
Tree Transducers

Home assignment to hand in before or on November 2, 2018.

O
ct

ob
er 1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

N
ov

em
b

er 1 2 3 4

Electronic versions (PDF only) can be sent by email to 〈sylvain.schmitz@lsv.fr〉;
paper versions should be handed in on the 2nd or put in my mailbox at LSV,

ENS Paris-Saclay. No delays. The numbers in the margins next to exercises

are indications of time and difficulty, not necessarily of the points you might earn

answering them.

We learn in this homework about some of the (many) notions of transducers over
finite trees. Let F and F ′ be two finite ranked alphabets. A transducer τ realises a
relation JτK ⊆ T (F)× T (F ′).

Tree transducers find many applications in computational linguistics, compilers,
XML processing, and logics, whenever we need to model such transformations over finite
trees. Chapter 6 of Tree Automata Techniques and Applications gives a quick overview of
two of the models we shall encounter in this homework, along with motivating examples.

As seen in class, one of the simplest means of defining tree transformations is through
tree homomorphisms. Recall the following facts: tree homomorphisms do not pre-
serve recognisability (c.f. TATA Exa. 1.4.2), but linear homomorphisms do (c.f. TATA
Thm. 1.4.3) and inverse homomorphisms also do (c.f. TATA Thm. 1.4.4).

1 Top-Down Tree Transducers

Let X be a countable set of variables. For Q a ranked alphabet with arities greater thanTATA, Sec. 6.4.2

zero, we abuse notations and write Q(X) for the alphabet of pairs (q, x) ∈ Q× X with

arity(q, x)
def
= arity(q)− 1. This is just for convenience, and (q, x)(t1, . . . , tn) is really the

term q(x, t1, . . . , tn).
A top-down tree transducer (NDTT) is a tuple D = (Q,F ,F ′,∆, I) where Q is a

finite set of states, all of arity 1, F and F ′ are finite ranked alphabets, I ⊆ Q is a set of
root states, and ∆ is a finite set of term rewriting rules of the form q(f(x1, . . . , xn))→ e
where q ∈ Q, f ∈ Fn for some n ∈ N, and e ∈ T (F ′ ∪Q(Xn)). Note that any such e is a
term from T (Q ∪ F ′,X).

mailto:sylvain.schmitz@lsv.fr

MPRI M1-18 Tree Automata Techniques and Applications October 16, 2018

The transduction JDK realised by D is defined through rewriting semantics:

JDK def
= {(t, t′) ∈ T (F)× T (F ′) | ∃q ∈ I . q(t)→∗ t′} .

Exercise 1 (Example). Let F def
= {a(1), $(0)} and F ′ def

= {f (2), a(1), b(1), $(0)}. ConsiderTATA,
Exa. 6.4.2.2

the NDTT D = ({q, q′},F ,F ′,∆, {q}) with ∆ the set of rules

q(a(x1)→ f(q′(x1), q′(x1)) q′($)→ $

q′(a(x1))→ a(q′(x1)) q′(a(x1))→ b(q′(x1))

Then we have for instance the following derivation:

q(a(a(a($))))→ f(q′(a(a($))), q′(a(a($))))

→ f(a(q′(a($))), q′(a(a($))))

→ f(a(b(q′($))), q′(a(a($))))

→ f(a(b($)), q′(a(a($))))

→ f(a(b($)), b(q′(a($))))

→ f(a(b($)), b(b(q′($))))

→ f(a(b($)), b(b($)))

showing that (a(a(a($))), f(a(b($)), b(b($)))) ∈ JDK.

Show that JDK = {(a(t), f(t1, t2)) | t ∈ T (F), t1, t2 ∈ T ({a, b, $}), and height(t) =[2]

height(t1) = height(t2)}.

Using ideas similar to those of Thm. 1.4.3 of TATA, one can show:

Fact 1 (Linear NDTTs). An NDTT D = (Q,F ,F ′,∆, I) is linear, if every rule q(f(x1),
. . . , xn))→ e from ∆ is such that e is a linear term in T (F ′∪Q,Xn). If D is linear and L

is a recognisable tree language over F , then JDK(L)
def
= {t′ ∈ T (F) | ∃t ∈ L, (t, t′) ∈ JDK}

is recognisable over F ′.

2 Bottom-Up Tree Transducers

Let X be a countable set of variables.TATA, Sec. 6.4.1,
and exercises

from 2017 in TD3
and the exam

A bottom-up tree transducer (NUTT) is a tuple U = (Q,F ,F ′,∆, I) where Q is a fi-
nite set of states, all of arity 1, F and F ′ are finite ranked alphabets, I ⊆ Q is a set of root
states, and ∆ is a finite set of term rewriting rules of the form f(q1(x1), . . . , qn(xn))→
q(e) where q, q1, . . . , qn ∈ Q, f ∈ Fn for some n ∈ N, and e ∈ T (F ′,Xn).

The transduction JUK realised by U is defined through rewriting semantics:

JUK def
= {(t, t′) ∈ T (F)× T (F ′) | ∃q ∈ I . t→∗ q(t′)} .

2

MPRI M1-18 Tree Automata Techniques and Applications October 16, 2018

Exercise 2 (Example). Let F def
= {a(1), $(0)} and F ′ def

= {f (2), a(1), b(1), $(0)}. ConsiderTATA,
Exa. 6.4.2.2

the NDTT U = ({q, q′},F ,F ′,∆, {q}) with ∆ the set of rules

a(q′(x1))→ q(f(x1, x1)) $→ q′($)

a(q′(x1))→ q′(a(x1)) a(q′(x1))→ q′(b(x1))

Then we have for instance the following derivation:

a(a(a($)))→ a(a(a(q′($))))

→ a(a(q′(b($))))

→ a(q′(a(b($))))

→ q(f(a(b($)), a(b($))))

showing that (a(a(a($))), f(a(b($)), a(b($)))) ∈ JUK.

Show that JUK = {(a(t), f(t′, t′)) | t ∈ T (F), t′ ∈ T ({a, b, $}), and height(t) =[2]

height(t′)}.

Here is an analogue of Fact 1 for linear NUTTs:

Fact 2 (Linear NUTTs). A NUTT U = (Q,F ,F ′,∆, I) is linear, if every rule f(q1(x1),
. . . , qn(xn))→ q(e) is such that e is a linear term in T (F ′,Xn). If U is linear and L is
a recognisable tree language over F , then JUK(L) is a recognisable tree language over F ′.

3 Macro Tree Transducers

3.1 Definitions

Let X be a countable set of variables and Y a countable set of parameters; we assume
X and Y to be disjoint.

Syntax. A macro tree transducer (NMTT) is a tuple M = (Q,F ,F ′,∆, I) where Q
is a finite set of states, all of arity ≥ 1, F and F ′ are finite ranked alphabets, I ⊆ Q1 is
a set of root states of arity one, and ∆ is a finite set of term rewriting rules of the form
q(f(x1, . . . , xn), y1, . . . , yp)→ e where q ∈ Q1+p for some p ≥ 0, f ∈ Fn for some n ∈ N,
and e ∈ T (F ′ ∪Q(Xn),Yp).

Inside-Out Semantics. Given a NMTT, the inside-out rewriting relation over trees in

T (F∪F ′∪Q) is defined by: t
IO−→ t′ if there exist a rule q(f(x1, . . . , xn), y1, . . . , yp)→ e in

∆, a context C ∈ C(F ∪F ′ ∪Q), and two substitutions σ:X → T (F) and ρ:Y → T (F ′)
such that t = C[q(f(x1, . . . , xn), y1, . . . , yp)σρ] and t′ = C[eσρ]. In other words, in
inside-out rewriting, when applying a rewriting rule q(f(x1, . . . , xn), y1, . . . , yp) → e,

3

MPRI M1-18 Tree Automata Techniques and Applications October 16, 2018

the parameters y1, . . . , yp must be mapped to trees in T (F ′), with no remaining states
from Q.

The inside-out transduction JMKIO realised by M is defined through inside-out
rewriting semantics:

JMKIO
def
= {(t, t′) ∈ T (F)× T (F ′) | ∃q ∈ I . q(t) IO−→

∗
t′} .

Exercise 3 (Example). Let F def
= {a(1), $(0)} and F ′ def

= {f (3), a(1), b(1), $(0)}. Consider

the NMTT M = ({q(1), q′(3)},F ,F ′,∆, {q}) with ∆ the set of rules

q(a(x1))→ q′(x1, $, $) q′($, y1, y2)→ f(y1, y1, y2)

q′(a(x1), y1, y2)→ q′(x1, a(y1), a(y2)) q′(a(x1), y1, y2)→ q′(x1, a(y1), b(y2))

q′(a(x1), y1, y2)→ q′(x1, b(y1), a(y2)) q′(a(x1), y1, y2)→ q′(x1, b(y1), b(y2))

Then we have for instance the following derivation:

q(a(a(a($))))
IO−→ q′(a(a($)), $, $)

IO−→ q′(a($), b($), b($))

IO−→ q′($, a(b($)), b(b($)))

IO−→ f(a(b($)), a(b($)), b(b($)))

showing that (a(a(a($))), f(a(b($)), a(b($)), b(b($)))) ∈ JMK.

Show that JMK = {(a(t), f(t1, t1, t2)) | t ∈ T (F), t1, t2 ∈ T ({a, b, $}), and height(t) =[2]

height(t1) = height(t2)}.

3.2 Comparison with Top-Down and Bottom-Up Transductions

Exercise 4 (Monadic trees). Let F ′ def= {a(1), b(1), $(0)}. Observe that trees in T (F ′) are
in bijection with contexts in C(F ′) and words over {a, b}∗.

1. Show that, if D is a NDTT from some F to F ′ and L is a recognisable tree language[1]

over F , then JDK(L) is also recognisable over F ′. Hint: The same kind of argument
shows that JUK(L) is recognisable for a NUTT from F to F ′ and L a recognisable
tree language.

Let D be a NDTT from F to F ′. In any rule q(f(x1, . . . , xn))→ e of D, e belongs to
T (F ′∪Q(Xn)). Since the maximal arity in F ′ is one, e has at most one occurrence
of any variable in Xn, thus D is linear. By Fact 1, JDK(L) is recognisable.

The same reasoning applies to a NUTT U into F ′, using Fact 2.

4

MPRI M1-18 Tree Automata Techniques and Applications October 16, 2018

2. For a context C from C(F ′), we write CR for its mirror context, read from the
leaf to the root. For instance, if C = a(b(a(a(�)))), then CR = a(a(b(a(�)))).
Formally, let n ∈ N be such that domC = {0m | m ≤ n}; then C(0n) = � and

C(0m) ∈ {a, b} for m < n. Then CR is defined by domCR def
= domC, CR(0n)

def
= �,

and CR(0m)
def
= CR(0n−m) for all m < n.

Give an NMTT M from F ′ to F ′ such that JMKIO = {(C[$], C[CR[$]]) | C ∈[3]

C(F ′)}. In terms of words over {a, b}∗, this transducer maps w to the palindrome
wwR. Is JMKIO(T (F)) a recognisable tree language?

M def
= (Q,F ′,F ′,∆, I) where Q

def
= {q(1)

i , q(2)}, I def
= {qi}, and ∆ is the set of rules

qi($)→ $ qi(a(x1))→ a(q(x1, a($))) qi(b(x1))→ b(q(x1, b($)))

q($, y1)→ y1 q(a(x1), y1)→ a(q(x1, a(y1))) q(b(x1), y1)→ b(q(x1, b(y1))) .

We leave the proof of correctness to the reader.

This macro tree transducer is actually input- and parameter-linear, deterministic,
and complete. Because a tree language over F ′ is recognisable if and only if the
corresponding word language over {a, b} is recognisable, JMKIO(T (F)) is not a
recognisable tree language. In turn, this shows that recognisable tree languages
are not closed under (input-)linear macro transductions, not even the complete
deterministic ones.

! Several copies used a rule of the shape q($, y1, y2) → q′(y1, y2). This is not
allowed by teh definition of NMTTs: any occurrence of a state symbol on the
right-hand side of a rule must use one of the variables xi; here there are no
variables since $ is a constant symbol, thus there cannot be a state symbol on the
right-hand side of a rule from q($, y1, y2).

Exercise 5 (From NDTTs to NMTTs). Show that, if D is an NDTT, then we can[1]

construct an NMTT M such that JDK = JMKIO.
Let D = (Q,F ,F ′,∆, I). Observe that this is also an NMTT, where all the states have
arity one. It remains to note that IO rewriting captures general rewriting in this case:

this is because there are no parameters, thus the restriction on ρ in the definition of
IO−→

is trivial.

Exercise 6 (From NUTTs to NMTTs). Show that, if U is an NUTT, then we can con-[4]

struct an NMTT M such that JUK = JMKIO. Hint: For a NUTT U = (Q,F ,F ′,∆, I),
define

Q∆
def
= {ē(n+1) | n > 0,∃f ∈ Fn,∃q1, . . . , qn, q ∈ Q . (f(q1(x1), . . . , qn(xn))→ q(e)) ∈ ∆} .

Construct an NMTT M def
= (Q]Q∆]{q(0)

0 },F ,F ′,∆′, {q0}). The set of rules ∆′ should
contain in particular the rules

ē(g(x1, . . . , xm), y1, . . . , yn)→ e[yi/xi]1≤i≤n

5

MPRI M1-18 Tree Automata Techniques and Applications October 16, 2018

for all ē ∈ Q∆ and g ∈ Fm for m ≥ 0, which drop the argument g(x1, . . . , xm) and
substitute yi for xi in e; note that e[yi/xi]1≤i≤n is a term in T (F ′,Y) ⊆ T (F ′∪Q(X),Y).
Your NMTT should be defined such that, for all t ∈ T (F), t′ ∈ T (F ′), and q ∈ Q,

t→∗ q(t′) in U ⇐⇒ q(t)
IO−→
∗
t′ in M . (∗)

Let ∆′
def
= ∆0] ∆1 where ∆0 is the set of rules for q0 and ∆1 the remainder of the

rules:

∆0
def
= {q0(a)→ t | ∃q ∈ I . a→ q(t) ∈ ∆, a ∈ F0}
∪ {q0(f(x1, . . . , xn))→ ē(x1, q1(x1), . . . , qn(xn))

| ∃q ∈ I, f(q1(x1), . . . , qn(xn))→ q(e) ∈ ∆, n > 0} ;

∆1
def
= {q(a)→ t | a→ q(t) ∈ ∆, a ∈ F0} (1)

∪ {q(f(x1, . . . , xn))→ ē(x1, q1(x1), . . . , qn(xn))

| f(q1(x1), . . . , qn(xn))→ q(e) ∈ ∆, n > 0} (2)

∪ {ē(g(x1, . . . , xm), y1, . . . , yn)→ e[yi/xi]1≤i≤n

| m ∈ N, g ∈ Fm, ē ∈ Q∆} . (3)

We are going to prove (∗) by induction over t, and using the rules of ∆1 exclusively. By

definition of ∆0, the outcome will be that, for all t ∈ T (F) and t′ ∈ T (F ′), q0(t)
IO−→
∗
t′

if and only if there exists q ∈ I such that t→∗ q(t′).

base case a ∈ F0: by (1), a → q(t′) ∈ ∆ if and only if q(a) → t′ ∈ ∆1 if and only if

q(a)
IO−→ t′.

induction step f(t1, . . . , tn), n > 0: we consider each direction in (∗) separately:

=⇒ if t = f(t1, . . . , tn) →∗ q(t′), then t →∗ f(q1(t′1), . . . , qn(t′n)) → t′ for t′ =
q(e[t′i/xi]1≤i≤n), a rule (f(q1(x1), . . . , qn(xn)) → q(e)) ∈ ∆, and derivations
ti →∗ qi(t′i) for all 1 ≤ i ≤ n. Thus, in M,

q(t) = q(f(t1, t2, . . . , tn))

IO−→ ē(t1, q1(t1), q2(t2), . . . , qn(tn)) (using (2))

IO−→
∗
ē(t1, t

′
1, q2(t2), . . . , t′n) (by ind. hyp., q1(t1)

IO−→
∗
t′1)

...

IO−→
∗
ē(t1, t

′
1, t
′
2, . . . , t

′
n) (by ind. hyp., qn(tn)

IO−→
∗
t′n)

IO−→ e[yi/xi]1≤i≤n[t′i/yi]1≤i≤n (using (3))

= e[t′i/xi]1≤i≤n (by composition of the substitutions)

= t′ .

6

MPRI M1-18 Tree Automata Techniques and Applications October 16, 2018

⇐= if q(t) = q(f(t1, . . . , tn))
IO−→
∗
t′, then this derivation must start with a step

q(f(t1, . . . , tn))
IO−→ ē(t1, q1(t1), . . . , qn(tn)) using a rule of the form (2) for

some (f(q1(x1), . . . , qn(xn))→ q(e)) ∈ ∆.

Because we are in an inside-out derivation, we must handle the subtrees qi(ti)

first, hence we must continue with ē(t1, q1(t1), . . . , qn(tn))
IO−→
∗
ē(t1, t

′
1, . . . , t

′
n)

with qi(ti)
IO−→
∗
t′i ∈ T (F ′) for all 1 ≤ i ≤ n.

Finally, we must finish with (3), and we obtain t′ = e[yi/xi]1≤i≤n[t′i/yi]1≤i≤n =
e[t′i/xi]1≤i≤n by composition of the substitutions. Thus, in U ,

t = f(t1, t2, . . . , tn)→∗ f(q1(t′1), t2, . . . , tn) (by ind. hyp., t1 →∗ q1(t1))

...

→∗ f(q1(t′1), q2(t′2), . . . , qn(t′n))
(by ind. hyp., tn →∗ qn(tn))

→ q(e[t′i/xi]1≤i≤n) (using f(q1(x1), . . . , qn(xn))→ q(e))

= t′ .

Exercise 7 (Image intersection). Let M = (Q,F ,F ′,∆, I) be an NMTT and A′ =
(Q′,F ′,∆′, I ′) be a complete DFTA. The purpose of this exercise is to construct an
NMTT M′ such that, for all t ∈ T (F) and t′ ∈ T (F ′), (t, t′) ∈ JM′KIO if and only if
(t, t′) ∈ JMKIO and t′ ∈ L(A′).

Let Q′′
def
=

⋃
p∈NQp+1 ×Q′p+1. Each symbol 〈q, q0q1 · · · qp〉 of Q′′ pairs a (p+ 1)-ary

state from M with a vector of p + 1 states from A′, and has arity p + 1. We want
to construct M′ with Q′′ as set of states such that, for all p ∈ N, 〈q, q0 · · · qp〉 ∈ Q′′,
t ∈ T (F), and t′0, t

′
1, . . . , t

′
p ∈ T (F ′) such that ∀1 ≤ j ≤ p, t′j →∗ qj in A′,

q(t, t′1, . . . , t
′
p)

IO−→
∗
t′0 in M and t′0 →∗ q0 in A′

⇐⇒ 〈q, q0 · · · qp〉(t, t′1, . . . , t′p)
IO−→
∗
t′0 in M′. (†)

Show how to construct M′.[7]

Hint: Consider some arbitrary n ∈ N and vector q0q1 · · · qp ∈ Q′p+1 for some p ∈ N.
For such fixed n and p, Xn and Yp can be treated as finite alphabets of symbols of

rank 0. Let Z be a countable set of fresh variable names. Define the NUTT Un,q0q1···qp
def
=

(Q′] {qX },F ′ ∪ Xn ∪ Yp ∪Q,F ′ ∪ Xn ∪ Yp ∪Q′′, ∆n,q0q1···qp , {q0}) with

∆n,q0q1···qp
def
= {yj → qj(yj) | 1 ≤ j ≤ p} (uY)

∪ {xi → qX (xi) | 1 ≤ i ≤ n} (uX)

∪ {f(q′1(z1), . . . , q′m(zm))→ q′(f(z1, . . . , zm))

| f(q′1, . . . , q
′
m)→ q′ ∈ ∆′} (uF ′)

∪ {q(qX (z0), q′1(z1), . . . , q′m(zm))→ q′0(〈q, q′0q′1 · · · q′m〉(z0, . . . , zm))

| m ≥ 0, q ∈ Qm+1, q
′
0, q
′
1, . . . , q

′
m ∈ Q′} . (uQ)

7

MPRI M1-18 Tree Automata Techniques and Applications October 16, 2018

This NUTT defines a transduction from terms e ∈ T (F ′ ∪ Q(Xn),Yp) to terms e′ ∈
T (F ′ ∪Q′′(Xn),Yp).

Let M′ def= (Q′′,F ,F ′,∆′′, I × I ′), where

∆′′
def
= {〈q, q0q1 · · · qp〉(f(x1, . . . , xn), y1, . . . , yp)→ e′

| q(f(x1, . . . , xn), y1, . . . , yp)→ e ∈ ∆ and (e, e′) ∈ JUn,q0q1···qpK}

Let us first observe that (†) implies the result. Indeed, for all t ∈ T (F) and t′ ∈ T (F ′),
(t, t′) ∈ JM′KIO if and only if there exists 〈q, q′〉 ∈ I×I ′ such that 〈q, q′〉(t) IO−→

∗
t′ inM′,

which by (†) is if and only if there exist q ∈ I such that q(t)
IO−→
∗
t′ in M and q′ ∈ I ′

such that t→∗ q′ in A′, thus if and only if (t, t′) ∈ JMKIO and t′ ∈ L(A′).

Let us now prove (†). We consider the two directions of the implication independently.

=⇒ By induction over t ∈ T (F); assume that q(t, t′1, . . . , t
′
p)

IO−→
∗
t′0 inM and ∀0 ≤ j ≤

p . t′j →∗ qj in A′; let ρ
def
= [t′j/yj]1≤j≤p.

Let us first show that, for all n ∈ N, terms e ∈ T (F ′ ∪Q(Xn),Yp), substitutions σ
from Xn to strict subtrees of t, trees t′ ∈ T (F ′), and states q′ ∈ Q′,

eσρ
IO−→
∗
t′ in M and t′ →∗ q′ in A′

=⇒ ∃e′ . e→∗ q′(e′) in Un,q0···qp and e′σρ
IO−→
∗
t′ in M′ . (

e
=⇒)

We prove (
e

=⇒) by induction over the term e ∈ T (F ′ ∪Q(Xn),Yp).

base case e = yj, 1 ≤ j ≤ p: The derivation in M is empty: eσρ = t′j = t′.
Since A′ is deterministic and we have both t′ →∗ q′ and t′ →∗ qj , q = qj .

In Un,q0q1···qp , we have e = yj → qj(yj) = q′(yj) using (uY). Finally, e′
def
=

yj = e is such that e′σρ = t′j = t′ and has an empty derivation in M′.
inductive step e = f(e1, . . . , em), f ∈ F ′m, m ≥ 0: The inside-out derivation in

M must be of the form eσρ = f(e1σρ, . . . , emσρ)
IO−→
∗
f(t′′1, . . . , t

′′
m) = t′

where ekσρ
IO−→
∗
t′′k for all 1 ≤ k ≤ m. The derivation in A′ can similarily be

decomposed as t′ = f(t′′1, . . . , t
′′
m) →∗ f(q′1, . . . , q

′
m) → q′ with t′′k →∗ q′k in A′

for every 1 ≤ k ≤ m.

By the ind. hyp. on (
e

=⇒) applied to the ek, there exists for each 1 ≤
k ≤ m a term e′k such that ek →∗ q′k(e′k) in Un,q0q1···qp and e′kσρ

IO−→
∗
t′′k

in M′. These derivations in Un,q0q1···qp entail that e = f(e1, . . . , em) →∗
f(q′1(e′1), . . . , q′m(e′m))→ q′(f(e′1, . . . , e

′
m)) using (uF ′).

Finally, e′
def
= f(e′1, . . . , e

′
m) is such that e′σρ = f(e′1σρ, . . . , e

′
mσρ)

IO−→
∗

f(t′′1, . . . , t
′′
m) = t′ in M′.

8

MPRI M1-18 Tree Automata Techniques and Applications October 16, 2018

inductive step e = q′′(xi, e1, . . . , em), 1 ≤ i ≤ n: the inside-out derivation in M
must be of the form q′′(xiσ, e1σρ, . . . , emσρ)

IO−→
∗
q′′(xiσ, t

′′
1, . . . , t

′′
m)

IO−→
∗
t′,

where ekσρ
IO−→
∗
t′′k in M for all 1 ≤ k ≤ m. As A′ is complete, there exist

states (q′k)1≤k≤m such that t′′k →∗ q′k in A for all 1 ≤ k ≤ m.

By the ind. hyp. on (
e

=⇒) applied to the ek, there exists for each 1 ≤
k ≤ m a term e′k such that ek →∗ q′k(e′k) in Un,q0q1···qp and e′kσρ

IO−→
∗
t′′k

in M′. These derivations in Un,q0q1···qp entail that e = q′′(xi, e1, . . . , em) →∗
q′′(qX (xi), q

′
1(e′1), . . . , q′m(e′m))→ q′(〈q′′, q′q′1 · · · q′m〉(xi, e′1, . . . , e′m)) using (uX)

and (uQ).

There remains to show that e′
def
= 〈q′′, q′q′1 · · · q′m〉(xi, e′1, . . . , e′m) is such that

e′σρ
IO−→
∗
t′ inM′: we already have e′σρ

IO−→
∗
〈q′′, q′q′1 · · · q′m〉(xiσ, t′′1, . . . , t′′m).

As we have seen that q′′(xiσ, t
′′
1, . . . , t

′′
m)

IO−→
∗
t′ and t′ →∗ q′ in A′, we

can apply the ind. hyp. on (†) over σ(xi) to deduce the remaining steps

〈q′′, q′q′1 · · · q′m〉(xiσ, t′′1, . . . , t′′m)
IO−→
∗
t′ in M′.

Returning to (†), let now t = f(t1, . . . , tn) for some n ∈ N. Then the inside-out
derivation in M is necessarily of the form

q(f(t1, . . . , tn), t′1, . . . , t
′
p)

IO−→ e[ti/xi]1≤i≤nρ
IO−→
∗
t′0

for some rule q(f(x1, . . . , xn), y′1, . . . , y
′
p) → e ∈ ∆. Thus, by (

e
=⇒), there exists e′

such that e→∗ q0(e′) in Un,q0···qp , i.e. (e, e′) ∈ JUn,q0···qpK, and e′[ti/xi]1≤i≤nρ
IO−→
∗
t′0

in M′. Since ∆′ contains 〈q, q0q1 · · · qp〉(f(x1, . . . , xn), y1, . . . , yp) → e′, we obtain
the desired derivation in M′.

⇐= By induction over t ∈ T (F); assume that 〈q, q0 · · · qp〉(t, t′1, . . . , t′p)
IO−→
∗
t′0 in M′

and t′j →∗ qj in A′ for 1 ≤ j ≤ p; let ρ
def
= [t′j/yj]1≤j≤p.

Let us first show that, for all n ∈ N, terms e ∈ T (F ′ ∪ Q(Xn),Yp) and e′ ∈
T (F ′∪Q′′(Xn),Yp), substitutions σ from Xn to strict subtrees of t, trees t′ ∈ T (F ′),
and states q′ ∈ Q′,

e→∗ q′(e′) in Un,q0···qp and e′σρ
IO−→
∗
t′ in M′

=⇒ eσρ
IO−→
∗
t′ in M and t′ →∗ q′ in A′ . (

e⇐=)

We prove (
e⇐=) by induction over the term e ∈ T (F ′ ∪Q(Xn),Yp).

base case e = yj, 1 ≤ j ≤ p: The derivation in Un,q0···qp is e = yj → qj(yj) by (uY),
thus e′ = yj = e and yjσρ = t′j = t′. Thus the derivations in M and M′
coincide and t′j →∗ qj in A by assumption.

inductive step e = f(e1, . . . , em), f ∈ F ′m, m ≥ 0: Let us decompose the deriva-
tion in Un,q0···qp as e = f(e1, . . . , em)→∗ f(q′1(e′1), . . . , q′m(e′m))→ q′(f(e′1, . . . , e

′
m))

9

MPRI M1-18 Tree Automata Techniques and Applications October 16, 2018

for some f(q′1, . . . , q
′
m)→ q′ ∈ ∆′ by (uF ′), where ek →∗ q′k(e′k) in Un,q0···qp for

each 1 ≤ k ≤ m and e′ = f(e′1, . . . , e
′
m).

The inside-out derivation in M′ is thus necessarily of the form e′σρ =

f(e′1σρ, . . . , e
′
mσρ)

IO−→
∗
f(t′′1, . . . , t

′′
m) = t′ where e′kσρ

IO−→
∗
t′′k for all 1 ≤ k ≤

m.

By ind. hyp. on (
e⇐=) applied to each ek for 1 ≤ k ≤ m, ekσρ

IO−→
∗
t′′k in M

and t′′k →∗ q′k in A′.

Thus, in M, eσρ = f(e1σρ, . . . , emσρ)
IO−→
∗
f(t′′1, . . . , t

′′
m) = t′. Further-

more, in A′, t′ = f(t′′1, . . . , t
′′
m)→∗ f(q′1, . . . , q

′
m)→ q′.

inductive step e = q′′(xi, e1, . . . , em), 1 ≤ i ≤ n: Let us decompose the deriva-
tion in Un,q0···qp as e = q′′(xi, e1, . . . , em)→∗ q′′(qX (xi), q

′
1(e′1), . . . , q′m(e′m))→

q′(〈q′′, q′q′1 · · · q′m〉(xi, e′1, . . . , e′m)) using (uX) and (uQ), where ek →∗ q′k(e′k)
in Un,q0···qp for each 1 ≤ k ≤ m and e′ = 〈q′′, q′q′1 · · · q′m〉(xi, e′1, . . . , e′m).

The inside-out derivation in M′ is thus necessarily of the form e′σρ =

〈q′′, q′q′1 · · · q′m〉(xiσ, e′1σρ, . . . , e′mσρ)
IO−→
∗
〈q′′, q′q′1 · · · q′m〉(xiσ, t′′1, . . . , t′′m)

IO−→
∗

t′ where e′kσρ
IO−→
∗
t′′k for all 1 ≤ k ≤ m.

By ind. hyp. on (
e⇐=) applied to each ek for 1 ≤ k ≤ m, ekσρ

IO−→
∗
t′′k in M

and t′′k →∗ q′k in A′.

Thus, in M, eσρ = q′′(xiσ, e1σρ, . . . , emσρ)
IO−→
∗
q′′(xiσ, t

′′
1, . . . , t

′′
m). Fur-

thermore, by ind. hyp. on (†) applied to the strict subtree σ(xi) in the deriva-

tion 〈q′′, q′q′1 · · · q′m〉(xiσ, t′′1, . . . , t′′m)
IO−→
∗
t′ in M′, q′′(xiσ, t′′1, . . . , t′′m)

IO−→
∗
t′

in M, and t′ →∗ q′ in A′.

Returning to (†), let now t = f(t1, . . . , tn) for some n ∈ N. Then the inside-out
derivation in M′ is necessarily of the form

〈q, q0 · · · qp〉(f(t1, . . . , tn), t′1, . . . , t
′
p)

IO−→ e′[ti/xi]1≤i≤nρ
IO−→
∗
t′0

for some rule q(f(x1, . . . , xn), y1, . . . , yp) → e ∈ ∆ and (e, e′) ∈ JUn,q0q1···qpK. Thus

by (
e⇐=), q(f(t1, . . . , tn), t′1, . . . , t

′
p)

IO−→ e[ti/xi]1≤i≤nρ
IO−→
∗
t′0 in M and t′0 →∗ q0

in A′.

A Optional Exercise

As the title of the section indicates, this homework assignment is too long, but I like the
following exercise and you might feel like attempting to solve it.

Exercise 8 (Pre-image computation). Let M = (Q,F ,F ′,∆, I) be an NMTT. The
purpose of this exercise is to construct an alternating finite tree automaton (AFTA) A
such that L(A) = JMK−1

IO (T (F ′) def
= {t ∈ T (F) | ∃t′ ∈ T (F ′) . (t, t′) ∈ JMKIO}.

10

MPRI M1-18 Tree Automata Techniques and Applications October 16, 2018

1. Have a look at Sec. 7.2.2 of TATA on your own. Then show how to construct the[2]

AFTA A (without proof).

Let A def
= (Q,F ,∆′, I) where, for all n ∈ N, q ∈ Q, and f ∈ Fn,

∆′(q, f)
def
=

∨
(q(f(x1,...,xn),y1,...,yp)→e)∈∆

∧
q′(xi,e1,...,em)∈Subterms(e)

m∈N,q′∈Qm+1,1≤i≤n

(q′, i)

This automaton checks that for at least one right-hand side e, all the ‘calls’ to
some q′(xi, e1, . . . , em) succeed.

2. Theorem 7.4.1 from TATA shows how to construct a DFTA equivalent to the
AFTA A. Conclude by giving a proof of the following theorem:[1]

Theorem 1 (Inverse macro transductions). If M is an NMTT from F to F ′ and L′

a recognisable tree language over F ′, then JMK−1
IO (L′)

def
= {t ∈ T (F) | ∃t′ ∈ L′ . (t, t′) ∈

JMKIO} is a recognisable tree language over F .

By Exercise 7, we can construct from M and a complete DFTA A′ for L′ an NMTT
M′ such that, for all t ∈ T (F), ∃t′ ∈ T (F ′) . (t, t′) ∈ JM′KIO if and only if ∃t′ ∈
L′ . (t, t′) ∈ JMKIO. Applying the construction from Exercise 8 to M′, we obtain an
AFTA A recognising JMK−1

IO (L′). Finally, Thm. 7.4.1 from TATA shows that L(A) is a
recognisable tree language over F .

11

	Top-Down Tree Transducers
	Bottom-Up Tree Transducers
	Macro Tree Transducers
	Definitions
	Comparison with Top-Down and Bottom-Up Transductions

	Optional Exercise

