] [VP[VP hurled [NP the ball]] [PP into the basket]].
[NP She] [VP took [NP[NP a sip] [PP of water]]].

A PCFG cannot assign different probabilities to the attachment choices if the ex-
tracted rules are the same.

In practice, the tree annotations are refined in two directions: from the lexi-
cal leaves by tracking the head information, and from the root by remembering
the parent or grandparent label. This greatly increases the sets of nonterminals
and rules, thus some smoothing techniques are required to compensate for data
sparseness. Figure 5.1 illustrates this idea by associating lexical head and parent
information to each internal node. Observe that the PP attachment probability is
now specific to a production

VP[S, hurled ,VBD]→ VP[VP, hurled ,VBD] PP[VP, into, IN] ,

allowing to give it a higher probability than that of

VP[S, took ,VBD]→ VP[VP, took ,VBD] PP[VP, of , IN] .

Binary Rules. Another issue, which is more specific to the kind of linguistic
analyses found in the Penn Treebank, is that trees are mostly flat, resulting in a
very large number of long, different rules, like

VP→ VBP PP PP PP PP PP ADVP PP
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S
[>,hurled ,VBD]

NP
[S,he,PRP]

PRP
[NP,he,PRP]

He

VP
[S,hurled ,VBD]

VP
[VP,hurled ,VBD]

VBD
[VP,hurled ,VBD]

hurled

NP
[VP,ball ,NN]

DT
[NP,the,DT]

the

NN
[NP,ball ,NN]

ball

PP
[VP,into,IN]

IN
[VP,into,IN]

into

NP
[PP,basket ,NN]

DT
[NP,the,DT]

the

NN
[NP,basket ,NN]

basket

Figure 5.1: A derivation tree refined with lexical and parent information.

for sentence

This mostly happens because we [VP go [PP from football] [PP in the fall] [PP to
lifting] [PP in the winter] [PP to football] [ADVP again] [PP in the spring]].

The WSJ part of the Penn Treebank yields about 17,500 distinct rules, causing
important data sparseness issues in probability estimations. A solution is to trans-
form the resulting grammar into quadratic form prior to probability estimation,
for instance by having rules

VP→ VBP VP’ VP’→ PP | PP VP’ | ADVP VP’ .

Parser Evaluation. The usual measure of constituent parser performance is called
PARSEVAL (Black et al., 1991). It supposes that some gold standard derivation
trees are available for sentences, as in a test subcorpus of the Wall Street Jour-
nal part of the Penn Treebank, and compares the candidate parses with the gold
ones. The comparison is constituent-based: correctly identified constituents start
and end at the expected point and are labelled with the appropriate nonterminal
symbol. The evaluation measures the

labelled recall which is the number of correct constituents in the candidate parse
of a sentence, divided by the number of constituents in the gold standard
analysis of the sentence,

labelled precision which is the number of correct constituents in the candidate
parse of a sentence divided by the number of constituents in the same can-
didate parse.

Current probabilistic parsers on the WSJ treebank obtain a bit more than 90% pre-
cision and recall. Beware however that long sentences are often parsed incorrectly,
i.e. have at least one misparsed constituent.

5.3 Probabilistic Parsing as Intersection

We generalise in this section the intersective approach of Theorem 2.7. More
precisely, we show how to construct a product grammar from a weighted gram-
mar and a weighted automaton over a commutative semiring, and then use a
generalised version of Dijkstra’s algorithm due to Knuth (1977) to find the most
probable parse in this grammar.
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5.3.1 Weighted Product

We generalise here Theorem 2.7 to the weighted case. Observe that it also answers
Exercise 5.1 since K-automata are equivalent to right-linear K-CFGs according to
Exercise 5.2.

Theorem 5.7. Let K be a commutative semiring, G = 〈N,Σ, P, S, ρ〉 an acyclic K-
CFG, and A = 〈Q,Σ,K, δ, I, F 〉 a K-automaton. Then the K-CFG
G′ = 〈{S′} ] (N ×Q×Q),Σ, P ′, S′, ρ′〉 with We abuse notation and write

A
k−→ α for a production

p = A→ α with ρ(p) = k.
P ′

def
= {S′

I(qi)�F (qf )
−−−−−−−→ (S, qi, qf ) | qi, qf ∈ Q}

∪ {(A, q0, qm)
k−→ (X1, q0, q1) · · · (Xm, qm−1, qm)

| m ≥ 1, A
k−→ X1 · · ·Xm ∈ P, q0, . . . , qm ∈ Q}

∪ {(a, q, q′) k−→ a | (q, a, k, q′) ∈ δ}

See Maletti and Satta (2009) for
a version of Theorem 5.7 that
works on weighted tree automata
instead of CFGs.

is acyclic and such that, for all w in Σ∗, 〈JG′K, w〉 = 〈JGK, w〉 � 〈JAK, w〉.

As with Theorem 2.7, the construction of Theorem 5.7 works in time O(|G| ·
|Q|m+1) with m the maximal length of a rule rightpart in G. Again, this complexity
can be reduced by first transforming G into quadratic form, thus yielding a O(|G| ·
|Q|3) construction.

Exercise 5.6. Modify (∗)the quadratic form construction of Lemma 2.8 for the weighted
case.

5.3.2 Most Probable Parse

The weighted CFG G′ constructed by Theorem 5.7 can be reduced by a generalisa-
tion of the usual CFG reduction algorithm to the weighted case. Here we rather
consider the issue of finding the best parse in this intersection grammar G′, as-
suming we are working on the probabilistic semiring—we could also work on the
tropical semiring.

Non Recursive Case. The easiest case is that of a non recursive K-CFG G′, i.e.
where there does not exist a derivation A =⇒+ δAγ for any A in N and δ, γ in
V ∗ in the underlying grammar. This is necessarily the case with Theorem 5.7 if
G is acyclic and A has a finite support language. Then a topological sort of the
nonterminals of G′ for the partial ordering B ≺ A iff there exists a production
A → αBβ in P ′ with α, β in V ′∗ can be performed in linear time, yielding a total
order (N ′, <): A1 < A2 < · · · < A|N ′|. We can then compute the probability M(S′)
of the most probable parse by computing for j = 1, . . . , |N ′|

M(Aj) = max
A
k−→X1···Xm

k ·M(X1) · · ·M(Xm) (5.12)

in the probabilistic semiring, with M(a) = 1 for each a in Σ. The topological sort
ensures that the maximal values M(Xi) in the right-hand side have already been
computed when we use (5.12) to compute M(Aj).
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Data: G = 〈N,Σ, P, S, ρ〉
foreach a ∈ Σ do1

M(a) = 12

D ←− Σ3

while D 6= V do4

foreach A ∈ V \D do5

ν(A)←− max
A
k−→X1···Xm s.t. X1,...,Xm∈D

k ·M(X1) · · ·M(Xm)6

A←− argmaxV \D ν(A)7

M(A)←− ν(A)8

D ←− D ] {A}9

return M(S)10

Algorithm 5.1: Most probable derivation.

Knuth’s Algorithm. In the case of a recursive PCFG, the topological sort ap-
proach fails. We can nevertheless use an extension of Dijkstra’s algorithm to
weighted CFGs proposed by Knuth (1977): see Algorithm 5.1.

The set D ⊆ V is the set of symbols X for which M(X), the probability of
the most probable tree rooted in X, has been computed. Using a priority queue
for extracting elements of V \D in time O(log |N |) at line 7, and tracking which
productions to consider for the computation of ν(A) at line 6, the time complexity
of the algorithm is in O(|P | log |N |+ |G|).

The correctness of the algorithm relies on the fact that M(A) = ν(A) at line 8.
Assuming the opposite, and since ν(A) ≤ M(A) is an invariant, there must exist
a derivation B

π
=⇒
lm

? w with ρ(π) > ν(A) for some B 6∈ D, and we consider the

shortest such derivation. Since B ∈ N , we can split this derivation into B
p

=⇒
lm

?

X1 · · ·Xm and Xi
πi=⇒
lm

? wi with w = w1 · · ·wm and π = pπ1 · · ·πm, thus with

ρ(π) = ρ(p) · ρ(π1) · · · ρ(πm). If each Xi is already in D, then M(Xi) ≥ ρ(πi)
for all i, thus ρ(π) ≤ ν(B) computed at line 6, and finally ρ(π) ≤ ν(B) ≤ ν(A)
by line 8—a contradiction. Therefore there must be one Xi not in D for some
i, but in that case ρ(πi) ≥ ρ(π) > ν(A) and πi is strictly shorter than π, again a
contradiction.

5.3.3 Most Probable String

Section inspired by de la Higuera
and Oncina (2011, 2013).

We have just seen that the algorithms for the Boolean case are rather easy to
extend in order to handle general (commutative) semirings, including the proba-
bilistic semiring. Let us finish with an example showing that some problems be-
come hard, namely when one attempts to extract the most probable string (aka the
consensus string) generated by a PCFG.

Consider the following decision problems:

Most Probable String (MPS).

input a PCFG G over Σ with rational weights (coded in binary) and a rational p
in [0, 1] (also in binary);

question is there a string w in Σ∗ s.t. 〈JGK, w〉 ≥ p?
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Bounded Most Probable String (BMPS).

input a PCFG G over Σ with rational weights (coded in binary), a length b (in
unary), and a rational p in [0, 1] (in binary);

question is there a string w in Σ≤b s.t. 〈JGK, w〉 ≥ p?

Example 5.8. Consider the following right-linear proper consistent PCFG:

S
9/10−−−→ aA S

1/10−−−→ b

A
2/3−−→ aA A

1/3−−→ aB

B
2/3−−→ aB B

1/3−−→ a .

The most probable derivations are for the strings b and aaa, with probability 1/10.
The most probable strings are actually aaaa and aaaaa, with probability (4/3) ·
(1/10).

Hardness

We show here that both problems are already hard for convergent right-linear
PCFGs. Note that, in the non convergent right-linear case, MPS is known as the
Threshold Problem for Rabin probabilistic automata and is undecidable (e.g. Blon-
del and Canterini, 2003).

Theorem 5.9 (Casacuberta and de la Higuera, 2000). MPS and BMPS for conver-
gent right-linear PCFGs are NP-hard. See also Lyngsøa and Pedersen

(2002), and the work of Sima’an
(2002) for similar bounds.

Proof. The proof reduces from SAT. Let ϕ =
∧k
i=1Ck be a propositional formula

in conjunctive normal form, where each clause Ci is a non-empty disjunction of
literals over the set of variables {x1, . . . , xn}. Without loss of generality, we as-
sume that each variable appears at most once in each clause, be it positively or
negatively.

We construct in polynomial time an instance 〈G, p〉 of MPS or 〈G, b, p〉 of BMPS
such that ϕ is satisfiable if and only if there exists w in Σ∗ such that 〈JGK, w〉 ≥ p.
We define for this G def

= 〈N,Σ, P, S〉 where

N
def
= {S} ] {Ai,j | 1 ≤ i ≤ k ∧ 0 ≤ j ≤ n} ] {Bj | 1 ≤ j ≤ n}

Σ
def
= {0, 1, $} ,

P
def
= {S 1/k−−→ $Ai,0 | 1 ≤ i ≤ k}

∪ {Ai,j−1
1/2−−→ vBj , Ai,j−1

1/2−−→ (1− v)Ai,j | v ∈ {0, 1} ∧ xj 7→ v |= Ci

∧ 1 ≤ i ≤ k ∧ 1 ≤ j ≤ n}

∪ {Ai,j−1
1/2−−→ 1Ai,j , Ai,j−1

1/2−−→ 0Ai,j | xj 6∈ Ci ∧ 1 ≤ i ≤ k ∧ 1 ≤ j ≤ n}

∪ {Ai,n
0−→ $ | 1 ≤ i ≤ k}

∪ {Bj−1
1/2−−→ 0Bj , Bj−1

1/2−−→ 1Bj | 2 ≤ j ≤ n}

∪ {Bn
1−→ $}
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and fix

b
def
= n+ 2 ,

p
def
= 1/2n .

First note that the construction can indeed be carried in polynomial time—remember
that p is encoded in binary. Second, G is visibly right-linear by construction, and
also convergent because every derivation is of length n + 2 and every string has
finitely many derivations.

It remains to show that ϕ is satisfiable if and only if there exists w in Σ∗ such
that 〈JGK, w〉 ≥ p. Note that any string w with 〈JGK, w〉 > 0 is necessarily of form
$v1 · · · vn$ with each vj in {0, 1}, i.e. describes a valuation for ϕ.

Observe that, for each clause Ci and each string w = $v1 · · · vn$, w describes a
valuation Vw:xj 7→ vj that

• either satisfies Ci, and then the corresponding string w has a single deriva-

tion πw (the one that uses Ai,j−1
1/2−−→ vjBj for the lowest index j such that

xj 7→ vj |= Ci); this derivation has probability ρ(πw) = 1/(k2n),

• or does not satisfies Ci, and there is a single derivation, which must use the
production Ai,n

0−→ $, and is thus of probability 0.

Therefore, if ϕ is satisfiable, i.e. if there exists V that satisfies all the clauses, then
the corresponding string wV has probability

∑k
i=1 1/(k2n) = p. Conversely, if ϕ is

not satisfiable, then any w with 〈JGK, w〉 > 0 is of form $v1 · · · vn$ and describes an
assignment Vw:xj 7→ vj that does not satisfy at least one of the clauses, thus has a
total probability ρ(w) < p.

Corollary 5.10. MPS and BMPS for proper and consistent right-linear PCFGs are
NP-hard.

Proof. If suffices to reduce and normalise the PCFG constructed in Theorem 5.9.
Because every derivation is of bounded length, the computation of the partition
function for G converges in polynomial time, and the grammar can be normalised
in polynomial time.

Let us nevertheless perform those computations by hand as an exercise. For
instance, for all 1 ≤ j ≤ n,

Z(Bj) = 1 , (5.13)

Z(S) =
1

k

k∑
i=1

Z(Ai,0) . (5.14)

We need to introduce some notation in order to handle the computation of
Z(Ai,j). For each clause Ci, and each 0 ≤ j ≤ n, let qi,j be the number of variables
x` with j < ` ≤ n that occur (positively or negatively) in Ci:

qi,j
def
= |{x` ∈ Ci | j < ` ≤ n}| . (5.15)

Claim 5.10.1. For all 1 ≤ i ≤ k and 0 ≤ j ≤ n,

Z(Ai,j) = 1− 1

2qi,j
.
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Proof of Claim 5.10.1. Fix some 1 ≤ i ≤ k; we proceed by induction over n − j.
For the base case, Z(Ai,n) = 0 since the only production available is Ai,n

0−→ $. For
the induction step, two cases arise:

1. qi,j = qi,j+1, i.e. when xj+1 does not appear in Ci. Then Z(Ai,j) = 1/2 ·
Z(Ai,j+1) + 1/2 · Z(Ai,j+1) by (5.5), and thus Z(Ai,j) = Z(Ai,j+1) = 1 −
1/2qi,j+1 = 1− 1/2qi,j by induction hypothesis.

2. qi,j = 1+qi,j+1, i.e. when xj+1 appears in Ci. Then Z(Ai,j) = 1/2·Z(Ai,j+1)+
1/2·Z(Bj+1), hence by (5.13) and the induction hypothesis, Z(Ai,j) = 1/2−
1/2qi,j+1+1 + 1/2 = 1− 1/2qi,j . [5.10.1]

In particular, if we reduce from a 3SAT instance instead of any SAT instance, then
Z(Ai,0) = 7/8 for all i, and thus Z(S) = 7/8.

Any nonterminal with probability mass 0 can be disposed of during the reduction
phase, which can be performed in polynomial time. We use next (5.8) to normalise
the grammar of Theorem 5.9, thereby obtaining a proper and consistent right-
linear PCFG G′ in polynomial time.

There remains the issue of computing an appropriate bound p′ for this new
grammar. By Remark 5.5, for any word w in Σ∗, 〈JGK, w〉 ≥ p if and only if
〈JG′K, w〉 ≥ p/Z(S): we define therefore

p′
def
=

p

Z(S)
. (5.16)

Upper Bounds

Bounded Case. Deciding BMPS is mostly straightforward: guess a string w in
Σ≤b, compute the PCFG G′ for w using Theorem 5.7 in polynomial time, and com-
pute the partition function Z for G′—which is non-recursive since G is acyclic—,
which can be performed in polynomial time: then 〈JGK, w〉 = Z(S′). Hence:

Proposition 5.11. BMPS is NP-complete.

Right-Linear Case. The case of MPS is more involved: there is no reason for the
most probable string to be short.

Example 5.12 (Long Strings). De la Higuera and Oncina (2011) exhibit a right-
linear grammar, for which the most probable string is of exponential length. Let m
be a natural number and q a rational in (0, 1), then the right-linear grammar with
axiom Aq,m,0 and productions

Aq,m,0
q−→ ε Aq,m,0

1−q−−→ aAq,m,1 Aq,m,i
1−→ aAq,m,i+1 mod m

for all 1 ≤ i < m assigns a probability ρ(akm) = q(1 − q)k to a string of a’s whose
length is a multiple of m, and probability 0 to any other string. Consider now a set
of primes {m1, . . . ,mn} and add the production

S
1/n−−→ Aq,mj ,0

for each mj . This grammar has a size in O(
∑n

j=1mj).
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On the one hand, the probability of the string aM of lengthM def
=
∏n
i=jmj (which

is exponential in
∑n

j=1mj) is

ρ(aM ) =
n∑
j=1

1

n
q(1− q)

M
mj

≥ q

n

n∑
j=1

(1− q)M (since
M

mj
≤M)

= q(1− q)M .

On the other hand, a string a` of length ` < M is not accepted by at least one of
the subgrammars, therefore its probability is at most

ρ(a`) ≤ qn− 1

n
.

Hence, a choice of q such that

q ≤ 1− M

√
n− 1

n

ensures that no shorter string can have probability higher than ρ(aM ).

Fortunately, we are also provided with a probability p in an instance of MPS.
When taking this threshold into account, de la Higuera and Oncina (2013) can
then provide a polynomial bound on the length of the most probable strings. The
following proposition uses a normal form on right-linear PCFGs:

Definition 5.13. A right-linear PCFG G = 〈N,Σ, P, S, ρ〉 is in ε-free form if P ⊆
N × (Σ ∪ ΣN).

Exercise 5.7. Show(∗∗) that any (acyclic) right linear convergent PCFG can be put in
ε-free form in polynomial time.

Proposition 5.14 (Probable Strings are Short). Let G = 〈N,Σ, P, S, ρ〉 be a right-
linear reduced convergent PCFG in ε-free form and w be a sequence in Σ∗ with ρ(w) ≥
p. Then |w| ≤ Z(S)|N |2

p + |N |.

Proof. Let w = a1 · · · a` be a string of length ` with ρ(w) ≥ p (with ai in Σ for
every i). Any derivation for w in the ε-free grammar G is necessarily of the form

S = A1
p1
=⇒
lm

a1A2
p2
=⇒
lm

a1a2A3
p3
=⇒
lm
· · · p`=⇒

lm
a1 · · · a` (5.17)

using the productions pi = Ai → aiAi+1 for 1 ≤ i < ` − 1 and p` = A` → a`.
Define

Dw
def
= {π ∈ P ∗ | S π

=⇒
lm

? w} (5.18)

the set of derivations of w. Assuming some total ordering ≺ over the nonterminals
in N , we write DA

w for the subset of Dw where A is the nonterminal that occurs as
left-hand side the most often, using ≺ to choose between ties. Then

Dw =
⊎
A∈N

DA
w , ρ(w) =

∑
π∈Dw

ρ(π) ≥ p , (5.19)
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hence there exists A in N such that∑
π∈DAw

ρ(π) ≥ p

|N |
. (5.20)

In any derivation π = p1 · · · p` in DA
w , A appears as left-hand side at least `/|N |

times. By removing a subderivation between two such occurrences, we obtain a
derivation for a shorter sequence with at least the same probability. We call such
shorter sequences alternatives for π; there are at least `/|N | − 1 alternatives, that
we gather in a set Alt(π,A). Hence∑

π′∈Alt(π,A)

ρ(π′) ≥
(

`

|N |
− 1

)
ρ(π) . (5.21)

We want to sum the probability mass of alternatives over all π in DA
w ; however,

there might be common alternatives for different derivations π1 and π2. This is
not an issue, as shown by the following claim:

Claim 5.14.1. Let π1 and π2 be two different derivations in DA
w , and let π be a

derivation in Alt(π1, A) ∩Alt(π2, A). Then ρ(π) ≥ ρ(π1) + ρ(π2).

Hence∑
π∈DAw

∑
π′∈Alt(π,A)

ρ(π′) ≥
∑
π∈DAw

(
`

|N |
− 1

)
ρ(π) ≥

(
`

|N |
− 1

)
p

|N |
. (5.22)

The probability mass on the left side of the previous inequality is contributed by
strings different from w; hence, summing with the probability of w, we obtain(

`

|N |
− 1

)
p

|N |
+ p ≤ Z(S)

thus

` ≤ (Z(S)− p)|N |2

p
+ |N | ,

from which we deduce the desired bound since Z(S) ≥ ρ(w) ≥ p.

General Case. As mentioned at the beginning of this section, MPS is undecidable
in general, already for right-linear PCFGs. However, if the PCFG is convergent,
then MPS is decidable (de la Higuera et al., 2014, Proposition 8). The principle
of the algorithm is to enumerate the strings w ∈ Σ∗ and compute their probabili-
ties 〈JGK, w〉. If we find a string with probability at least p we can stop. Otherwise,
since Z(S) is finite and equal to

∑
w∈Σ∗ 〈JGK, w〉, eventually the sum of probabili-

ties of all the tested strings will exceed Z(S) − p, and we will know for sure that
no string has probability at least p.
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Notations

We use the following notations in this document. First, as is customary in lin-
guistic texts, we prefix agrammatical or incorrect examples with an asterisk, like
∗ationhospitalmis or ∗sleep man to is the.

These notes also contain some exercises, and a difficulty appreciation is indi-
cated as a number of asterisks in the margin next to each exercise—a single aster-
isk denotes a straightforward application of the definitions.

Relations. We only consider binary relations, i.e. subsets of A × B for some
sets A and B. The inverse of a relation R is R−1 = {(b, a) | (a, b) ∈ R}, its
domain isR−1(B) and its range isR(A). Beyond the usual union, intersection and
complement operations, we denote the composition of two relations R1 ⊆ A×B
and R2 ⊆ B × C as R1 # R2 = {(a, c) | ∃b ∈ B, (a, b) ∈ R1 ∧ (b, c) ∈ R2}. The
reflexive transitive closure of a relation is noted R? =

⋃
iR

i, where R0 = IdA =
{(a, a) | a ∈ A} is the identity over A, and Ri+1 = R #Ri.

Monoids. A monoid 〈M, ·, 1M〉 is a set of elements M along with an associative
operation · and a neutral element 1M ∈ M. We are often dealing with the free
monoid 〈Σ∗, ·, ε〉 generated by concatenation · of elements from a finite set Σ. A
monoid is commutative if a · b = b · a for all a, b in M.

We lift · to subsets of M by L1 · L2 = {m1 ·m2 | m1 ∈ L1,m2 ∈ L2}. Then for
L ⊆ M, L0 = {1M} and Li+1 = L · Li, and we define the Kleene star operator by
L∗ =

⋃
i L

i.

String Rewrite Systems. A string rewrite system or semi-Thue systems See also the monograph by Book
and Otto (1993).

over
an alphabet Σ is a relation R ⊆ Σ∗×Σ∗. The elements (u, v) of R are called string
rewrite rules and noted u → v. The one step derivation relation generated by
R, noted R

=⇒, is the relation over Σ∗ defined for all w,w′ in Σ∗ by w R
=⇒ w′ iff there

exist x, y in Σ∗ such that w = xuy, w′ = xvy, and u → v is in R. The derivation
relation is the reflexive transitive closure R

=⇒?.

Prefixes. The prefix ordering≤pref over Σ∗ is defined by u ≤pref v iff there exists
v′ in Σ∗ such that v = uv′. We note Pref(v) = {u | u ≤pref v} the set of prefixes of
v, and u ∧ v the longest common prefix of u and v.

Terms. A ranked alphabet See Comon et al. (2007) for
missing definitions and notations.

a pair (Σ, r) where Σ is a finite alphabet and r : Σ→
N gives the arity of symbols in Σ. The subset of symbols of arity n is noted Σn.

Let X be a set of variables, each with arity 0, assumed distinct from Σ. We write
Xn for a set of n distinct variables taken from X .

69
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The set T (Σ,X ) of terms over Σ and X is the smallest set s.t. Σ0 ⊆ T (Σ,X ),
X ⊆ T (Σ,X ), and if n > 0, f is in Σn, and t1, . . . , tn are terms in T (Σ,X ), then
f(t1, . . . , tn) is a term in T (Σ,X ). The set of terms T (Σ, ∅) is also noted T (Σ) and
is called the set of ground terms.

A term t in T (Σ,X ) is linear if every variable of X occurs at most once in t.
A linear term in T (Σ,Xn) is called a context, and the expression C[t1, . . . , tn] for
t1, . . . , tn in T (Σ) denotes the term in T (Σ) obtained by substituting ti for xi for
each 1 ≤ i ≤ n, i.e. is a shorthand for C{x1 ← t1, . . . , xn ← tn}. We denote
Cn(Σ) the set of contexts with n variables, and C(Σ) that of contexts with a single
variable—in which case we usually write � for this unique variable.

Trees. By tree we mean a finite ordered ranked tree t over some set of labels Σ,
i.e. a partial function t : {0, . . . , k}∗ → Σ where k is the maximal rank, associating
to a finite sequence its label. The domain of t is prefix-closed, i.e. if ui ∈ dom(t)
for u in N∗ and i in N, then u ∈ dom(t), and predecessor-closed, i.e. if ui ∈ dom(t)
for u in N∗ and i in N>0, then u(i− 1) ∈ dom(t).

The set Σ can be turned into a ranked alphabet simply by building k+1 copies of
it, one for each possible rank in {0, . . . , k}; we note a(m) for the copy of a label a in
Σ with rank m. Because in linguistic applications tree node labels typically denote
syntactic categories, which have no fixed arities, it is useful to work under the
convention that a denotes the “unranked” version of a(m). This also allows us to
view trees as terms (over the ranked version of the alphabet), and conversely terms
as trees (by erasing ranking information from labels)—we will not distinguish
between the two concepts.

Term Rewrite Systems. A term rewrite system over some ranked alphabet Σ
is a set of rules R ⊆ (T (Σ,X ))2, each noted t → t′. Given a rule r : t → t′ (also
noted t r−→ t′), with t, t′ in T (Σ,Xn), the associated one-step rewrite relation over
T (Σ) is r

=⇒ = {(C[t{x1 ← t1, . . . , xn ← tn}], C[t′{x1 ← t1, . . . , xn ← tn}]) | C ∈
C(Σ), t1, . . . , tn ∈ T (Σ)}. We write r1r2==⇒ for r1=⇒ # r2=⇒, and R

=⇒ for
⋃
r∈R

r
=⇒.
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