TD 1. Logique propositionnelle, équivalence, et conséquence

Rappel : Rappelons que l'on se munit d'un ensemble dénombrable \mathcal{P}_0 de propositions, et que l'ensemble \mathcal{F} des formules propositionnelles est défini par la syntaxe abstraite

$$\varphi ::= P \mid \neg \varphi \mid \varphi \vee \varphi \mid \varphi \wedge \varphi$$

où $P \in \mathcal{P}_0$. La notation $\phi \Rightarrow \psi$ est une abréviation de $\neg \phi \lor \psi$, et $\phi \Leftrightarrow \psi$ est une abréviation de $(\phi \land \psi) \lor (\neg \phi \land \neg \psi)$. Dans tout ce qui suit, P, Q, R dénotent des éléments de \mathcal{P}_0 , et φ , ψ des éléments de \mathcal{F} .

Exercice 1. Syntaxe abstraite

Pour chacun des arbres suivants, dire s'il réprésente une formule propositionnelle. Justifier.

A. \neg B. \lor C. \land \land \lor P \neg P Q \neg P Q \neg \neg Q \neg Q

Exercice 2. Syntaxe concrète

Pour chacun des cas ci-dessous, dire si l'expression dénote sans ambiguïté une formule propositionnelle, et le cas échéant, dessiner le ou les arbre(s) de syntaxe abstraite correspondant(s).

A.
$$(P \wedge Q \wedge R) \vee \neg P$$
 B. $R \wedge \neg (P \vee Q \wedge \neg R)$

Exercice 3. Pièges des langues naturelles

Formaliser les énoncés suivants (écrits en langue naturelle) en logique propositionnelle. Notez qu'il y a parfois plusieurs réponses possibles, en fonction de votre interprétation de l'énoncé.

- (a) « Le matin, il boit un café serré avec une tartine, ou parfois un thé. »
- (b) « Si Paris est la capitale de la France, alors la Terre est ronde. »
- (c) « Si Rome est la capitale de la France, alors la Terre est ronde. »
- (d) « Si la Terre n'est pas ronde, je veux bien manger mon chapeau. »

Rappel : Une formule φ est valide si toute interprétation satisfait φ , et satisfiable s'il existe une interprétation qui satisfait φ .

Exercice 4. Validité et satisfiabilité

Pour chacune des formules propositionnelles φ suivantes, dire si la formule est valide. Si elle ne l'est pas, dire si elle est satisfiable, et le cas échéant, donner une interprétation I telle que $\llbracket \varphi \rrbracket^I = 1$.

- A. $Q \vee \neg Q$
- B. $\neg (P \land \neg Q)$
- C. $(P \Rightarrow Q) \land P \land \neg Q$

Rappel : Une formule ψ est une *conséquence* de φ si toute interprétation qui satisfait φ satisfait aussi ψ . On le note $\varphi \models \psi$. Pour des formules de la logique propositionnelle, $\varphi \models \psi$ si pour chaque ligne dans la table de vérité de φ qui contient la valeur 1 dans la colonne φ , la ligne correspondante dans la table pour ψ contient la valeur 1 dans la colonne ψ .

Deux formules φ et ψ sont équivalentes si $\varphi \models \psi$ et $\psi \models \varphi$. Pour des formules de la logique propositionnelle, cela veut dire que exactement les mêmes lignes contiennent la valeur 1 dans la colonne de φ que dans la colonne de ψ .

Exercice 5. Équivalences et conséquences logiques

Pour chaque couple de formules φ, ψ dans la liste suivante, écrire leur tables de vérité, et dire lequel des énoncés suivants est vrai :

- A. les formules φ et ψ sont équivalentes,
- B. $\varphi \vDash \psi$ et $\psi \not\vDash \varphi$,
- C. $\varphi \not\models \psi$ et $\psi \models \varphi$,
- D. $\varphi \not\models \psi$ et $\psi \not\models \varphi$.
- 1. $P \Rightarrow Q$, $\neg Q \Rightarrow \neg P$
- 2. $P \wedge (\neg Q \vee R), (P \wedge \neg Q) \vee (P \wedge \neg R)$
- 3. $P \Rightarrow Q, P \Rightarrow (Q \lor R)$

Exercice 6. Combinaisons de formules valides et satisfiables

Soient φ et ψ deux formules propositionnelles.

- (a) Montrer que φ et ψ sont valides si et seulement si la formule $\varphi \wedge \psi$ est valide.
- (b) Si $\varphi \lor \psi$ est valide, est-ce qu'on peut en déduire que φ est valide ou ψ est valide? Montrez ou donnez un contre-exemple.
- (c) Si φ et ψ sont satisfiables, que peut-on dire de $\varphi \vee \psi$ et de $\varphi \wedge \psi$?

Exercice 7. Syntaxe étendue

Soit la fonction booléenne « nor » \downarrow à deux arguments définie par $0\downarrow 0=1$ et $0\downarrow 1=1\downarrow 0=1\downarrow 1=0$. On étend la syntaxe abstraite des formules propositionnelles en permettant d'utiliser ce nouvel opérateur. Soient φ et ψ des formules propositionnelles.

- (a) Exprimer $\varphi \downarrow \psi$ de manière équivalente en utilisant uniquement les connecteurs \neg et \vee .
- (b) Exprimer $\neg \varphi$ de manière équivalente en utilisant uniquement le connecteur \downarrow .
- (c) Exprimer $\varphi \vee \psi$ de manière équivalente en utilisant uniquement le connecteur \downarrow .
- (d) Conclure que le connecteur \downarrow est fonctionnellement complet, c'est à dire que : pour toute formule propositionnelle φ il existe une formule propositionnelle φ' écrite à l'aide des propositions et du seul connecteur \downarrow telle que φ et φ' sont équivalentes.