TATA, Sec. 6.4.2

Tree Transducers

Home assignment to hand in before or on November 2, 2018.
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Electronic versions (PDF only) can be sent by email to (sylvain.schmitz@lsv.fr);
paper versions should be handed in on the 2nd or put in my mailbox at LSV,
ENS Paris-Saclay. No delays. The numbers in the margins next to exercises
are indications of time and difficulty, not necessarily of the points you might earn

answering them.

We learn in this homework about some of the (many) notions of transducers over
finite trees. Let F and F’ be two finite ranked alphabets. A transducer 7 realises a
relation [7] C T(F) x T'(F').

Tree transducers find many applications in computational linguistics, compilers,
XML processing, and logics, whenever we need to model such transformations over finite
trees. Chapter 6 of Tree Automata Techniques and Applications gives a quick overview of
two of the models we shall encounter in this homework, along with motivating examples.

As seen in class, one of the simplest means of defining tree transformations is through
tree homomorphisms. Recall the following facts: tree homomorphisms do not pre-
serve recognisability (c.f. TATA Exa. 1.4.2), but linear homomorphisms do (c.f. TATA
Thm. 1.4.3) and inverse homomorphisms also do (c.f. TATA Thm. 1.4.4).

1 Top-Down Tree Transducers

Let X be a countable set of variables. For ) a ranked alphabet with arities greater than
zero, we abuse notations and write Q(X') for the alphabet of pairs (¢, z) € @ x X with
arity(q, x) < arity(q) — 1. This is just for convenience, and (g, z)(¢1, ..., t,) is really the
term q(z,t1,...,t,).

A top-down tree transducer (NDTT) is a tuple D = (Q,F,F',A,I) where @ is a
finite set of states, all of arity 1, F and F’ are finite ranked alphabets, I C Q@ is a set of
root states, and A is a finite set of term rewriting rules of the form ¢(f(z1,...,2,)) > €
where ¢ € Q, f € F, for some n € N, and e € T(F' UQ(X,)). Note that any such e is a
term from T(Q U F', X).
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The transduction [D] realised by D is defined through rewriting semantics:
[D] = {(t,¢) € T(F) x T(F') | 3g € I . q(t) =" t'} .
Exercise 1 (Example). Let F < {a(),$©} and 7 < {f®, o™ 5 $©}  Consider
the NDTT D = ({q,4'}, F, F', A, {q}) with A the set of rules

q(a(z1) = f(d'(z1),q (z1)) q(%) =8
¢'(a(z1)) = a(q'(x1)) ¢'(a(z1)) = b(d'(z1))

Then we have for instance the following derivation:

q(a(a(a($)))) — f(d'(a(a($))), ¢'(a(a($))))
— f(a(d'(a($))), d'(a(a($))))
— f(a(b(d'($))), ¢'(a(a($))))
— f(a(b($)), d'(a(a(9))))
— f(a(b($)), b(d'(a($))))
— f(a(b($)), b(b(d'($))) )
— f(a(b(3)), b(b($)) )

showing that (a(a(a($))), f(a(b($)),b(b($)))

)
Show that [D] = {(a(t), f(t1,t2)) | t € T(F),t1,t2 € T({a,b,$}), and height(t) =
height(t1) = height(t2)}.

Using ideas similar to those of Thm. 1.4.3 of TATA, one can show:

Fact 1 (Linear NDTTs). An NDTT D = (Q,F,F',A,I) is linear, if every rule q(f(x1),
., Zn)) = e from A is such that e is a linear term in T(F'UQ, X,,). If D is linear and L
is a recognisable tree language over F, then [D](L) = {t' € T(F) | 3t € L, (t,t') € [D]}

is recognisable over F'.

2 Bottom-Up Tree Transducers

Let X be a countable set of variables.

A bottom-up tree transducer (NUTT) is a tuple U = (Q, F, F', A, I) where Q is a fi-
nite set of states, all of arity 1, F and F’ are finite ranked alphabets, I C @ is a set of root
states, and A is a finite set of term rewriting rules of the form f(q1(z1),...,qn(zn)) —
q(e) where q,q1,...,qn € Q, f € F, for some n € N, and e € T(F', X,).

The transduction [U] realised by U is defined through rewriting semantics:

U] £ {(t,¢) e T(F) x T(F)|3ge .t —=*qt)}).
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Exercise 2 (Example). Let F < {a(),$0} and F/ < {f@ 4@ p(1) $O)}. Consider
the NDTT U = ({¢,¢'}, F, F', A, {q}) with A the set of rules

a(q (1)) = q(f(z1,21)) $—q'(8)
a(q'(z1)) = q'(a(21)) a(q'(z1)) —

Then we have for instance the following derivation:

a(a(a(8))) — a(a(a(d'($))))
— a(a(q'(b($))))
— a(q'(a(b(8))))
= q(f(a(b(3)),a(b(3))))

showing that (a(a(a($))), f(a(b($)),a(b($)))) € [U].

Show that [U] = {(a(t),f(t',t)) | t € T(F),t' € T({a,b,$}), and height(t) =
height(t')}.

Here is an analogue of for linear NUTTs:

Fact 2 (Linear NUTTs). A NUTTU = (Q,F,F',A,I) is linear, if every rule f(qi(x1),
s qn(xn)) = q(e) is such that e is a linear term in T(F', X,). If U is linear and L is
a recognisable tree language over F, then [U](L) is a recognisable tree language over F.

3 Macro Tree Transducers

3.1 Definitions

Let X be a countable set of variables and ) a countable set of parameters; we assume
X and Y to be disjoint.

Syntax. A macro tree transducer (NMTT) is a tuple M = (Q, F, F',A,I) where @
is a finite set of states, all of arity > 1, F and F’ are finite ranked alphabets, I C Q1 is
a set of root states of arity one, and A is a finite set of term rewriting rules of the form

q(f(z1,...,2n),y1,...,Yp) = € where ¢ € Q14 for some p >0, f € F, for some n € N,
and e € T(F' U Q(X,), Vp).

Inside-Out Semantics. Given a NMTT, the inside-out rewriting relation over trees in
T(FUF'UQ) is defined by: ¢ 19, ¥ if there exist a rule q(f(z1,...,2n),y1,...,Yp) = €in
A, a context C' € C(FUF UQ), and two substitutions o: X — T'(F) and p: Y — T'(F')
such that ¢ = Clg(f(z1,...,2n),Y1,--.,yp)op| and ' = Cleop]. In other words, in
inside-out rewriting, when applying a rewriting rule ¢(f(x1,...,2n),y1,--.,Yp) — €



(1]

MPRI M1-18 Tree Automata Techniques and Applications October 16, 2018

the parameters y,...,y, must be mapped to trees in T'(F’), with no remaining states

from Q.
The inside-out transduction [M]io realised by M is defined through inside-out

rewriting semantics:

IMTio & {(£,#) € T(F) x T(F) | 3¢ € I . q(t) 2 ¢} .

Exercise 3 (Example). Let F = {aM,$0} and F' = {3 oM p(1) $O Consider
the NMTT M = ({q(l), q },.7:, F', A {q}) with A the set of rules

q(a(z1)) = ¢'(x1,8,89) q'(3,y1,92) = fly1,y1,92)
q'(a(z1),y1,52) = ¢'(x1,a(),a(y2))  ¢(alz1),y1,92) = ¢ (21, a(y1), b(y2))
q'(a(x1),y1,92) = ¢'(21,b(y1), aly2)) q'(a(z1),y1,92) = ¢ (x1,0(y1), b(y2))

Then we have for instance the following derivation:

showing that (a(a(a($))), f(a(b(8)),a(b($)),b(b(8))) ) € [M].

Show that [M] = {(a(t), f(t1,t1,t2)) | t € T(F),t1,ts € T({a,b,$}), and height(t) =
height(t1) = height(t2)}.

3.2 Comparison with Top-Down and Bottom-Up Transductions

Exercise 4 (Monadic trees). Let ' < {a®),b(1) $©)}. Observe that trees in T'(F') are
in bijection with contexts in C'(F’) and words over {a,b}*.

1. Show that, if D is a NDTT from some F to ' and L is a recognisable tree language
over F, then [D](L) is also recognisable over F'. Hint: The same kind of argument
shows that [U](L) is recognisable for a NUTT from F to F' and L a recognisable
tree language.

Let D be a NDTT from F to F'. In any rule q(f(z1,...,2,)) — e of D, e belongs to
T(F'UQ(X,)). Since the maximal arity in F' is one, e has at most one occurrence
of any variable in X,,, thus D is linear. By [Fact 1] [D](L) is recognisable.

The same reasoning applies to a NUTT U into F’, using [Fact 2 O
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2. For a context C from C(F'), we write CT for its mirror context, read from the
leaf to the root. For instance, if C' = a(b(a(a(0)))), then CT = a(a(b(a(D)))).
Formally, let n € N be such that dom C = {0™ | m < n}; then C(0") = O and
C(0™) € {a, b} for m < n. Then C* is defined by dom C® = dom C, CF(0™) & [,
and CE(0™) = CR(0"™) for all m < n.

Give an NMTT M from F' to F’ such that [M]io = {(C[$],C[CE[$]]) | C €

C(F')}. In terms of words over {a,b}*, this transducer maps w to the palindrome
ww’t. Is [M]1o(T(F)) a recognisable tree language?

ME(Q,F,F A T) where Q & {qi(l),q(z)}, I {qg;}, and A is the set of rules

(%) = 3 gi(a(z1)) — alq(x1,a($))) qi(b(z1)) — b(q(21,b(8)))
a(8,y1) =y qla(zr),y1) = alg(z1,a(y1)))  q(b(z1),y1) = bla(x1,b(y1))) -
We leave the proof of correctness to the reader.

This macro tree transducer is actually input- and parameter-linear, deterministic,
and complete. Because a tree language over F' is recognisable if and only if the
corresponding word language over {a,b} is recognisable, [M]io(T(F)) is not a
recognisable tree language. In turn, this shows that recognisable tree languages
are not closed under (input-)linear macro transductions, not even the complete
deterministic ones. O

I\ Several copies used a rule of the shape ¢($,v1,%2) — ¢ (y1,y2). This is not
allowed by teh definition of NMTTs: any occurrence of a state symbol on the
right-hand side of a rule must use one of the variables z;; here there are no
variables since $ is a constant symbol, thus there cannot be a state symbol on the
right-hand side of a rule from ¢($, y1,y2).

Exercise 5 (From NDTTs to NMTTs). Show that, if D is an NDTT, then we can
construct an NMTT M such that [D] = [M]io.

Let D = (Q,F,F',A,I). Observe that this is also an NMTT, where all the states have
arity one. It remains to note that 10 rewriting captures general rewriting in this case:
this is because there are no parameters, thus the restriction on p in the definition of 19,
is trivial. 0

Exercise 6 (From NUTTs to NMTTs). Show that, if ¢/ is an NUTT, then we can con-
struct an NMTT M such that [U] = [M]io. Hint: For a NUTTU = (Q, F,F' A, I),
define

Qa Z ™Y | n>0,3f € Fo, 301,40, 0 € Q. (F(qi(x1), - qn(zn)) — q(e)) € A} .

Construct an NMTT M =< (QwQa {q((]o)}, F,F', A {q}). The set of rules A’ should
contain in particular the rules

e(g(xi, . Tm) Y1y -, Un) = elyi/Tili<i<n
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for all e € Qa and g € F,, for m > 0, which drop the argument g(xi,...,xy) and
substitute y; for x; in e; note that e[y;/zi|1<i<n is a term in T(F',Y) C T(F'UQ(X), ).
Your NMTT should be defined such that, for allt € T(F), t' € T(F'), and q € Q,

t—=*qt') inlU = q(t) 10,7y in M. (%)

Let A’ & Ag W A1 where A is the set of rules for ¢y and Ay the remainder of the
rules:

Ao E {qg(a) = t|3gel.a—q(t) € Aae Fo}

U {Q()(f(ml, L. ,:cn)) — é(IEl, ql(:cl), C ,qn(xn))
|Jg eI, f(qi(x1),...,qn(zn)) — qle) € A,n > 0} ;

AL = {qla) = t]a—q(t) € Ayae Fo} (1)
Ula(f(@1,.. z0)) = (@1, q1(@1), - -+, qnln))
| flar(z1), .- qn(zn)) — qle) € A;n >0} (2)
u{e(g(@t, . s Tm), Y1, yn) = e[yi/Til1<i<n
|meN,ge Fn,ecQal. (3)

We are going to prove by induction over ¢, and using the rules of A exclusively. By

*
definition of Ag, the outcome will be that, for all t € T'(F) and t' € T(F"), qo(t) LON
if and only if there exists ¢ € I such that t —* ¢(t').

base case a € Fo: by (1), a — ¢(t') € A if and only if g(a) — ' € Ay if and only if

q(a) 19, v,
induction step f(t1,...,t,), n > 0: we consider each direction in separately:
= ift = f(t1,...,tn) =% q(t'), then t —=* f(qi(t}),...,qu(t),)) — t' for ¢’ =
a(eltfai1cicn). & e (Faa(n).-au(on) = ale)) € A, and derivations
t —* qi(t}) for all 1 <+ <n. Thus, in M,
q(t) = q(f(tr,t2, ... 15))

10 .
— e(t, q1(t1), q2(t2), - - -, qu(tn)) (using ()
10 * . 10 *
— (tlvtllaq2(t2)7'-‘7t/n) (by ind. hyp7 Ql(tl) — tll)
10 * _ . 10 *
— ety t),th, ..., 1) (by ind. hyp., ¢,(tn) — t.)
10 .
— elyi/zil1<i<n[t]/yil1<i<n (using (@)
= e[t} /zi]1<i<n (by composition of the substitutions)

=+
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*
— if q(t) = q(f(t1,..-,tn)) 1o, ', then this derivation must start with a step

q(f(t1, ... tn)) 19, e(t1,q1(t1),-..,qn(tn)) using a rule of the form for
some (f(q1(z1),...,qn(xn)) = qle)) € A.
Because we are in an inside-out derivation, we must handle the subtrees g;(t;)

*
first, hence we must continue with €(t1, q1(¢1), ..., ¢n(tn)) 10, e(ty, th,....th)

with g;(t;) 0, tie T(F') forall 1 <i<n.

Finally, we must finish with , and we obtain t’' = e[y; /xi|1<i<n[t}/yil1<i<n =
e[t} /x;]1<i<n by composition of the substitutions. Thus, in i,

t=ft1,ta, .. otn) =" fl@(t), ta, - tn) (by ind. hyp., t1 —* q1(t1))

=" fla1(t)), q2(t3), - - -, qnl(ty,))

(by ind. hyp., t, —=* ¢n(tn))
— qle[ti/zili<i<n) (using f(qi(z1), ..., qn(xn)) = qle))
=t .

Exercise 7 (Image intersection). Let M = (Q,F,F',A,I) be an NMTT and A =
(Q',F',A",I') be a complete DFTA. The purpose of this exercise is to construct an
NMTT M’ such that, for all t € T(F) and t' € T(F'), (t,t') € [M']1o if and only if
(t,t') € [M]io and t' € L(A).

Let Q" & Upen @p+1 % Q". Each symbol (g, qoq1 - - - qp) of Q" pairs a (p + 1)-ary
state from M with a vector of p + 1 states from A’, and has arity p + 1. We want
to construct M’ with Q" as set of states such that, for all p € N, (¢,q0---¢p) € Q",
t € T(F), and tg, 1], ..., t, € T(F') such that V1 < j <p, i =% ¢; in A,

g(tth, . ) 1%t in M and th —* go in A
10* ;.
<:><q,Q()qp>(t,t/1,,t;) — t6 m MI' (T)

Show how to construct M’.

Hint: Consider some arbitrary n € N and vector qoq1 -+ - qp € Q’erl for some p € N.
For such fixed n and p, X, and Y, can be treated as finite alphabets of symbols of
rank 0. Let Z be a countable set of fresh variable names. Define the NUTT Uy, 404, ---q, =
(Q W{gx}, FUX, UV, UQ, F UX, UV UQ", Apgoqrgp> {00}) with

Angoqrap = {yj — a5 (y) | 1 < j < p} (uy)
U{z; — gx(zi) |1 <i<n} (ux)
U{f(ai(z1) s @nlzm) = ¢ (f(215- 5 2m))

| fla1s s dm) — ¢ € A} (ur)
U{q(gx(20), q1(21); - s @i (2m)) = a0({q, @01 -+ - @) (20, - - - Zm))
| m>0,9 € Q1,490,415+ € Q'} - (uQ)
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This NUTT defines a transduction from terms e € T(F' U Q(X,),),) to terms e €
T(F UQ"(Xn), Vp)-
Let M' & (Q", F,F,A", I x I'), where

/

A” d:ef {<q7QOQI o 'qp>(f<m17 cee 7$n>>y17 o 7yp> — €
lq(f(z1,. o an),y1,-- - yp) » e € Aand (e,€) € [Un,gogiq,]}

Let us first observe that ([f]) implies the result. Indeed, for allt € T'(F) and ¢’ € T(F'),
(t,t') € [M']10 if and only if there exists (q,q’) € I x I’ such that (g, ¢")(¢) 19 ¢ in M/,

which by is if and only if there exist ¢ € I such that ¢(t) 19" ¢ in M and g el
such that ¢t —* ¢’ in A, thus if and only if (¢,t') € [M]io and ¢ € L(A’).

Let us now prove . We consider the two directions of the implication independently.

*

= By induction over ¢ € T'(F); assume that q(t,t7,...,t,) 10, toin M and V0 < j <
p. t; —* q; in .A/; let P e [t;‘/yj]lgjgp
Let us first show that, for all n € N, terms e € T(F' U Q(X,), )),), substitutions o
from X, to strict subtrees of ¢, trees t' € T'(F’), and states ¢ € @',

*
eop 190 ¢ in M and ¢ —* q in A
*
— 3¢’ .e =" ¢'(€') In Un,g...q, and €'op 9 ¢ in M. (=)

We prove by induction over the term e € T(F' U Q(X,,), Vp)-

base case ¢ =y;, 1 <j <p: The derivation in M is empty: esp = t; = ¢
Since A’ is deterministic and we have both ¢ —* ¢’ and t' —* ¢;, ¢ = g;.
In Up,gyqy-q,, We have e = y; — q;(y;) = ¢'(y;) using . Finally, € &
y; = e is such that e'op =1, =" and has an empty derivation in M".
inductive step e = f(e1,...,em), f € F,,, m > 0: The inside-out derivation in
*
M must be of the form eocp = f(eiop,...,emop) o, F .oty =t
*
where epop 0, ty for all 1 <k < m. The derivation in A" can similarily be
decomposed as t' = f(t,...,t) =" f(d},...,q},) = ¢ with t] =% ¢| in A’
for every 1 < k < m.

By the ind. hyp. on applied to the e, there exists for each 1 <
10 *

k< m a term e) such that e, —* q(e}) in Upgoq..q, and e op — t]

in M'. These derivations in Up goq,..q, entail that e = f(er,...,e,) —*
Flar(eh), - amlen,)) = d'(flel, ... ep,)) using (uz).

*

Finally, ¢ = f(e/,...,e.) is such that e'op = f(e|op,..., e, 0p) 1o,

F . ) =t in M.
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inductive step e = ¢"(z;,e1,...,em), 1 <i < n: the inside-out derivation in M
* *
must be of the form ¢’(x;0,e10p,...,enop) 0, q" (o, ¢, ... ) o, t,

*
where epop 10, t7 in M for all 1 < k < m. As A’ is complete, there exist
states (q}.)1<k<m such that ¢} —* ¢, in A for all 1 <k <m.

By the ind. hyp. on applied to the e, there exists for each 1 <
*
k < m a term e), such that e, —* qg(e}) in Un goq..q, and epop 1, ty
in M'. These derivations in Uy, 4,q,...q, entail that e = ¢"(zi, e1,...,em) =*
q//(q/\’(xi)7 q/1 (6/1)7 SRR q;n(eén)) — q/(<q”7 q/qll t q§n>(ﬂc¢, 6/17 ) e;n)) using
and .

There*remains to show that e’ & (¢”, ¢/d} - g (xi, ey, ... el)) is such that
eop 107 ¢ in M we already have ¢/op Io, (g”,q’q’1 s gho ) (io ot ).
As we have seen that ¢"(z;0,t],...,t!) 197 ¢ and ¢ —* ¢ in A, we
can apply the ind. hyp. on over o(x;) to deduce the remaining steps

*
q",qd, - a)(wio, t], ..., th) 10 ¢ in M.

Returning to , let now t = f(t1,...,t,) for some n € N. Then the inside-out

derivation in M is necessarily of the form

10 10 *
q(f(t1s o stn)sthy s ty) = elti/aii<i<np — 1

for some rule q(f(z1,...,20),%1,-..,¥,) — ¢ € A. Thus, by , there exists e’

*
such that e —=* qo(€’) in Un,gy-..q,, i€ (¢,€") € [Un go.--q,], and €'[t;/xi]1<i<np 19, t)
in M’. Since A’ contains (g, gog1 - gp)(f (1, .., Tn), Y1,...,Yp) — €, we obtain
the desired derivation in M’.

*
<= By induction over t € T(F); assume that (g,qo---qp)(t,t},...,1},) 1o, to in M’

and t; —* g; in A" for 1 < j <p;let p « 5 /yili<j<p-
Let us first show that, for all n € N, terms e € T(F' U Q(AX,),),) and € €

T(F'UQ"(X,),Yp), substitutions o from X, to strict subtrees of ¢, trees t' € T'(F'),
and states ¢’ € @,

*
e =" ¢'(¢') in Uy, go...q, and €'op 107 ¢ in M/
*
—eop -2 inMandt "¢ in A . (&)
We prove by induction over the term e € T(F' U Q(X,,), Vp)-

base case ¢ = y;, 1 < j < p: Thederivation in Uy, ¢,...q, is € = y; — ¢;(y;) by ,
thus ¢’ = y; = e and yjop = t; = t". Thus the derivations in M and M’
coincide and t;- —* gj in A by assumption.

inductive step e = f(ei,...,en), f € F,,, m > 0: Let us decompose the deriva-
tion in Up,go-q, as € = fle1,....em) =" f(q1(e)), - an(e)) = ¢ (fe], ... e))
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for some f(d,....q},) = ¢ € A’ by (uz]), where e, —* g (e},) in Up gy...q, for

each 1 <k <mande = f(e,....e,).
The inside-out derivation in M’ is thus necessarily of the form e’op =
* *k
f(eiop,... el op) 1o, f(ty,...,t0) =t where e,op 10, ty forall 1 <k <
m

’ *
By ind. hyp. on applied to each ey for 1 < k < m, egop 1o, ty in M
and ¢ —* ¢}, in A"
*
Thus, in M, eop = f(e1op,...,emop) 0, f@,...,tl) = t'. Further-
more, in A", t' = f(tf,...,t0) =" f(d},....q,) = ¢

inductive step e = ¢"(z;,e1,...,em), 1 <i <n: Let us decompose the deriva-
tion in Uy gy...q, as € = ¢"(xi, e1,...,em) =% ¢"(qx(x:),q1(e)), -, a(e),)) —
¢({d",d'dr- @) (wisel, .. €,)) using and (ug)), where ey —* q;(e})
in Up,go-q, for each 1 <k <m and € = (¢",¢'q) - q,) (zi, €}, ... er,).

The inside-out derivation in M’ is thus necessarily of the form e'op =

10 * 10

<q//7 q/qll e q;n>(xl*07 e’lap, cee ,e;nUp) — <q//7 q/qll e q;n> (in, tlllﬂ cee 7t;41) —
t" where ejop 10, ty for all 1 <k < m.

By ind. h lied to each ey, for 1 < k < 10" in M
y ind. hyp. on (<) applied to each e, for 1 <k < m, eyop — t] in
and t] —* ¢, in A’

*

*

Thus, in M, eop = ¢"(z;0,e10p,...,enmop) LN q"(xijo, tf, ... 7). Fur-

thermore, by ind. hyp. on applied to the strict subtree o(x;) in the deriva-
*k *

tion (¢",q¢'qy - ¢b,) (wio, 8, ... t)) 19 ¢ in M, " (zio, ], . ) 00 ¢

in M, and ' —* ¢ in A’.

Returning to ({]), let now ¢ = f(t1,...,t,) for some n € N. Then the inside-out
derivation in M’ is necessarily of the form

10 10 *
<Q7 q0 - QP>(f(t17 e 7tn)7t/17 e 7t;)) — el[ti/xi]1§i§np — t6

for some rule q(f(21,...,%n),y1,...,Yp) — € € A and (e,€') € [Un,gygy-q,]- Thus

10 10 * .
by (), a(f (b1, otn)ythyen s th) 2 elti/ailicicnp —> th in M and t) —* go

in A" O

A Optional Exercise

As the title of the section indicates, this homework assignment is too long, but I like the
following exercise and you might feel like attempting to solve it.

Exercise 8 (Pre-image computation). Let M = (Q,F,F',A,I) be an NMTT. The
purpose of this exercise is to construct an alternating finite tree automaton (AFTA) A

such that L(A) = [M];d(T(F) = {t € T(F) | 3t € T(F') . (t,¢') € [M]10}-

10
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1. Have a look at Sec. 7.2.2 of TATA on your own. Then show how to construct the
AFTA A (without proof).

Let A< (Q,F,A,I) where, foralln e N, g € Q, and f € Fp,

Ag, ) \/ A (di)

(¢(f(@1yes®n)y1seyp)—€)EA ¢ (x4,e1,....6m ) ESubterms(e)
meN,q' €Qm+1,1<i<n

This automaton checks that for at least one right-hand side e, all the ‘calls’ to
some ¢'(zj, e1,...,en) succeed.

2. Theorem 7.4.1 from TATA shows how to construct a DFTA equivalent to the
AFTA A. Conclude by giving a proof of the following theorem:

Theorem 1 (Inverse macro transductions). If M is an NMTT from F to F' and L'
d_ef

a recognisable tree language over F', then [Mio (L) Z {t € T(F) | 3t € L' . (t,') €
[Mlio} is a recognisable tree language over F.

By [Exercise 7} we can construct from M and a complete DFTA A’ for L' an NMTT
M’ such that, for all ¢t € T(F), It € T(F').(t,t') € [M']io if and only if It €
L. (t,t') € [M]io. Applying the construction from to M’, we obtain an
AFTA A recognising [M];g (L'). Finally, Thm. 7.4.1 from TATA shows that L(A) is a
recognisable tree language over F. O
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