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Overview

These lecture notes are dedicated to the course Model-Checking Finite Structures that
takes place in 2025–2028 as part of the Master in Mathematical Logic and Foundations of
Computer Science at Université Paris Cité.

Rather than a general course on topics in finite model theory (Libkin, 2004; Toruńczyk,
2022), the course focuses on one single topic: the model-checking problem. The goal here
is to design algorithms that, given as input a first-order sentence ϕ and a finite relational
structure A, answer whether A |= ϕ.

This particular focus is mainly motivated by its applications for evaluating queries in
database systems (Abiteboul, Hull, and Vianu, 1995; Arenas et al., 2022). However, the
course does not enter the details of this application; instead, this particular lens is an ex-
cuse to touch upon a number of topics related to finite model theory and complexity theory,
notably algorithmic meta-theorems and in particular Courcelle’s Theorem, but also circuit
complexity, parameterised complexity, monadic second-order logic, tree automata and lan-
guages, etc., as presented for instance in chapters 6–7 of (Libkin, 2004), chapters 10–12 of
(Flum and Grohe, 2006), chapters 14 and 18–23 of Arenas et al. (2022), Part III of (Downey
and Fellows, 2013), the whole of (Kreutzer, 2009), or Chapter 3 of (Comon et al., 2008).

Main References. The main references used in the preparation of these lecture notes are
the following.

Arenas, Marcelo, Pablo Barceló, Leonid Libkin, Wim Martens, and Andreas Pieris (2022).
Database Theory. Querying Data. Preliminary version. (cit. on pp. xi, 2, 3, 13, 15, 28, 36, 45, 59,
97)

Comon, Hubert, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Christof
Löding, Sophie Tison, and Marc Tommasi (2008). Tree Automata. Techniques and Appli-
cations. (cit. on p. xi)

Courcelle, Bruno and Joost Engelfriet (2012). Graph Structure and Monadic Second Order
Logic. A Language-Theoretic Approach. Encyclopedia ofmathematics and its applications
138. Cambridge University Press. (cit. on p. 11)

Flum, Jörg and Martin Grohe (2006). Parameterized Complexity Theory. Texts in Theoretical
Computer Science. Springer. (cit. on pp. xi, 39, 40, 45, 46, 59, 89, 93)

Libkin, Leonid (2004). Elements of FiniteModelTheory. Texts inTheoretical Computer Science.
Springer. (cit. on pp. xi, 11, 13, 45, 46)

xi
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https://doi.org/10.1007/978-3-662-07003-1
https://homepages.inf.ed.ac.uk/libkin/fmt/fmt.pdf




CHAPTER 1

Preliminaries

1.1. SignatuRes and StRuctuRes

1.1.1. Signatures. A signature (aka a language or a vocabulary) is a set σ = P ] F com-
posed of two disjoint sets P of relation symbols (aka predicate symbols) and Fof function
symbols. Each symbol in σ comes with an arity in N, which we will denote through a func-
tion ar : σ → N or through a superscript between parentheses, so that for instance R(3)

denotes a relation symbol of arity ar(R) = 3. We will restrict the arity of relation symbols
to be positive: ar(R) > 0 for all R ∈ σ; in other words, there are no proposition symbols.

As usual in a finite model-theoretic setting, we are mostly interested in signatures σ
that are finite and relational. The latter means that there are no function symbols in σ (i.e.,
F = ∅).1 We write ar(σ)) def

= maxR∈σ ar(R) for the maximal arity of a symbol in a finite
relational signature σ.

A counterpart to relational signatures are algebraic signatures, whereP = ∅, which will
be used in ⁇.

Example 1.1 (Database schemas). A great source of examples and motivations for fi-
nite model theory, and the model-checking problem in particular, stems from relational
databases.
A notion that closely matches that of a signature in this context is the one of a database
schema, which in SQL is declared through CREATE TABLE directives. If we abstract away
from all the features of actual SQL schemas (e.g., types, keys, foreign keys, etc.), a database
schema is essentially a list of relation symbols R(r), and for each such symbol, an r-tuple
of attribute names. For instance, consider the SQL declarations

CREATE TABLE City (
cid VARCHAR PRIMARY KEY,
cname VARCHAR NOT NULL,
country VARCHAR NOT NULL

);
CREATE TABLE Person (

pid INTEGER PRIMARY KEY,
name VARCHAR NOT NULL,

1When convenient we might allow some additional constant symbols (i.e., function symbols with arity zero)
but these can typically be encoded through unary relation symbols.

1



2 1. PRELIMINARIES

cid VARCHAR REFERENCES City
);
CREATE TABLE Profession (

pid INTEGER NOT NULL REFERENCES Person,
prname VARCHAR NOT NULL

);

When ignoring all the information about types, keys, etc., these table declarations corre-
spond to the following ‘named’ database schema (taken from Arenas et al., 2022, Exam-
ple 3.2)

• City[cid,cname,country] to store information about cities, each with an
identifier (cid), a name (cid), and a country code (country),

• Person[pid,pname,cid] to store identifiers of persons (pid), their names
(pname), and their city of birth (cid), and
• Profession[pid,prname] to store the professions of people by relating their

identifiers (pid) with profession names (pname).
Finally, when also dropping the names of the attributes, we get a relational signature σ =
{Person(3), Profession(2), City(3)}. (As we will see in Example 1.7, this signature will
be enriched with additional constant symbols.)

1.1.2. Structures. A structure A = (A, (RA)R∈P , (f
A)f∈F ) over a signature σ = P ] F

is a tuple that contains a non-empty set A called its domain, along with
• a relation RA ⊆ Aar(R) for every relation symbol R of σ and
• a function fA : Aar(f) → A for every function symbol f of σ; for a constant func-

tion symbol c, it is convenient to think of cA as an element of A.
A structure A is finite if its domain |A| is finite; as we will exclusively work with finite
signatures, a finite structure will indeed have a finite representation. A finite relational
structure is a finite structure over some finite relational signature.

Example 1.2 (Relational structure). Consider the relational signature σ def
= {R(2), S(2)}

with two binary relational symbols. Figure 1.1 depicts a finite structure A over σ with
domain A def

= {a, b, c}, RA def
= {(a, a), (a, b)}, and SA def

= {(b, b), (b, c)}, whereR edges are
in solid green and S edges in dashed grey.

a

b

c

R

R
S

S

FiguRe 1.1. A finite relational structure.

Example 1.3 (Relational databases). Just like database schemas are the counterparts to
relational signatures, database instances are the counterparts of finite relational structures.
To illustrate the notion, let us first consider how the structure of Example 1.2 could be
arranged as a database, i.e., a set of ‘tables’ listing all the tuples in each relation:
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R

a a
a b

S

b b
b c

As mentioned in Example 1.1, actual databases give names to their columns—their
attributes—, as in the following example (ibid., Figure 3.1)

City
cid cname country

MPH Memphis USA
DLT Duluth USA
ST Stone Town TZA

Person
pid pname cid

1 Aretha MPH
2 Billie
3 Bob DLT
4 Freddie ST

Profession
pid prname

1 singer
1 songwriter
1 actor
2 singer
3 singer
3 songwriter
3 author
4 singer
4 songwriter

These tables can be seen as a finite structure A over the relational signature σ =
{Person(3), Profession(2), City(3)} from Example 1.1. We first fix an infinite data do-
main D that will contain all the data values we might ever wish to store. Then

• we define the domain of the structure as the subset A def
= {1, 2, . . . ,

MPH,DLT, ST, . . . } ⊆ D of the data domain with one element per different
data value in the database, and

• we set up the relations between these elements, so that for instance
(4, Freddie, ST) ∈ PersonA.

There is however a value missing for the cid attribute of ‘Billie’ in our database. In SQL,
this is called a NULL, and we could for instance assume that we have an infinity of ‘null’
symbols at our disposal in D that we may treat as data values.

1.1.2.1. Homomorphisms. A homomorphism between two structuresA andB over the same
signature σ is a function h : A → B that preserves all the functions and relations: for all
m ∈ N and a1, . . . , am ∈ A

• (a1, . . . , am) ∈ RA implies (h(a1), . . . , h(am)) ∈ RB for each relation symbol
R(m) ∈ σ, and

• h
(
fA(a1, . . . , am)

)
= fB(h(a1), . . . , h(am)) for each function symbol f (m) ∈ σ.

A bijective homomorphism is called an isomorphism if its inverse is also a homomor-
phism. An injective homomorphism is called an embedding if it is strong, which requires that
for allm ∈ N and a1, . . . , am ∈ A, (h(a1), . . . , h(aar(R))) ∈ RB implies (a1, . . . , aar(R)) ∈
RA for each relation symbolR(m) ∈ σ. IfA embeds intoB through h, thenA is isomorphic
to the substructure of B induced by h(A).

We shall write
A → B: if there exists a homomorphism between A and B,
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A ↪→ B: if there exists an injective homomorphism between A and B,
A ⊆ B: if there exists an embedding between A and B,
A↠↠↠B: if there exists a surjective homomorphism between A and B, and
A ∼= B: if there exists an isomorphism between A and B.

Example 1.4 (Homomorphisms). TODO

1.1.2.2. Classes of Structures. A class of structures is a class (in the set-theoretic sense) C of
structures, which is closed under isomorphisms. We write

• Struct for the class of all structures over all finite relational signatures, and
• Fin for the class of all finite relational structures.

For a relational signature σ and a class of structures C , we write C [σ] for the class of all
structures over σ within C ; hence for instance Fin[σ] is the class of all finite structures
over σ, and Fin =

⋃
σ finite relational Fin[σ].

For instance, we define Graph as the class of all finite, simple, non-empty graphs over
the signature of graphs σ def

= {E(2)}. Hence Graph ⊆ Fin[E(2)] ⊆ Fin; graphs are precisely
the finite structuresG over the signature {E(2)} such thatEG an irreflexive and symmetric
relation. We will use standard notations for graphs G = (V,E), for instance {v, v} for
edges in E, V (G) def

= V and E(G) def
= E for its sets of vertices and edges.

Example 1.5 (Graphs). The graph depicted in Figure 1.2a is a structure (V,E) with do-
main V def

= {a, b, c} and relation E def
= {(a, b), (b, a), (a, c), (c, a)}. This is indeed a simple

graph: there are no self-loops and the edge relation is symmetric, in which case we will
rather represent it as in Figure 1.2b.

a

b

c

E

E
E

E

(a) Depicted as a relational structure.

a

b

c

(b) Depicted as a graph.

FiguRe 1.2. A simple finite graph.

1.2. FiRst-ORdeR Logic

1.2.1. Syntax. Let us fix an infinite countable set X of first-order variables. The sets of
first-order terms and first-order formulæ over a signature σ are defined through the abstract
syntax

t ::= x | f(t1, . . . , tar(f)) (terms)
ϕ ::= R(t1, . . . , tar(R)) | t1 = t2 | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ (formulæ)
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where x ranges over X , f over F , R over P , and the ti’s over terms; thus in the case
of relational signatures, terms are either variables or constant symbols. We write respec-
tively T(F ,X ) and FO[σ] for the sets of terms and of formulæ over σ and X . We de-
note by FO the set of all formulæ over all the finite relational signatures σ, so that FO =⋃
σ finite relational FO[σ].

We write x̄ ⊆ X to denote a set of variables. We assume X itself to have some fixed
linear ordering, so that if x̄ is finite it can also be construed as a tuple in X |x̄| relative to that
ordering.

1.2.1.1. Extended Syntax. We will routinely use the usual syntactic sugar:

> def
= x = x for some x ∈ X (true)

⊥ def
= ¬> (false)

ϕ ∨ ψ def
= ¬(¬ϕ ∧ ¬ψ) (disjunction)

ϕ→ ψ def
= ¬ϕ ∨ ψ (implication)

ϕ↔ ψ def
= (ϕ→ ψ) ∧ (ψ → ϕ) (equivalence)

t1 6= t2
def
= ¬(t1 = t2) (disequality)

∀x.ϕ def
= ¬(∃x.¬ϕ) (universal quantification)

∃x̄ def
= ∃x1 · · · ∃xk if x̄ = {x1, . . . , xk} (existential tuple quantification)

∀x̄ def
= ∀x1 · · · ∀xk if x̄ = {x1, . . . , xk} (universal tuple quantification)∨

i∈I
ϕi

def
= ϕi1 ∨ · · · ∨ ϕin if I = {i1, . . . , in} (finite disjunction)∧

i∈I
ϕi

def
= ϕi1 ∧ · · · ∧ ϕin if I = {i1, . . . , in} (finite conjunction)

1.2.1.2. Free and Bound Variables. Intuitively, an occurrence of a variable x in a formula ϕ
is bound if, going up in the syntax tree of ϕ, we meet a quantifier ∃x (or, using the extended
syntax, ∀x, ∃x̄, or ∀x̄ with x ∈ x̄); if not, it is free. A variable is bound if all its occurrences
are bound; it is free otherwise. Formally, the set free(ϕ) of free variables in ϕ is defined by
induction by

free(x) def
= {x} free(t1 = t2)

def
= free(t1) ∪ free(t2)

free(f(t1, . . . , tar(f)))
def
=

⋃
1≤i≤ar(f)

free(ti) free(R(t1, . . . , tar(R)))
def
=

⋃
1≤i≤ar(R)

free(ti)

free(¬ϕ) def
= free(ϕ) free(ϕ ∧ ψ) def

= free(ϕ) ∪ free(ψ)
free(∃x.ϕ) def

= free(ϕ) \ {x}

For a set S ⊆ FO of formulæ, we write free(S) def
=

⋃
φ∈S free(ϕ) for its set of free variables.

We take ϕ(x̄) to mean that ϕ is a first-order formula with free(ϕ) = x̄. A term without
free variables is called ground and we denote the set of all ground terms over F by T (F)
(aka the free algebra over F ). A ground term necessarily has constant symbols on all the
leaves of its syntax tree. A formula without free variables is called a sentence.
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If ϕ(x̄) is a formula and t̄ is a tuple of terms in (T (F ,X ))x̄, we write ϕ(t̄) to denote
the result of the substitution of each free occurrence within ϕ of a variable in x̄ by its cor-
responding term in t̄.

1.2.2. Semantics. Consider a signature σ = P ] F and a structure A over σ. A (first-
order) valuation in A of a set of variables x̄ ⊆ X is a function ā ∈ Ax̄; using the underlying
linear ordering over X , when x̄ is finite we can also see a valuation as a tuple in A|x̄| of
elements from A. For b ∈ A and y ∈ X , we write ā[b/y] for the valuation in Ax̄∪{y} such
that (ā[b/y])(y) = b and (ā[b/y])(x) = ā(x) for all x 6= y in x̄.

The semantics JtKAā of a term t ∈ T (F ,X ) with free(t) ⊆ x̄ in such a valuation ā ∈ Ax̄
in the structure A is the element in A defined inductively by interpreting the term in A:JxKAā def

= ā(x) , Jf(t1, . . . , tar(f))KAā def
= fA

(Jt1KAā , . . . , Jtar(f)KAā ) .
We say that a structure A and a valuation ā ∈ Ax̄ satisfy a first-order formula ϕ ∈ FO[σ]
with free variables free(ϕ) ⊆ x̄, denoted A, ā |= ϕ, in the following inductive cases

A, ā |= R(t1, . . . , tar(R)) if (Jt1KAā , . . . , Jtar(f)KAā ) ∈ RA ,

A, ā |= t1 = t2 if Jt1KAā = Jt1KAā ,
A, ā |= ¬ϕ if A, ā 6|= ¬ϕ ,
A, ā |= ϕ ∧ ψ if A, ā |= ϕ and A, ā |= ψ ,
A, ā |= ∃x.ϕ if ∃b ∈ A such that A, ā[b/x] |= ϕ .

This definition extends to a set S ⊆ FO[σ] with free(S) ⊆ x̄ by saying that A, ā |= S if
A, ā |= ϕ for all ϕ ∈ S.

The more usual notation in model theory textbooks is to write A |= ϕ(ā) for a formula
ϕ(x̄) and a valuation ā ∈ Ax̄ if A, ā |= ϕ in the above definition.2 If ϕ is a sentence and
A, ε |= ϕ for the empty valuation ε, we write more simply A |= ϕ and call A a model of ϕ.
This extends to a set T ⊆ FO[σ] of sentences (aka a theory), by writing A |= T if A |= ϕ for
all ϕ ∈ T , in which case we also say that A is a model of T .

Example 1.6 (Evaluation of a formula). Consider the formula ϕ(y, z) def
= ∃x.R(x, y) ∧

¬S(y, z) and the finite relational structure A of Example 1.2. We can see that A |= ϕ(b, a)
by the inductive evaluation depicted in Figure 1.3.

1.2.2.1. Evaluating Queries. The evaluation of a formula ϕ(x̄) on a structure A is the set

ϕ(A) def
= {ā ∈ Ax̄ | A |= ϕ(ā)} .

If ϕ is a sentence, then ϕ(A) is either the empty set ∅ or the empty valuation ε, and can be
treated as the Boolean value false or true.

Example 1.7 (SQL Queries). In a database context, a formula is called a query and a sen-
tence a Boolean query. Let us illustrate this with a few SQL queries and attempt to translate
them as first-order formulæ.

2Note the difference: ifA, ā |= ϕ then ā ∈ Ax̄ for some x̄ ⊇ free(ϕ), whereas ifA |= ϕ(ā) then ā ∈ Afree(φ).
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A, [b/y, a/z] |= ∃x.R(x, y) ∧ ¬S(y, z)

A, [a/x, b/y, a/z] |= R(x, y)∧ ¬S(y, z)

A, [a/x, b/y, a/z] |= R(x, y)

(a, b) ∈ RA

A, [a/x, b/y, a/z] |= ¬S(y, z)

A, [a/x, b/y, a/z] 6|= S(y, z)

(b, a) 6∈ SA

FiguRe 1.3. The evaluation of the formula ϕ of Example 1.6 on the finite
relational structure of Example 1.2 with valuation [b/y, a/z]. The node
of the syntax tree of ϕ we are working on at each inductive step is high-
lighted in green.

Consider the database of Example 1.3. One might ask for all the personal identifiers and
names of people who have two different professions with a SQL query

SELECT DISTINCT Person.pid, Person.name
FROM Profession Pr1, Profession Pr2, Person

WHERE Pr1.pid = Person.pid AND Pr2.pid = Person.pid
AND Pr1.prname <> Pr2.prname;

The answer for this query would be the pairs (1,Aretha), (3,Bob), and (4, Freddie). This
can be written as a first-order formula with two free variables

ϕ1.1(pid, pname) def
= ∃cid∃prname1∃prname2.Person(pid, pname, cid)

∧ Profession(pid, prname1)

∧ Profession(pid, prname2)
∧ prname1 6= prname2 .

(1.1)

Then the evaluation of this formula on the relational structure A defined in Example 1.3
for the database does indeed yield the set

ϕ1.1(A) = {(1,Aretha), (3,Bob), (4, Freddie)} .

As another example, we can find the professions that every person in the database exerts
with the SQL query

SELECT DISTINCT Pr1.prname
FROM Profession Pr1

WHERE NOT EXISTS
(SELECT P1.name

FROM Person P1
WHERE NOT EXISTS
(SELECT P2.pid
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FROM Person P2 NATURAL JOIN Profession Pr2
WHERE P1.pid = P2.pid AND Pr2.prname = Pr1.prname));

This can be written as a first-order formula with one free variable
ϕ1.2(prname) def

= ∀pid∀name∀cid.Person(pid, name, cid)

→ Profession(pid, prname) ,
(1.2)

whose evaluation the database yields the set
ϕ1.2(A) = {singer} .

As you can see, it can be rather cumbersome to express negations in SQL; indeed, database
theory often focuses on queries without negations, see Chapter 4.
Finally, consider asking for the names of the people in the database who are actors or
percussionists, as in the SQL query
SELECT DISTINCT name
FROM Person NATURAL JOIN Profession

WHERE prname = 'actor' OR prname = 'percussionist';

Now, this is where the treatment of database queries requires a bit of fiddlingwith the usual
definitions of first-order logic over finite relational structures: we need to have access to
two constant symbols actor(0) and percussionist(0), in which case the SQL query can be
expressed by the formula

ϕ1.3(name) def
= ∃pid∃cid.Person(pid, name, cid)

∧
(
Profession(pid, actor)
∨ Profession(pid, percussionist)

)
.

(1.3)

In order to be able to write such formulæ, we actually work with an infinite signature
σ ∪ D, where the elements of D are treated as constant symbols. However, not all the
elements of our infinite setD appear in our structureA: more precisely, only the elements
in A ⊆ D appear, and this is called the active domain of the database.

• The constant symbols in the active domain are interpreted as themselves: for
instance, actorA def

= actor is one such constant symbol from the active domain.
• Let us write D(ϕ) for the constant symbols from D that appear in ϕ. We still

need some way of interpreting those constants outside the active domain, like
‘percussionist’ in (1.3). For those constants in D(ϕ) \ A, we simply add new
structure elements and interpret them as themselves. These new elements are
unrelated from all the elements in the active domain A.

Thismeans thatwe actually perform the evaluation of (1.3) on a structureA+percussionist,
resulting in the correct answer

ϕ1.3(A+ percussionist) = {Aretha} .

1.2.2.2. Semantic Properties. The semantic properties typically defined for first-order for-
mulæ can be relativised to a class of structuresC (for instanceFin) rather than the class Struct
of all structures.

A formula ϕ ∈ FO[σ] is satisfiable in a class of structures C if there exists a struc-
ture A ∈ C [σ] and a valuation ā ∈ Afree(φ) such that A, ā |= ϕ. More generally, a set
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S ⊆ FO[σ] of formulæ is satisfiable in C if there exists a structure A ∈ C [σ] and a valua-
tion ā ∈ Afree(S) such that A, ā |= S.

A formula ϕ ∈ FO[σ] is valid over C if for all structure A ∈ C [σ] and all valuations
ā ∈ Afree(φ), A |= ϕ(ā). Assuming that C [σ] is not empty, a valid formula is in particular
satisfiable.

A formula ϕ ∈ FO[σ] is a (logical) consequence over C of a set S ⊆ FO[σ] of formulæ
if, for all structure A ∈ C [σ] and valuations ā ∈ Afree(φ)∪free(S), if A, ā |= S, then A, ā |= ϕ.
If such is the case, we write S |=C ϕ; if S = {ψ} we write more simply ψ |=C ϕ. Observe
that S is unsatisfiable over C if and only if S |=C ⊥ and that ϕ is valid over C if and only
if ∅ |=C ϕ. If both ϕ |=C ψ and ψ |=C ϕ, then we say that ϕ and ψ are (logically) equivalent
over C .

If ϕ ∈ FO[σ] is a sentence or T ⊆ FO[σ] a set of sentences, we denote their sets of
models over C by

ModC (ϕ) def
= {A ∈ C [σ] | A |= ϕ} , ModC (T ) def

=
⋂
φ∈T

JϕKC = {A ∈ C [σ] | A |= T} .

Note that ModC (T ) is itself a class of structures (see exercise 1.1).3

When the class of structures is C = Struct, we simply say that ϕ (or S) is satisfiable,
valid, a logical consequence, etc., and drop the various ‘C ’ subscripts in the notations.

1.2.3. Syntactic Fragments. By restricting the syntactic constructs in formulæ, we obtain
a variety of fragments that (might) constrain the expressiveness of the logic.

Negative Normal Forms. An atomic formula is a formula of the form R(t1, . . . , tar(R)) or
t1 = t2. A literal is an atomic formula or its negation. Any first-order formula can be put
in negative normal form, which restricts negations to occur inside litterals, and this form
is typically preferred when defining fragments of first-order logic. In other words, these
formulæ are defined through the abstract syntax

α ::= R(t1, . . . , tar(R)) | t1 = t2 (atomic formulæ)
` ::= α | ¬α (litterals)
ϕ ::= ` | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∀x.ϕ (formulæ)

The Alternation Hierarchy. Quantifier-free formulæ (in negative normal form) are de-
fined through the abstract syntax

ψ ::= ` | ψ ∨ ψ | ψ ∧ ψ (QF formulæ)
We write QF for the set of all quantifier-free formulæ. Existential formulæ are then defined
by

ϕ ::= ψ ∈QF | ∃x.ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ (Σ1 formulæ)
and similarly, universal formulæ are defined by

ϕ′ ::= ψ ∈QF | ∀x.ϕ′ | ϕ′ ∨ ϕ′ | ϕ′ ∧ ϕ′ (Π1 formulæ)

3Conversely, for a class of structures C [σ] over a single signature σ, its theory is the set of sentences that
satisfy all the structures in C [σ], i.e., Th(C [σ]) def

= {ϕ ∈ FO[σ] | free(ϕ) = ∅ and ∀A ∈ C [σ] . A |= ϕ}. This
definition can also be relativised, this time to various fragments of first-order logic.
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Letting Σ0 = Π0 = QF, the previous idea gives rise the alternation hierarchy of first-order
logic, defined through

ϕ ::= ψ ∈Πi
| ∃x.ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ (Σi+1 formulæ)

ϕ′ ::= ψ ∈Σi | ∀x.ϕ′ | ϕ′ ∨ ϕ′ | ϕ′ ∧ ϕ′ (Πi+1 formulæ)

Any formula inΣi can be equivalentlywritten in prenex normal form as ∃x̄1∀x̄2 · · · ∃x̄i.ψ
where ψ ∈ QF if i is odd, or as ∃x̄1∀x̄2 · · · ∀x̄i.ψ with ψ ∈ QF if i is even (this allows some
of the ‘quantifier blocks’ ∃x̄j or ∀x̄j to be empty). Similarly, a Πi formula can be written in
prenex normal form as ∀x̄1∃x̄2 · · · ∀x̄i.ψ where ψ ∈ QF if i is odd, or as ∀x̄1∃x̄2 · · · ∃x̄i.ψ
with ψ ∈ QF if i is even. For instance,

∃y.
(
U(y) ∧

(
∃x.¬R(x, y) ∧ ∀z.

(
S(y, z) ∨ ∃x.R(x, z)

)))
is a Σ3 formula, which can equivalently be written in prenex normal form as

∃x∃y∀z∃x′.U(y) ∧
(
¬R(x, y) ∧ (S(y, z) ∨R(x′, z))

)
with three quantifier blocks ∃x∃y, ∀z, and ∃x′ and therefore two alternations. Variables can
be freely re-ordered within a quantifier block. One needs to be careful with variable capture
when putting a formula in prenex normal form, hence the fresh variable name ‘x’ in this
example.

Clearly, Πi ⊆ Σi+1 for all i, but observe that Σi ⊆ Σi+1 also holds for all i; see
Figure 1.4 for a depiction. When a formula belongs toΣi orΠi, we say that it has alternation
rank i.

Σ0 = QF = Π0

Σ1 Π1

Σ2 Π2

Σ3 Π3

FO

FiguRe 1.4. The alternation hierarchy of first-order logic.

Positive and Negative Fragments. A formula in negative normal form is positive if all
its atoms are of the form R(t1, . . . , tar(R)) or t1 = t2. Dually, it is negative if all its atoms
are of the form ¬R(t1, . . . , tar(R)) or t1 6= t2. We write PosFO for the positive fragment of
first-order logic. We may sometimes wish to allow disequalities t1 6= t2 in the positive frag-
ment, in which case we let Pos̸=FO denote the set of first-order formulæ without negative
relational atoms ¬R(t1, . . . , tar(R)).
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This can be combined with the alternation hierarchy: for instance, ∃x∃y.R(x, y) ∨
S(y, z) is a positive existential formula in PosΣ1 and ∃x∃y.R(x, y) ∧ x 6= y is a sentence
in Pos̸=Σ1.

A formula is primitive positive if it is a positive existential formula without disjunction.
A primitive positive formula ϕ can equivalently be written as ∃x̄.

∧
i∈I αi(x̄i) where each

αi is an atomic formula with free variables x̄i ⊆ (x̄ ∪ free(ϕ)). We write PP for the set
of primitive positive formulæ. We have therefore the following proper inclusions among
syntactic fragments of first-order logic

PP ⊊ PosΣ1 ⊊ Pos̸=Σ1 ⊊ Σ1 .

Exercise 1.1 (Preservation). Let σ be a signature, A and B be two structures over σ, and ϕ
a first-order formula over σ. We say that a homomorphism h : A → B preserves ϕ if, for
all ā in Afree(φ),

A |= ϕ(ā) implies B |= ϕ(h(ā)) .
Show that h preserves ϕ in the following cases.
A → B: ϕ ∈ PosΣ1,
A ↪→ B: h is injective and ϕ ∈ Pos̸=Σ1,
A ⊆ B: h is an embedding and ϕ ∈ Σ1,
A↠↠↠B: h is surjective and ϕ ∈ PosFO,
A ∼= B: h is an isomorphism and ϕ ∈ FO.
Thus for each fragment above and for all sentencesϕ in that fragment, JϕKC is closed under
the corresponding class of morphisms. Hint: see for instance Hodges (1997, Section 2.4).

Bounded Variables. One can also restrict first-order formulæ to work over a finite set of
variables {x1, . . . , xk}, where formulæ can be reused; we write FOk for the set of formulæ
that only use k distinct variables. For instance, ∃y.(E(x, y) ∧ ∃z.E(y, z)) is equivalent to
∃y.(E(x, y) ∧ ∃x.E(y, x)), a formula in FO3.

1.2.4. Logical Interpretations. TODO Marker (2002, Definition 1.3.9) Hodges (1997, Sec-
tion 4.3) and Courcelle and Engelfriet (2012, Chapter 7) (also (poizat)?)

FuRtHeR Reading

References. Thematerial in this chapter is completely standard, and can be found in many
textbooks, e.g., by Chang and Keisler (1990), Hodges (1997), or Marker (2002) for model the-
ory in general, or Libkin (2004) for more of a focus on finite model theory. The presentation
of the semantics of first-order logic in Section 1.2.2 is also called ‘Tarskian semantics’ and
its origins seem to stem from Tarski (1935).





CHAPTER 2

A Taste of Finite Model Theory

Classical model theory tends to focus on first-order theories, and on the models of those
theories, i.e., the structures satisfied by all the sentences in the theory. Finite model theory
has a very different flavour, with strong ties with database theory (Vianu, 1997; Vianu, 1997;
Kolaitis, 2007; Libkin, 2009).

TheoRem 2.1 (Trakhtenbrot). undecidability of satisfiability over the class of finite struc-
tures

The proof shown in class is taken from (Toruńczyk, 2022, Theorem 4.2); similar proofs
can be found in (Libkin, 2004, Theorem 9.2) or (Arenas et al., 2022, Theorem 8.1).

13





CHAPTER 3

The Computational Complexity of Model-Checking

As illustrated in Example 1.7, one of the main motivations for studying first-order logic
over finite structures stems from the task of answering queries over relational databases.
There are however significant differences between first-order logic and SQL, notably

multiset semantics: SQL’s semantics allows tuples to appear several times in a table or
the output of a query; the set semantics of first-order logic can be simulated in
SQL by systematically using the DISTINCT keyword in all SELECT directives (see
Chapter 44 of Arenas et al., 2022);

nulls: SQL allows tuples with missing values, replaced by a value called NULL; this leads to
considerable complications, for instance SQL uses a three-valued logic rather than
a Boolean one (ibid., chapters 39–40).

Furthermore, SQL proposes many additional features that lies beyond the realm of what is
expressible in first-order logic; a simple example is aggregation, which is routinely used for
counting, summing, … the results of queries (ibid., Chapter 33). Thus first-order logic over
finite structures can be seen as a cleaner, better-behaved way of looking at a prominent
database problem; databases provide a motivation for studying first-order logic over finite
structures, but answering real-world queries does not reduce to the first-order case.

This chapter surveys the basic results regarding the evaluation and model-checking
problems for first-order logic over finite structures, for which the upcoming Section 3.1
provides the formal definitions and shows that the model-checking problem can be reduced
to the case of simple finite graphs (Proposition 3.6). The model-checking problem is shown
to be intractable in general in Section 3.2; more precisely it is PSPACE-complete.

Two aspects nevertheless nuance this negative result.

• First, if we fix the input formula—i.e., if we consider the data complexity of the
problem (see Section 3.1.1)—, then the model-checking problem is in polynomial
time (see Theorem 3.14) and even falls into a very low circuit complexity class
called uniform AC0 (see Section 3.4).

• Second, simply fixing the input formula is a bit too coarse, and a finer understand-
ing of the complexity of the problem is gained when treating the size of the input
formula as a parameter. In this framework developed in Section 3.5, the model-
checking problem is not deemed tractable: it is AW[∗]-complete, and already W[1]-
complete for existential formulæ (Theorem 3.25).

15
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3.1. THe Model-CHecKing PRoblem

Let us fix a logical query language L (like one of the fragments of Section 1.2.3) along
with a class of finite structuresC ⊆ Fin. As discussed, the previous question about querying
databases can be abstracted by the following evaluation problem for L queries over C .

PRoblem (EVAL(L,C )).
instance: a finite relational signature σ, a structure A ∈ C [σ], and a formula ϕ ∈

L[σ]
output: ϕ(A)

Most of our efforts in this course will be dedicated to understanding the complexity of
the associated decision problem, called the model-checking problem, for various instances
of L and C .

PRoblem (MC(L,C )).
instance: a finite relational signature σ, a structure A ∈ C [σ], and a sentence

ϕ ∈ L[σ]
question: A |= ϕ?

Note that the formulation of the model-checking problem could equivalently ask whether
ϕ(A) 6= ∅.

Throughout this chapter, we will mostly focus on the case where L = FO is the full
first-order logic, or L = Σi is one of its alternation fragments, and C = Fin is the class of
all finite structures. Spoiler alert: none of these problems is tractable, and all the remaining
chapters in these notes are devoted to restrictions on L orC (or both) that ensure tractability.

In the complexity statements we are going to make, in this chapter as in later ones, the
underlying computational model will often be explicit, but if nothing is indicated then we
assume a RAM model with unit cost and logarithmic word size.

3.1.1. Data and Query Complexity. As the model-checking problem takes its roots in
query evaluation over databases, where the queries are typically rather small in comparison
with the huge amounts of data hosted by database management systems, the ways we will
measure its computational complexity are typically refined to encompass

• its combined complexity, which is its computational complexity in the usual sense,
• its query complexity (aka expression complexity), wherewe fix the input structureA,

and
• its data complexity, where we fix the formula ϕ.

Of those three complexity measures, data complexity is often seen as better reflecting
the needs of database management systems.

3.1.2. Encoding the Input. In order to reason about the complexity of themodel-checking
problem over various computational models, we need to provide a few details about how
to represent its input. Regarding the signature σ, we can order the symbols arbitrarily and
provide for each symbol its arity encoded in unary. For the formula ϕ, we will assume some



3.1. THE MODEL-CHECKING PROBLEM 17

natural encoding of the syntactic tree as a string. Regarding the structure A, there are sev-
eral possible encodings, with two different flavours that mimic the well-known ‘adjacency
matrix’ and ‘adjacency list’ representations of graphs. In both cases, we will write ‖A‖ for
the size of the encoding of a finite relational structure A.

3.1.2.1. Adjacency Matrix Encoding. The idea with this encoding is to enumerate all the tu-
ples in ā ∈ Aar(R) for each relational symbol R ∈ σ, and use one bit to denote whether
ā ∈ RA or not. More precisely, fix an arbitrary linear ordering < over A. Then, for each
R ∈ σ, its encoding 〈RA〉 is a bitstring of length |A|ar(R) with a bit for each element ofAar(R)

ordered lexicographically. Then the encoding 〈A〉 ofA is first the size |A| in unary, followed
by a separator and the concatenation of the encodings 〈RA〉 of the RA’s in the order of the
encoding of σ. The size of this encoding of A is then

‖A‖ def
= |A|+ 1 +

∑
R∈σ
|A|ar(R) . (3.1)

Example 3.1 (Adjacency matrix encoding). Consider the linear ordering a < b < c of the
elements of the structure A from Figure 1.1. Assume that the encoding of σ presents R
and then S (e.g., σ could be encoded as 001001 to represent the arities of R and S). Then
〈A〉 would be the bitstring
000︸︷︷︸
|A|

1︸︷︷︸
separator

1︸︷︷︸
(a,a)∈RA

1︸︷︷︸
(a,b)∈RA

0︸︷︷︸
(a,c) ̸∈RA

0︸︷︷︸
(b,a) ̸∈RA

00000
...

0︸︷︷︸
(a,a) ̸∈SA

000
...

1︸︷︷︸
(b,b)∈SA

1︸︷︷︸
(b,c)∈SA

000
...

3.1.2.2. Adjacency List Encoding. The adjacency matrix encoding is wasteful for ‘sparse’
structures, where |RA| is small compared to |A|ar(R). With an adjacency list encoding,
we only represent the tuples ā ∈ RA; incidentally, this is also what is done in database
management systems. In order to do so, we fix again an arbitrary linear ordering < over A.
We need to represent tuples ā explicitly, for instance as the concatenation of their elements’
numbers (in binary) in this ordering; the encoding of 〈RA〉 is then the concatenation of |RA|
encodings of tuples, followed by a separator. As before, the encoding 〈A〉 of A is first the
size |A| in unary, followed by a separator and the concatenation of the encodings 〈RA〉 of
the RA’s in the order of the encoding of σ. The size of this encoding of A is then

‖A‖ def
= |A|+ 1 +

∑
R∈σ

(
log |A|+ |RA| · ar(R) · log |A|

)
∈ poly

(
|A|+

∑
R∈σ

(|RA| · ar(R))
)
.

(3.2)

Example 3.2 (Adjacency list encoding). As in Example 3.1, consider the linear ordering
a < b < c ofA andR < S of σ. Because |A|+1 ≤ 2ℓ for ` = 2, we will be able to encode
each element of A as a bitstring of length 2 (〈a〉 = 00, 〈b〉 = 01, and 〈c〉 = 10) and use
the bitstring ‘11’ as a separator. Then 〈A〉 would be the bitstring

000︸︷︷︸
|A|

1︸︷︷︸
separator

0000︸︷︷︸
(a,a)∈RA

0001︸︷︷︸
(a,b)∈RA

11︸︷︷︸
separator

0101︸︷︷︸
(b,b)∈SA

0110︸︷︷︸
(b,c)∈SA

From an adjacency matrix encoding, one can compute an adjacency list encoding in
time O(‖A‖ · log |A|). However, the converse may require time O(|σ| · |A|ar(σ)), which is
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not polynomial when σ is part of the input. By default in the statements of these notes, we
will assume an adjacency list encoding, and when needed I will state explicitly that we are
assuming an adjacency matrix encoding. Also, some constructions are significantly simpler
with an adjacency matrix encoding, and I will first provide proofs for this case.

3.1.3. FromArbitrary Finite Structures toGraphs. In typical instantiations of themodel-
checking problem, either ar(σ) the maximal arity in σ or the signature σ itself is assumed
to be fixed; this is often implicit in discussions of the model-checking problem (and could
lead to subtle issues). We are going to justify this assumption, and in fact show a stronger
result: the model-checking problem over arbitrary finite structures reduces to the problem
over simple graphs. We perform this reduction in two stages, first to coloured graphs in Sec-
tion 3.1.3.1 and second to graphs in Section 3.1.3.2. These reductions are mostly standard,
but there are two technical difficulties: one pertains to adjacency list encodings, and the
second to preserving levels in the first-order alternation hierarchy.

3.1.3.1. Reduction to Coloured Bipartite Graphs. A coloured graph signature is a relational
signature with one binary relation symbol E(2) along with a finite number of unary rela-
tion symbols. A finite structure A in Fin[σ] for a coloured graph signature σ is a coloured
graph if EA is irreflexive and symmetric, and is bipartite if it does not contain cycles of odd
length. We denote by ColBipartite the set of coloured bipartite graphs over all coloured
graph signatures. We establish the following reduction to coloured graphs.

Proposition 3.3 (Reduction to Coloured Bipartite Graphs). Let i > 0. There is a polynomial
time many-one reduction MC(Σi,Fin) ≤p

m MC(Σi,ColBipartite) and a polynomial many-
one reduction MC(FO,Fin) ≤p

m MC(FO,ColBipartite).
PRoof. Let 〈σ,A, ϕ〉 be an instance of MC(FO,Fin), thus an instance of MC(Σi,Fin)

for some i > 0. We assume wlog. that ϕ is in negative normal form. Let us further assume
that i is odd, i.e., that the last block of quantifiers of ϕ is existential; the even case is similar
(using the negative fragment of Σi instead). We are going to show the following chain of
polynomial time many-one reductions

MC(Σi,Fin) ≤p
m MC(Pos̸=Σi,Fin)
≤p
m MC(Pos̸=Σi,ColBipartite)
⊆ MC(Σi,ColBipartite) ,

where Pos̸=Σi denotes the positive fragment of Σi with disequalities allowed. As these
reductions will be uniform for all i > 0 (with a slightly different chain of reductions for
even i), this will also yield a reduction MC(FO,Fin) ≤p

m MC(FO,ColBipartite).
Claim 3.3.1. Let i > 0 be odd. Then there is a polynomial time many-one reduction

MC(Σi,Fin) ≤p
m MC(Pos̸=Σi,Fin).

PRoof of the claim with an adjacency matRix encoding. This is one of those cases
where the proof is considerably simple with an adjacency matrix encoding. We construct a
new relational signature σ′ ⊇ σ with a disjoint copy R̄ of every relation symbolR ∈ σ, with
the same arity. We then construct an extensionA′ ofA (thus with the same domainA′ def

= A

and the sameRA′ def
= RA for relation symbolsR ∈ σ) with the added R̄A′ def

= Aar(R) \RA for
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the new relation symbols. Note that, in the adjacency matrix encoding, it suffices to flip the
bits representing RA to obtain the representation of R̄A′ . Finally, we replace each negated
relational atom ¬R(x̄) in ϕ by R̄(x̄) to construct a new formula ϕ′ in Pos̸=Σi.

Then, there is a simple quantifier-free interpretation I of A′ in A where IR(x̄) def
= R(x̄)

and IR̄(x̄)
def
= ¬R(x̄) for all relation symbols R. Thus I(A) = A′ and I(ϕ′) = ϕ are such

that A′ |= ϕ′ if and only if A |= ϕ, as desired. ■

PRoof of the claim with an adjacency list encoding. In the case of an adjacency
list encoding, there is an issue with the previous handling of negated atoms: computing
Aar(R)\RA would be too costly (as the arity ar(R) can be arbitrary) to be performed directly
in a polynomial time reduction. The construction is therefore more involved.

The new signature σ′ adds to σ a fresh binary symbol<(2), and, for each relation symbol
R(r) ∈ σ such that RA 6= ∅, three new relation symbols R(r)

f , R(r)
ℓ , and R(2r)

s .
The new structureA′ is again an extension ofA, where we define<A′ as an arbitrary lin-

ear ordering (one is readily available in the encoding of A), and we consider the correspond-
ing lexicographic orderings over tuples in Ar for any r ≤ ar(σ), which are quantifier-free
definable through

x̄ <r ȳ
def
=

∨
0<k≤r

(
xk < yk ∧

∧
0<j<k

xj = yj
)
.

For every relation symbol R ∈ σ of arity r with RA 6= ∅,
• RA′

f only contains the lexicographically smallest tuple in RA (the first such tuple
in lexicographic order),

• RA′

ℓ the lexicographically largest one (the last one), and
• RA′

s contains all the successive pairs of tuples in RA, i.e., (ā, ā′) ∈ RA′

s if and only
if ā ∈ RA, ā′ ∈ RA, ā is lexicographically smaller than ā′, and no tuple from RA

is between them. Note that this new relation holds |RA|2 tuples.
Consider now a tuple ā 6∈ RA: the crucial observation is that this tuple must be either

smaller than the one in RA′

f , larger than the one in RA′

ℓ , or between two tuples in RA′

s .
Then, we replace every occurrence of a negated atom ¬R(x̄) in ϕ either by x1 = x1

if RA = ∅ (since the negated atom is true in that case), and otherwise by the positive
existential formula

∃ȳz̄.
(
Rf (ȳ) ∧ x̄ <r ȳ

)
∨
(
Rℓ(z̄) ∧ z̄ <r x̄

)
∨
(
Rs(ȳ, z̄) ∧ ȳ <r x̄ ∧ x̄ <r z̄

)
of size polynomial in r (and thus polynomial in the size of the formula ¬R(x̄)). Then the
resulting formula ϕ′ is in Pos̸=Σi since i was assumed to be odd, and A |= ϕ if and only if
A′ |= ϕ′. ■

Example 3.4 (Construction with an adjacency list encoding). Let us illustrate the previ-
ous construction on the structure of Figure 1.1. We use the ordering a < b < c as in
Example 3.2. Then RA′

f = {(a, a)}, RA′

ℓ = {(a, c)}, and RA′

s = {(a, a, a, b), (a, b, a, c)}.
For instance, (b, b) 6∈ RA and indeed (b, b) is greater in the lexicographic ordering than
(a, c).
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Claim 3.4.1. Let i > 0 be odd. Then there is a polynomial time many-one reduction
MC(Pos̸=Σi,Fin) ≤p

m MC(Pos̸=Σi,ColBipartite) .

PRoof of the claim. This is a classical ‘adjacency graph’ construction (which is the
same regardless of the choice of encoding). We construct a coloured graph signature σ′

with one binary symbol E(2), a unary symbol D(1), a unary symbol P (1)
R for each relation

symbol R ∈ σ and a unary symbol Q(1)
j for each j < ar(σ).

We construct a coloured graph Adj(A) over this signature. Its vertex set contains
• the elements of A coloured with D,
• a vertex uR,ā coloured with PR for each relation symbol R ∈ σ and tuple ā, and
• a vertex vR,ā,j coloured with Qj for each relation symbol R(r) ∈ σ, tuple ā, and

0 < j ≤ r.
For each R(r) ∈ σ, tuple ā ∈ RA, and 0 < j ≤ r we have the undirected edges {ai, vR,ā,j}
and {vR,ā,j , uR,ā}. The resulting graph is bipartite, with the elements of A and the uR,ā
vertices on one partition and the vR,ā,j vertices in the other. See Figure 3.1 for an illustration
of the graph and edges we create for a tuple (a, b, c) ∈ RA.

a
D

b

D

c
D

Q1

Q2

Q3

PR

FiguRe 3.1. The subgraph representing a tuple (a, b, c) ∈ RA in some
relational structure. The new vertices are coloured using the appropriate
unary symbols.

Then, there is a simple primitive positive interpretation I of A in Adj(A): its domain
formula is δI(x) def

= D(x), andRI(x̄) def
= ∃y.PR(y)∧

∧
0<j≤r

(
∃z.Qj(z)∧E(xi, z)∧E(z, y)

)
for each relation symbolR(r) ∈ σ; note that these formulæ are of size polynomial in r ≤ |ϕ|.

Observe that ϕ′ def
= I(ϕ) is indeed in Pos̸=Σi: this is because I is positive existential, i

is odd, and ϕ is in Pos̸=Σi. Furthermore, Adj(A) |= I(ϕ) if and only if A = I(Adj(A)) |= ϕ
as desired. ■

This concludes the proof of Proposition 3.3. □

As a corollary of the proofs in the case i = 1 (thus i odd), which is the existential case,
we have the following reduction.

Corollary 3.5 (Existential case). There is a polynomial timemany-one reductionMC(Σ1,Fin)
≤p
m MC(Pos̸=Σ1,ColBipartite) .
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3.1.3.2. Reduction to Graphs. Proposition 3.3 is generally good enough for designing model-
checking algorithms, as coloured graphs are not more difficult to handle than general graphs.
However, the signature is still not fixed, and it would be nice to show that the model-
checking problem with a fixed signature is as hard as the general problem.

Proposition 3.6 (Reduction to Graphs). Let i > 0. There is a polynomial time many-
one reduction MC(Σi,Fin) ≤p

m MC(Σi,Graph) and a polynomial time many-one reduction
MC(FO,Fin) ≤p

m MC(FO,Graph).

PRoof. As previously, the proof only considers the case where i is odd; the case where i
is even is similar. By the proof of Proposition 3.3, it suffices to exhibit a reductionMC(Pos̸=Σi,
ColBipartite) ≤p

m MC(Σi,Graph).
Let 〈σ,G, ϕ〉 be the given instance of MC(Pos̸=Σi,ColBipartite) and let U (1)

1 , . . . , U
(1)
n

be the unary predicates from σ that actually appear in ϕ, in some arbitrary order. We extend
the graph G into a new graph G′ (G will be an induced subgraph of G′) as follows:

• for each vertex, add two new vertices and three edges so that we have a copy of
the 3-cycle C3 at this vertex (disjoint from all the other vertices); additionally, if
the vertex was isolated, we add one more vertex connected to it;

• for each vertex labelled by Uj , similarly add 2j + 2 vertices and 2j + 3 edges so
that we have a copy of C2j+3 at this vertex (disjoint from all the other vertices).

See Figure 3.2 for an illustration of this transformation.

U1 U2

U1

U2

(a) A bipartite graph, with one vertex coloured
by U1 and U2 (top left), one by U1 (bottom left),
one by U2 (top right), and one uncoloured and
isolated (bottom right).

(b) The corresponding uncoloured graph, with
the added vertices and edges shown in green.

FiguRe 3.2. Illustration of the replacement of unary predicates in a bipar-
tite graph by suitable cycles.

Because G is bipartite, it does not contain any cycle of odd length. Thus the newly
introduced cycles (of odd length) are distinct from all the cycles that might have existed
in G. Furthermore, any cycle C2j+3 for 0 ≤ j ≤ n can be uniquely identified with an
existential sentence (as they form an antichain for the induced subgraph relation).

This leads to an existential interpretation I of G in G′, with domain formula

δI(x0)
def
= ∃x1x2y.E(x0, x1) ∧ E(x1, x2) ∧ E(x2, x0)

∧ E(x0, y) ∧ ¬E(x1, y) ∧ ¬E(x2, y)
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identifying the presence of a C3 and another connected vertex at this vertex, with edge
formula

EI(x1, x2)
def
= E(x1, x2) ,

and for each 0 < j ≤ n, the colour formula

(Uj)I(x0)
def
= ∃x̄.

(
E(xj , x0) ∧

∧
0≤k<2j+3

E(xk, xk+1)
)

∧
( ∧
0≤k<ℓ−1<2j+3

¬E(xk, xℓ)
)

identifying the presence of a C2j+3 at this vertex; note that these formulæ are of size poly-
nomial in n ≤ |ϕ|.

Observe that ϕ′ def
= I(ϕ) is indeed in Σi: this is because I is existential, i is odd, and ϕ

is in Pos̸=Σi. Furthermore, G′ |= I(ϕ) if and only if G = I(G′) |= ϕ as desired. □

Exercise 3.1 (Reductions in the even case). Complete the proofs of Proposition 3.3 and
Proposition 3.6 in the case where i is even. Hint: consider MC(Neg=Σi,ColBipartite)
as an intermediate problem, where Neg=Σi denotes the set of negative Σi formulæ allowing
positive equality atoms.

3.2. GeneRal Complexity Bounds

The model-checking problem for first-order logic over finite structures is widely held
not to be tractable, as it was one of the first problems ever shown to be PSPACE-complete
in the original article of Stockmeyer (1976).

TheoRem 3.7. MC(FO,Fin) isPSPACE-complete in combined complexity. The same holds
for any fixed signature σ. The same holds for query complexity if the fixed structure has size
at least two.

The Polynomial Hierarchy. As it turns out, one can refine the statement of Theorem 3.7
to take into account the fragment of the first-order alternation hierarchy we are taking our
input from. This provides a hierarchy of problems complete for each level of the polynomial
hierarchy, as we will see later in Theorem 3.8.

Recall to that end that the polynomial hierarchy can be defined through oracles (see,
e.g. Arora and Barak, 2009, Definition 3.4 and Section 5.5), by letting

ΣP
1

def
= NP ΣP

i+1
def
= NPΣP

i

for all i > 0, whereNPC denotes the class of decision problems solvable in non-deterministic
polynomial time by a Turing machine with access to an oracle for some problem in C . The
union of all the classes in the polynomial hierarchy is the complexity class PH:

PH def
=

⋃
i>0

ΣP
i .

There is therefore an infinite hierarchy of complexity classes
P ⊆ NP = ΣP

1 ⊆ ΣP
2 ⊆ · · · ⊆ PH ⊆ PSPACE ,

where none of the inclusions is known to be strict.
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TheoRem 3.8. Let i > 0. Then MC(Σi,Fin) is ΣP
i -complete in combined complexity. The

same holds for any fixed signature σ. The same holds for query complexity if the fixed structure
has size at least two.

We will prove Theorem 3.7 and Theorem 3.8 simultaneously, as the ingredients of the
proofs are essentially the same.

3.2.1. Lower Bounds. The hardness part of the statements in theorems 3.7 and 3.8 can
be proven by rather straightforward reductions from very classical decision problems over
quantified Boolean formulæ.

Quantified Boolean Formulæ. A quantified Boolean formula is a sentence of the form
λ1P1λ2P2 . . . λnPn.ψ

where ψ is a propositional formula over the set of propositions {P1, P2, . . . , Pn} and each
λi is a quantifier in {∃, ∀}. Put differently, this is a sentence in second-order logic over
the empty signature, with no first-order quantification nor variables, and restricted to only
quantify over nullary relations—i.e., over propositions.

The Σi quantified Boolean formulæ are as usual (c.f. Section 1.2.3) those formulæ that
start with a block of existential quantifiers, and alternate at most i−1 times between blocks
of existential quantifiers and blocks of universal quantifiers. For instance,

∃P1∃P2∀P3∃P4.(P1 ∨ P2) ∧ (¬P1 ∨ P3) ∧ (¬P2 ∨ P3) ∧ (¬P3 ∨ P4)

is a Σ3 quantified Boolean formula.
A quantified Boolean formula evaluates to true or false; the above sentence evaluates

to true. The decision problems associated with quantified Boolean formulæ are typically
used to establish complexity lower bounds for PSPACE and the levels of the polynomial
hierarchy.

PRoblem (TQBF).
instance: a quantified Boolean formula ϕ
question: does ϕ evaluate to true?

PRoblem (ΣiSAT).
instance: a Σi quantified Boolean formula ϕ
question: does ϕ evaluate to true?

Fact 3.9 (Stockmeyer, 1976, theorems 4.1 and 5.1). Let i > 0. Then ΣiSAT is ΣP
i -complete,

and TQBF is PSPACE-complete.

PRoof of the loweR bounds in theoRems 3.7 and 3.8. Consider a quantified Boolean
formula

ϕ = λ1P1λ2P2 . . . λnPn.ψ .

Then ϕ is a Σi formula for i def
= n if λ1 = ∃ or for i def

= n + 1 if λ1 = ∀. Thus it suffices
to exhibit a single polynomial time reduction that shows that, for all i > 0, ΣiSAT ≤p

m

MC(Σi,Fin) ⊆ MC(FO,Fin) in order to prove both theΣP
i -hardness and PSPACE-hardness
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in the statements of the theorems (see the upcoming exercise 3.2 about more general forms
of uniformity in reductions).

We work on the empty signature σ def
= ∅ and the unique structure A with two elements

over this signature. We construct a Σi sentence

ϕ′ def
= ∃t∃fλ1x1λ2x2 . . . λnxn.(t 6= f) ∧ ψ′

whereψ′ is obtained by replacing every occurrence of a proposition Pj in ψ by xj = t. Then
A |= ϕ′ if and only if ϕ evaluates to true, as desired.

Finally, regarding the query complexity, observe that this construction carries over any
relational signature and any fixed finite structure with at least two elements. □

Exercise 3.2 (Uniform reductions). The goal of this exercise is to formalise the idea of uni-
form reductions when dealing with hierarchies of problems like ΣiSAT. We focus on the
case of PH and PSPACE here but the idea applies more broadly.
Assume there is a decision problem L ∈ PSPACE, which is also PH-hard, i.e., for all i > 0,
ΣiSAT ≤p

m L. More precisely, fix a finite alphabet (for instance Σ = {0, 1}), and recall
that a polynomial-time many-one reduction L′ ≤p

m L is defined by a polynomial-time
(deterministic) Turing transducerM that implements a functionΣ∗ → Σ∗ such that, for all
w ∈ Σ∗, w ∈ L′ if and only ifM(w) ∈ L. Formally, the transducer has a read-only input
tape containing initially w, a read-write work tape, and a write-only left-to-right output
tape that containsM(w)when it halts, which is after |w|O(1) steps. Thus if ΣiSAT ≤p

m L
for all i > 0, then there is a collection (Mi)i>0 of such Turing transducers.

(1) What is the consequence if L ∈ PH? Hint: for related dire consequences, see
https://www.scottaaronson.com/writings/phcollapse.pdf.

(2) Assume that
• there is a polynomial-time Turing transducer M that takes as input i en-

coded in unary and outputs the description of eachMi, and
• there is a polynomial p and a constant d such that all the Mi work in time
p(i) · |w|d.

Show that L is PSPACE-hard under these conditions.

3.2.2. UpperBounds. Let us turn now to proving the upper bounds in theorems 3.7 and 3.8.
As the alternation hierarchy of first-order logic is built on top of the set of quantifier-free
formulæ, we first focus our attention to their case. Because quantifier-free formulæ are not
sentences, we need an additional ingredient in order to perform model-checking for them:
we add to the input of the problem a valuation of the free variables.

Proposition 3.10. Given as input σ a finite relational signature,A ∈ Fin[σ] a finite structure,
ϕ ∈ QF[σ] a quantifier-free first-order formula, and ā ∈ Afree(φ) a valuation of the free
variables of ϕ, one can decide whether A, ā |= ϕ in deterministic time O(|ϕ| · (‖A‖+ |ā|)).

PRoof. We will not modify the valuation ā ∈ Afree(φ) given as input. The algorithm
proceeds recursively, by computing whether A, ā |= ψ for each subformula ψ of ϕ.
Base cases x = y and x ̸= y: it suffices to check whether ā(x) = ā(y) or not in the en-

coding of the valuation in the input, thus in O(|ā|).
Base casesR(xi1 , ..., xiar(R)

) and ¬R(xi1 , ..., xiar(R)
): it suffices to check whether the

tuple ā(xi1 , ..., xiar(R)
) belongs to RA or not in the encoding of the structure and

https://www.scottaaronson.com/writings/phcollapse.pdf
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of the valuation (in an adjacency list encoding, we might have to go over the entire
encoding of RA if not), thus in O(‖A‖+ ar(R) · |ā|).

Inductive cases ψ ∨ψ′ and ψ ∧ψ′: the recursive calls for ψ and ψ′ tell whether A, ā |=
ψ and/or A, ā |= ψ′ and can be combined in constant time. □

Exercise 3.3 (Query complexity with a single element). Let A be any finite relational struc-
ture with |A| = 1. Show that the complexity of themodel-checking problem for first-order
logic over A is P-complete. Hint: you may use the P-completeness of CIRCUIT-EVAL for
the lower bound (see, e.g., Arora and Barak, 2009, Section 7.3).

3.2.2.1. Alternating Turing Machines. In order to prove the complexity upper bounds, it will
be very convenient to work with alternating Turingmachines. Regardless of the exact formal
definition of Turing machines we may want to use, it can be extended to handle alternation
by partitioning the set of states into existential and universal states. The configurations of
the machine are then called existential or universal accordingly.

What changes is the acceptance condition of an input. We consider for this the (directed)
graph of configurations of the Turingmachine: the vertices are the configurations, and there
is a directed edge c→ c′ between two configurations c and c′ if there is a transition from c
going to c′.

Reachability Games. The configuration graph defines a game arena between two players,
called the existential player and the universal player, on which the players will move a token
from configuration to configuration by following the edges (in game-theoretic terms, what
we are about to describe is a two-players, zero-sum game played on a graph with a reach-
ability objective). When the token is on an existential configuration, the existential player
chooses to move the token along one of the edges to a new configuration, and conversely,
when the token is on a universal configuration, the universal player chooses to move the
token along one of outgoing the edges.

Placing a token initially on the initial configuration, the existential player’s goal is to
reach an accepting configuration, and the universal player’s goal is to prevent that from
happening. The Turing machine accepts its input if the existential player can play in such
a way that, whatever the universal player does, eventually an accepting configuration is
reached.

In other words, the machine accepts if the initial configuration is winning for the ex-
istential player, where the set of winning configurations for the existential player can be
defined thus:

• every accepting configuration is winning,
• every existential configurationwith an edge to a winning configuration is winning,

and
• every universal configuration with all of its edges going to winning configurations

is winning.
The set of winning configurations can also be defined through as the least fixed-point of an
operator on sets of configurations. Let Acc denote the set of accepting configurations. Then

Win def
= µC.Acc ∪ Pre(C)
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where, for a set C of configurations,

Pre(C) def
= {c existential | ∃c′ ∈ C.c→ c′}
∪ {c universal | ∀c′.c→ c′ implies c′ ∈ C} .

Figure 3.3a depicts a graph of configurations, with existential configurations repre-
sented by circles, universal configurations by squares, accepting configurationswith a check-
mark, and the initial configuration with an incoming arrow. Figure 3.3b shows the same

✓

(a) The game arena.

✓

(b) The winning region in green.

FiguRe 3.3. A reachability game.

configuration graph, with the winning region of the existential player in green. The figure
also highlights a choice of one edge per existential configuration that ensures that the play
will remain within the winning region and eventually reach an accepting configuration; this
is called a positional strategy and, if the existential player is winning, there exists one.

Complexity Classes. Let us define AP as the class of decision problems that can be ac-
cepted by an alternating Turing machine working in polynomial time.

An alternating Turing machine is i-alternation bounded if any path in the configuration
graph alternates at most (i−1) times between existential and universal configurations. For
instance, the configuration graph in Figure 3.3a is the graph of a 4-alternation bounded ma-
chine. Then let AΣP

i be the class of decision problems accepted by i-alternation bounded
alternating Turing machines working in polynomial time with an existential initial config-
uration. Observe that NP = AΣP

1 ; more generally, we have the relation below.

Fact 3.11 (Chandra, Kozen, and Stockmeyer, 1981, Corollary 3.6 and Theorem 4.1). AP =
PSPACE and for all i, AΣP

i = ΣP
i .

PRoof of the uppeR bounds in theoRems 3.7 and 3.8. We can assume without loss
of generality thatϕ is in prenex normal form: ϕ = λ1x1λ2x2 · · ·λkxk.ψwithψ a quantifier-
free formula, each λj ∈ {∃, ∀}. We want to exhibit an alternating Turing machine working
in polynomial time that returns whether A |= ϕ, and performs the same number (say i− 1)
of alternations as there were alternations in the quantifier prefix of the input formula. The
machine works in two stages.

First, the machine reads the quantifier prefix λ1x1λ2x2 · · ·λkxk from the input and
writes an assignment ā ∈ Ax1···xk on a work tape, in time O(k · |A|) overall and using i− 1
alternations. More precisely, for each 1 ≤ j ≤ k, it scans the domain A in the input while
staying in an existential state if λj is ∃ and in a universal state if λj is ∀; for each element
a ∈ A it has a choice between writing it on the work tape or going to the next element ofA;
upon the last element of A it has to pick it and move to j + 1 (or to the next stage if j = k).
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Second, with the current assignment on its work tape, the machine implements the
deterministic polynomial time procedure of Proposition 3.10 to decide whether A, ā |= ψ.
This is performed in polynomial time, and does not introduce any new alternation (the
machine has existential and universal duplicates of the states involved, so that if λk = ∃,
then it stays in existential mode, and in universal mode otherwise). □

Exercise 3.4 (AP = PSPACE). Show that AP = PSPACE.

3.3. TowaRds PRactical AlgoRitHms

The PSPACE-completeness of the model-checking problem does not necessarily rule
out the existence of reasonably good algorithms on practical instances of the problem. In
particular, if we endorse data complexity as a better measure of the practical complexity of
the model-checking problem than combined complexity, then we are still in the dark.

In this section, we are going to have a glimpse at the algorithmic methods developed
for database management systems, and derive a simple algorithm showing that the data
complexity of the model-checking problem is in P.

3.3.1. Relational Algebra. Recall the definition in Section 1.2.2.1 of the evaluation of a
formula ϕ(x̄) over a finite structure A: ϕ(A) def

= {ā ∈ Ax̄ | A |= ϕ(ā)} is the set of
valuations in A that satisfy ϕ(x̄). From a database perspective, this structure can be seen
as a table, using the variables in x̄ as attribute names. For instance, the evaluation of the
first-order formula from Example 1.6 on the structure of Example 1.2 is the table

ϕ(A)
y z

a a
a b
a c
b a

Given a structure A, define a relation over X as a set of valuations in Ax̄ for a finite
subset x̄ ⊆fin X . In general, ϕ(A) is a relation over X . We are going to define an algebra
that allows to compute this relation inductively over the formula ϕ.

3.3.1.1. Syntax. Define a condition over X by the abstract syntax

θ ::= x1 = x2 | ¬θ | θ ∧ θ (conditions)

where x1, x2 range over X . We then define a relational expression over X by the abstract
syntax

e ::= Adom(x̄) | R(x1, . . . , xar(R)) | πx̄(e) | σθ(e) | e− e | e ./ e (relational expressions)
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where the xi’s range over X and x̄ ranges over finite subsets of X . The set of variables
free(θ) or free(e) of a condition or relational expression is defined inductively by

free(x1 = x2)
def
= {x1, x2} free(¬θ) def

= free(θ)
free(θ ∧ θ′) def

= free(θ) ∪ free(θ′)
free(Adom(x̄)) def

= x̄ free(R(x1, . . . , xar(R)))
def
= {x1, . . . , xar(R)}

free(πx̄(e)) def
= x̄ ∩ free(e) free(σθ(e)) def

= free(e)
free(e− e′) def

= free(e) ∪ free(e′) free(e ./ e′) def
= free(e) ∪ free(e′) .

Beware here that, e.g., free(R(x, x)) = {x}. A relational expression is well-formed if
• in all occurrences of the selection operator σθ(e), free(θ) ⊆ free(e), and
• in all occurrences of the difference operator (e− e′), free(e) = free(e′).

From now on we will only work with well-formed expressions.

3.3.1.2. Semantics. For a condition θ and a valuation ā ∈ Ax̄ where free(θ) ⊆ x̄, we write
ā |= θ in the following inductive cases

ā |= x1 = x2 if ā(x1) = ā(x2) ,

ā |= ¬θ if ā 6|= θ ,
ā |= θ ∧ θ′ if ā |= θ and ā |= θ′ .

If ā ∈ Ax̄ is a valuation of a finite set of variables x̄, and ȳ is a finite set of variables, let us
write ā↾ȳ for the valuation inAx̄∩ȳ such that ā↾ȳ(z) = ā(z) for all z ∈ x̄∩ ȳ. The semanticsJeKA of a relational expression is a relation over X defined inductively by

JAdom(x̄)KA def
= Ax̄ , (full relation)JR(x1, . . . , xar(R))KA def
= {ā ∈ A{x1,...,xar(R)} | A |= R(ā)} , (atomic relation)Jπx̄(e)KA def
= {ā↾x̄ ∈ Ax̄∩free(e) | ā ∈ JeKA} , (projection)Jσθ(e)KA def
= {ā ∈ Afree(e) | ā |= θ} , (selection)Je− e′KA def
= JeKA \ Je′KA , (difference)Je ./ e′KA def
= {ā ∈ Afree(e)∪free(e′) | ā↾free(e) ∈ JeKA and ā↾free(e′) ∈ Je′KA} .

(join)

The operators of relational expressions are analogues of some of the most used SQL
instructions: the projection operator πx̄ is similar to SELECT ..., the join operator ./ to
FROM ... NATURAL JOIN ..., the selection operator σθ to WHERE ..., and the differ-
ence operator − to ... EXCEPT ...; see Arenas et al. (2022, Chapter 4) for more context.

Example 3.12 (Evaluation of a relational expression). Consider the expression e def
=

π{y,z}
(
R(x, y) ./ (Adom(y, z) − S(y, z))

)
and the finite structure of Example 1.2. We

can compute the relation JeKA by induction over e as depicted in Figure 3.4.
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π{y,z}
{[a/y, a/z], [a/y, b/z], [a/y, c/z], [b/y, a/z]}

./
{[a/x, a/y, a/z], [a/x, a/y, b/z], [a/x, a/y, c/z], [a/x, b/y, a/z]}

R(x, y)
{[a/x, a/y], [a/x, b/y]}

−
{[a/y, a/z], [a/y, b/z], [a/y, c/z], [b/y, a/z], [c/y, a/z], [c/y, b/z], [c/y, c/z]}

Adom(y, z)
{[a/y, a/z], [a/y, b/z], [a/y, c/z], [b/y, a/z], [b/y, b/z], [b/y, c/z], [c/y, a/z], [c/y, b/z], [c/y, c/z]}

S(y, z)
{[b/y, b/z], [b/y, c/z]}

FiguRe 3.4. The evaluation of the relational expression e of Example 3.12
on the finite relational structure of Example 1.2. The semantics Je′KA of
each sub-expression e′ is provided in green.

3.3.1.3. Codd’s Theorem. In fact, the relational expression of Example 3.12 computes the
evaluation of the formula ∃x.R(x, y) ∧ ¬S(y, z) from Example 1.6. More generally, the
relational algebra is merely a reformulation of the definition of the evaluation of a first-
order formula on a structure, by induction of the formula.

TheoRem 3.13 (Codd). Relational algebra expressions and first-order formulæ over a re-
lational signature are equally expressive.

PRoof. Let us show one direction of the theorem: for all relational signatures σ and
first-order formulæ ϕ ∈ FO[σ], there is a rational algebra expression eφ with free(e) =
free(ϕ) and such that, for all finite structures A ∈ Fin[σ], ϕ(A) = JeφKA. The expression is
defined by induction on the formula ϕ as follows:

eR(x1,...,xar(R))
def
= R(x1, . . . , xar(R)) , ex1=x2

def
= σx1=x2

(Adom(x1, x2)) ,

e¬φ
def
= Adom(free(ϕ))− eφ , eφ∧ψ

def
= eφ ./ eψ ,

e∃x.φ
def
= πfree(∃x.φ)(eφ) . □

Exercise 3.5 (From formulæ to the relational algebra). Show the converse direction of the
proof of Theorem 3.13.

3.3.2. Bounded Variable Width. The (variable) width w(ϕ) of a first-order formula ϕ is
the maximum w(ϕ) def

= maxψ subformula of φ |free(ψ)| of the number of free variables in any
subformula of ϕ. By definition, w(ϕ) ≥ |free(ϕ)|; for instance, for the formula ϕ(y, z) def

=
∃x.R(x, y) ∧ ¬S(y, z) from Example 1.6, w(ϕ) = 3.

By evaluating the relational expression eφ defined in the proof of Theorem 3.13, we
are going to prove a general upper bound for both the evaluation and the model-checking
problems.
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TheoRem 3.14. EVAL(FO,Fin) and MC(FO,Fin) can be solved in deterministic time
O(|ϕ| · |A|w(φ)) with an adjacency matrix encoding.

PRoof. The computation of ϕ(A) proceeds by induction over the relational expres-
sion eφ defined in the proof of Theorem 3.13. We represent each JeφKA using an adjacency
matrix encoding, and work with a RAM machine with unit cost and logarithmic word size.
CaseR(x1, ..., xar(R)): let x̄ def

= {x1, . . . , xar(R)}, thenw(R(x1, . . . , xar(R))) = |x̄|, which
might be smaller than ar(R). We build the A|x̄| possible valuations ā ∈ Ax̄, and
for each valuation ā, check whether A |= R(ā). As the input is encoded with an
adjacency matrix, we can do this check in constant time (thanks to random access),
thus for a total complexity in O(|A|w(R(x1,...,xar(R)))).

Note that this is a case where an adjacency list encoding would not yield the
result. For instance, for an atomic relation R(x, x), we would need to read the
encoding of RA, which can be of size O(|A|2).

Case x1 = x2: let x̄ def
= {x1, x2}, then w(x1 = x2) = |x̄| ≤ 2. If w(x1 = x2) = 1, we

return the stringwith |A| bits set to 1, which encodes JeAx1=x2
K = {[a/x1] | a ∈ A}

and can be computed in O(|A|). Otherwise Jex1=x2
KA = {[a/x1, a/x2] | a ∈ A},

which can be computed in time O(|A|2).
Case ¬ϕ: wehave computed JeφKA by induction andwant to compute Je¬φKA = Adom(free(ϕ))\JeφKA. We simply flip the bits in the encoding of JeφKA, in time O(|A|free(φ)),

which is also in O(|A|w(φ)).
Case ∃x.ϕ: let x̄ def

= free(ϕ), then |x̄| ≤ w(∃x.ϕ). We have computed JeφKA by induction
and want to compute Je∃x.φKA = πfree(∃x.φ)(JeφKA). If x 6∈ x̄ there is nothing
to do. Otherwise, x is the ith variable in x̄. We enumerate the |A|i−1 possible
prefixes b̄ and |A||x̄|−i possible suffixes c̄, and for each (b̄, c̄), check whether there
exists a ∈ A such that b̄ac̄ ∈ JeφKA; each of those checks is in constant time
thanks to random access, hence the overall complexity is in O(|A||x̄|), which is in
O(|A|w(∃x.φ)).

Case ϕ∧ψ: let x̄ def
= free(ϕ) and ȳ def

= free(ψ), then w(ϕ ∧ ψ) = |x̄ ∪ ȳ|. We have com-
puted JeφKA and JeψKA and want to compute JeφKA ./ JeψKA. We enumerate the
|A||x̄∪ȳ| valuations ā ∈ Ax̄∪ȳ and check for each one whether ā↾x̄ ∈ JϕKA and
ā↾ȳ ∈ JψKA. Each check is in constant time, thus the whole computation can be
carried in time O(|A||x̄∪ȳ|), which is in O(|A|w(φ∧ψ)).

As every inductive step is inO(|A|w(φ)), the total time is inO(|ϕ| · |A|w(φ)) as claimed. □

Regarding the bounded variable fragments defined in Section 1.2.3,Theorem 3.14 entails
that MC(FOk,Fin) is in P for every k, since an FOk formula obviously has width at most k.
It also entails that the data complexity of MC(FO,Fin) is in P, asw(ϕ) is a constant for every
fixed formulaϕ. This can be considered as good news, as data complexity can be understood
as better capturing the actual complexity in database management systems. Unfortunately,
the degree of this polynomial complexity depends on w(ϕ), which is rather worrying; we
will discuss this further in Section 3.5. The data complexity of the model-checking problem
is actually lower than P, as we are going to see now.
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3.4. CiRcuit Complexity

In order to refine our bounds for the data complexity of the model-checking problem,
we are going to have a glance at some complexity classes below P. The landscape below P
contains classical complexity classes like L or NL that still rely on Turing machines as their
model of computation, but there is a large variety of complexity classes based on circuits.

The (Boolean) circuits we are going to see in this section are an idealisation of the real
electronic circuits used in hardware: they abstract away from practical issues (e.g., signal
propagation, power dissipation, circuit area, etc.) in order to provide a very simple computa-
tional model—simple enough for complexity theorists to show some meaningful complexity
lower bounds

3.4.1. Boolean Circuits. Essentially, a Boolean circuit is a compact representation (as an
acyclic graph) of a propositional formula, allowing the sharing of identical subformulæ.

A Boolean circuit withn inputs is a tupleC = (V,E, β, o)where (V,E) is finite directed
acyclic graph, β : V → {∧,∨,¬} ∪ {x1, . . . , xn} is a labelling function, and o ∈ V , such
that

• if β(v) ∈ {x1, . . . , xn} then v has in-degree 0,
• if β(v) = ¬ then v has in-degree 1,
• for every 1 ≤ i ≤ n there is at most one vertex v ∈ V such that β(v) = xi.

A vertex v with in-degree k is called a gate with fan-in k ; the gates v′ such that (v′, v) ∈ E
are called its predecessors. If β(v) = xi for some i then v is an input gate; o is called the
output gate.

The depth of a gate v is the length of the longest path from a gate of fan-in 0 to v. The
size of C is |V | its number of gates, and its depth is the depth of its output gate. If all the
gates have fan-in at most two, we say that C has bounded fan-in.

Semantics. A circuit C with n inputs defines a Boolean function JvK : {0, 1}n → {0, 1} by
induction on the depth of the gate v. For an input b1 · · · bn ∈ {0, 1}n and a gate v of depth 0,
the possible cases are

JvK(b1 · · · bn) def
= bi if β(v) = xi for 1 ≤ i ≤ n ,JvK(b1 · · · bn) def
= 0 if β(v) = ∨ , orJvK(b1 · · · bn) def
= 1 if β(v) = ∧ .

Otherwise, v has depth d > 0 and its predecessors v1, . . . , vm have all depth less than d,
and we can define

JvK(b1 · · · bn) def
= not(Jv1K(b1 · · · bn)) if β(v) = ¬ ,JvK(b1 · · · bn) def
= or(Jv1K(b1 · · · bn), . . . , JvmK(b1 · · · bn)) if β(v) = ∨ ,JvK(b1 · · · bn) def
= and(Jv1K(b1 · · · bn), . . . , JvmK(b1 · · · bn)) if β(v) = ∧ ,
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where not, or, and and denote the usual Boolean functions over {0, 1}. Then the Boolean
function JCK : {0, 1}n → {0, 1} computed by the circuit is the one computed at its output
gate:JCK(b1 · · · bn) def

= JoK(b1 · · · bn) .
By the functional completeness of propositional logic, any Boolean function has a Boolean
circuit that implements it.

Figure 3.5 presents a Boolean circuit of size 11, depth 3, and maximal fan-in 4, along
with its evaluation on the input 101 (in green).

∨ 1

∧ 0 ∧ 1 ∧ 0 ∧ 0

¬ 0 ¬ 1 ¬ 0

x1 1 x2 0 x3 1

FiguRe 3.5. A Boolean circuit that implements the Boolean function
⊕(3) : {0, 1}3 → {0, 1} that returns 1 if its input contains an even number
of 1s. The topmost gate is the output.

3.4.2. Circuit Complexity Classes. As each individual Boolean circuit C is only able
to compute a Boolean function JCK : {0, 1}n → {0, 1} for a fixed n, in order to define
languages of words of arbitrary length in {0, 1}∗, we will consider families (Cn)n∈N of
circuit. Then a decision problem L ⊆ {0, 1}∗ is solved by a Boolean circuit family (Cn)n∈N
if, for all n ∈ N and w ∈ {0, 1}n, w ∈ L if and only if JCK(w) = 1.

As with other models of computation, we are going to limit the computational resources
of our circuit families in order to define complexity classes. Instead of time and space, in
the case of circuits, the two main resources are the size and the depth. We will say that
a problem is in SIZEDEPTH(s, d) for two functions s, d : N → N if it can be solved by a
Boolean circuit family (Cn)n∈N where, for all n, the size of Cn is at most O(s(n)) and its
depth at most O(d(n)). A well-known (non-uniform) complexity class that can be defined
this way is P/poly def

= SIZEDEPTH(poly, poly) the set of problems that can be solved by
polynomial-sized circuits.

Exercise 3.6 (Bounded fan-in). Define similarly SIZEDEPTH2(s, d) by further restricting
the circuits to have bounded fan-in. Show that SIZEDEPTH(s, d) ⊆ SIZEDEPTH2(s

2, d ·
log s). Hint: see (Vollmer, 1999, Proposition 1.17).
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The complexity class that interests us here is non-uniform AC0 def
= SIZEDEPTH(poly, 1)

the class of problems that can be solved by unbounded fan-in, polynomial-size, constant-
depth circuits.

Proposition 3.15. The data complexity of MC(FO,Fin) with an adjacency matrix encoding
is in non-uniform AC0.

PRoof. Fix a sentence ϕ in FO[σ] for some relational signature σ, and let A ∈ Fin[σ]
be the input structure represented through an adjacency matrix encoding; let n def

= ‖A‖ be
the size of the input.

The circuitCn we construct performs an disjunction betweenm sub-circuitsC ′
n,m, one

for each sizem = |A| ≤ n. Each C ′
n,m performs a conjunction between

• a sub-circuit that checks that the firstm bits of the input are 0s and the (m+1)th
bit is a 1 and

• a sub-circuit that checks that A |= ϕ.
The latter sub-circuit identifies A with {0, . . . ,m− 1}. It has a gate v(ā |= ψ) for each

subformula ψ(x̄) of ϕ and each valuation ā ∈ Ax̄, defined inductively over ψ:
Case of x1 = x2: then v(ā |= x1 = x2) has no predecessors and is labelled by∧ if ā(x1) =

ā(x2) and by ∨ otherwise.
Case ofR(x̄): then v(ā |= R(x̄)) is an input gate, labelled by xi(R,ā) where i(R, ā) gives

the index of the ā tuple of R in the encoding of A.
This is where a matrix encoding is required: with an adjacency list encoding,

we cannot predict which bit in the input we are looking for. With a matrix encod-
ing, remember than we identify A with {0, . . . ,m − 1}. Let σ = {R1, . . . , R|σ|},
such that R = Rj in this enumeration, r = ar(R), x̄ = {x1, . . . , xr} (possibly
with duplicates), and write (a1, . . . , ar) for the vector in {0, . . . ,m− 1}r defined
by ā(x1, . . . , xr). Then

i(R, ā) = m+ 1 +

(∑
ℓ<j

mar(Rℓ)

)
+

( ∑
1≤i≤r

mr−i · ai
)
+ 1 . (3.3)

Case of ¬ψ: then v(ā |= ¬ψ) is labelled by ¬ and has v(ψ, ā) as sole predecessor.
Case of ψ ∧ψ′: then v(ā |= ψ∧ψ′) is labelled by∧ and has v(ā↾free(ψ) |= ψ) and v(ā↾free(ψ′) |=

ψ′) as predecessors.
Case of ∃x.ψ: then v(ā |= ∃x.ψ) is labelled by ∨ and has m predecessors, which are the

v(ā[b/x] |= ψ) for all b ∈ A.
This sub-circuit has output v([] |= ϕ)where [] denotes the empty valuation. It has depth

bounded by |ϕ| (more precisely, by the height of the syntax tree of ϕ) and size bounded by
|ϕ| · |A|w(φ).

The full circuit Cn has depth bounded by |ϕ|+O(1), which is constant since ϕ is fixed,
and size bounded by

∑
1≤m≤n(|ϕ| · mw(φ) + O(m)), which is polynomial in n def

= ‖A‖
since ϕ is fixed. See Figure 3.6 for a depiction of the constructed circuit. □

Proposition 3.15 is not yet so informative: as we are going to discuss next in Sec-
tion 3.4.3, non-uniform AC0 contains some undecidable problems. Yet constant-depth cir-
cuits are quite limited, and complexity theorists also know that some easy problems are not
in non-uniform AC0. Define PARITY as the set of words over {0, 1}∗ with an even number
of 1s.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22

0 0 0 

|A|

1 1 1 0 0 0 0 0 0 0 

⟨RA⟩

0 0 0 0 1 1 0 0 0 

⟨SA⟩

¬

∧

∨

. . .. . .

∨

. . .. . .

∨

. . .. . .

[] |= ∃y∃z∃x.R(x, y) ∧ ¬S(y, z)

[b/y] |= ∃z∃x.R(x, y) ∧ ¬S(y, z)

[b/y, a/z] |= ∃x.R(x, y) ∧ ¬S(y, z)

[a/x, b/y, a/z] |= R(x, y) ∧ ¬S(y, z)

[b/y, a/z] |= ¬S(y, z)

[b/y, a/z] |= S(y, z)[a/x, b/y] |= R(x, y)

¬ ¬ ¬

∧

∧

FiguRe 3.6. Part of the circuit C ′
22,3 constructed in the proof of Proposi-

tion 3.15 for the formula ∃y∃z∃x.R(x, y) ∧ ¬S(y, z). In grey, the cor-
responding subformula and valuation for each gate. In green below, the
input bits from the matrix encoding of the structure of Example 1.2.

Fact 3.16 (Furst, Saxe, and Sipser, 1984; Ajtai, 1983). PARITY is not in non-uniform AC0.

3.4.3. Uniformity. An issue with non-uniform circuit complexity classes like P/poly or
non-uniform AC0 is that they contain some undecidable sets, because the choice of the
circuit Cn for each input size n can be arbitrarily complex. Consider for this a language
L ⊆ {0, 1}∗ such that L ⊆ {1}∗, i.e., L is a subset of the natural numbers encoded in unary.
Then L ∈ SIZEDEPTH(1, 1): for each size n, let Cn be an ∧ gate without predecessors if
1n ∈ L, and otherwise an ∨ gate without predecessors; this circuit family solves L. Thus
there exist non-recursive sets in P/poly and in non-uniform AC0.

In order to define better-behaved complexity classes, we are going to require that a
description of each circuit Cn of our family (Cn)n∈N can be effectively computed. For f a
family of computable functions, wewill call a circuit family (Cn)n∈N f-uniform if there exists
a function f ∈ f that produces an encoding f(n) = 〈Cn〉when given n in unary. Assuming
a somewhat reasonable encoding scheme for 〈Cn〉, this ensures that the functions computed
by f-uniform circuit families are computable.

Logarithmic TimeUniformity. We still need to be careful: the computational complexity
of the uniformity class f should not be too high and overpower the complexity of the class
of circuits. In the case of AC0, which is a highly restricted class of circuits, even logspace-
uniformity would be too high.

I just provide some intuitions here, as this topic is quite technical and requires low-
level bit manipulations. There are actually several possible definitions of uniformity for
AC0, which turn out to be equivalent, but here is a machine-based one.
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Let us first fix the encoding. For a circuit family C = (Cn)n∈N, the direct connection
language LD(C) of the family is the set of all tuples 〈g, b, p, y〉 where

• g is the number of a gate v in Cn, encoded in binary,
• b = β(v) is the label of the gate,
• p is the number of a predecessor v′ of v, or 0 if v has depth zero, and
• y = 1n encodes n in unary; this is a padding ensuring that the input has size at

least n.
Rather than requiring a function f ∈ f such that f : n 7→ 〈Cn〉 directly, we are going to fix
a complexity class C and ask for LD(C) to be in C.1

Now for the complexity class C wewant to use, we consider a model of Turingmachines
with a read-only input tape, a finite number of work tapes of size logn, and an addressing
tape of size logn. The machine behaves as usual, but has a special instruction to load the
ith bit from the input tape on one of its work tapes, where i is written in binary on the
addressing tape. A problem is in DLOGTIME if it is accepted by such a Turing machine in
logarithmic time.

Using a suitable numbering of the v(ā |= ψ) gates from the proof of Proposition 3.15,
one can show that this very restricted form of uniformity is enough to solve the model-
checking problem (see, e.g., Vollmer, 1999, Theorem 4.73). Furthermore, the converse also
holds: any problem that is DLOGTIME-uniform AC0 reduces to a model-checking instance
for a fixed formula.

Fact 3.17 (Barrington, Immermann, and Straubing, 1990, Theorem 8.1). The data complexity
of MC(FO,Fin) with an adjacency matrix encoding is DLOGTIME-uniform AC0-complete.

Beyond Uniform AC0. Uniform AC0 is at the lower end of a hierarchy of uniform cir-
cuit complexity classes. Define NCi def

= SIZEDEPTH2(poly, logi n) for i > 0 and ACi def
=

SIZEDEPTH(poly, logi n) for i ≥ 0. Then we have the inclusions NCi ⊆ ACi for all i > 0
by definition and ACi ⊆ NCi+1 for all i ≥ 0 by exercise 3.6. The uniform versions of these
classes can be compared to classical complexity classes (see Vollmer, 1999, Corollary 4.2)

AC0 ⊊ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ NC2 ⊆ · · · ⊆ P , (3.4)
where only the first inclusion is known to be strict, by Fact 3.16.

3.4.4. Parallel Computation. The Boolean circuits we use in order to define circuit com-
plexity could be seen as a (rather abstract and not very realistic) model for hardware imple-
mentation. Yet, for a problem like the model-checking problem, it even less realistic that
anyone would wish to implement the model-checking problem in hardware for one fixed
formula.

Here is an alternative viewpoint: circuits can also be envisioned as a model of parallel
computation. Roughly speaking, each gate can be construed as a very simple processor
communicating with other processors through the wires. In this view, a circuit of size s
and depth d can be seen as a description of how to compute a particular Boolean function in
time d using s processorsworking in parallel—though it does not explain how to synchronise
all these processes nor how to make them communicate.

1The two notions of f-uniformity and C-uniformity coincide for large enough space complexities (Vollmer,
1999, Lemma 2.25).
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A somewhat more realistic model of computation for parallel computing are parallel
random access machines (PRAM). This is a deterministic model of computation, where each
process has access to its own local memory, and communicates with the other processes
through a shared memory. There are various PRAM models depending on the allowed unit
operations and the handling of race conditions when accessing the shared memory, and I am
not too interested in the specifics; what matters is that the previous intuition about Boolean
circuits yielding a model of parallel computation is captured by the following (somewhat
informal) fact.

Fact 3.18 (Immerman, 1989). A problem is in DLOGTIME-uniform AC0 if and only if it can
be solved by a PRAM with a polynomial number of processors in constant time.

This yields the following characterisation of the data complexity of model-checking.

Corollary 3.19 (ibid.). For a fixed sentenceϕ, MC(ϕ,Fin)with an adjacency matrix encoding
can be solved by a PRAM with a polynomial number of processors in constant time.

3.5. PaRameteRised Complexity

As alreadymentioned, due to the motivation provided by query evaluation in databases,
the data complexity can be considered as a more realistic complexity measure than the com-
bined complexity. Under this distinction, we saw that the data complexity of the finite model
checking problem was in uniform AC0, a low circuit complexity class. However, the restric-
tion to a fixed formula used in data complexity is rather coarse. Both in Theorem 3.14 and
in Fact 3.17, the degree of the polynomial that bounds the complexity (the time complexity
in the first case and the circuit size in the second case) depends on the width of the formula
and might quickly grow unwieldy.2

3.5.1. Parameterised Problems. Since the proposal of the distinction between combined
and data complexities, a better way of understanding the complexity of decision problems
with multiple inputs has been developed: parameterised complexity. The basic idea is
to identify a parameter in our decision problem, as in the following parameterised model-
checking problem.

PRoblem (p-MC(L,C )).
instance: a finite relational signature σ, a structure A ∈ C [σ], and a sentence

ϕ ∈ L[σ]
parameter: |ϕ|
question: A |= ϕ?

What we have done here with the model-checking problem can be defined more gener-
ally for decision problems. Fix for this a finite alphabet Σ (which can typically be taken to

2In our somewhat naïve presentation, this width is directly related to the number of attributes in the interme-
diate tables produced when evaluating SQL queries, and this number can quickly get out of hand. The optimisation
engines inside database management systems try to tame the size of the intermediate tables (and not just their
width), notably through worst-case optimal join algorithms (see Arenas et al., 2022, Chapter 26).
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be {0, 1}). A decision problem is a language L ⊆ Σ∗; for instance, MC(L,C ) def
= {〈σ,A, ϕ〉 |

A ∈ C [σ], ϕ ∈ L[σ], and ϕ(A) 6= ∅}, where 〈·〉 denotes an encoding function into strings.
A parameterised problem simply adds an integer parameter (whichwill be encoded in unary).

Definition 3.20 (Parameterised Problem). Let Σ be a finite alphabet. A parameterised prob-
lem is a subset L ⊆ Σ∗ × N.

Thus, p-MC(L,C ) def
= {(〈σ,A, ϕ〉, |ϕ|) | A ∈ C [σ], ϕ ∈ L[σ], and ϕ(A) 6= ∅} is a

parameterised problem. For another example, consider the following parameterised version
of the well-known NP-complete SAT, CLIQUE, and COL problems.

PRoblem (p-SAT).
instance: a propositional formula ϕ
parameter: its number of propositions
question: is ϕ satisfiable?

PRoblem (p-CLIQUE).
instance: a finite simple graph G and k ∈ N
parameter: k
question: does G contain a clique of size k?

PRoblem (p-COL).
instance: a finite simple graph G and k ∈ N
parameter: k
question: can G be coloured with k colours?

Any decision problemL ⊆ Σ∗ can be ‘parameterised’ using a parameterisation, which is
a polynomial-time computable function κ : Σ∗ → N; then {(w, κ(w)) | w ∈ Σ∗} is a param-
eterised problem. In the case of MC(L,C ), we used the parameterisation κ : 〈σ,A, ϕ〉 7→ |ϕ|.

3.5.1.1. Fixed-Parameter Tractability. The issue with simply fixing a parameter is that it al-
lows for polynomial time algorithms, where the degree of the polynomial can vary wildly
depending on the parameter. A nicer notion of tractability is the following, which ensures
that the polynomial has constant degree for all parameter values.

Definition 3.21 (Fixed-Parameter Tractability). Let Σ be a finite alphabet. A parame-
terised problem L ⊆ Σ∗ × N is fixed parameter tractable if there exists a computable func-
tion f : N→ N and an algorithm deciding whether (w, k) ∈ L in (deterministic) time

f(k) · |w|O(1) .

We denote by FPT the class of all fixed parameter tractable problems.

Another way to think about FPT problems is that they are those problems that can be
solved in deterministic polynomial time after a pre-computation based on their parameter.

Any problem in P is also in FPT, whatever the chosen parameterisation function; con-
versely, an FPT problem with constant parameterisation function corresponds to a decision
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problem in P. Yet NP-complete problems may also be in FPT depending on the choice
of parameters: as any SAT instance ϕ with k distinct propositions can be solved in time
O(2k · |ϕ|) by a brute-force algorithm, p-SAT ∈ FPT. In fact, any decidable set L ⊆ Σ∗

becomes FPT when parameterised with the function κsize : w 7→ |w|.
Hence the choice of parameter is essential: it has to depend somehow on the input w

(otherwise the notion of fixed-parameter tractability ‘trivialises’ to polynomial-time), but
not the ‘whole’ of w (otherwise problems that we definitely do not deem tractable would be
captured by FPT). Ideally, the parameter should be somehow ‘natural’ for the problem at
hand; for the parameterised model-checking problem, the formula size is a excellent way of
refining the notion of data complexity.

3.5.1.2. Fixed-Parameter Reductions. In order to show that some parameterised problems are
in FPT, or on the contrary to show that they are somehow hard, we use a tailored notion of
reductions called fixed-parameter reductions.
Definition 3.22 (Fixed-Parameter Reduction). Let L ⊆ Σ∗ × N and L′ ⊆ Σ′∗ × N be two
parameterised problems over the alphabetsΣ andΣ′. A fixed parameter many-one reduction
(fpt reduction) from L to L′ is a functionM : Σ∗ × N→ Σ′∗ × N such that,

(1) M is a many-one reduction: for all w and k,M(w, k) ∈ L′ if and only if (w, k) ∈
L,

(2) M is computable by an fpt algorithm: there exists a computable function g : N→
N such that, for all w and k,M(w, k) is computed in time g(k) · |w|O(1), and

(3) the new parameter can be bounded in terms of the old one: there exists a com-
putable function b : N→ N such that, for allw, k,w′ and k′, ifM(w, k) = (w′, k′),
then k′ ≤ b(k).

We write L ≤fp
m L′ if there is such a reduction from L to L′. When condition 2 is strength-

ened to require a polynomial-time algorithm (thusM(w, k) is computed in time poly(k, |w|)),
we write L ≤fpp

m L′; note that such polynomial-time fixed-parameter many-one reductions
are a restricted class of polynomial-time many-one reductions between parameterised prob-
lems.

Condition 3 of Definition 3.22 is crucial in order to ensure the fixed-parameter reduc-
tions work as intended. Let us see this definition in action.
Lemma 3.23 (Closure of FPT under fixed-parameter reductions). Let L ⊆ Σ∗ × N and
L′ ⊆ Σ′∗ × N be two parameterised problems over the alphabets Σ and Σ′. If L ≤fp

m L′ and
L′ ∈ FPT, then L ∈ FPT.

PRoof. For an input (w, k) ∈ Σ∗ × N, in order to decide whether it belongs to L, we
first compute (w′, k′) def

= M(w, k) in time g(k) · |w|c for a constant c. Since L′ ∈ FPT, we
can answer whether (w′, k′) ∈ L′ in time f ′(k′) · |w′|c′ for a computable function f ′ and a
constant c′. Observe that |w′| is also in g(k) · |w|c and that k′ ≤ b(k), hence this second step
is in time f ′(b(k)) ·g(k)c′ · |w|c+c′ . If we add the time spent in the first step, we remain with
a bound in f ′(b(k)) · g(k)c+c′ · |w|c+c′ . Thus letting f : k 7→ f ′(b(k)) · g(k)c+c′ , the whole
computation is in time f(k) · |w|O(1) for a computable function g, hence L ∈ FPT. □

Here are now some examples of fixed-parameter reductions: it turns out that all the re-
ductions in Section 3.1.3 were not just polynomial-time reductions, but also fixed-parameter
reductions.
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Corollary 3.24. Let i > 0. There are polynomial-time fixed-parameter many-one reductions
p-MC(Σi,Fin) ≤fpp

m p-MC(Σi,ColBipartite), p-MC(FO,Fin) ≤fpp
m p-MC(FO,ColBipartite),

p-MC(Σi,Fin) ≤fpp
m p-MC(Σi,Graph), and p-MC(FO,Fin) ≤fpp

m p-MC(FO,Graph).

PRoof. By inspection of the proofs in Section 3.1.3. As they were polynomial-time
many-one reductions, they satisfy condition 1 and the polynomial-time strengthening of
condition 2 in Definition 3.22. In each one of the proofs, we mentioned that the constructed
formulæ were also of size bounded in terms of the size of the original formulæ, thus the
reductions also satisfy condition 3. □

Exercise 3.7 (Properties of fixed-parameter reductions). Show the following.
(1) The relation ≤fp

m is reflexive and transitive.
(2) IfL ∈ FPT andL′ is non trivial (i.e., there exist (w0, k0) 6∈ L′ and (w1, k1) ∈ L′),

then L ≤fp
m L′.

Hence ≤fp
m is a quasi-ordering on parameterised problems, with FPT the set of minimal

parameterised problems, which are all equivalent up to fixed-parameter reductions.

3.5.1.3. Parameterised Intractability. A first way of designing (presumably) intractable pa-
rameterised complexity classes is to draw our inspiration from the P vs. NP question, and
design a notion of parameterised nondeterministic polynomial time by analogy with the def-
inition of FPT: a parameterised problem is in paraNP if there exists a computable func-
tion f : N→ N and a nondeterministic algorithm that solves the problem in nondeterminis-
tic time f(k) · nO(1). Thus the parameterised problems p-SAT, p-CLIQUE, and p-COL are
all three in paraNP. But only one of them is known to be paraNP-complete under fpt reduc-
tions, namely p-COL (essentially because 3COL is already NP-hard for a fixed parameter
value, see Flum and Grohe, 2006, Section 2.2)—the same would have happened if we had
parameterised SAT with the maximal size of clauses instead of the number of propositions.

Another attempt is to look at complexities like nf(k), which define a class called (uni-
form) XP. By Theorem 3.14, we know that p-MC(FO,Fin) ∈ XP, but this is a huge com-
plexity class, and it seems likely that our parameterised model-checking problem should be
somewhat easier.

There is a dazzling variety of parameterised complexity classes between FPT and paraNP
or XP in the literature. If we focus on the most relevant ones for model-checking, there are
two notable hierarchies, the W[i] and A[i] hierarchies, as depicted in Figure 3.7. The inclu-
sions in this figure are not known to be strict, except for the fact that FPT ⊊ XP (see ibid.,
Corollary 2.26). We do know conditional separations however: FPT 6= paraNP if and only if
P 6= NP (ibid., Corollary 2.13), and under a stronger assumption called the exponential time
hypothesis (which assumes that there does not exist an algorithm for 3SAT in time 2o(n)),
then FPT ⊊ W[1] (see Cygan et al., 2015, Theorem 14.21). Some examples of problems com-
plete for the various complexity classes are indicated in green; as can be seen in the picture,
our parameterised model-checking problems for first-order logic fit in the A[i] hierarchy.

As a last digression before presenting the A[i] hierarchy, consider another well-known
PSPACE-complete problem related to logic and model-checking: the model-checking prob-
lem for linear temporal logic. Its ‘natural’ parameterisation is the following.
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FPT

W[1] = A[1]

W[2]

A[2]

W[3]

A[3]

paraNP
AW[∗]

XP

p-SAT

p-CLIQUE p-MC(Σ1,Fin)

p-MC(Σ2,Fin)

p-MC(Σ3,Fin)

p-MC(FO,Fin)
p-COL

p-MC(LTL,Kripke)

FiguRe 3.7. The inclusions between some parameterised complexity
classes.

PRoblem (p-MC(LTL,Kripke)).
instance: a finite Kripke structure M, a world w of M, and an LTL formula ϕ
parameter: |ϕ|
question: does M, w |= ϕ?

Without entering all the required definitions, this problem is well-known to have an algo-
rithmic solution through the construction of a finite-state Büchi automaton of size O(2|φ|),
using which one obtains a fixed-parameter tractable algorithm running in timeO(2|φ| · |M|)
overall (see, e.g. Baier and Katoen, 2008, Section 5.2), hence p-MC(LTL,Kripke) is in FPT.

3.5.1.4. The A[i] Hierarchy. While the W[i] hierarchy also has a characterisation in terms of
model-checking problems (Flum and Grohe, 2006, Theorem 7.22), the A[i] hierarchy is the
most relevant for us here. It has a machine characterisation that should feel familiar by now,
through the parameterised short halting problem for alternating one-tape Turing machines,
where we might also fix the number (i − 1) of alternations. In the case of a fixed i = 1,
this problem could equivalently be defined as the short halting problem for nondeterministic
one-tape Turing machines.3

PRoblem (p-SHORT-ATM).
instance: an alternating single-tape Turing machineM and k ∈ N
parameter: k

3The restriction to single tape nondeterministic Turing machines is important, as the same problem for non-
deterministic multitape Turing machines is W[2]-complete (Flum and Grohe, 2006, Theorem 7.28).
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question: doesM accept the empty string in at most k steps?

PRoblem (p-SHORT-ATMi).
instance: an alternating single-tape Turing machineM whose initial state is exis-

tential and k ∈ N
parameter: k
question: does M accept the empty string in at most k steps and at most i − 1

alternations?

For each i > 0, the parameterised complexity class A[i] is the class of parameterised
problems fixed-parameter reducible to p-SHORT-ATMi. The parameterised complexity
class AW[∗] ⊇

⋃
i A[i] is similarly the class of parameterised problems, which are fixed-

parameter reducible to p-SHORT-ATM. For an analogy with the polynomial hierarchy,
AW[∗] is to PSPACE what the A[i] are to the Σi classes.

Beware that, unlike for instance P, NP, or the classes in the polynomial hierarchy, here
the complexity classes are not defined as the classes of languages recognised by some class
of machines—the Turing machines in the short halting problem only accept the empty lan-
guage or the empty word—, but through a reduction closure.

Exercise 3.8 (Short halting problem with a fixed alphabet). Consider a variant of
p-SHORT-ATM where we bound the size of the tape alphabet of the Turing machines.
Show that this problem is FPT.

3.5.2. The Parameterised Complexity of Model-Checking. With the definition of the
appropriate parameterised complexity classes at hand, we can now conclude this chapter
with the following theorem.

TheoRem 3.25. Let i > 0. Then p-MC(Σi,Fin) is A[i]-complete, and p-MC(FO,Fin) is
AW[∗]-complete.

PRoof of the loweR bound. Consider an instance 〈M,k〉 of p-SHORT-ATM. We are
going to exhibit a fixed-parameter many-one reduction to p-MC(FO,Fin), that will be uni-
form for all numbers of alternations (i−1) ofM , thus also showing that p-SHORT-ATMi ≤fp

m

p-MC(Σi,Fin) for all i > 0. Let i − 1 be the fixed number of alternations, or let i def
= k + 1

if this number is not fixed.
We need to look a bit under the hood of our Turing machine. Let M = (Q∃ ] Q∀ ]

{qhalt},Γ, T, q0)whereQ∃ andQ∀ are its existential and universal states and qhalt its halting
state, Γ its finite tape alphabet, T ⊆ Q × (Γ ∪ {.,□}) × (Γ ∪ {.}) × {`, s, r} its set of
transitions (where . denotes the left end-marker, □ the blank tape symbol, and `, s, and r
are the head instructions for moving left, staying in place, and moving right), and q0 ∈ Q∃
is the initial state. We assume wlog. that universal configurations are able to perform at
least one transition, and add ‘stay’ transitions that loop in qhalt. By treating qhalt as both
existential and universal, this means that we are looking for a computation of exactly k
steps and with exactly i− 1 alternations that ends in the halting state.

We construct our instance 〈σ, ϕ,A〉 of p-MC(FO,Fin) as follows.
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Signature. First, the signature σ contains the unary relation symbolsB(1) (for the blank tape
symbol), L(1) (for the left end-marker), I(1) (for the initial state),H(1) (for the halting state),
E(1) (for existential states), U (1) (for universal states), and P (0)

j for all 0 ≤ j ≤ k + 1 (to
indicate the head position on the tape). The signature also contains three relation symbols
T

(4)
ℓ , T (4)

s , and T (4)
r to encode the transitions. The size of the signature is inO(k): it depends

on k, but not on the description of the Turing machineM .

Structure. Second, the finite structure A has domain

A def
= Q∃ ∪Q∀ ∪ {qhalt} ∪ Γ ∪ {□, .} ∪ {0, . . . , k + 1} .

The interpretations of the relation symbols is

BA def
= {□} LA def

= {.}

IA def
= {q0} HA def

= {qhalt}

EA def
= Q∃ ∪ {qhalt} UA def

= Q∀ ∪ {qhalt}

PA
j

def
= {j} ∀0 ≤ j ≤ k + 1 ,

TA
d

def
= {(q, a, q′, b) | (q, a, q′, b, d) ∈ T} ∀d ∈ {`, s, r} .

The size of the encoding of the structure will depend on the choice of encoding: with an
adjacency list encoding, ‖A‖ is in O(k + |Q| + |T |); with an adjacency matrix ‖A‖ is in
O(k + (|Q| · |Γ|)2). In both cases, this can be constructed by an FPT algorithm.

Formula. Last, we construct our formula ϕ. We will say that a tuple (q, j, ā) ∈ Ak+4 is
a configuration of our Turing machine M if q is in Q (representing the current state), j
in {0, . . . , k+1} (representing the head position on the tape), a0 = ., and the ajs for j > 0
are in Γ ∪ {□} (representing the contents of the left end-marker and the first k + 1 tape
cells).

Let z̄ def
= {z0, . . . , zk+1} and z̄′ def

= {z′0, . . . , z′k+1}. Then the formula

init(xyz̄) def
= I(x) ∧ P1(y) ∧ L(z0) ∧

∧
1≤j≤k+1

B(zj) (3.5)

is such that A |= init(q, j, ā) if and only if (q, j, ā) is the initial configuration of the Turing
machine (with the empty word on the tape). The init(xyz̄) formula is of size O(k). We
similarly write a formula

trans(xyz̄, x′y′z̄′) def
= left(xyz̄, x′y′z̄′)

∨ stay(xyz̄, x′y′z̄′) (3.6)
∨ right(xyz̄, x′y′z̄′)
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such that A |= trans(q, j, ā, q′, j′, ā′) if and only if there is a transition of M from the con-
figuration (q, j, ā) to the configuration (q′, j′, ā′). For instance, for a movement of the head
to the left, we can write

left(xyz̄, x′y′z̄′) def
=

∨
1≤j≤k

(
Pi(y) ∧ Pi−1(y

′)

∧ Tℓ(x, zi, z
′, z′i) (3.7)

∧
∧
c ̸=j

zc = z′c

)
.

The trans(xyz̄, x′y′z̄′) formula is again of size O(k).
We now construct our formula ϕ as

ϕ def
= ∃x0y0z̄0.init(x0y0z̄0) ∧

∨
0≤j≤k

exists(1)0,j(x0y0z̄0) (3.8)

where, before performing the ath alternation, exist(a)j,j′(xyz̄) checks the existence of a se-
quence of existential configurations from the jth configuration of the computation to the
j′th configuration, and the latter is a winning configuration for the reachability game: either
j = j′ = k and a = i+ 1 and then

exist(i+1)
k,k (xkykz̄k)

def
= H(xk) (3.9)

or j < j′ < k and a < i+ 1 and then

exist(a)j,j′(xjyj z̄j)
def
= ∃xj+1yj+1z̄j+1 · · · ∃xj′yj′ z̄j′ .∧

j≤t<j′
(E(xt) ∧ trans(xtytz̄t, xt+1yt+1z̄t+1)) (3.10)

∧
∧

j′≤j′′≤k

forall(a+1)
j′,j′′ (xj′yj′ z̄j′).

Note that if j = j′ = k and a < i+ 1 then exist(a)k,k(xkykz̄k)
def
= forall(a+1)

k,k (xkykz̄k), i.e., we
perform no steps but complete the required number of alternations. The forall(a)j,j′(xyz̄) for-
mulæ dually check that for all sequences of configurations we end with a j′th configuration
that is winning for the reachability game:

forall(i+1)
k,k (xkykz̄k)

def
= H(xk) (3.11)

forall(a)j,j′(xjyj z̄j)
def
= ∀xj+1yj+1z̄j+1 · · · ∀xj′yj′ z̄j′ .( ∧

j≤t<j′
(U(xt) ∧ trans(xtytz̄t, xt+1yt+1z̄t+1))

)
(3.12)

→
∨

j′≤j′′≤k

exist(a+1)
j′,j′′ (xj′yj′ z̄j′).

The missing formulæ exist(a)j,j′ and forall(a)j,j′ for a = i+ 1 and j, j′ < k, or for a < i+ 1 and
j = j′ can all be taken to be ⊥.

By construction, the formula ϕ is inΣi, andA |= ϕ if and only ifM halts after at most k
steps and i − 1 alternations. Furthermore, the size of the formula only depends on k, and
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not on the description of the machineM : for fixed alternation level i, the formula is of size
O(ki); when i is not fixed we have necessarily i ≤ k thus the formula is of size O(kk). □

PRoof of the uppeR bound. Consider an instance 〈σ, ϕ,A〉 of p-MC(FO,Fin). We
are going to exhibit a fixed-parameter many-one reduction to p-SHORT-ATM, that will
be uniform for all i > 0 such that ϕ ∈ Σi, thus also showing that p-MC(Σi,Fin) ≤fp

m

p-SHORT-ATMi for all i > 0.
Our task is to compile the entire model-checking problem into a Turing machineM , so

that it can check whether A |= ϕ in a few steps, which only depend on the size of ϕ. We as-
sumewithout loss of generality thatϕ is given in prenex normal formϕ = λ1x1 · · ·λmxm.ψ
where ψ is quantifier-free and in negative normal form, λ1 = ∃, each λj ∈ {∃, ∀}, and there
are i− 1 alternations between existential and universal quantifiers. Let x̄ def

= {x1, . . . , xm}.
Our Turing machine will work in two stages. In the first stage, it writes a valuation ā ∈

Ax̄ on its (initially empty) single tape. For each 1 ≤ j ≤ m, it has a state qj−1 which is
existential if λj = ∃ and universal otherwise, with all the transitions (qj−1,□, qj , a, r) for
a ∈ A. At the end of these m steps, we rewind to the left end of the tape in m additional
computation steps using states qm+1, . . . , q2m. Then the tape contents is a tuple in Am,
we are in state q2m and we have performed exactly i − 1 alternations. From now on, the
computation will be deterministic, hence there will be no further quantifier alternations.

The second stage implements a procedure similar to the one presented in Proposition 3.10.
However, the encodings of the formula ψ and the structure A are not on the tape, but must
be carried in the states of the machine. For every (quantifier-free) subformula ψ′ of ψ, the
machine will have a state qψ′ that will reach a state q1ψ′ if A, ā |= ψ′ and a state q0ψ′ if not.
Hence we will add stay transitions from q2m to qψ and from q1ψ to qhalt to complete the
description of the machine.
Case ψ1 ∨ψ2: we have stay transitions from qψ1∨ψ2

to qψ1
, from q1ψ1

and q1ψ2
to q1ψ1∨ψ′

2
,

from q0ψ1
to qψ2

, and from q0ψ2
to q0ψ1∨ψ2

.
Case ψ1 ∧ψ2: similar.
Cases xj = xℓ and xj ̸= xℓ: if j = ` we have a stay transition from qxj=xℓ

to q1xj=xℓ

and from qxj ̸=xℓ
to q0xj ̸=xℓ

; otherwise assuming j < ` we scan the tape through a
sequence of j states, remember the element aj in the state, perform `−jmore steps
to the right using as many states, check whether aj = aℓ, remember the outcome
of the test, rewind to the left end of the tape, and switch to the appropriate state
q0xj=xℓ

, q1xj=xℓ
, q0xj ̸=xℓ

, or q1xj ̸=xℓ
depending on the result of the test. This requires

to create j+|A|·(`−j)+2` states, and the generated Turing machine will perform
2`+ 2 ≤ m+ 2 ∈ O(|ϕ|) computation steps for this phase.

CasesR(xi1 , ..., xir) and ¬R(xi1 , ..., xir): where r def
= ar(R) ≤ |ϕ|. Here there are

two cases depending on the chosen encoding of A.
Adjacency matrix: with an adjacency matrix encoding, we can proceed as in the

case of equality atoms. We sort the variables xi1 , . . . , xir according to their in-
dices. The Turing machineM loads the tuple ā(xi1 , . . . , xir ) in its state from
the lowest index to the largest one, in one pass over the m cells of the tape,
then rewinds. By keeping the Ar ≤ ‖A‖ bits encoding the membership in
RA inside the states of the generated machine, the generated Turing machine
can check whether ā(xi1 , . . . , xir ) ∈ RA. This creates O(m · ‖A‖) states and
the generated Turing machine will need O(m) computation steps.
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Adjacency list: with an adjacency list encoding, we proceed differently.
For 0 ≤ s ≤ r, we say that a tuple b̄ ∈ As isR-extendible if there exists a tuple
c̄ ∈ Ar−s such that b̄c̄ ∈ RA. There are at most r · |RA| ≤ ‖A‖ R-extendible
tuples, hence they can all appear in our states as part of our fixed-parameter
reduction.
If the empty tuple is not R-extendible, we can switch directly from q

R(x̄′) to
q0R(x̄′) or from q¬R(x̄′) to q1¬R(x̄′). Otherwise we do a scan of the valuation
on the tape for each variable xis before rewinding to the left end-marker, and
keep the currently read tuple prefix ā(xi1 · · ·xis) in the state. If this tuple is
notR-extendible, we move directly to q0R(x̄′) or q1¬R(x̄′), and otherwise restart
from the left end-marker on the tape and scan for is+1 steps to find ā(xis+1)
and continue. Finally, for s = r, the tuple is R-extendible if and only if it be-
longs to RA, thus we switch to q0R(x̄′), q1R(x̄′), q0¬R(x̄′), or q1¬R(x̄′) accordingly.
This creates O(r · m · ‖A‖) states and the constructed Turing machine will
need O(r ·m) computation steps.

Overall, we build a machine of size f(k) ·‖A‖O(1) for some computable function f , that will
execute in O(m) +O(|ψ| · |ϕ| ·m) computation steps, thus in O(|ϕ|2) steps overall. □

FuRtHeR Reading

References. For an overview of the contents of this chapter, see (Libkin, 2004, Chapter 6)
or (Arenas et al., 2022, Chapter 7).

Query and Data Complexity. The notions of combined, query, and data complexity mea-
sures presented in Section 3.1.1 were introduced by Vardi (1982); see for instance (Libkin,
2004, Section 6.1) for a textbook presentation.

Reduction to Graphs. The reductions to the case of graphs in Section 3.1.3 are adapted
from the Normalisation Lemma given in (Flum and Grohe, 2006, Section 8.2).

PSPACE and the Polynomial Hierarchy. The definition of the polynomial hierarchy is
due to Stockmeyer (1976) and that of alternating Turing machines is due to Chandra, Kozen,
and Stockmeyer (1981). The PSPACE-hardness of model-checking stated in Theorem 3.7
was first established by Stockmeyer (1976, Theorem 6.1); this is a completely classical result
that you can find in many textbooks, e.g., (Libkin, 2004, Theorem 6.16), (Arenas et al., 2022,
Theorem 7.1), or (Flum and Grohe, 2006, Proposition 4.28).

See for instance (Arora and Barak, 2009, Section 4.2 and Chapter 5) for more context on
PSPACE and PH.

Relational Algebra. Theorem 3.13 was shown by Codd (1972). There are in fact multiple
presentations of relational algebras, including ‘named’ and ‘unnamed’ ones (see, e.g., chap-
ters 4–6 of Arenas et al., 2022). The relational algebra presented in Section 3.3.1 is specifically
tuned for the easy evaluation of first-order formulæ, and slightly adapted from (Libkin, 2004,
Section 6.7). In particular,
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• the Adom(x̄) atomic expression can be expressed in more traditional relational
algebras using union and Cartesian products (which I did not include, since they
were not required otherwise), and
• traditional named relational algebras feature a separate renaming operator (usually

denoted by ρ), which is baked-in in my atomic relations.
Regarding the analysis in terms of the variable width of formulæ in Section 3.3, Theo-

rem 3.14 is a bit of a folklore result, already appearing in the proof of Theorem B.5 by Im-
merman (1982). Its relevance for FOk was later emphasised by Vardi (1995, Proposition 3.1).
This is a standard result, for which you can also have a look at (Libkin, 2004, Proposition 6.6)
or (Flum and Grohe, 2006, Theorem 4.24) for alternative presentations.

Circuit Complexity. The main result of Section 3.4, namely Fact 3.17, originates from
(Gurevich and Lewis, 1984; Barrington, Immermann, and Straubing, 1990).

The connections between circuit complexity and parallel random access machines in
Fact 3.18 were first shown in a non-uniform setting by Stockmeyer and Vishkin (1984); see
for instance (Greenlaw, Hoover, and Ruzzo, 1995, Chapter 2), (Vollmer, 1999, Section 2.7), or
(Immerman, 1999, Chapter 5) for more context on parallelism and circuit complexity.

Several circuit complexity classes also enjoy characterisations in terms of descriptive
complexity: the decision problems in those classes are exactly the ones that can be described
by some logics. Notably for the classes discussed in Section 3.4,

• non-uniform AC0 = FO[Arb], where the latter denotes the set of languages of non-
empty words over the alphabet {0, 1}∗ that are accepted by a first-order formula
using arbitrary numerical predicates, while

• DLOGTIME-uniformAC0 = FO[BIT], the latter being the set of languages over {0, 1}∗
that are accepted by first-order sentences with only the BIT predicate, where w |=
BIT(i, j) for two positions i, j ∈ {0, . . . , |w| − 1} if the jth bit in the binary repre-
sentation of i is a 1 (Barrington, Immermann, and Straubing, 1990, Theorem 8.1).

For more details on those two results, see (Vollmer, 1999, Section 4.5.4), and more generally
on the topic of descriptive complexity, see the monograph of Immerman (1999).

Parameterised Complexity. The notions of parameterised complexity, fixed-parameter
tractability, fixed-parameter reductions, etc., were introduced by Downey and Fellows and
developed in a series of articles starting with (Downey and Fellows, 1995a) and later com-
piled in their books (Downey and Fellows, 1999; Downey and Fellows, 2013).

The AW[∗]-completeness of model-checking inTheorem 3.25 was originally established
by Downey, Fellows, and Taylor (1996, reproduced in Section 26.4 of Downey and Fellows,
2013), and improved by Flum and Grohe (2001), who furthermore defined the A[i] hierar-
chy, its characterisation through alternating Turing machines, and the A[i]-completeness of
model-checking for each Σi fragment (see Flum and Grohe, 2006, chapters 6 and 8).

See also the book by Cygan et al. (2015) for more of a focus on the algorithmic and
fine-grained complexity aspects of parameterised complexity.

BeyondModel-Checking: Counting and Enumeration. Recall that we were interested
in the model-checking problem as a sub-case of the evaluation problem EVAL(FO,Fin). The
only explicit algorithmic result in this chapter for the evaluation problem is Theorem 3.14,
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which yields an O(|ϕ| · |A|w(φ)) time upper bound; it would be quite easy to adapt the
construction of Proposition 3.15 to construct circuits that output ϕ(A) as well.

But you might have noticed there was a catch: the set ϕ(A) can be of size |A||free(φ)| in
the worst case, so that it is not even clear what ‘tractability’ might mean for this problem.
It turns out that complexity theorists have developed frameworks for this question:
Counting complexity: rather than outputting ϕ(A), we could ask for its cardinality. See

(Arora and Barak, 2009, Chapter 17) for an introduction to the topic of counting
complexity.

Enumeration complexity: where we ask to output the elements of ϕ(A) one-by-one,
without repetitions. See (Strozecki, 2019) for a survey on enumeration complexity.

For a tutorial specifically focusing on the counting and enumeration complexity of the eval-
uation problem EVAL(FO,Fin), see (Durand, 2020).





CHAPTER 4

The Case of ConjunctiveQueries

The combined complexity bounds for the model-checking problem established in the
previous chapter show that the problem is hard—evenwhen restricted to the existential frag-
ment of first-order logic, since the problem MC(Σ1,Fin) is NP-complete byTheorem 3.8 and
the parameterised problem p-MC(Σ1,Fin) is W[1]-complete by Theorem 3.25. Furthermore,
this holds already on the class of simple finite graphs by Proposition 3.6 and Corollary 3.24.
Thus it would make sense to investigate whether the situation is any better when further
restricting the syntax to fragments of existential first-order logic.

Ideally, we would also like to work with fragments that remain useful for answering
queries in database management systems. A hint about what could be removed from the
syntax of first-order logic was given in Example 1.7: it can be rather cumbersome to ex-
press negations in SQL. This is a design choice of the SQL language. A first rationale for
that choice is that the overwhelming majority of SQL queries (on a well-designed database
schema) are of a simple form SELECT ... FROM ... WHERE ..., so that there is little
need to facilitate the use of negations. A second rationale is that negations incur expensive
evaluation costs; you might have noticed this in the translation from first-order logic into
relational algebra in the proof of Codd’s Theorem 3.13. Thus, with an eye on the database
motivation for the evaluation problem, it makes sense to study its complexity for a fragment
of first-order logic devoid of negation. This is the fragment of conjunctive queries.

This chapter introduces in the upcoming Section 4.1 the basic definitions for conjunctive
queries, and their connection with homomorphisms between finite structures in the Homo-
morphism Theorem (Theorem 4.3). Unfortunately, conjunctive queries do not behave any
better than existential sentences in terms of the complexity of their model-checking prob-
lem: it is still NP-complete in combined complexity and W[1]-complete in parameterised
complexity; see theorems 4.4 and 4.5.

The second part of the chapter therefore investigates an even more restricted class of
queries called acyclic conjunctive queries in Section 4.2. There at last, Yannakakis’ Algo-
rithm (Theorem 4.8) provides a polynomial-time model-checking algorithm in deterministic
time O(‖A‖ · log ‖A‖ · |ϕ|) for an acyclic conjunctive query ϕ over a finite structure A.

49
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4.1. ConjunctiveQeRies

Recall from Section 1.2.3 that primitive positive formulæ over a relational signature σ
are defined through the abstract syntax

ϕ ::= R(x1, . . . , xar(R)) | x1 = x2 | ϕ ∧ ϕ | ∃x.ϕ (primitive positive formulæ)

with R ranging over σ and the xi over X . When writing a primitive positive formula ϕ in
prenex normal form, we obtain a logically equivalent formula

ϕ(x̄) ::= ∃ȳ.
∧
i∈I

αi(x̄i)

for some finite index set I , where each αi is an atomic formula with free variables x̄i ⊆
(x̄ ∪ ȳ); note here that by definition of free(ϕ) = x̄, x̄ ∩ ȳ = ∅. Some of these atoms are of
the form xi = xj for xi, xj ∈ x̄ ∪ ȳ, and we can further simplify the syntax by applying
the substitutions [xi/xj ] for each such equality atom. In this way we obtain a logically
equivalent conjunctive query, which is a formula ϕ(x̄) of the form

ϕ(x̄) ::= ∃ȳ.
∧
i∈I

Ri(x̄i) (conjunctive queries)

where, for each i ∈ I , Ri is a relation symbol in the signature σ and x̄i ⊆ (x̄ ∪ ȳ). If x̄ = ∅
this is called a Boolean conjunctive query. Let us write CQ for the set of all conjunctive
queries, and CQ[σ] for its restriction to a relational signature σ.

Conjunctive queries are therefore an equivalent syntactic presentation for primitive
positive formulæ.1

4.1.1. SPJ Algebra. The SQL fragment defined by SELECT ... FROM ... WHERE ...
queries corresponds to the select-project-join (SPJ) fragment of the relational algebra of Sec-
tion 3.3.1 defined by the abstract syntax

θ ::= x1 = x2 | θ ∧ θ (positive conditions)
e ::= R(x1, . . . , xar(R)) | πx̄(e) | σθ(e) | e ./ e (SPJ expressions)

where, as before, the xi’s range over X and x̄ ranges over finite subsets of X . Then Codd’s
Theorem (c.f. Theorem 3.13) relativises to the SPJ algebra and conjunctive queries.

TheoRem 4.1. SPJ expressions and conjunctive queries over a relational signature are
equally expressive.

PRoof. As in Theorem 3.13, we only treat the direction from conjunctive queries to
SPJ expressions. To a conjunctive query ϕ(x̄) def

= ∃ȳ.R1(x̄1) ∧ · · · ∧ Rn(x̄n), we associate
the expression

eφ
def
= πx̄

(
R1(x̄1) ./ · · · ./ Rn(x̄n)

)
. □

Exercise 4.1 (From conjunctive queries to the SPJ algebra). Show the converse direction of
the proof of Theorem 4.1.

1In the literature, conjunctive queries sometimes allow equality atoms. This does not impact their expressive-
ness, nor the complexity of their evaluation problem.
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4.1.2. Computational Complexity. Although conjunctive queries are a restriction of ex-
istential formulæ, the complexity of their model-checking problem is not easier. The proofs
are actually quite straightforward, largely thanks to a nice connectionwith homomorphisms.

4.1.2.1. The Homomorphism Problem. In classical model theory, the (atomic) diagram of a
structureA is obtained by adding to σ a constant for every element of A; then its diagram is
the set of all the literals `(c̄) with c̄ ∈ Afree(ℓ) satisfied by A. Similarly, the positive diagram
is the set of all the atomic formulæ α(c̄) with c̄ ∈ Afree(α) satisfied by A; see for instance
(Hodges, 1997, Section 1.4) or (Marker, 2002, Definition 2.3.2).

In the case of a finite relational structure A, we can work with slightly simpler defini-
tions that can be used in essentially the same way. Let x̄A def

= {xa | a ∈ A} and for any
a1 · · · ar ∈ Ar let x̄ā def

= xa1 · · ·xar ; then define the positive diagram of A as

diag+(A) def
= ∃x̄A.

∧
R∈σ

∧
ā∈RA

R(x̄ā)

and observe that this is a Boolean conjunctive query.
Conversely, given a Boolean conjunctive query ∃x̄.

∧
i∈I Ri(xi,1, . . . , xi,ar(Ri)) (thus

with xi,1, . . . , xi,ar(Ri) ∈ x̄ for all i) over a finite relational signature σ, we can define its
canonical structure can(ϕ) def

= (x̄, (Rcan(φ))R∈σ) where Rcan(φ) def
= {(xi,1, . . . , xi,ar(Ri)) |

Ri = R} for each relation symbol R ∈ σ.
Then, up to isomorphism in Fin and α-renaming in CQ, we can see that the function

can : CQ→ Fin is the inverse of diag+ : Fin→ CQ.

Example 4.2 (Positive diagram). For the finite relational structure of Figure 1.1, its posi-
tive diagram is the Boolean conjunctive query

∃xaxbxc.R(xa, xa) ∧R(xa, xb) ∧ S(xb, xb) ∧ S(xb, xc) .
Conversely, the canonical structure of this Boolean conjunctive conjunctive query is the
structure depicted in Figure 1.1.

These definitions lead us to the Homomorphism Theorem.

TheoRem 4.3 (Homomorphism Theorem). Let ϕ be a Boolean conjunctive query and A
a finite structure. The following are equivalent

(1) A |= ϕ,
(2) can(ϕ)→ A, and
(3) diag+(A) |=Fin ϕ.

PRoof. Let ϕ def
= ∃x̄.

∧
i∈I Ri(xi,1, . . . , xi,ar(Ri)).

(1) iff (2). As A |= ϕ, there exists a valuation ā ∈ Ax̄ such that A, ā |= Ri(xi,1, . . . , xi,ar(Ri))
for all i ∈ I . This valuation is a homomorphism from can(ϕ) to A. Conversely, if there is
a homomorphism h from can(ϕ) to A, then for all i ∈ I , A |= Ri(h(xi,1), . . . , h(xi,ar(Ri))),
thus A |= ϕ.
(1) iff (3). Assume A |= ϕ and consider any finite structure B such that B |= diag+(A).
Then as previously this defines a homomorphism h from the structure can(diag+(A)) ∼= A
to B. Since ϕ is a conjunctive query it is positive existential and therefore, by exercise 1.1,
B |= ϕ. Conversely, assume diag+(A) |=Fin ϕ. Since A |= diag+(A), we have A |= ϕ. □
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As an aside, the HomomorphismTheorem can be strengthened to arbitrary conjunctive
queries ϕ(x̄)—and not only the Boolean ones—if we extend the signature with one constant
symbol per free variable in x̄. I will let you figure out the details.

This leads to the definition of two new decision problems with strong connections with
the model-checking problem for conjunctive queries. For fixed classes of structures C ,D ⊆
Fin, the homomorphism problem asks for the existence of a homomorphism between two
structures given as input

PRoblem (HOM(C ,D)).
instance: a finite relational signature σ, a structure A ∈ C [σ], and a structureB ∈

D [σ]
question: A→ B?

For a logic L, the finite query containment problem asks whether one sentence ϕ is a logi-
cal consequence of another sentence ψ over the class of finite structures—or, equivalently,
whether ModFin(ψ) ⊆ ModFin(ϕ).

PRoblem (CONTAINMENT(L)).
instance: a finite relational signature σ and two sentences ϕ,ψ ∈ L[σ]
question: ψ |=Fin ϕ?

The Homomorphism Theorem shows that the model-checking problem MC(CQ,Fin)
for conjunctive queries, the homomorphism problem HOM(Fin,Fin), and the finite query
containment problem CONTAINMENT(CQ) for Boolean conjunctive queries are essen-
tially the same.

Exercise 4.2 (Reductions between the homomorphism and model-checking problems).
Show that MC(CQ,Fin) ≡P

m HOM(Fin,Fin), with either an adjacency matrix or an ad-
jacency list encoding. Hint: in order to prove that MC(CQ,Fin) ≤P

m HOM(Fin,Fin) in the
case of an adjacency matrix encoding, use the proof of Claim 3.4.1.

4.1.2.2. Combined, Query, and Data Complexities. Let us now turn to the combined and
query complexity of the model-checking problem for Boolean conjunctive queries. As al-
ready mentioned, the problem remains as hard as for the existential fragment.

TheoRem 4.4. MC(CQ,Fin) is NP-complete in combined complexity and in query com-
plexity.

PRoof. The membership in NP follows from the case of existential sentences in Theo-
rem 3.8. Regarding NP-hardness, we reduce the three colourability problem 3COL to the
homomorphism problem HOM(Graph, [K3]∼=) for a fixed target graph, namely the trian-
gle C3. By exercise 4.2, this will entail the NP-hardness of MC(CQ,Fin). The reduction is
immediate: given an input graph G ∈ Graph, G is three colourable if and only if it has a
homomorphism into C3. See Figure 4.1 for an illustration. □

Regarding data complexity, the upper bounds for general first-order sentences inO(|ϕ|·
|A|w(φ)) and in uniform AC0 ofTheorem 3.14 and Fact 3.17 also hold for the model-checking
problem for conjunctive queries.
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FiguRe 4.1. A 3-colourable graph (left) and a homomorphism into C3

(right) depicted through dotted arrows.

4.1.2.3. Parameterised Complexity. Again, the parameterised model-checking problem for
Boolean conjunctive queries is as hard as for existential sentences. The hardness proof relies
on the W[1]-completeness of p-CLIQUE, which was already mentioned in Figure 3.7.

First, let us define W[1]. This parameterised complexity class is the class of parame-
terised problems fixed-parameter reducible to the following short halting problem for non-
deterministic Turing machines.

PRoblem (p-SHORT-NTM).
instance: a nondeterministic single-tape Turing machineM and k ∈ N
parameter: k
question: doesM accept the empty string in at most k steps?

Clearly, p-SHORT-NTM = p-SHORT-ATM1 and therefore W[1] = A[1] as announced in
Figure 3.7.

TheoRem 4.5. p-CLIQUE and p-MC(CQ,Fin) are W[1]-complete.

PRoof. Theorem 3.25 shows a fixed-parametermany-one reduction from p-SHORT-NTM =
p-SHORT-ATM1 to p-MC(Σ1,Fin). In turn, the proof of Proposition 3.3 actually shows a
fixed-parameter many-one reduction from the latter to p-MC(Pos̸=Σ1,ColBipartite). The
theorem then follows from the following two claims.

Claim 4.5.1. There is a fixed-parametermany-one reduction p-MC(Pos̸=Σ1,ColBipartite)
≤fp
m p-CLIQUE.

PRoof of the claim. Consider an instance 〈σ, ϕ,G〉 of p-MC(Pos̸=Σ1,ColBipartite);
we are going to construct an instance 〈G′, k〉 of p-CLIQUE.

The input sentence ϕ can be put into the logically equivalent prenex disjunctive normal
form

ψ def
= ∃x1 . . . xk.

∨
i∈I

∧
j∈Ji

αj(x̄j) (4.1)

where each αj is an atomic formula that occurred inside ϕ and is of one of the forms xi1 =

xi2 , xi1 6= xi2 , E(xi1 , xi2), or U(xi1) for some xi1 , xi2 ∈ {x1, . . . , xk} and U (1) ∈ σ.
Observe that k only depends linearly on the size of the original formula ϕ, and so does |Ji|
for each i, but |I| itself might be exponential in |ϕ| in the worst case.

For each i ∈ I , we construct a graph G′
i that depends on G = (V,E) and

∧
j∈Ji αj .

Its vertex set is V × {1, . . . , k}, and it has an undirected edge {(v1, i1), (v2, i2)} for some
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v1, v2 ∈ V and 1 ≤ i1 < i2 ≤ k if and only if, for all j ∈ Ji such that x̄j ⊆ {i1, i2},
G, [v1/xi1 , v2/xi2 ] |= αj(x̄j). Each G′

i is of size polynomial in k and |G|, and thus in |ϕ|
and |G|.

Then, if there exists a tuple v1 · · · vk ∈ V k such thatG, [v1/x1, . . . , vk/xk] |=
∧
j∈Ji αj ,

then this entails that for each 1 ≤ i1 < i2 ≤ k, there is an edge {(vi1 , i1), (vi2 , i2)} in G′
i,

and thereforeG′
i contains a k-clique. Conversely, ifG′

i contains a k-clique on some set of k
vertices {(v1, i1), . . . , (vk, ik)}, thenG, [v1/x1, . . . , vk/xk] |=

∧
j∈Ji αj(x̄j). See Figure 4.2

for a depiction of a graph G′
i on an example.
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FiguRe 4.2. A coloured graph G (left), and the graph G′ (right)
constructed in the proof of Claim 4.5.1 for the Pos̸=Σ1 sentence
∃x1x2x3.x1 6= x2 ∧ E(x1, x3) ∧ U(x2). The conjunctions of atoms jus-
tifying the presence of each edge in G′ are indicated in green next to the
edge. The graph G′ contains two 3-cliques, corresponding to the valua-
tions [a/x1, b/x2, c/x3] and [c/x1, b/x2, a/x3].

Finally, ψ is logically equivalent to the sentence
∨
i∈I

(
∃x1 . . . xk.

∧
j∈Ji αj(x̄j)

)
, and

defining G′ as the disjoint union of the G′
i, we have that G |= ϕ if and only if G′ contains a

k-clique. This shows that we have defined a many-one reduction.
To conclude the proof, observe that |G′| is in 2|φ| · poly(|ϕ|, |G|), and as already men-

tioned k is linear in |ϕ|. Thus this is indeed a fixed-parameter reduction. ■

Claim 4.5.2. There is a polynomial-time fixed-parametermany-one reduction p-CLIQUE
≤fpp
m p-MC(CQ,Graph).

PRoof of the claim. Consider for this an instance 〈G, k〉 of p-CLIQUE. Weworkwith
the graph signature σ = {E(2)}, keep the graph G unchanged, and construct the sentence

diag+(Kk) = ∃x1 · · ·xk.
∧

1≤i<j≤k

E(xi, xj) . (4.2)

Then G contains a k-clique Kk if and only if there is a homomorphism Kk → G, which is
if and only if G |= diag+(Kk) by the Homomorphism Theorem. Furthermore diag+(Kk) is
of quadratic size in k. ■
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To conclude and show membership in W[1], p-MC(CQ,Graph) ⊆ p-MC(Σ1,Fin) and
the latter is in A[1] = W[1] by Theorem 3.25. □

4.2. Acyclic ConjunctiveQeRies

Theorems 4.4 and 4.5 show that the model-checking problem remains hard for conjunc-
tive queries. We are now going to further restrict conjunctive queries in order to (at last!)
obtain tractability, with a fragment that has been thoroughly studied in database theory.

4.2.1. Hypergraphs and Join Trees. A hypergraph is a pair (V,E) of a set V of vertices
and a set E ⊆ 2V of hyper-edges, each one being a subset of V . Each Boolean conjunctive
query ϕ = ∃x̄.R1(x̄1) ∧ · · · ∧Rn(x̄n) defines a hypergraph H(ϕ) with x̄ as set of vertices
and {x̄i | 1 ≤ i ≤ n} as set of hyper-edges. See figures 4.3a and 4.3b for two examples of
hypergraphs associated with Boolean conjunctive queries.

x

y
z

v

(a) The hypergraph of the conjunctive query
∃vxyz.R(x, y, z) ∧ S(y, x) ∧ S(x, v) ∧
S(v, z).

x

y
z

v

(b) The hypergraph of the conjunctive query
∃vxyz.R(x, y, z) ∧ S(y, x) ∧ S(x, v) ∧
S(v, z) ∧ T (x, v, z).

{v, x, z}

{v, x} {x, y, z}

{x, y}

{v, z}

(c) A join tree for the hypergraph of Fig-
ure 4.3b.

{v, x, z}

{v, x} {x, y, z}

{x, y}

{v, z}

(d) The sets {e ∈ E | v ∈ e} in the join tree
of Figure 4.3c.

FiguRe 4.3. Hypergraphs and join trees of conjunctive queries.

A join tree for a hypergraph H = (V,E) is a (directed) forest T with E as set of nodes
such that, for all v ∈ V , the set {e ∈ E | v ∈ e} of nodes of T that contain v is connected
in T . See Figure 4.3c for an example of a join tree.

A hypergraph H is acyclic (or more precisely α-acyclic) if it has a join tree, and a
conjunctive query ϕ is then acyclic if H(ϕ) is acyclic. Let ACQ denote the set of acyclic
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conjunctive queries. For instance, the hypergraph of Figure 4.3a is not acyclic, but perhaps
counter-intuitively, the hypergraph of Figure 4.3b with one additional hyper-edge is acyclic.

The first step in order to exploit this new fragment of first-order logic is to be able to
decide membership. This can be checked in linear time, and even better, a join tree can be
constructed in linear time for acyclic conjunctive queries.

Fact 4.6 (Tarjan and Yannakakis, 1984, Section 3). Given a finite hypergraph H , we can test
whether it is acyclic and compute a join forest for it in linear time.

Exercise 4.3 (GYO Algorithm). The definition we just gave of acyclicity is one of several
equivalent characterisations (see Abiteboul, Hull, and Vianu, 1995,Theorem 6.4.5). Among
those characterisations, one gives rise to an algorithm for checking whether a hypergraph
is acyclic. Show that a hypergraph H = (V,E) is acyclic if and only if all its vertices can
be deleted by repeatedly applying the two operations

• delete a vertex that appears in at most one hyperedge (such a vertex is called an
ear), or

• delete a hyperedge that is contained into another; this is called a reduction.
For instance, on the hypergraph of Figure 4.3a, we can reduce and remove the hyperedge
{x, y} and then no operation can be applied. On the hypergraph of Figure 4.3b, we can
reduce to remove {x, y}, {v, x}, and {v, z}, then y is an ear and is removed, then {x, z} can
be reduced, and we are left with {v, x, z}, whose vertices are all ears and can be removed.
What is the complexity of this algorithm?

4.2.2. Yannakakis’ Algorithm. The join tree of an acyclic Boolean conjunctive query ϕ
essentially provides an evaluation plan for computing JeφKA for the relational expression
of Theorem 4.1 on a structure A. The idea is to perform this evaluation inductively, starting
from the leaves of the join tree and working our way up to the roots. The end result is an
algorithm inO(‖A‖·log ‖A‖·|ϕ|), showing thatMC(ACQ,Fin) ∈ P in combined complexity
(and thus p-MC(ACQ,Fin) ∈ FPT in parameterised complexity).

x1

x2 x3

x4 x5 x6 x7

(a) The hypergraph of the con-
junctive query diag+(T2,2) =
∃x1x2x2x4x5x6x7.E(x1, x2) ∧E(x1, x3) ∧
E(x2, x4) ∧ E(x2, x5) ∧ E(x3, x6) ∧
E(x3, x7).

x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

(b) The hypergraph of the con-
junctive query diag+(G3,3) =
∃x1,1 · · ·x3,3.

(∧
1≤i<3

∧
1≤j<3 E(xi,j , xi+1,j)∧

E(xi,j , xi,j+1)
)
∧
(∧

1≤i<3 E(xi,3, xi+1,3)∧
E(x3,i, x3,i+1)

)
.

FiguRe 4.4. Two extreme cases of hypergraphs: a tree and a grid.
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Example 4.7 (Trees and Grids). Before proving this result, let us build some intuition
about why acyclicity is helpful. Consider the two hypergraphs of Figure 4.4. The first one
is acyclic and the second cyclic. Recall that the main source of complexity inTheorem 3.14
was thewidth of the formula; here the conjunctive queries have width seven and nine. But
the first one in Figure 4.4a can equivalently be written as a primitive positive sentence

∃x1.
(
∃x2.E(x1, x2) ∧ (∃x4.E(x2, x4)) ∧ (∃x5.E(x2, x5))

)
∧
(
∃x3.E(x1, x3) ∧ (∃x6.E(x3, x6)) ∧ (∃x7.E(x3, x7))

)
of width two—which is the arity of our signature—, and this generalises to diag+(T ) for
any tree T . Conversely, the formula for the query of Figure 4.4b is equivalent to a query
of width four, and in general diag+(Gn,n) requires width (n+ 1) for a n× n grid.

TheoRem 4.8 (Yannakakis). MC(ACQ,Fin) is in deterministic timeO(‖A‖·log ‖A‖·|ϕ|).

PRoof. Consider for this an acyclic Boolean conjunctive query ϕ = ∃x̄.R1(x̄1)∧ · · · ∧
Rn(x̄n) and a finite relational structure A. By Fact 4.6 we can compute a join tree T for the
hypergraph H(ϕ) in time linear in |ϕ|.
Local and Descendant Expressions. We are going to associate two relational expressions to
every node ȳ ⊆ x̄ of the join tree. Its local expression is

local(ȳ) def
= Ri1(ȳ) ./ · · · ./ Rim(ȳ) (4.3)

where theRij (ȳ) are all the relational atoms of ϕwith ȳ as set of free variables. Since ϕ is a
Boolean conjunctive query, ultimately we want to compute the join of the local expressions
and project away all the variables, i.e.,

ϕ(A) = π∅

(
./
ȳ∈T

local(ȳ)
)
. (4.4)

Now here is how the join tree is exploited. As hinted at in Example 4.7, rather than
projecting away all the variables once at the end, we are going to project them progressively
as we go up the tree. Indeed, a variable appearing in a node z̄ but not in its parent ȳ will
never be useful anymore, not for any ancestor of ȳ (nor any sibling of those ancestors, nor
any descendants of those siblings outside the sub-tree rooted by ȳ). Hence we define the
descendant expression of ȳ as the join of the local expressions in its sub-tree, followed by a
projection to only keep the variables in ȳ:

descendant(ȳ) def
= πȳ

(
./
z̄≥T ȳ

local(z̄)
)

(4.5)

where z̄ ≥T ȳmeans that z̄ is a descendant of ȳ in the join treeT (ȳ included). The interest of
projecting those variables along the way is that it allows to ‘contain the width:’ the relations
we will compute at each node of the join tree will have few variables. More precisely, for
all nodes ȳ, there will be a relational atom Ri(ȳ) of ϕ with the same variable set such thatJdescendant(ȳ)KA ⊆ JRi(ȳ)KA. In particular, the size of the encoding of Jdescendant(ȳ)KA
will be bounded by ‖A‖.

Thus, when we reach the top, A |= ϕ if and only if Jdescendant(ȳ)KA 6= ∅ for all the
roots ȳ of T . It remains to see how to compute Jlocal(ȳ)KA and Jdescendant(ȳ)KA.

Claim 4.8.1. Jlocal(ȳ)KA can be computed in time O(‖A‖ · log ‖A‖ · |local(ȳ)|).
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PRoof of the claim. Let local(ȳ) def
= Ri1(ȳ) ./ · · · ./ Rim(ȳ) and fix an arbitrary

linear ordering of ȳ.
First, each JRij (ȳ)KA ⊆ Aȳ can be computed and sorted with respect to the lexico-

graphic ordering defined by the ordering of ȳ in time O(‖RA
ij
‖ · log ‖RA

ij
‖). Beware here

that |ȳ| ≤ ar(Rij ): we may need to keep only the tuples in RA
ij

that satisfy some equality
constraints implicit in our notations.

Second, since all these atomic relations share the same set ȳ of variables, it suffices to
intersect the results: Jlocal(ȳ)KA =

⋂
1≤j≤m

JRij (ȳ)KA . (4.6)

As the elements of each JRij (ȳ)KA are all sorted using the same ordering, this can be done
in time O(

∑
1≤j≤m ‖JRij (ȳ)KA‖). ■

Semijoins. Let us introduce an additional notation before turning to the complexity of com-
puting Jdescendant(ȳ)KA. For e, e′ two relational expression, their semijoin e⋉e′ is defined
by free(e⋉ e′) def

= free(e) andJe⋉ e′KA def
= {ā ∈ JeKA | ∃b̄ ∈ Je′KA . b̄↾free(e)∩free(e′) = ā↾free(e)∩free(e′)} (semijoin)
= Jπfree(e)(e ./ e

′)KA .

While this looks quite similar to a join operator, it has interesting algorithmic properties.
For instance, if free(e) ∩ free(e′) = ∅, Je ./ e′KA = JeKA × Je′KA is the full Cartesian
product, but Je⋉ e′KA = JeKA, and in general Je⋉ e′KA ⊆ JeKA.

Claim 4.8.2. Given JeKA and Je′KA with representation sizes n and n′, Je⋉ e′KA can be
computed in time O(n logn+ n′ logn′).

PRoof of the claim. Let z̄ def
= free(e)∩free(e′) be the set of common variables. Choose

two linear orderings of free(e) and free(e′) such that the common variables in z̄ come first,
then those of free(e) \ z̄ and free(e′) \ z̄.

We first sort JeKA and Je′KA with respect to the lexicographic ordering for these two
orderings of the variables in time O(n logn+ n′ logn′).

Then we only need to advance in the two sorted sets JeKA and Je′KA in lockstep to
find those tuples ā ∈ JeKA such that there exists b̄ ∈ Je′KA with ā↾z̄ = b̄↾z̄ , this in time
O(n+ n′). ■

Claim 4.8.3. Jdescendant(ȳ)KA can be computed in timeO(‖A‖·log ‖A‖·|descendant(ȳ)|).
PRoof of the claim. We prove the claim by induction on the depth of ȳ in T . For the

base case, ȳ is a leaf thus local(ȳ) = descendant(ȳ) and Claim 4.8.1 yields the desired result.
For the induction step, let ȳ1, . . . , ȳm be the immediate children of ȳ in the join tree T . ThenJdescendant(ȳ)KA =

⋂
1≤j≤m

Jlocal(ȳ)⋉ descendant(ȳj)KA . (4.7)

By Claim 4.8.1 again, Jlocal(ȳ)KA can be computed in timeO(‖A‖ · log ‖A‖ · |local(ȳ)|),
and by induction hypothesis, each Jdescendant(ȳj)KA can also be computed in timeO(‖A‖·
log ‖A‖·|descendant(ȳj)|). Moreover, the representations of Jlocal(ȳ)KA and Jdescendant(ȳj)KA
are of size at most ‖A‖, thus Claim 4.8.2 shows that each Jlocal(ȳ)⋉ descendant(ȳj)KA can
be computed within the desired time bound.

Finally, their intersection can be computed in time O(m · ‖A‖). ■



FURTHER READING 59

This concludes the proof of Theorem 4.8: Yannakakis’ algorithm consists in computingJdescendant(ȳ)KA for each root node ȳ using Claim 4.8.3, and then checks whether they are
all non-empty. □

FuRtHeR Reading

References. Conjunctive queries were defined by Chandra and Merlin (1977), who also
identified the corresponding SPJ fragment of relational algebra from Theorem 4.1, and
proved the HomomorphismTheorem and the NP-completeness of the model-checking prob-
lem in Theorem 4.4.

Parameterised Complexity. Regarding parameterised complexity, the original definition
of W[1] was provided in terms of weighted satisfiability problems (hence the name). With
respect to that definition, the W[1]-completeness of p-CLIQUE was first shown by Downey
and Fellows (1995b, Corollary 3.2), that of p-SHORT-NTM by Cai et al. (1997, Theorem 1),
and that of p-MC(CQ,Fin) by Papadimitriou and Yannakakis (1999, Theorem 1). The pre-
sentation here follows (Flum and Grohe, 2006, Chapter 6).

Acyclic Conjunctive Queries. The class of acyclic conjunctive queries has emerged in
the early 1980’s; see (Fagin, 1983) for a comparison of various notions of acyclicity at the
time—several of which defining the same notion of α-acyclicity used in these notes. Yan-
nakakis’s algorithm was published in (Yannakakis, 1981); another polynomial-time algo-
rithm for acyclic conjunctive queries is the consistency algorithm (Beeri et al., 1983). See
(Arenas et al., 2022, chapters 18–20) and (Abiteboul, Hull, and Vianu, 1995, Section 6.4) for
further discussion of acyclicity. Maybe one aspect of acyclic queries that I have not ex-
panded upon further explains their relevance: it is often possible to enforce acyclicity in the
database schema itself (and if you design a database schema, you should do so), so that any
conjunctive query over the schema will be acyclic.

Precise Complexity. The polynomial-time algorithm of Yannakakis for MC(ACQ,Fin) is not
the most precise complexity statement for this problem. Gottlob, Leone, and Scarcello (2001)
indeed show that this problem is LOGCFL-complete under logspace reductions, a complexity
class that we can fit into the hierarchy of uniform circuit complexity classes of (3.4)

AC0 ⊊ NC1 ⊆ L ⊆ NL ⊆ LOGCFL ⊆ AC1 ⊆ NC2 ⊆ · · · ⊆ P . (4.8)

Notably, the polynomial-time GYO algorithm of exercise 4.3 for computing join trees also
has a LOGCFL counterpart.

Evaluation of Acyclic Conjunctive Queries. Yannakakis’s algorithm can be extended to an-
swer the EVAL(ACQ,Fin) problem, in total polynomial time poly(‖A‖, ϕ, ‖ϕ(A)‖) where
we take the size of the output ϕ(A) into account.

From the enumeration complexity viewpoint mentioned at the end of Chapter 3, such a
complexity is not considered tractable, and additional restrictions are needed (Durand, 2020,
Section 4.1); here we do not have the full answer and this is an active subject of research (see
Carmeli and Segoufin, 2023).
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Beyond Acyclicity. The class of acyclic conjunctive queries is not the most general class,
for which model-checking is tractable. Marx (2013, Theorem 1.4) shows that, assuming
the exponential time hypothesis, MC(L,Fin) for L ⊆ CQ is in FPT if and only if L has
‘bounded submodular width.’ Wewill see a generalisation of acyclic conjunctive queries (but
less general than queries of bounded submodular width) with a tractable model-checking
problem in Section 6.3.

Constraint Satisfaction. The constraint satisfaction problem (CSP), in its uniform version,
is the following generalisation of themodel-checking problem to finite structures on general
signatures, i.e., not only relational ones.

PRoblem (CSP).
instance: a finite signature σ, a finite structure A ∈ Fin[σ], and a Boolean conjunc-

tive query ϕ ∈ CQ[σ]
question: A |= ϕ?

As functions can be encoded as relations, this problem is equivalent to MC(CQ,Fin), and
by the Homomorphism Theorem, to HOM(Fin,Fin) and CONTAINMENT(CQ), which are
all NP-complete (see, e.g., Kolaitis and Vardi, 2000).

Nevertheless, a very rich theory has emerged from the study of the non-uniform version
CSP(A) of the problem, where we fix the structure A (called the template in the context of
CSPs)—this corresponds to the data complexity of the model-checking problem for conjunc-
tive queries.

The goal of this research program was to classify the complexity of CSP(A) depending
on A. We have seen in Theorem 4.4 that CSP(C3) was NP-complete, but other structures
can be far easier: Hell and Nešetřil (1990) showed that CSP(G) for a graph G is in P if G is
bipartite and is NP-complete otherwise. What is remarkable here is that Ladner’s Theorem
says that if P 6= NP then there exist NP-intermediate problems that are neither in P nor NP-
complete, but here this dichotomy result shows that there are no NP-intermediate CSP(G)
problems. Feder and Vardi (1993) famously conjectured that this dichotomy generalised
to all CSP(A) problems, and not solely graphs: they are either in P or NP-complete, but
not NP-intermediate. The CSP dichotomy conjecture was solved and answered positively
independently by Bulatov and Zhuk in 2017, who characterise exactly the templates A that
lead to CSPs either in P or NP-complete, drawing heavily from universal algebra techniques.

This is not the end of the story for CSPs: in their non-uniform version, it makes sense
to investigate CSP(A) for infinite templates A as well. While there are infinite CSPs of
arbitrary complexity, this area of research concentrates again on the border between P and
NP, focusing its attention to finitely bounded homogeneous structures—where it applies
techniques from model theory, e.g., ℵ0-categoricity and Fraïssé limits. See for instance the
works of Bodirsky (2008) for a survey or Mottet, Nagy, and Pinsker (2024) for recent results
on this topic.



CHAPTER 5

The Case of Trees

So far, our investigation of the model-checking problem over finite structures has often
shown that the problem was intractable—even for graphs, and even for conjunctive queries.
The only exception at this point is Yannakakis’ Algorithm in Section 4.2.2, which restricts
the logical formulæ to be acyclic conjunctive queries, i.e., to have an associated join tree.

We now turn our attention to restricting the class C of structures in order to find more
islands of tractability. Our first example of a tractable class of structures are trees. This
somehow captures our impression from Example 4.7 that trees are somewhat ‘easy.’ We are
indeed going to see that the model-checking problem for trees t is fixed-parameter linear
time tractable in O(f(|ϕ|) · |t|) (see Corollary 5.23)—though it can be debatable whether
‘easy’ is really the right word, given the complexity of the function f involved.

The algorithm achieving this complexity goes through the construction of tree automata;
here we start in Section 5.1.2 with a perhaps less well-known model of tree automata, that
matches exactly the kind of trees we typically encounter in model-checking problems: un-
ordered tree automata. Thanks to the effective closure properties of these automata (see
Section 5.1.3), we show in Section 5.3 how to construct tree automata accepting exactly the
tree models of sentences in an extension of first-order logic, namely monadic second-order
logic, whose definition is recalled in Section 5.2.

These positive results come with a caveat: the complexity of the construction is not
elementary recursive (see Section 5.3.1 for the definition), and moreover this is inherent to
the problems at hand, as discussed in Section 5.4.

Finally, there are several ways of defining the notion of ‘tree’ besides the labelled di-
rected trees of the upcoming Section 5.1.1, and ⁇ surveys the main variants and their rela-
tionships.

5.1. TRee Automata

5.1.1. Labelled Directed Trees. We have already used trees in Section 4.2 but have not
really defined them. What we mean by a ‘tree’ is really a particular case of directed graphs:
a (directed) tree is a pair T = (V,E) where V is a non-empty set of nodes and E ⊆ V 2 the
child relation, where

61
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• every node has at most one parent: for all v ∈ V , there is at most one v′ ∈ V such
that (v′, v) ∈ E, and then v 6= v′—in other words, the parent relation E−1 is an
irreflexive partial function—, and

• a node with no parent is a root, and a tree has exactly one root.
If we remove the second constraint, what we have is a (directed) forest.

We typically like our trees to be labelled by some finite alphabet Σ, i.e., to work with
pairs (T, `) where ` : V (T ) → Σ is a labelling function. See Figure 5.1 for an example of a
tree, where we indicate the labels directly inside the nodes.

0

q1

1

q1

0

q0

0

q0

0

q0

0

q0

0

q0

0

q0

FiguRe 5.1. A directed tree over the alphabet {0, 1}, and an associated
run of the automaton of Example 5.3 in green.

5.1.1.1. Trees as Finite Structures. In terms of structures, a labelled directed tree (T, `) is seen
as a structure T = (V,E, (a)a∈Σ) on the signature {E} ∪ Σ def

= {E(2)} ∪ {a(1) | a ∈ Σ}
with a unary relation symbol a(1) for each a ∈ Σ, such that every node v ∈ V has exactly
one label from Σ, i.e., where the interpretation of each unary symbol a(1) in T is a def

= {v ∈
V | `(v) = a}. Let us define the formulæ

child(x, y) def
= E(x, y) root(x) def

= ∀y.¬child(y, x) .

Then, the class of Σ-labelled directed trees is the set ModFin(T ) of finite models over the
signature {E(2)} ∪ {a(1) | a ∈ Σ} of a theory T with axioms

∀x.¬child(x, x) (5.1)
∀x.∀y.(child(y, x)→ ∀z.(child(z, x)→ y = z) (5.2)

∀x.
∨
a∈Σ

(
a(x) ∧

∧
b∈Σ\{a}

¬b(x)
)

(5.3)

∃x.root(x) ∧ (∀z.root(z)→ z = x) (5.4)

We will write Tree(Σ) for this class of structures, and Tree for their union over all finite
alphabets Σ.

5.1.1.2. Trees as Unordered, Unranked Terms. Another, more convenient way of defining
trees is as an inductive datatype. First define a (finite) multiset over a set S as a function
m : S → N with finite support, meaning that Supp(m) def

= {s ∈ S | m(s) > 0} is finite.
A multiset can also be written by listing its elements in an arbitrary order, for instance
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m = ⦃a, b, a, c⦄ is the multiset with support {a, b, c} such that m(a) = 2, m(b) = 1, and
m(c) = 1. We write M(S) for the set of finite multisets over S.

The set Tree(Σ) of trees over Σ is defined inductively as the smallest set such that, if⦃t1, . . . , tn⦄ is a (possibly empty) multiset of trees, then a⦃t1, . . . , tn⦄ is a tree in Tree(Σ)
rooted by new a node labelled by a and having the roots of the disjoint union of t1, . . . , tn
as children. A tree a⦃⦄with an empty multiset of children is called a leaf and we will more
simply write a to denote it.

What we have provided here is in fact an algebraic definition of the set of trees (seen
as finite structures) from a set of (ground) unordered, unranked terms over Σ, defined by the
abstract syntax

t ::= a⦃t, . . . , t⦄ (unordered unranked terms)

where a ranges over Σ: the operation in this algebra simply builds a disjoint union of its
arguments and adds a new a-labelled root node connected to the previous roots.

Example 5.1 (Directed tree). Figure 5.1 displays the tree over the alphabet {a, b} defined
by the term a⦃a⦃a⦄, b⦃a, a⦄, a⦃a⦄⦄.

Right now this is pretty transparent, as the term and its associated tree are essentially
the same object—in fact we will not make a distinction between a labelled tree (T, `) seen
as a labelled directed graph, the same tree T = (V,E, (a)a∈Σ) seen as a structure, and the
corresponding tree t seen as an unordered unranked term—, but later in these notes we will
have more complex algebraic operations for defining more complex structures from terms.

5.1.2. Unordered Tree Automata. Tree automata provide an operational (and also an
algebraic) way of accepting trees, leading to decision algorithms. We first start with an ab-
stract definition allowing infinite automata, which we will instantiate later in Section 5.1.2.1.

Definition 5.2 (Unordered Tree Automaton). An unordered tree automaton over an alphabet
Σ is a tupleA = (Q,Σ, δ, F )whereQ is a finite set of states, δ ⊆ Σ×M(Q)×Q a (possibly
infinite) set of transitions, and F ⊆ Q a set of accepting states.

Runs. A run of A on a tree t = (V,E, (a)a∈Σ) is a relabelling ρ = (V,E, (q)q∈Q) of the
tree using the alphabet Q instead of Σ—thus with the same nodes and child relation—that
satisfies the following local constraint:

for every node a⦃t1, . . . , tn⦄ of t, the corresponding node of ρ has a la-
bel q ∈ Q compatible with the transition relation: if the roots of t1, . . . , tn
are respectively labelled q1, . . . , qn, then (a,⦃q1, . . . , qn⦄, q) ∈ δ.

This corresponds to a process that relabels the tree bottom-up, from the leaves to the root.
We write accordingly a⦃q1, . . . , qn⦄→A q instead of (a,⦃q1, . . . , qn⦄, q) ∈ δ.

In our proofs, it will be convenient to manipulate the set of all possible root labels of
runs. Let A(t) be the set of states q ∈ Q such that there exists a run of A on t with root
label q. This is amenable to an inductive definition of the set of root labels:

A(a⦃t1, . . . , tn⦄) = {q ∈ Q | ∃q1 ∈ A(t1), . . . , ∃qn ∈ A(tn) . a⦃q1, . . . , qn⦄→A q} .
(5.5)
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Languages. For a state q ∈ Q, its language LA(q) is the set of trees in Tree(Σ) for which
there exists a run of A, whose root is labelled by q. In other words,

LA(q)
def
= {t ∈ Tree(Σ) | q ∈ A(t)} . (5.6)

The language L(A) accepted by the automaton is then

L(A) def
=

⋃
q∈F

LA(q) = {t ∈ Tree(Σ) | A(t) ∩ F 6= ∅} , (5.7)

i.e., it is the set of trees for which there exists a run whose root is labelled by some accepting
state in F .

Example 5.3 (Unordered tree automaton). Let us consider the unordered tree automa-
ton A over Σ def

= {0, 1} with states {q0, q1, q⊥}, set of final states F def
= {q1}, and transi-

tions
0(m)→A q0 ifm(q1) = 0 and m(q⊥) = 0 ;

1(m)→A q1 ifm(q1) = 0 and m(q⊥) = 0 ;

0(m)→A q1 ifm(q1) = 1 and m(q⊥) = 0 ;

0(m)→A q⊥ ifm(q1) ≥ 2 or m(q⊥) ≥ 1 ;

1(m)→A q⊥ ifm(q1) ≥ 1 or m(q⊥) ≥ 1 .

See Figure 5.1 for an example of a run for this automaton. Then LA(q0) is the set of trees
with only 0 labels, L(A) = LA(q1) the set of trees with exactly one node labelled by 1,
and LA(q⊥) is the set of trees with more than one node labelled by 1.

Deterministic and Complete Automata. The automata in Definition 5.2 are possibly
non-deterministic and allow in general multiple runs on the same tree. An unordered tree
automaton A = (Q,Σ, δ, F ) is deterministic if, for all a ∈ Σ, m ∈ M(Q), and q, q′ ∈ Q,
a(m) →A q and a(m) →A q′ imply q = q′. In other words, in a deterministic automaton,
δ represents a partial function Σ ×M(Q) ↪→ Q, and thus A : Tree(Σ) ↪→ Q is a partial
function.

An automaton is complete if, for all a ∈ Σ and m ∈ M(Q), there exists q ∈ Q such
that a(m)→A q. Thus, in a complete deterministic automaton, δ represents a total function
Σ ×M(Q) → Q; this entails that, for any tree in Tree(Σ), there is exactly one run of the
automaton and a single possible state at the root, given by the function A : Tree(Σ) → Q.
Observe that the automaton of Example 5.3 is complete deterministic.

5.1.2.1. One-Step Languages. The issue so far with Definition 5.2 is that our unordered tree
automata are not finite: they may have an infinite set of transitions. What we need is a finite
representation for potentially infinite sets of multisets in M(Q). Put abstractly, we want a
‘one-step language,’ namely a countable set C[Q] of constraints χ along with a satisfaction
relation ⊩1 allowing to define when a multiset over Q satisfies a constraint, denoted by
m ⊩1 χ.

The notion of one-step language leads to a generic construction of finite automata repre-
senting potentially infinite unordered tree automata. Let us define a C-tree automaton over
an alphabetΣ as a tupleA = (Q,Σ, δ, F )whereQ is a finite set of states, δ ⊆ Σ×C[Q]×Q
a finite set of transitions, and F ⊆ Q a set of accepting states. Such a C-tree automaton de-
fines a (potentially infinite) unordered tree automaton A′ def

= (Q,Σ, δ′, F ) with transitions
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a(m)→A′ q for all a ∈ Σ,m ∈M(Q), and q ∈ Q such that there is a transition (a, χ, q) ∈ δ
withm ⊩1 χ.

There is a rich diversity of one-step languages used in the literature to define classes of
unordered tree automata; here is a non-exhaustive list of examples:
threshold tree automata: a constraint χ is a pair (m′, c) ∈M(Q)×N, andm ⊩1 (m′, c)

if, for all q ∈ Q,m′(q) = m(q), orm′(q) = c andm(q) ≥ c;
Presburger tree automata: a constraint χ is a formula of linear arithmetic FO[+] with

free variables x1, . . . , x|Q|, andm ⊩1 χ if N |= χ(m(q1), . . . ,m(q|Q|));
first-order tree automata: a constraint χ is a sentence of the first-order logic FO[Q] over

the monadic signature {q(1) | q ∈ Q}; a multisetm = ⦃q1, . . . , qn⦄ ∈ M(Q) can
be seen as a structure M def

= ({1, . . . , n}, (qM)q∈Q) with qM def
= {i | qi = q} for

all q ∈ Q, and we letm ⊩1 χ if M |= χ;
first-order modulo counting tree automata: the same as the previous one, but our one-

step constraints areFO+MOD[Q] sentences that can additionally usemodulo quan-
tifiers ∃r[p] for r < p ∈ N, with semantics A, ā |= ∃r[p]x.ϕ if the number |{b ∈
A | A, ā[b/x] |= ϕ}| of choices of elements b ∈ A that satisfy ϕ is congruent to r
modulo p.

These different one-step languages yield different models of automata, that strike different
balances between expressiveness, complexity of the associated membership and emptiness
decision problems, and ease of use in proofs. These notes will develop the first example of
one-step languages: the class of threshold tree automata, starting next in Section 5.1.2.2; but
see also exercise 5.1 for the case of Presburger tree automata where we restrict ourselves to
quantifier-free constraints.

5.1.2.2. Threshold Tree Automata. Let us introduce some additional notation. Given c ∈ N,
we will write Mc(S) for the set of finite multisets over S with multiplicities at most c, i.e.,
m ∈Mc(S) if and only ifm ∈M(S) andm(s) ≤ c for all s ∈ S. Form ∈M(S), capc(m) ∈
Mc(S) is the multiset with multiplicities ‘capped’ at c, i.e., capc(m)(s) def

= min(c,m(s)). We
say that two multisetsm,m′ ∈M(S) are c-equivalent, denoted bym ≡c m′, if capc(m) =
capc(m′) and write [m]c = {m′ | capc(m′) = m} for the equivalence class ofm. Note that,
ifm ≡c m′ and c > 0, then Supp(m) = Supp(m′).

Definition 5.4 (Threshold Tree Automaton). A threshold tree automaton is a tuple A =
(Q,Σ, δ, F, c) where c > 0 and δ ⊆ Σ×Mc(Q)×Q is now a finite set of transitions. Each
transition (a,m, q) ∈ δ defines the (potentially infinite) set of transitions steps a(m′)→A q
for allm′ ∈ [m]c.

Example 5.5 (Threshold tree automaton). Let us see how to define the unordered tree
automaton of Example 5.3 using a threshold tree automaton. We use the threshold c def

= 2
and list all the cases in M2({q0, q1, q⊥}) explicitly: first the cases without q⊥

(0,⦃⦄, q0) (0,⦃q0⦄, q0) (0,⦃q0, q0⦄, q0)
(1,⦃⦄, q1) (1,⦃q0⦄, q1) (1,⦃q0, q0⦄, q1)
(0,⦃q1⦄, q1) (0,⦃q0, q1⦄, q1) (0,⦃q0, q0, q1⦄, q1)
(0,⦃q1, q1⦄, q⊥) (0,⦃q0, q1, q1⦄, q⊥) (0,⦃q0, q0, q1, q1⦄, q⊥)
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(1,⦃q1⦄, q⊥) (1,⦃q0, q1⦄, q⊥) (1,⦃q0, q0, q1⦄, q⊥)
(1,⦃q1, q1⦄, q⊥) (1,⦃q0, q1, q1⦄, q⊥) (1,⦃q0, q0, q1, q1⦄, q⊥) ;
then all the cases where q⊥ appears once
(0,⦃q⊥⦄, q⊥) (0,⦃q0, q⊥⦄, q⊥) (0,⦃q0, q0, q⊥⦄, q⊥)
(1,⦃q⊥⦄, q⊥) (1,⦃q0, q⊥⦄, q⊥) (1,⦃q0, q0, q⊥⦄, q⊥)
(0,⦃q1, q⊥⦄, q⊥) (0,⦃q0, q1, q⊥⦄, q⊥) (0,⦃q0, q0, q1, q⊥⦄, q⊥)
(0,⦃q1, q1, q⊥⦄, q⊥) (0,⦃q0, q1, q1, q⊥⦄, q⊥) (0,⦃q0, q0, q1, q1, q⊥⦄, q⊥)
(1,⦃q1, q⊥⦄, q⊥) (1,⦃q0, q1, q⊥⦄, q⊥) (1,⦃q0, q0, q1, q⊥⦄, q⊥)
(1,⦃q1, q1, q⊥⦄, q⊥) (1,⦃q0, q1, q1, q⊥⦄, q⊥) (1,⦃q0, q0, q1, q1, q⊥⦄, q⊥) ;
and finally all the cases where q⊥ appears twice
(0,⦃q⊥, q⊥⦄, q⊥) (0,⦃q0, q⊥, q⊥⦄, q⊥) (0,⦃q0, q0, q⊥, q⊥⦄, q⊥)
(1,⦃q⊥, q⊥⦄, q⊥) (1,⦃q0, q⊥, q⊥⦄, q⊥) (1,⦃q0, q0, q⊥, q⊥⦄, q⊥)
(0,⦃q1, q⊥, q⊥⦄, q⊥) (0,⦃q0, q1, q⊥, q⊥⦄, q⊥) (0,⦃q0, q0, q1, q⊥, q⊥⦄, q⊥)
(0,⦃q1, q1, q⊥, q⊥⦄, q⊥) (0,⦃q0, q1, q1, q⊥, q⊥⦄, q⊥) (0,⦃q0, q0, q1, q1, q⊥, q⊥⦄, q⊥)
(1,⦃q1, q⊥, q⊥⦄, q⊥) (1,⦃q0, q1, q⊥, q⊥⦄, q⊥) (1,⦃q0, q0, q1, q⊥, q⊥⦄, q⊥)
(1,⦃q1, q1, q⊥, q⊥⦄, q⊥) (1,⦃q0, q1, q1, q⊥, q⊥⦄, q⊥) (1,⦃q0, q0, q1, q1, q⊥, q⊥⦄, q⊥) .

5.1.3. Closure Properties. Threshold tree automata have all the expected closure prop-
erties: the class of tree languages they define is closed under Boolean operations and rela-
belling. For complexity considerations, we define the one norm of a multiset as the sum of
its multiplicities: ‖m‖1 def

=
∑
s∈Sm(s). Then we define the size ‖A‖ of a threshold tree

automaton A = (Q,Σ, δ, F, c) as
∑

(a,m,q)∈δ(‖m‖1 + 1), i.e., we encode multiplicities in
unary.

5.1.3.1. Determinisation. As a preamble to the rest of this section, let us consider how to
construct complete deterministic threshold tree automata from non-deterministic ones.

By definition, a threshold tree automaton A is deterministic if, for all a ∈ Σ, m,m′ ∈
Mc(Q), and q, q′ ∈ Q, (a,m, q) ∈ δ and (a,m′, q′) with [m]c ∩ [m′]c 6= ∅ together imply
q = q′. However, [m]c ∩ [m′]c 6= ∅ only occurs when m = m′ since m and m′ have
maximal multiplicity at most c. Thus the condition for determinism can more simply be
stated by requiring that δ is a partial function of type Σ×Mc(Q) ↪→ Q.

Similarly, a threshold tree automaton is complete if, for all a ∈ Σ and m′ ∈ M(Q),
there exists m ∈ Mc(Q) and q ∈ Q such that (a,m, q) ∈ δ and m′ ≡c m, which is if
and only if for all a ∈ Σ and m ∈ Mc(Q), there exists q ∈ Q such that (a,m, q) ∈ δ.
Thus the automaton is complete deterministic if and only if δ is a total function of type
Σ×Mc(Q)→ Q. We can see that complete deterministic threshold tree automata requires
to spell out all the |Σ| · (c + 1)|Q| possible transitions, for a total size ‖A‖ bounded by
c · |Q| · |Σ| · (c+ 1)|Q|; this is not a concise formalism, as already see in Example 5.5.

The following proposition shows that threshold tree automata can be determinised, al-
though with a worst-case double exponential blow-up.
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Proposition 5.6 (Determinisation of threshold tree automata). Let A be a threshold tree
automaton overΣwithN states and threshold c. Then we can construct an equivalent complete
deterministic threshold tree automaton det(A) with 2N states and threshold c · N such that
L(A) = L(det(A)), thus of size in O(|Σ|(c ·N + 1)2

N

).

PRoof. We adapt the usual powerset construction for automata. Consider an threshold
tree automaton A = (Q,Σ, δ, F, c). We define det(A) def

= (2Q,Σ, δdet, Fdet, cdet) where

Fdet
def
= {p ∈ 2Q | p ∩ F 6= ∅} (5.8)

and such that δdet represents the set of transitions
a⦃p1, . . . , pn⦄→det(A) {q ∈ Q | ∃q1 ∈ p1, . . . , ∃qn ∈ pn . a⦃q1, . . . , qn⦄→A q} (5.9)

for all letters a ∈ Σ and finite multisets ⦃p1, . . . , pn⦄ ∈ M(2Q). Then det(A) will be
complete deterministic by definition, and by the inductive definition of root labels in (5.5),
Adet(t) = A(t) for all trees t ∈ Tree(Σ), and therefore by (5.7–5.8), L(Adet) = L(A) as
desired.

It remains to see how to represent (5.9) using multisets inMcdet(2
Q) for the new thresh-

old cdet def
= c · |Q|. Whenm = ⦃p1, . . . , pn⦄ ∈ M(2Q) andm′ = ⦃q1, . . . , qn⦄ ∈ M(Q) are

such that qi ∈ pi for all 1 ≤ i ≤ n, we callm a lift ofm′ and writem′ ∈ m↾Q. Let us define

δdet
def
= {(a,m, {q ∈ Q | ∃m′ ∈ m↾Q . (a, capc(m′), q) ∈ δ}

| a ∈ Σ,m ∈Mc·|Q|(2
Q)} .

(5.10)

Consider a transition step a(m) → p according to (5.9) and the corresponding transition
(a, capc·|Q|(m), p′) ∈ δdet according to (5.10). The following two claims show that p = p′,
thereby proving the correctness of our definition of δdet. □

Claim 5.6.1. p ⊆ p′.

PRoof of the claim. If q ∈ p, then by (5.9) there exists mq ∈ m↾Q with a transition
(a, capc(mq), q) ∈ δ. Write m = ⦃p1, . . . , ps⦄ and mq = ⦃q1, . . . , qs⦄ with qi ∈ pi for all
1 ≤ i ≤ s such that capc(mq) = ⦃q1, . . . , qr⦄ for some r ≤ s.

Observe that r ≤ c · |Q| since capc(mq) ∈Mc(Q). Therefore, up to a re-indexing of the
elements pi and qi ofm andmq for r < i ≤ s, we can write capc·|Q|(m) = ⦃p1, . . . , pn⦄ for
some r ≤ n ≤ s. Thenm′ def

= ⦃q1, . . . , qn⦄ is in (capc·|Q|(m))↾Q and such that capc(m′) =

capc(mq) = ⦃q1, . . . , qr⦄, thus (a, capc(m′), q) ∈ δ. By (5.10) this shows q ∈ p′. ■

Claim 5.6.2. p′ ⊆ p.

PRoof of the claim. If q ∈ p′, then by (5.10) there exists m′ ∈ (capc·|Q|(m))↾Q such
that (a, capc(m′), q) ∈ δ. Write m = ⦃p1, . . . , ps⦄ such that capc·|Q|(m) = ⦃p1, . . . , pn⦄
for some n ≤ s. With these notations, note that m(pk) ≥ c · |Q| for each n + 1 ≤ k ≤ s.
Also writem′ = ⦃q1, . . . , qn⦄ with qi ∈ pi for all 1 ≤ i ≤ n.

By the Pigeonhole Principle, for each 1 ≤ i ≤ n such that capc·|Q|(m)(pi) = c · |Q|,
there is an index 1 ≤ j ≤ n such that pi = pj andm′(qj) ≥ c. Thus, for each n+1 ≤ k ≤ s
we can find q′k ∈ pk such that capc(m′)(q′k) = c. Definemq

def
= ⦃q1, . . . , qn, q′n+1, . . . , q

′
s⦄.

On the one hand, capc(mq) = capc(m′) and therefore (a, capc(mq), q) ∈ δ. On the other
handmq ∈ m↾Q. By (5.9), this shows that q ∈ p. ■
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Example 5.7 (Determinisation). Consider the non-deterministic threshold tree automa-
ton with states Q def

= {q, q′}, alphabet Σ def
= {a, b}, final states F def

= {q}, threshold c def
= 2,

and transitions
δ def
= {(a,⦃⦄, q), (a,⦃⦄, q′), (b,⦃q, q′⦄, q)} .

Its language is the single tree b⦃a, a⦄. Its determinisation produces the automaton with
threshold 4 and transitions (a,⦃⦄, {q, q′}) and (b,⦃{q, q′}, {q, q′}⦄, {q}) still allowing
to accept the tree b⦃a, a⦄, plus many other useless transitions like (b,⦃{q}, {q′}⦄, {q}),
(b,⦃{q, q′}, {q, q′}, {q, q′}⦄, ∅), or (b,⦃∅, ∅, ∅, ∅⦄, ∅).

5.1.3.2. Complementation. Thanks to Proposition 5.6, it is straightforward to complement
threshold tree automata as usual in automata theory, by first determinising them if needed.

Proposition 5.8 (Complementation of threshold tree automata). Let A be a complete deter-
ministic threshold tree automaton over Σ withN states and threshold c. Then we can construct
a complete deterministic threshold tree automaton A′ with N states and threshold c such that
L(A′) = Tree(Σ) \ L(A).

PRoof. It suffices to invert the acceptance set: if A = (Q,Σ, δ, F ), then we let A′ def
=

(Q,Σ, δ,Q\F ). Indeed, a tree t is inL(A) if and only ifA(t) ∈ F , thus t is in Tree(Σ)\L(A)
if and only if A(t) ∈ Q \ F . □

5.1.3.3. Intersection. Theusual construction from automata theory is straightforward to adapt
to the case of threshold tree automata.

Proposition 5.9 (Intersection of threshold tree automata). Let A and A′ be two threshold
tree automata over Σ with N and N ′ states respectively and the same threshold c. Then we
can construct a threshold tree automaton A∩ over Σ with threshold c and N · N ′ states such
that L(A∩) = L(A) ∩ L(A′). Furthermore, if A and A′ were complete deterministic, then so
is A∩.

PRoof. This is the usual synchronisation product construction from automata theory.
LetA = (Q,Σ, δ, F, c) andA′ = (Q′,Σ, δ′, F ′, c); we constructA∩

def
= (Q×Q,Σ, δ×, F ×

F ′, c) where

δ×
def
= {(a,m, (q, q′)) | (a,m, q) ∈ δ and (a,m, q′) ∈ δ′} . □

The same construction also handles unions if A and A′ are complete, by using (F ×Q′) ∪
(Q× F ′) as acceptance set.

5.1.3.4. Projection. The final closure property we will use later is closure under relabellings,
i.e., functions Σ → Σ′. Given a tree t ∈ Tree(Σ) and a relabelling f : Σ → Σ′, we let f(t)
be the tree in Tree(Σ′) obtained by relabelling every a-labelled node by f(a), this for all
a ∈ Σ. Formally,

f(a⦃t1, . . . , tn⦄) def
= f(a)⦃f(t1), . . . , f(tn)⦄ .

For a tree language L ⊆ Tree(Σ), f(L) def
= {f(t) | t ∈ L}. A particular case of a relabelling

is a projection Σ× Σ′ → Σ that maps (a, b) 7→ a for all a ∈ Σ and b ∈ Σ′.
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Proposition 5.10 (Relabellings of threshold tree automata). Let A be a threshold tree au-
tomata over Σ with N states and threshold c, and f : Σ → Σ′ be a relabelling. Then we
can construct a threshold tree automaton Af over Σ′ with N states and threshold c such that
L(Af ) = f(L(A)).

PRoof. Let A = (Q,Σ, δ, F, c); we construct Af def
= (Q,Σ, δf , F, c) where

δf
def
= {(f(a),m, q) | (a,m, q) ∈ δ} . □

Note that this construction does not preserve determinism if f is not injective (which is
typically not the case of projections).

Exercise 5.1 (Presburger tree automata). We sketched in Section 5.1.2.1 a model of Pres-
burger tree automata. We now make the model more precise and work for this with
the quantifier-free fragment of first-order logic QF[<(2), (≡p)p∈Z,+

(2), 0(0), 1(0)], hence-
forth called the quantifier-free fragment of Presburger arithmetic and denoted by QFPA,
which features binary relational symbols < and ≡p for every p ∈ Z, a binary function
symbol +, and two constant symbols 0 and 1. We fix the interpretation to work over
the structure (Z, <, (≡p)p∈Z,+, 0, 1) where ‘a ≡p b’ stands for ‘a ≡ b mod p’ and the
other symbols have their natural interpretation; we write simply Z |= ϕ rather than
(Z, <, (≡p)p∈Z,+, 0, 1) |= ϕ if ϕ is a Presburger formula.
Rather than working with cumbersome additive terms like 1+1+ · · ·+1+x+x+ · · ·+x,
we can assume our atoms to be of form a1x1+ · · ·+anxn ≤ b or a1x1+ · · ·+anxn ≡p b
where x1, . . . , xn are variables and a1, . . . , an, b ∈ Z are constants, and we may encode
these constants in binary.

Definition 5.11 (Presburger Tree Automaton). A Presburger tree automaton is a tuple
A = (Q,Σ, δ, F ) where δ ⊆ Σ × QFPA × Q is a finite set of transitions of the form
(a, χ, q)whereχ is a quantifier-free Presburger formula with free(χ) = Q. ThenA defines
an unordered tree automaton with transitions a(m) →A q for all m ∈ NQ such that
Z |= χ(m).

(1) Give a Presburger tree automaton that defines the unordered tree automaton of
Example 5.3.

(2) Use the following fact to show that Presburger tree automata can be determinised
and completed, with a worst-case double exponential blow-up in size.

Fact 5.12 (Haase et al., 2024, Corollary 3.2). Given a formula ∃ȳ.ϕ(x̄, ȳ) where
ϕ is a quantifier-free Presburger formula, we can compute in exponential time an
equivalent quantifier-free formula ψ(x̄), i.e., for all ā ∈ Zx̄, Z |= ψ(ā) if and only
if there exists b̄ ∈ Zȳ such that Z |= ϕ(ā, b̄). (Moreover, the formula ψ has size
exponential in ϕ even if its constants are encoded in unary.)

(3) Show that Presburger tree automata languages are closed under complement,
intersection, and projection.

5.1.4. Decision Problems. There are two natural decision problems for tree automata:
membership and emptiness. Here, we are going to see that threshold tree automata behave
well with respect to both problems.
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5.1.4.1. Membership. The (uniform) membership problem for a family T of tree automata
over a class of tree structures T is the following.

PRoblem (MEMBERSHIP(T,T )).
instance: a tree t ∈ T and an automaton A ∈ T
question: t ∈ L(A)?

Proposition 5.13 (Membership for threshold tree automata). The membership problem for
deterministic threshold tree automata over directed trees is in time O(‖A‖+ |t|).

PRoof. Let A = (Q,Σ, δ, F, c). We process the tree t bottom-up and compute A(t′) ∈
Q by induction on the subtrees t′ of t using (5.5). We initially load A in time O(‖A‖) and
use a perfect hash function (see, e.g., Belazzougui, Botelho, and Dietzfelbinger, 2009) for
each a ∈ Σ for retrieving the partial function δa : m 7→ q for every m ∈ Mc(Q) and
q ∈ Q such that (a,m, q) ∈ δ. Then, for a subtree a⦃t1, . . . , tn⦄ where we have computed
m def

= ⦃A(t1), . . . ,A(tn)⦄ ∈ M(Q) by induction hypothesis, we obtain δa(capc(m)) in
constant time. Thus the overall complexity is in O(‖A‖+ |t|). □

Exercise 5.2 (Membership for Presburger tree automata). What is the complexity of the
membership problem for the deterministic Presburger tree automata of exercise 5.1 over
directed trees?

5.1.4.2. Emptiness. The non-emptiness problem for a family T of tree automata over a class
of tree structures T is the following.

PRoblem (NON-EMPTINESS(T,T )).
instance: an automaton A ∈ T
question: does there exist t ∈ T such that t ∈ L(A)?

Proposition 5.14 (Non-emptiness for threshold tree automata). The non-emptiness problem
for threshold tree automata over directed trees is in time O(‖A‖) and P-complete.

PRoof. We only sketch the upper bound; see exercise 5.3 for the lower bound. Given
a threshold tree automaton A = (Q,Σ, δ, F, c), we construct a set Φ of Horn clauses with
a positive literal in each clause, of size ‖Φ‖ ≤ ‖A‖. The set of propositions of Φ is Q. For
each transition (a,m, q), Φ contains the clause q ←

∧
q′∈Supp(m) q

′ (in particular, this is the
clause q ← > if m is the empty multiset). Then Φ |= q if and only if LA(q) 6= ∅, and the
set {q ∈ Q | Φ |= q} can be computed in deterministic time O(‖Φ‖) (see, e.g., Dowling and
Gallier, 1984). □

Exercise 5.3 (P-hardness of non-emptiness). Show the P-hardness of the non-emptiness
problem for threshold tree automata over directed trees. Hint: as in exercise 3.3, you may
use the P-completeness of CIRCUIT-EVAL for the lower bound (see, e.g., Arora and Barak,
2009, Section 7.3).
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5.2. Monadic Second-ORdeR Logic on TRees

On the logical side, we are going to show a stronger result than the tractability of first-
order model-checking over directed trees: we are going to see that monadic second-order
logic is also tractable.

5.2.1. Monadic Second-Order Logic. Monadic second-order logic (MSO) is an extension
of first-order logic that allows quantification over sets of elements in structures. Equiva-
lently, this is the fragment of second-order logic where we only allow quantification over
relations of arity one.

5.2.1.1. Syntax. Let us fix X2 an infinite countable set of second-order variables, all treated
as unary symbols. Over a signature σ = P ] F , the set of monadic second-order formulæ
are defined inductively through the abstract syntax

ϕ ::= R(t1, . . . , tar(R)) | t1 = t2 | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ | X(x) | ∃X.ϕ (MSO formulæ)

whereR ranges over relational symbols inP , the ti’s range over first-order terms inT (F ,X ),
x over first-order variables inX , andX over second-order variables inX2. WewriteMSO[σ]
for the class of all monadic second-order formulæ over σ, and MSO for their union over all
possible signatures. The notion of free variables extends naturally to monadic second-order
formulæ and we write free2(ϕ) for the set of free monadic second-order variables of ϕ.

5.2.1.2. Semantics. Consider a signature σ = P ] F and a structure A over σ. A second-
order valuation in A of a set of second-order variables X̄ ⊆ X2 is a function Ā ∈ (2A)X̄ .
We say that A along with a first-order valuation ā ∈ Ax̄ and a second-order valuation
Ā ∈ (2A)X̄ satisfies a monadic second-order formula ϕ ∈ MSO[σ] with free first-order
variables free(ϕ) ⊆ x̄ and free second-order variables free2(ϕ) ⊆ X̄ , denoted A, Ā, ā |= ϕ,
in the following inductive cases

A, Ā, ā |= R(t1, . . . , tar(R)) if (Jt1KAā , . . . , Jtar(f)KAā ) ∈ RA ,

A, Ā, ā |= t1 = t2 if Jt1KAā = Jt1KAā ,
A, Ā, ā |= ¬ϕ if A, Ā, ā 6|= ¬ϕ ,
A, Ā, ā |= ϕ ∧ ψ if A, Ā, ā |= ϕ and A, ā |= ψ ,
A, Ā, ā |= ∃x.ϕ if ∃b ∈ A such that A, Ā, ā[b/x] |= ϕ ,
A, Ā, ā |= X(x) if ā(x) ∈ Ā(X) ,

A, Ā, ā |= ∃X.ϕ if ∃U ⊆ A such that A[U/X], ā |= ϕ .

Example 5.15 (MSO Formulæ). Consider for instance the tree t of Figure 5.2. Then

leaf(x) def
= ¬(∃y.child(x, y))
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FiguRe 5.2. A tree t ∈ Tree({a, b}) with node set V (t) = {v1, . . . , v7}.

tells whether a node is a leaf or not: t |= leaf(v3) but t 6|= leaf(v2). The following formula
selects a set of nodes forming a branch in a tree:

branch(X) def
=

(
∃xy.root(x) ∧ leaf(y) ∧X(x) ∧X(y)

)
∧
(
∀x.X(x)→

(
∀y.child(y, x)→ X(y)

))
∧
(
∀xyz.

(
X(x) ∧ child(y, x) ∧ child(y, z)

)
→ ¬X(z)

)
.

For instance, t |= branch({v1, v2, v3}) since this set contains the root v1 and a leaf v3, is
closed under taking parents (the parent v2 of v3 is indeed included), and does not allow
branching (v4, v5, and v6 are indeed not included). Then

ϕ def
= ∃X.branch(X) ∧ ∀x.X(x)→ a(x)

is a sentence such that t |= ϕ, thanks to the branch {v1, v6, v7} where all the nodes are
labelled with a.

Exercise 5.4 (Example of a threshold tree automaton). Provide a threshold tree automa-
ton A that accepts the trees in Tree({a, b}) that have an a-labelled branch from a leaf
to the root, i.e., such that L(A) = ModTree(Σ)(ϕ)where ϕ is the formula defined in Exam-
ple 5.15.

5.2.2. From Automata to Existential MSO on Trees. A good way to measure the ex-
pressiveness of monadic second order logic is to show that it can define the sets of trees
accepted by tree automata.

Here we concentrate on trees t ∈ Tree(Σ) seen as finite structures (V,E, (a)a∈Σ). Our
goal is to show that the languages of trees in Tree(Σ) accepted by threshold tree automata
are the sets of models of MSO sentences. In fact, a fragment of MSO suffices to that end:
an existential MSO formula is a formula of the form ∃X̄.ϕ where X̄ ⊆ X2 is a finite set of
second-order variables andϕ is a first-order formula over the signature σ∪{X(1) | X ∈ X̄}
extended with unary relational symbols for each second-order variable X of X̄ .

TheoRem 5.16. Let L = L(A) ⊆ Tree(Σ) be a language accepted by a threshold tree
automaton A over Σ. Then we can construct an existential MSO sentence ϕ of size polynomial
in ‖A‖, such that L = ModTree(Σ)(ϕ).
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PRoof. Consider a threshold tree automaton A = (Q,Σ, δ, F, c) over Σ and a tree t ∈
Tree(Σ). We are going to write an existential MSO formula satisfied by t if and only if there
is a run of A over t.

Let X̄Q
def
= {Xq | q ∈ Q}. Our formula is

ϕ def
= ∃X̄Q.ψ (5.11)

where ψ is a first-order formula; if t |= ϕ then there exists a second-order valuation Ā ∈
(2V (t))X̄ that associates a subset Ā(Xq) ⊆ V (t) of the nodes to each state q ∈ Q. We need
our formula ψ to ensure three conditions in order to check that this valuation Ā describes
an accepting run, namely

(1) the sets Ā(Xq) for q ∈ Q form a disjoint cover of V (t),
(2) the root of t is in Ā(Xq) for some accepting state q ∈ F , and
(3) locally, at every node of t, the state labels are consistent with the transition rela-

tion δ.
We define accordingly

ψ def
= ψ(1) ∧ ψ(2) ∧ ψ(3) (5.12)

where each ψ(i) enforces condition (i) above. Regarding the disjoint cover condition (1),

ψ(1)
def
=

(
∀x.

∨
q∈Q

Xq(x)

)
∧
( ∧
q ̸=q′∈Q

¬(∃x.Xq(x) ∧Xq′(x))

)
. (5.13)

Regarding the root label condition (2),

ψ(2)
def
= ∀x.root(x)→

∨
q∈F

Xq(x) . (5.14)

Finally, regarding the local transition condition (3),

ψ(3)
def
= ∀x.

∧
a∈Σ

∧
q∈Q

(
a(x) ∧Xq(x)→

∨
(a,m,q)∈δ

multisetm,c(X̄Q, x)

)
(5.15)

where, for a multisetm = ⦃q1, . . . , qn⦄,
multisetm,c(X̄Q, x)

def
= ∃x1, . . . , xn.

( ∧
1≤i≤n

child(x, xi) ∧Xqi(xi)

)
∧
( ∧

1≤i<j≤n

xi 6= xj

)

∧
(
∀y.child(x, y)→

( ∨
1≤i≤n

y = xi ∨
∨

1≤i≤n
m(qi)=c

Xqi(y)
))

checks for the existence of n distinct children rooting the subtrees of the node selected by x,
with the correct state labelling, and such that any additional child node is labelled by a state
qi such thatm(qi) = c. □

A comment on the significance of Theorem 5.16: existential MSO is a very small exten-
sion of first-order logic, in that it only asks for a first-order property for an expansion of the
structure with a finite number of additional ‘colours,’ i.e., a finite number of unary relational
symbols.
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FiguRe 5.3. Origami Black Hole, from https://xkcd.com/3033.

5.3. TRees ARe Easy!

Our goal in this section is to show that the satisfiability problem for MSO over finite
directed trees is satisfiable, and that the parameterised model-checking problem for MSO
over finite directed trees is fixed-parameter tractable—thus, that trees are indeed easy.

5.3.1. Caveat on Elementary Complexity. The following Section 5.4 will nuance this
assessment. Indeed, the constructions we are about to see have a complexity that is not
elementary recursive, which is bad news because—in spite of the name—there is not much
that was ‘elementary’ about elementary recursive complexity in the first place.

Exponential Hierarchies. Before we define the notion of elementary recursive functions,
let (expk)k∈N be the family of k-iterated exponential functions defined by

exp0(x) def
= x , expk+1(x) def

= 2expk(x) .

In other words, expk(x) = 22
…2x

}
k times is a ‘tower’ of exponentials of fixed height k with x

on top. These functions quickly reach values that ridicule estimated physical quantities in
our universe; as an illustration consider exp3(3) = 2256 and Figure 5.3.

You might have encountered the k-iterated exponentiation functions before in the def-
inition of the exponential time and space hierarchies in complexity theory:

k-EXP def
= DTIME

(
expk(poly(n))

)
,

k-NEXP def
= NTIME

(
expk(poly(n))

)
,

k-EXPSPACE def
= NSPACE

(
expk(poly(n))

)
are such that P = 0-EXP, NP = 0-NEXP, and PSPACE = 0-EXPSPACE, then EXP = 1-EXP,
NEXP = 1-NEXP, and EXPSPACE = 1-EXPSPACE, etc.

https://xkcd.com/3033
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(Non-)ElementaryComplexity. A function f is elementary recursive (aka Kalmár elemen-
tary) if there exists some k such that f can be computed in deterministic time O(expk(n)),
and if so we write f ∈ elem(n). The class of elementary decision problems (i.e., {0, 1}-valued
elementary recursive functions) is then

ELEMENTARY =
⋃
k

k-EXP =
⋃
k

k-NEXP =
⋃
k

k-EXPSPACE .

A function that is not elementary recursive is non-elementary; a prime example of a
non-elementary function is the so-called ‘tetration’ or ‘tower’ function

tower(x) def
= expx(0)

that defines a tower of exponentials, whose height depends (linearly) on the argument. The
associated complexity class is

TOWER def
= DTIME

(
tower(elem(n))

)
the class of decision problems that can be decided in time bounded by a tower of exponentials
whose height depends elementarily on the input. Here we have defined TOWER in terms of
deterministic time-bounded computations, but this is immaterial: we obtain the same class
if we look at non-deterministic time bounds or space bounds instead.

The class TOWER plays the role of a ‘limit’ class for ELEMENTARY, like PSPACE does
for PH or AW[∗] for

⋃
i A[i]. Let me stress here that there are no ‘ELEMENTARY-complete’

problems under any reasonable class of reductions; this is because the exponential time and
space hierarchies are strict by the time and space hierarchy theorems, so that a collapse
like the one hypothesised in exercise 3.2.(1) for PH is impossible. By contrast, TOWER has
complete problems, and we allow elementary reductions when talking about hardness for
TOWER.

5.3.2. From MSO to Automata on Trees. We are going to prove a converse to Theo-
rem 5.16: given an MSO sentence ϕ, we can construct a threshold tree automaton Aφ such
that ModTree(Σ)(ϕ) = L(Aφ). We do this proof in two steps: first we show how to handle
quantifier-free formulæ in Section 5.3.2.1, and then the full logic in Section 5.3.2.2.

5.3.2.1. Valuation Trees andQuantifier-Free MSO. Letϕ be a quantifier-free monadic second-
order logic formula over σ = {E} ∪Σ. Necessarily (as we do not have constant symbols in
our signature), ϕ has some free variables, say x̄ = free(ϕ) and X̄ = free2(ϕ), which need
to be handled somehow.

Alternative Syntax. In our constructions, having to deal with first-order variables and
their valuations is a bit cumbersome, and it would be convenient to get rid of first-order
variables entirely. This is doable, since a first-order valuation ā ∈ Ax̄ can be seen as a second-
order valuation Ā ∈ (2A)x̄ with the additional property that Ā(x) is a singleton {ā(x)} for
each x ∈ x̄, and this can be expressed in MSO. Let

singleton(X) def
= ∃x.X(x) ∧ ∀y.X(y)→ x = y
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be a formula with one free second-order variable X , such that A, Ā |= singleton(X) if and
only if |Ā(X)| = 1, thus allowing to check whether X behaves in fact like a first-order
variable. We also need to express the atomic MSO formulæ with second-order variables,
and let

X ⊆ Y def
= ∀x.X(x)→ Y (x)

be a formula with two free second-order variables X and Y , such that A, Ā |= X ⊆ Y if
and only if Ā(X) ⊆ Ā(Y ),

R(X1, . . . , Xar(R))
def
= ∃x1, . . . , xar(R).R(x1, . . . , xar(R)) ∧

∧
1≤i≤ar(R)

Xi(xi)

be a formula with ar(R) free second-order variablesX1, . . . , Xar(R), such thatA, Ā |= R(X̄)

if and only if there exists ā ∈ RA such that āi ∈ Ā(Xi) for all 1 ≤ i ≤ ar(R).

Example 5.17 (Singletons, inclusions, and existential labels and edges). In the tree t
of Figure 5.2, we have t |= singleton({v1}), t |= {v2, v5, v6} ⊆ {v2, v4, v5, v6}, t |=
a({v2, v4, v5, v6}), and t |= E({v1}, {v2, v4, v5, v6}).

Put together, this yields an alternative syntax for MSO formulæ over a relational signa-
ture σ

ϕ ::= R(X1, . . . , Xar(R)) | singleton(X) | X1 ⊆ X2 | ¬ϕ | ϕ ∧ ϕ | ∃X.ϕ

where R ranges over P and X,X1, . . . over X2; there are no first-order variables nor any
first-order quantification in this syntax.

The definitions of singleton(X), X ⊆ Y , and R(X1, . . . , Xar(R)) above show that any
MSO formula in the alternative syntax is equivalent to an MSO formula in the standard
syntax. Conversely, for an MSO formula ϕ in the standard syntax, assume wlog. that
X̄free(φ)

def
= {Xx | x ∈ free(ϕ)} ⊆ X2 is disjoint from free2(ϕ). Then ϕ is equivalent to

the MSO formula

ϕ† ∧
∧

x∈free(φ)
singleton(Xx) (5.16)

over the alternative syntax, where we treat first-order variables x as second-order vari-
ables Xx, and define ϕ† inductively by

(R(x1, . . . , xar(R)))
† def
= R(Xx1 , . . . , Xxar(R)

) , (x = y)† def
= Xx ⊆ Xy ∧Xy ⊆ Xx ,

(¬ϕ)† def
= ¬(ϕ†) , (ϕ ∧ ψ)† def

= (ϕ†) ∧ (ψ†) ,

(∃x.ϕ)† def
= ∃Xx.singleton(Xx) ∧ (ϕ†) , (X(x))† def

= Xx ⊆ X ,

(∃X.ϕ)† def
= ∃X.(ϕ†) .

Observe that in this translation, we have the guarantee whenever we work with a variable
Xx for some x ∈ free(ϕ) that the second-order valuation of Xx is in fact a singleton.

Example 5.18 (Alternative syntax). Consider the MSO formula

children(x,X) def
= ∀y.E(x, y)↔ X(y)
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such that t |= children(v, U) if and only if U is the set of children of v; in the tree t of
Figure 5.2, we have t |= children(v1, {v2, v5, v6}). This formula is equivalent to

ϕ(Xx, X) def
= singleton(Xx) ∧

(
∀Xy.singleton(Xy)→ (E(Xx, Xy)↔ Xy ⊆ X)

)
,

in that t |= ϕ(U,U ′) if and only if U = {v} for a vertex v and U ′ is the set of children of v.
In the tree t of Figure 5.2, we have accordingly t |= ϕ({v1}, {v2, v5, v6}).

Valuation Trees. Let us assume for a moment that we are working with a formula ϕ† over
the alternative syntax such that X̄ = free2(ϕ)†. Rather than accepting sets of trees over Σ,
the automata A we are going to construct accept valuation trees t⊗ Ā, that combine a tree
t = (V,E, (a)a∈Σ) in Tree(Σ)with a second-order valuation Ā ∈ (2V )X̄ . The idea is to put
the information about which nodes of t are used in the valuations Ā directly in the labels of
the nodes, by working with trees over the extended alphabet

ΣX̄
def
= Σ× {0, 1}X̄

instead. The idea is quite straightforward and illustrated below in Figure 5.4.

Ā(X1) = {v7}
Ā(X2) = {v2, v5, v6}
Ā(X3) = {v2, v4, v5, v6}
Ā(X4) = {v1}

(a) A second-order valuation Ā
of X̄ = {X1, X2, X3, X4} in
the tree of Figure 5.2.

a, 0001

v1

b, 0110

v2

a, 0000

v3

a, 0010

v4

b, 0110

v5

a, 0110

v6

a, 1000

v7

(b) The valuation tree t⊗ Ā.

FiguRe 5.4. A valuation tree t⊗ Ā for the tree t of Figure 5.2.

More formally, define the projection functions πΣ : ΣX̄,x̄ → Σ and πX : ΣX̄ → {0, 1}
for each X ∈ X̄ on labels ` = (a, B̄) ∈ ΣX̄ by

πΣ(a, B̄) def
= a πX(a, B̄) def

= B̄(X) .

For instance, in Figure 5.4b, consider the label ` = (b, 0110) of node v2: πΣ(`) = b, πX1(`) =
0, πX2

(`) = 1, πX3
(`) = 1, and πX4

(`) = 0. Then the valuation tree t ⊗ Ā is the tree
t′ ∈ Tree(ΣX̄) such that πΣ(t′) = t and, for all X ∈ X̄ , Ā(X) = {v | ∃` ∈ ΣX̄ . v ∈
` and πX(`) = 1}. Any tree in Tree(ΣX̄) is a valuation tree t ⊗ Ā for some valuation Ā
of X̄ .

AutomataConstruction. The following statement yields a complete deterministic automa-
ton Aφ of size doubly exponential in the size of a quantifier-free MSO formula ϕ in the
standard syntax.

Lemma 5.19. Let ϕ be a quantifier-free MSO formula over the signature {E} ∪ Σ with
free(ϕ) = x̄ and free2(ϕ) = X̄ . Then we can construct in double exponential time a com-
plete deterministic threshold tree automaton Aφ over the alphabet ΣX̄∪X̄x̄

with at most 2|φ|

states and threshold 1 such that, for all trees t ⊗ Ā ∈ Tree(ΣX̄∪X̄x̄
), t ⊗ Ā ∈ L(Aφ) if and

only if t, Ā |= ϕ†.
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PRoof. We are going to proceed by induction over the quantifier-free formula ϕ, but
first we show how to handle the atomic formulæ a(X), E(X,Y ), and X ⊆ Y of the alter-
native syntax.
Existential Labels. Let us first define a complete deterministic threshold tree automaton
Aa(X) for X ∈ X̄ ∪ X̄x̄ and a ∈ Σ. It has state set Q def

= {q, q⊤}, accepting set {q⊤},
and defines the transitions for ` ∈ ΣX̄∪X̄x̄

andm ∈M(Q)

`(m)→ q if (πΣ(`) 6= a or πX(`) = 0) andm(q⊤) = 0 ;

`(m)→ q⊤ if (πΣ(`) = a and πX(`) = 1) orm(q⊤) ≥ 1 .

This set of transitions can be defined with thresh-
old 1. Then LAa(X)

(q) is the set of trees where no
node has label (a, . . . , 1, . . . ) with a 1 for the vari-
able X , and LAa(X)

(q⊤) the set of trees that do.
For instance, in Figure 5.4b, the unique run of
Aa(X3) labels the nodes as displayed on the right.

a, 0001

q⊤

b, 0110

q⊤

a, 0000

q

a, 0010

q⊤

b, 0110

q

a, 0110

q⊤

a, 1000

q

Existential Edges. Let us define a complete deterministic threshold tree automatonAE(X,Y )

forX,Y ∈ X̄ ∪ X̄x̄. It has state set {q, qY , qX}, accepting set {qX}, and defines the transi-
tions for ` ∈ ΣX̄∪X̄x̄

andm ∈M(Q)

`(m)→ q if (πX(`) = 0 orm(qY ) = 0) and πY (`) = 0 andm(qX) = 0 ;

`(m)→ qY if (πX(`) = 0 orm(qY ) = 0) and πY (`) = 1 andm(qX) = 0 ;

`(m)→ qX if (πX(`) = 1 andm(qY ) ≥ 1) orm(qX) ≥ 1 .

This set of transitions can be defined with thresh-
old 1. The intuition behind this automaton is that
AE(X,Y ) must first encounter a node in the valua-
tion of Y and move to qY , and immediately after-
wards see that its parent is in the valuation of X
in order to move to qX .
For instance, in Figure 5.4b, the unique run of
AE(X4,X3) labels the nodes as displayed on the
right.

a, 0001

qX

b, 0110

qY

a, 0000

q

a, 0010

qY

b, 0110

qY

a, 0110

qY

a, 1000

q

Containment. Let us define a complete deterministic threshold tree automaton AX⊆Y for
X,Y ∈ X̄ ∪ X̄x̄. It has state set {q, q⊥}, accepting set {q}, and defines the transitions for
` ∈ ΣX̄∪X̄x̄

andm ∈M(Q)

`(m)→ q if (πX(`) = 0 or πY (`) = 1) andm(q⊥) = 0 ;

`(m)→ q⊥ if (πX(`) = 1 and πY (`) = 0) orm(q⊥) ≥ 1 .

This set of transitions can be defined with thresh-
old 1. The intuition is thatAX⊆Y moves to q⊥ and
stays in that state as soon as it sees a node that con-
tradicts the inclusion, and otherwise stays in q.
For instance, in Figure 5.4b, the unique run of
AX1⊆X3

labels the nodes as displayed on the right.

a, 0001

q⊥

b, 0110

q

a, 0000

q

a, 0010

q

b, 0110

q

a, 0110

q⊥

a, 1000

q⊥
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Main Induction. We proceed by induction over the quantifier-free MSO formula ϕ.
Case a(x): then |a(x)| = 2 and (a(x))† = a(Xx).

The automaton Aa(Xx) is a complete deterministic automaton with 2 ≤ 22

states and threshold 1 such that t⊗ Ā ∈ L(Aa(Xx)) if and only if t, Ā |= a(Xx).
Case E(x, y): then |E(x, y)| = 3 and (E(x, y))† = E(Xx, Xy). The automatonAE(Xx,Xy)

is a complete deterministic automatonwith 3 ≤ 23 states and threshold 1 such that
t⊗ Ā ∈ L(AE(Xx,Xy)) if and only if t, Ā |= E(Xx, Xy).

Case x = y: then |x = y| = 3 and (x = y)† = Xx ⊆ Xy ∧ Xy ⊆ Xx. The product
automaton constructed by Proposition 5.9 from AXx⊆Xy

and AXy⊆Xx
is a com-

plete deterministic automaton with 2 × 2 ≤ 23 states and threshold 1 such that
t⊗ Ā ∈ L(AXx⊆Xy ) ∩ L(AXy⊆Xx) if and only if t, Ā |= Xx ⊆ Xy ∧Xy ⊆ Xx.

CaseX(x): then |X(x)| = 2 and (X(x))† = Xx ⊆ X . The automaton AXx⊆X is a
complete deterministic automaton with 2 ≤ 22 states and threshold 1 such that
t⊗ Ā ∈ L(AXx⊆X) if and only if t, Ā |= Xx ⊆ X .

Case ¬ϕ: then |¬ϕ| = 1 + |ϕ| and (¬ϕ)† = ¬(ϕ†). By induction hypothesis, we have
constructed a complete deterministic automatonAφ, and applying Proposition 5.8
yields a complete deterministic automaton A¬φ with at most 2|φ| ≤ 2|φ|+1 states
and threshold 1 such that t⊗ Ā ∈ L(A¬φ) if and only if t, Ā 6|= ϕ†.

Case ϕ∧ψ: then |ϕ∧ψ| = 1+|ϕ|+|ψ| and (ϕ∧ψ)† = (ϕ†)∧(ψ†). By induction hypoth-
esis, we have constructed two complete deterministic automata Aφ and Aψ , and
applying Proposition 5.9 yields a complete deterministic automatonAφ∧ψ with at
most 2|φ| · 2|ψ| ≤ 21+|φ|+|ψ| states and threshold 1 such that t⊗ Ā ∈ L(Aφ∧ψ) if
and only if t, Ā |= ϕ† and t, Ā |= ψ†. □

Exercise 5.5 (Counting MSO on Trees). Monadic second order logic can be extended with
counting, by adding to its syntax an atomic formula

cardm,r(X)

for eachm > r in N andX ∈ X2. The resulting logic is denoted by CMSO, or CmMSO if
we restrict the syntax to some fixedm. Its semantics is defined by

A, Ā, ā |= cardm,r(X) if |Ā(X)| ≡ r modm
Define a complete deterministic Presburger tree automaton (c.f. exercise 5.1) that accepts
the valuation trees of counting atomic formulæ. More precisely, letm > r be in N, x̄ and
X̄ be two finite sets of first-order and second-order variables with X ∈ X̄ , and Σ be a
finite alphabet. Define a complete deterministic Presburger tree automaton Acardm,r(X)

such that, for all trees t⊗ Ā ∈ Tree(ΣX̄∪X̄x̄
),

t⊗ Ā ∈ L(Acardm,r(X)) if and only if t, Ā |= cardm,r(X) .

5.3.2.2. Full MSO. We are now ready to tackle quantifiers and complete the proof, first in
the case of formulæ at level ΣiMSO or ΠiMSO of the MSO alternation hierarchy (which is
defined analogously to the first-order alternation hierarchy in Section 1.2.3).

Lemma 5.20. Let ϕ be an MSO formula over the signature {E} ∪ Σ with free(ϕ) = x̄ and
free2(ϕ) = X̄ and alternation rank i. Then we can construct in (i + 2)-iterated exponen-
tial time a complete deterministic threshold tree automaton Aφ over the alphabet ΣX̄∪X̄x̄
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with expi+1(O(|ϕ|)) states and threshold in expi(O(1)) such that, for all trees t ⊗ Ā ∈
Tree(ΣX̄∪X̄x̄

), t⊗ Ā ∈ L(Aφ) if and only if t, Ā |= ϕ†.

PRoof. We work by induction over i. For the base case, if i = 0 then ϕ is quantifier-
free and Lemma 5.19 yields the result. Otherwise, put ϕ in prenex normal form, with i > 0
quantifier blocks, alternating (i − 1) times between existential and universal quantifiers.
Thanks to Proposition 5.8, complementing a complete deterministic threshold tree automa-
ton is essentially for free, thus it suffices to show how to handle the case of an initial block
of existential quantifiers. Thus ϕ = ∃Ȳ ∃ȳ.ψ where ψ has alternation rank (i − 1) and we
already have constructed a complete deterministic automatonAψ with expi(O(|ψ|)) states
and threshold expi−1(O(1)) by induction hypothesis.

By definition of the translation into the alternative syntax, (∃Ȳ ∃ȳ.ψ)† is equivalent to
∃Ȳ Ȳȳ.ψ†∧

∧
y∈ȳ singleton(Yy) and |∃Ȳ ∃ȳ.ψ| = |Ȳ |+|ȳ|+|ψ|. Observe that free(ψ) = x̄∪ȳ

and free2(ψ) = X̄ ∪ Ȳ . A valuation for ψ† can therefore be decomposed as a valuation Ā
of the variables in X̄ ∪ X̄x̄ and a valuation B̄ of the variables in Ȳ ∪ Ȳȳ . By induction
hypothesis, for all trees t⊗ Ā⊗ B̄ ∈ Tree(ΣX̄∪X̄x̄∪Ȳ ∪Ȳȳ

), t⊗ Ā⊗ B̄ ∈ L(Aψ) if and only
if t, ĀB̄ |= ψ†.

By a straightforward adaptation of the automaton in Example 5.5, there is a complete
deterministic threshold tree automatonAsingleton(Yy) for any y ∈ ȳ, with 3 states and thresh-
old 2. Applying Proposition 5.9 to Aψ and all the Asingleton(Yy) for y ∈ ȳ yields a complete
deterministic threshold tree automaton A with 3|ȳ| · expi(O(|ψ|)) ⊆ expi(O(|ϕ|)) states
and threshold max(3, expi−1(O(1))) = expi−1(O(1)) such that t ⊗ Ā ⊗ B̄ ∈ L(A) if and
only if t, ĀB̄ |= ψ† ∧

∧
y∈ȳ singleton(Yy).

Finally, t, Ā |= ϕ† if and only if there exists a valuation B̄ of Ȳ ∪ Ȳȳ such that t, ĀB̄ |=
ψ† ∧

∧
y∈ȳ singleton(Yy). Thus it suffices to apply Proposition 5.10 with the projection

f : ΣX̄∪X̄x̄∪Ȳ ∪Ȳȳ
→ ΣX̄∪X̄x̄

to the automaton A to obtain A′ such that t ⊗ Ā ∈ L(A′)

if and only if t, Ā |= ϕ†. Unfortunately,A′ is not deterministic, but applying Proposition 5.6
yields the desired Aφ with expi+1(O(|ϕ|)) states and threshold expi(O(1)). □

The final result is the following statement for MSO sentences.

TheoRem 5.21. Let ϕ be an MSO sentence over the signature {E} ∪ Σ with alternation
rank i. Then we can construct in (i + 2)-iterated exponential time a complete deterministic
threshold tree automaton Aφ over Σ with expi+1(O(|ϕ|)) states and threshold in expi(O(1))
such that, for all trees t ∈ Tree(Σ), t ∈ L(Aφ) if and only if t |= ϕ.

PRoof. By (5.16), because ϕ is a sentence, it is equivalent to ϕ†. The rest follows from
Lemma 5.20. □

Depending on the intended applications of Theorem 5.21, a non-deterministic automa-
ton might suffice. If ϕ is an MSO sentence from the ΣiMSO fragment (i.e., of alternation
rank i and starting with a block of existential quantifiers), the last determinisation in the
proof of Lemma 5.20 is not required.

Proposition 5.22. Let ϕ be an ΣiMSO sentence over the signature {E} ∪ Σ. Then we can
construct in (i + 1)-iterated exponential time a threshold tree automaton Aφ over Σ with
expi(O(|ϕ|)) states and threshold in expi−1(O(1)) such that, for all trees t ∈ Tree(Σ), t ∈
L(Aφ) if and only if t |= ϕ.
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In particular, for theΣ1MSO fragment, Proposition 5.22 yields an automatonwith an ex-
ponential number of states and constant threshold. Beware here that the Σ1MSO fragment
of monadic second-order logic is not the same as existential MSO defined in Section 5.2.2:
the latter allows arbitrary first-order universal quantification, which the former forbids.

5.3.3. Consequences. Let us look at the consequences of Theorem 5.21. The first one per-
tains to the parameterised model-checking problem for monadic second-order logic over
directed trees, which is in FPT.

Corollary 5.23. p-MC(MSO,Tree) is in fixed-parameter linear time f(|ϕ|) · |t| for a func-
tion f in tower(O(n)).

PRoof. Given Σ a finite alphabet, ϕ ∈ MSO[{E} ∪Σ] a sentence of alternation rank i,
and t ∈ Tree(Σ), we can compute a complete deterministic threshold tree automaton Aφ
in time expi+2(O(|ϕ|)) and check whether t ∈ L(Aφ) in time O(‖Aφ‖ + |t|) by Proposi-
tion 5.13. □

The second is that the satisfiability problem for monadic second-order logic over di-
rected trees is decidable.

Corollary 5.24. Let i > 0. Then SAT(ΣiMSO,Tree) is in (i+1)-EXP, and SAT(MSO,Tree)
is in TOWER.

PRoof. Given Σ a finite alphabet and a monadic second-order sentence ϕ, then ϕ ∈
ΣiMSO[{E} ∪ Σ] for some i > 0. By Proposition 5.22 we can construct in (i+ 1)-iterated
exponential time a threshold tree automaton Aφ of size in expi+1(O(|ϕ|)) such that ϕ is
satisfiable if and only if L(Aφ) 6= ∅. The latter check can be performed in time O(‖Aφ‖)
by Proposition 5.14. □

The last consequence is that, when combining Theorem 5.21 with Theorem 5.16, we
obtain the following expressiveness equivalence of monadic second-order logic on finite
directed trees with that of existential MSO.

Corollary 5.25. Let ϕ be an MSO sentence over {E}∪Σ for a finite alphabet Σ. Then we can
construct in time tower(O(|ϕ|)) an existential MSO sentence ψ logically equivalent to ϕ over
Tree(Σ).
Thus, maybe surprisingly, over finite directed trees any sentence of monadic second-order
logic is logically equivalent to a first-order sentencemodulo an expansionwith finitelymany
unary relation symbols (aka a monadic lift).

5.4. TRees ARe HaRd!

TODO





CHAPTER 6

The Case of Bounded Tree-Width

The results of the previous chapter give us at last a ray of hope that model-checking
some finite structures may sometimes be tractable. We are going to build on this basis, by
now turning our attention to structures that are somehow ‘tree-like.’

The degree of likeness to a tree is captured by an invariant called tree-width, with struc-
tures of low tree-width being close to being trees, and we are going learn the basics about
tree-width in Section 6.1.

Crucially, we will see in Section 6.2 that graphs and structures of tree-width bounded by
some fixed k have a monadic second-order interpretation in trees from a suitable term alge-
bra, allowing to reduce their model-checking problem to the case of trees already handled
in the previous chapter. The main outcome of this chapter is our first algorithmic meta-
theorem: Courcelle’s Theorem shows that over a class of structures of bounded tree-width,
any property expressible in monadic second-order logic can be decided in fixed-parameter
linear time (see ⁇).

The second main outcome in Section 6.3 is a generalisation of Yannakakis’ Algorithm
for acyclic conjunctive queries (c.f.Theorem 4.8): the class of conjunctive queries of bounded
tree-width admits a tractable model-checking problem over arbitrary finite structures.

6.1. TRee-WidtH

This section provides the basic definitions surrounding tree-width. We will start in the
upcoming Section 6.1.1 by focusing on the case of simple, undirected graphs, but we will
see in Section 6.1.2 that the notion generalises to arbitrary finite structures in a seamless
fashion. Finally, we will mention the basic facts about the computation of the tree-width of
a structure in Section 6.1.3.

6.1.1. Tree Decompositions. The tree-width tw(G) of a simple graph G provides a mea-
sure of how ‘close’ G is to being a tree; for instance, we will see that tw(G) = 1 if and only
if G is acyclic (thus a forest in the sense of ⁇), while tw(Kk) = k− 1 for a complete graph
with k vertices.

83
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Definition 6.1 (Tree Decomposition). Let G be a simple graph. A tree decomposition for G
is a non-empty labelled directed tree (T, β) ∈ Tree(2V (G)) where β : V (T )→ 2V (G) maps
the nodes of T to their bags of vertices from G, such that

(1) for each edge {v, v′} ∈ E(G), there exists a node s ∈ V (T ) such that the edge
belongs to its bag: {v, v′} ⊆ β(s), and

(2) for each vertex v ∈ V (G), the set of nodes β−1(v) def
= {s ∈ V (T ) | v ∈ β(s)} is

non-empty and connected in T .

If this feels familiar, that’s normal: the join trees we used for Yannakakis’s Algorithm
in Section 4.2.1 are indeed a restricted form of tree decompositions. We shall discuss the
connection further in Section 6.3.1.2. See Figure 6.1 for some examples of tree decomposi-
tions.

1

2

3

4

5

6

(a) A simple graph.

{1, 3, 4}

{1, 2, 4}

{2, 6}

{4, 5}

(b) A tree decomposition of
the graph of Figure 6.1a.

{1, 3, 4}

{1, 2, 4}

{2, 6}

{4, 5}

(c) The subsets β−1(v) in
the tree decomposition of
Figure 6.1b are connected.

1

2

3

4

5

6

(d) The bags of Figure 6.1b
on the graph of Figure 6.1a:
every edge belongs to some
bag.

{1, 3, 4, 5, 6}

{1, 3, 4}

{1, 2, 4}

(e) Another tree decompo-
sition of the graph of Fig-
ure 6.1a.

{1, 2, 3, 4, 5, 6}

(f) Yet another tree decom-
position of the graph of Fig-
ure 6.1a.

FiguRe 6.1. Illustrations of tree decompositions.

Definition 6.2 (Tree-width). Let G be a simple graph. The width of a tree decomposi-
tion (T, β) is the maximal number maxs∈V (T ) |β(s)|−1 of elements in the bags of T , minus
one. The tree-width tw(G) ofG is the minimumwidth over all the tree decompositions ofG.

Example 6.3 (Width of tree decompositions).The tree decompositions of Figure 6.1 have:
width 2 in Figure 6.1b, width 3 in Figure 6.1c, and width 5 in Figure 6.1e—this is the worst
case, since every simple graph has a tree decomposition of width |V (G)|−1. The graphG
of Figure 6.1a has therefore tw(G) ≤ 2; it actually has tw(G) = 2 by the forthcoming
Corollary 6.12 since it containsK3 as a subgraph.

The rationale for the really annoying ‘minus one’ in the definition of tree-width is for
the acyclic graphs to have tree-width one. Indeed, with this definition, the empty graph
has tree-width −1, and a graph has tree-width 0 if and only if it is non-empty and has no
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edges. An non-empty acyclic graph G with at least one edge has tree-width 1: it needs
tree-width > 0 since it has an edge, and tree-width 1 suffices because we can build a tree
decomposition with one node se per edge e ∈ E(G), labelled by β(se) def

= e, and suitable
tree edges connecting the nodes; see Figure 6.2. Being acyclic actually characterises having
tree-width at most one; see Corollary 6.11.
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1

2 3

4

5

6

7

8

9

{0, 1}

{1, 2}

{1, 3}

{0, 4}

{4, 5}

{6, 7}

{7, 8} {6, 9}

FiguRe 6.2. A tree decomposition of width 1 of an acyclic graph.

6.1.1.1. Basic Closure Properties. For two simple graphsH andG, we say thatG is a subgraph
of G if V (H) ⊆ V (G) and E(H) ⊆ G. Put differently, H is a subgraph of G if it can
be obtained by removing some edges or some vertices from G. Over the class Graph, is
equivalent to asking for the identity map V (H)→ V (G) to be an injective homomorphism,
and we will reuse the notation H ↪→ G of Section 1.1.2.1, since H ↪→ G entails that H is
isomorphic to a subgraph of G.

Beware that this is not standard notation in graph theory, where ‘H ⊆ G’ is typically
used to denote that H is a subgraph of G; however we will keep our understanding that
H ⊆ G denotes the existence of an embedding of H into G, which in terms of graphs
means that H is an induced subgraph of G: indeed, H ⊆ G if and only if V (H) ⊆ V (G)
and E(H) = E(G)↾V (H), if and only if H can be obtained by removing some vertices
fromG. IfG is a graph and U ⊆ V (G), we writeG[U ] for the subgraph ofG induced by U
and G− U for the induced subgraph G[V (G) \ U ].

Lemma 6.4 (Monotonicity under taking subgraphs). If H ↪→ G, then tw(H) ≤ tw(G).

PRoof. Given a tree decomposition (T, β) of width tw(G) forG, (T, β′)where β′(s) def
=

β(s) ∩ V (H) for all s ∈ V (T ) is also a tree decomposition of width ≤ tw(G) for H . □
A class C of graphs or coloured graphs is called monotone if it is closed under taking

subgraphs, and hereditary if it is closed under taking induced subgraphs; thus a monotone
class is also hereditary but the converse might not hold. Then Lemma 6.4 shows that for
all k, the class of graphs of tree-width at most k is monotone.

Lemma 6.5 (Closure under disjoint unions). Let G and G′ be two graphs with disjoint sets
of vertices. Then tw(G ]G′) = max(tw(G), tw(G′)).

PRoof. To see that tw(G]G′) ≤ max(tw(G), tw(G′)), given two tree decompositions
(T, β) and (T ′, β′) for G and G′ of widths tw(G) and tw(G)′ respectively, connect the root
of T by an edge to the root of T ′ to obtain a tree decomposition for G ] G′ with width
max(tw(G), tw(G′)).

Conversely, G ↪→ G ]G′ and G′ ↪→ G ]G′, thus tw(G) ≤ tw(G ]G′) and tw(G′) ≤
tw(G ]G′) by Lemma 6.4, and therefore max(tw(G), tw(G′)) ≤ tw(G ]G′). □
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6.1.1.2. Small Tree Decompositions and Bounded Degeneracy. According to Definition 6.1, a
tree decomposition for a graphG can have arbitrary size (e.g., one can just insert nodes with
empty bags below the leaves). A tree decomposition (T, β) for a graph G is small if for all
s 6= s′ ∈ V (T ), β(s) 6⊆ β(s′). In Figure 6.1, the decompositions depicted in figures 6.1b
and 6.1f are small, but the one in Figure 6.1e is not.

Lemma 6.6 (Size of small tree decompositions). If (T, β) is a small tree decomposition of a
graph G, then |V (T )| ≤ |V (G)|.

PRoof. We proceed by induction on |V (G)|. If |V (G)| = 0 then the only tree decompo-
sition is the empty one and we are done. Otherwise, let (T, β) be a small tree decomposition
of G and consider a leaf s of T and its parent s′. Since β(s) 6⊆ β(s′), there exists a vertex
v ∈ β(s) \ β(s′). By condition (2) of Definition 6.1, we then have v 6∈ β(s′′) for all s′′ 6= s
in V (T ). Consider the new labelled tree (T ′, β′) obtained by removing the leaf s from T
and the new graph G′ obtained by removing the vertex v from G: then (T ′, β′) is a small
tree decomposition ofG′. By induction hypothesis, |V (T )| = |V (T ′)|+1 ≤ |V (G′)|+1 =
|V (G)|. □

Lemma 6.7 (Linear time construction of small decompositions). LetG be a graph and (T, β)
be a tree decomposition for G. Then we can compute in linear time in |V (T )| a small tree
decomposition (T ′, β′) forG with the same width such that V (T ′) ⊆ V (T ) and β′(s) = β(s)
for all s ∈ V (T ′).

PRoof. Starting from the leaves of (T, β), contract the edges (s, s′) ∈ E(T ) for which
either β(s) ⊆ β(s′) or β(s′) ⊆ β(s), keeping the largest one and its label. □

A graph G is called k-degenerate if, in all non-empty subgraphsH ↪→ G, there exists a
vertex of degree at most k.

Corollary 6.8. If tw(G) ≤ k, then G is k-degenerate.

PRoof. Let G be a graph and H ↪→ G a non-empty subgraph of G. Then H has tree-
width at most k as well by Lemma 6.4, and by Lemma 6.7 it has a small tree decomposition
(T, β) of width at most k. If |V (T )| = 1 then |V (H)| ≤ k + 1 and the result follows.
Otherwise, let s be a leaf of T and s′ its parent; since β(s) 6⊆ β(s′), there exists v ∈ β(s) \
β(V (T ) \ {s}). By condition (1) of Definition 6.1, all the edges {v, v′} ∈ E(H) incident
to v must be such that v′ ∈ β(s), hence the degree of v in H is at most k. □

Graphs of bounded degeneracy are a key notion in graph theory. Among many other
properties, they are ‘sparse’ in the sense that they have few edges: by recursively picking a
vertex of degree at most k, we see that |E(G)| ≤ k · |V (G)| if G is k-degenerate. Not all k-
degenerate graphs have tree-width at most k; for instance, grids have degree at most 4 and
are thus 4-degenerate, but for all k > 0, tw(Gk×k) = k (see Proposition 8.1 in Chapter 8).

6.1.1.3. Connectivity and Separators. One can relate connectivity inside a graph with con-
nectivity inside any of its tree decompositions. Let G be a simple graph and (T, β) a tree
decompositions of G. For a subset S ⊆ V (T ) of the nodes of T , let

β(S) def
=

⋃
s∈S

β(s)
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denote the union of the bags of S. Conversely, for a subset U ⊆ V (G) of the vertices of G,
let

β−1(U) def
=

⋃
v∈U

β−1(v) = {s ∈ V (T ) | ∃v ∈ U . v ∈ β(s)} .

Assume that U is a connected subset of G, for instance {1, 2} in Figure 6.1a: there exists a
path connecting any two of its vertices inG, for instance 2 — 1 . For each edge {v, v′} ∈ E
along that path, β−1(v) ∩ β−1(v′) ⊇ {v, v′} 6= ∅ by condition (1) of a tree decomposi-
tion, and indeed β−1(2) and β−1(1) have at least one node of T in common ({1, 2, 4} in
Figure 6.1c). As both β−1(2) and β−1(1) are themselves connected subsets of T by condi-
tion (2) of a tree decomposition (see the cyan and dark blue connections in Figure 6.1c), we
have that β−1({1, 2}) is connected in T . We just showed the following.

Lemma 6.9. Let G be a graph and (T, β) a tree decomposition for G. If U is a connected set
of vertices of G, then β−1(U) is a connected set of nodes of T .

In a tree decomposition (T, β) of a graph G, an edge (s, s′) ∈ E(T ) is sometimes also
called a cut. This is due to the following lemma, where a set S ⊆ V (G) separates U1 ⊆ V (G)
fromU2 ⊆ V (G) ifU1\S andU2\S are disconnected inG−S. Equivalently, S is a separator
for U1 and U2 if any path in G from a vertex in v1 ∈ U1 to a vertex v2 ∈ U2 contains a
vertex from S. For instance, in Figure 6.1a, {1, 4} is a separator for {2, 6} and {3, 5}.

Lemma 6.10. Let (T, β) be a tree decomposition of a graphG, (s1, s2) ∈ E(T ) an edge of T ,
and T1 and T2 be the two disjoint subtrees of T defined by removing this edge with s1 ∈ V (T1)
and s2 ∈ V (T2). Then β(s1) ∩ β(s2) separates β(T1) from β(T2).

PRoof. Let S def
= β(s1) ∩ β(s2), U1

def
= β(T1), and U2

def
= β(T2). Let v1, . . . , vn be

any path in G such that v1 ∈ U1 and vn ∈ U2. As V (T ) = V (T1) ∪ V (T2) and because
V (G) = β(V (T )) by condition (2) of a tree decomposition, we have V (G) = U1 ∪ U2 and
there exists some 1 ≤ i ≤ n where we ‘switch’ between U1 and U2 along the path: either
vi ∈ U1 ∩ U2, or vi ∈ U1 and vi+1 ∈ U2. Let us show that in both cases we visit S along
the path.

(1) If vi ∈ U1 ∩ U2, there exist some s′1 ∈ β−1(vi) ∩ T1 and some s′2 ∈ β−1(vi) ∩ T2.
Since β−1(vi) is connected in T by condition (2), there is a path in T connect-
ing s′1 ∈ T1 to s′2 ∈ T2 remaining within β−1(vi). This path has to use the edge
(s1, s2) since T is a tree. Therefore both s1 ∈ β−1(vi) and s2 ∈ β−1(vi), which
entails that vi ∈ S.

(2) If vi ∈ U1 and vi+1 ∈ U2, since {vi, vi+1} ∈ E(G), by condition (1) there is a
node s ∈ V (T ) such that {vi, vi+1} ⊆ β(s). Assume s ∈ T2. Then s ∈ β−1(vi)∩
T2, and since vi ∈ U1 we also have β−1(vi) ∩ T1 6= ∅. As in the previous case,
this entails that s1, s2 ∈ β−1(vi) and therefore vi ∈ S. If s ∈ T1, then s ∈
β−1(vi+1) ∩ T1, β−1(vi+1) ∩ T1 6= ∅, and by the same argument vi+1 ∈ S. □

Note that the separators defined by cuts in a tree decomposition of width k have size at
most k. Having ‘balanced’ separators of bounded size—where the setsX and Y furthermore
contain at least some proportion of the vertices—allows for divide-and-conquer algorithmic
approaches. We are going to use Lemma 6.10 more prosaically to prove lower bounds on
the tree-width of some classical graphs.

Corollary 6.11. Let k > 2. Then the tree-width of the cycle Ck is 2.
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{1, 2, 3}

{1, 3, 4}

{1, 4, 5}

{1, 5, 6}

{1, 6, 7}

{1, 7, 8}

FiguRe 6.3. A tree decomposition of width 2 of the cycle C8.

PRoof. See Figure 6.3 for an illustration of why tw(Ck) ≤ 2. For the sake of contradic-
tion, assume that tw(Ck) ≤ 1. By Lemma 6.6 there exists a small tree decomposition (T, β)

for Ck of width one. Write the vertices of Ck as V (Ck)
def
= {1, . . . , k}; since {1, 2} ∈ E(Ck)

and {1, k} ∈ E(Ck), by condition (1) of tree decompositions there exist s1, s2 two nodes
of T such that {1, 2} ⊆ β(s1) and {1, k} ⊆ β(s2). As |β(s)| ≤ 2 for all s ∈ V (T ), s1 6= s2.

Since 1 ∈ β(s1) ∩ β(s2), by condition (2) there is a path connecting s1 and s2 in T .
The first edge on that path is of the form (s1, s) ∈ E(T ) or (s, s1) ∈ E(T ) for some
s ∈ V (T ). By Lemma 6.10, this edge separates β(T1) from β(T2) in G, where T1 and T2
are the two disjoint subtrees of T defined by removing that edge and such that s1 ∈ V (T1)
and s, s2 ∈ V (T2).

By definition of a separator, the vertices 2 ∈ β(T1) and k ∈ β(T2) are only connected
through β(s1)∩β(s), but since (T, β) is small, |β(s1)| ≤ 2, |β(s)| ≤ 2, and 1 ∈ β(s1)∩β(s),
we actually have β(s1)∩β(s) = {1}. That means that the only path connecting 2 with k is
through 1, contradicting that Ck is a cycle. □

By Lemma 6.4, if G contains a cycle Ck as a subgraph, then tw(G) ≥ 2. As we already saw
that acyclic graphs had tree-width at most one, Corollary 6.11 entails shows that a graph
has tree-width at most one if and only if it is acyclic.

Corollary 6.12. Let G be a graph and (T, β) a tree decomposition for G. If U ⊆ V (G)
induces a complete graph, then there exists s ∈ V (T ) such that U ⊆ β(s). Thus for all k > 0,
tw(Kk) = k − 1.

PRoof. SinceG[U ] ↪→ G we can use the construction of Lemma 6.4 to obtain a new la-
belling β′ : s 7→ β(s)∩U such that (T, β′) is a tree decomposition for the graphG[U ] with
the same set of nodes and with β′(s) ⊆ β(s) for all s ∈ V (T ). Apply then Lemma 6.7
to (T, β′) to obtain a small decomposition (T ′, β′′) with V (T ′) ⊆ V (T ) and β′′(s) =
β′(s) ⊆ β(s) for all s ∈ V (T ′). It suffices to show that U ⊆ β′′(s) for some s ∈ V (T ′). To
simplify notations, we now call this decomposition (T, β).

Let U def
= {1, . . . , k} for some k (note that if k ≤ 1 there is nothing to prove). Pick a

node s1 ∈ V (T ) such that β(s1) is maximal for bag inclusion: for all s ∈ V (T ), β(s1) 6⊆
β(s).

If U ⊆ β(s1) we are done, so assume the contrary: there exists vertex j ∈ U such
that j 6∈ β(s1). Since (T, β) is small, β(s) is non-empty and there another exists a vertex
i ∈ U such that i ∈ β(s1). Since G[U ] is complete, there exists an edge {i, j} and by
condition (1) there is a node s ∈ V (T ) with {i, j} ⊆ β(s). By condition (2), s1 and s are
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connected through a path in T , and let (s1, s2) be the first transition taken along that path.
By Lemma 6.10, β(s1) ∩ β(s2) is a separator for β(T1) and β(T2) where T1 and T2 are the
two disjoint subtrees of T obtained by removing the edge (s1, s2) and such that s1 ∈ V (T1)
and s2 ∈ V (T2), and observe that s ∈ V (T2) thus j ∈ β(T2).

Consider any i′ ∈ β(s1): in G[U ], any path from i′ ∈ β(T1) to j ∈ β(T2) must visit a
vertex in the separator β(s1)∩β(s2). In particular, {i′, j} is an edge ofG[U ], and j 6∈ β(s1),
thus necessarily i′ ∈ β(s1) ∩ β(s2). This shows that β(s1) ⊆ β(s2), but this contradicts
our choice of s1 with β(s1) maximal for inclusion. □

6.1.2. Graphs vs. Structures.

6.1.2.1. Gaifman Graphs.

6.1.2.2. Incidence Graphs. Alternative to Section 1.1.2.2
Hamiltonian path is not expressible (Calò and Makowsky, 1992, Theorem 4.2) but it is

in MSO2 (Flum and Grohe, 2006, Example 11.49)

6.1.3. Computing Tree Decompositions. Unfortunately, finding a tree decomposition
of small width for a graph is not an easy task. In particular, checking that we have the right
width value is not easy: the following decision problem is not tractable.

PRoblem (TREE-WIDTH).
instance: a finite simple graph G and k ∈ N
question: tw(G) = k?

Fact 6.13 (Arnborg, Corneil, and Proskurowski, 1987). TREE-WIDTH is NP-complete.

Thankfully, for the applications we have in mind, wewill use k as a fixed value, in which
case computing a tree decomposition of small width becomes tractable. Even better, there
are algorithms that behave well in terms of parameterised complexity.

PRoblem (p-TREE-WIDTH).
instance: a finite simple graph G and k ∈ N
parameter: k
question: tw(G) = k?

In particular, Bodlaender’s Algorithm shows that p-TREE-WIDTH is in FPT, even in
fixed-parameter linear time, and furthermore when the answer is positive, a tree decompo-
sition with the desired width can be constructed.

Fact 6.14 (Bodlaender, 1996, Theorem 1.1). There is an algorithm which, given a finite simple
graph G and an integer k ∈ N, runs in time 2O(k3) · |G| and either constructs a tree decompo-
sition of width k for G or reports that tw(G) > k.
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6.2. CouRcelle’s THeoRem

6.3. ConjunctiveQeRies Redux

Truth be told, I am not overly fond of the proof of ⁇, and we will see a more general
statement in Chapter 7 that I find more elegant. Nevertheless, tree-width is an important
notion, interesting in its own right. In particular, it has strong connections with the case
of conjunctive queries from Chapter 4 and provides a generalisation of Yannakakis’s Algo-
rithm, which we are going to see now.

6.3.1. Rewritings of ConjunctiveQueries. Recall from Section 3.3.2 that we have good
complexity upper bounds for the evaluation and model-checking problems for formulæ of
small variable width. This was even put forward in Example 4.7 as an intuitive explanation
for why Yannakakis’s Algorithm works.

One can attempt to attempt to minimise the width of a conjunctive formula ϕ by a very
simple optimisation process. Let us say that a primitive-positive formula ψ is a rewriting of
a conjunctive query ϕ if it can be obtained from ϕ by applying the rule

∃x.(θ1 ∧ θ2)⇝ (∃x.θ1) ∧ θ2 if x 6∈ free(θ2) (6.1)

modulo associativity and commutativity of the conjunction symbol∧. Equivalently, a primi-
tive-positive formula ψ is a rewriting if it does not contain any equality atom and all the
quantifications ∃y.ψ′ occurring in ψ use distinct variable names, which are also distinct
from the free variables in free(ψ).

Example 6.15 (Rewriting). Consider the primitive positive formula of variable width 3

ψ def
= ∃x3.E(x2, x3) ∧

(
∃x4.E(x1, x4) ∧ E(x3, x4)

)
∧
(
∃x5.E(x2, x5) ∧ E(x3, x5)

)
.

All the variables in ψ are distinct and it does not have any equality atom; it is indeed a
rewriting of the conjunctive query
ϕ = ∃x3x4x5.E(x2, x3) ∧ E(x1, x4) ∧ E(x3, x4) ∧ E(x2, x5) ∧ E(x3, x5)

obtained from ψ by applying the rewriting rule (6.1) in reverse.
The formulaψ is in fact a normal form ofϕ: the rule (6.1) can no longer be applied. It is not
the sole normal form (unfortunately, our rewriting system is not confluent); for instance,
the following rewriting of ϕ is also a normal form, this time of variable width 4:

∃x4.E(x1, x4) ∧
(
∃x5.E(x2, x5) ∧

(
∃x3.E(x3, x4) ∧ E(x2, x3) ∧ E(x3, x5)

))
.

Let us generalise the notion of canonical structures to rewritings ψ of conjunctive
queries: we can turn ψ back into the original conjunctive query by applying the inverse
rewriting rule (∃x.θ1) ∧ θ2 ⇝ ∃x.(θ1 ∧ θ2), and then construct the associated canonical
structure. Equivalently, the structure can(ψ) has as domain vars(ψ) the set of all the vari-
ables appearing in ψ, and for all R ∈ σ a tuple (x1, . . . , xar(R)) belongs to Rcan(ψ) if and
only if an atomR(x1, . . . , xar(R)) appears in ψ. For instance, Figure 6.4 shows the canonical
structure associated to the rewriting of Example 6.15.
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x1

x2

x3

x4

x5

FiguRe 6.4. The canonical structure can(ψ) of the rewriting ψ from Ex-
ample 6.15.

6.3.1.1. A Logical Characterisation. Recall from Section 4.1.2.1 that any finite structure A
has an associated Boolean conjunctive query, obtained as its positive diagramϕ = diag+(A);
conversely, any conjunctive queryϕ(x̄) has an associated canonical structureA = can(∃x̄.ϕ(x̄)).
We are going to see that we can relate the variable width of rewritings of ϕ with the tree-
width of A. This will also shed additional light on the discussion in Example 4.7 that led to
Yannakakis’s Algorithm in Section 4.2.2.

Proposition 6.16. Let ϕ be a conjunctive query. If ϕ has a rewriting of width k + 1, then its
canonical structure has tree-width at most k.

PRoof. Consider a conjunctive queryϕ(x̄) = ∃ȳ.
∧
i∈I Ri(xi,1, . . . , xi,ar(R))with x̄i def

=
{xi,1, . . . , xi,ar(R)} ⊆ x̄ ∪ ȳ for all i ∈ I . Let A = can(∃x̄.ϕ) be the associated canonical
structure, with domain x̄ ∪ ȳ and tuples (xi,1, . . . , xi,ar(R)) ∈ RA

i for all i ∈ I .
Letψ be a rewriting ofϕ of widthw(ψ) ≤ k+1. We are going to construct a tree decom-

position T of A by induction on the structure of ψ. Up to associativity and commutativity
of conjunctions, we can write ψ as( ∧

i0∈I0

Ri0(x̄i0)

)
∧
( ∧
j∈J
∃ȳj .ψj(x̄j)

)
(6.2)

by grouping the ‘immediate’ atomic relational subformulæ Ri0(x̄i0) with x̄i0 ⊆ x̄ on one
side, and the ‘immediate’ existentially quantified subformulæ ∃ȳj .ψj(x̄j) with ȳj ⊆ ȳ and
x̄j ⊆ x̄∪ ȳj on the other. Then

⋃
i0∈I0 x̄i0 ⊆ x̄ and we create a node v0 with bag β(v0) def

= x̄
of size ≤ k + 1.

Each formula ψj(x̄j) for j ∈ J is a subformula of ψ(x̄), thus has width at most k + 1.
By induction hypothesis, for each j ∈ J we obtain a tree decomposition (Tj , βj) of width
at most k for can(ψj). We define T as the tree rooted by v0 with the roots of the Tj ’s as
children, with β(v) mapping to the appropriate bag βj(v) whenever v is a node of Tj . Let
us show that (T, β) is a tree decomposition.

• Consider a tuple (xi,1, . . . , xi,ar(R)) ∈ RA
i of A. Then either i ∈ I0 and there-

fore {xi,1, . . . , xi,ar(R)} ⊆ β(n0), or the corresponding atom occurs within one
of the subformulæ ψj and then there exists a bag of Tj that contains this tuple by
induction hypothesis.

• Consider a vertex x of A. If the set of bags of T that contain x is contained within
one of the Tj plus possibly β(n0), i.e., {v ∈ V (T ) | x ∈ β(v)} ⊆ {v ∈ V (Tj) |
x ∈ βj(v)} ∪ β(n0) for some j ∈ J , then this set is non-empty and connected by
induction hypothesis. Otherwise, x appears in two distinct subtrees Tj1 and Tj2 .
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But then, x appears as a variable in bothψj1 andψj2 , thus necessarily in x̄ = β(v0)
since all the quantified variables are distinct, which entails that {v ∈ V (T ) | x ∈
β(v)} is non-empty and connected. □

Example 6.17 (Tree decomposition from a rewriting). Consider again the rewriting
ψ(x1, x2) of Example 6.15. The decomposition of ψ(x1, x2) according to (6.2) yields a
single subformula

ψ1(x1, x2, x3)
def
= E(x2, x3) ∧

(
∃x4.E(x1, x4) ∧ E(x3, x4)

)
∧

(
∃x5.E(x2, x5) ∧ E(x3, x5)

)
such that ψ(x1, x2) = ∃x3.ψ1(x1, x2, x3). In turn, the decomposition of ψ1(x1, x2, x3)
according to (6.2) yields the two rewritings

ψ2(x1, x3, x4)
def
= E(x1, x4) ∧ E(x3, x4)

ψ3(x2, x3, x5)
def
= E(x2, x5) ∧ E(x3, x5)

such that ψ1(x1, x2, x3) = E(x2, x3)∧
(
∃x4.ψ2(x1, x3, x4)

)
∧
(
∃x5.ψ3(x2, x3, x5)

)
. The

corresponding tree decomposition of the canonical structure of ψ is shown in Figure 6.5;
it has indeed width 2.

x1

x2

x3

x4

x5

{x1, x2} ψ

{x1, x2, x3} ψ1

{x1, x3, x4}
ψ2

{x2, x3, x5}
ψ3

FiguRe 6.5. The tree decomposition of the structure of Figure 6.4 con-
structed according to the rewriting ψ from Example 6.15. Each node of
the tree is annotated (in grey) with the corresponding subformula of ψ
from Example 6.17.

You might have already guessed what follows: a converse to Proposition 6.16 holds.

Proposition 6.18. Let (T, β) be a tree decomposition of width k of a structureA. Then we can
compute in time linear in the size of (T, β) a rewriting of variable width k + 1 of diag+(A).

PRoof. The proof follows from the algebraic construction of ⁇. □

Combining propositions 6.16 and 6.18, we have the following characterisation of the
tree-width of a structure.

Corollary 6.19 (Rewriting Characterisation of Tree-Width). A structure A has tree-width
at most k if and only if diag+(A) has a rewriting of variable width at most k + 1.

6.3.1.2. Conjunctive Queries of Bounded Tree-Width. Corollary 6.19 is not the sole corollary
of Proposition 6.18: recall that, by Theorem 3.14, we can solve both the evaluation and the
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model-checking problem over a finite structureA in timeO(|ϕ| · |A|w(φ))with an adjacency
matrix encoding. Define the tree-width of a conjunctive query ϕ as the tree-width of its
canonical structure can(ϕ), and let CQk be the class of conjunctive queries of tree-width at
most k.

Corollary 6.20. For all k, EVAL(CQk,Fin) and MC(CQk,Fin) can be solved in deterministic
time 2O(k3) · |ϕ| · |A|k+1 with an adjacency matrix encoding, thus in deterministic polynomial
time.

PRoof. Given a conjunctive query ϕ ∈ CQk , compute in time 2O(k3) · |vars(ϕ)| a tree
decomposition of width k of its canonical structure can(ϕ) using Bodlaender’s algorithm
(c.f. Fact 6.14). Use this decomposition to compute a rewriting ψ of variable width k + 1 of
ϕ in linear time by Proposition 6.18, and finally evaluate ψ against the input structure A in
time O(|ψ| · |A|w(ψ)) by Theorem 3.14. As ψ and ϕ are logically equivalent and of the same
size, the result follows. □

6.3.2. Cores of Structures. (Dalmau, Kolaitis, and Vardi, 2002, Corollary 2)(Grohe, 2007,
Theorem 3.1) (Flum and Grohe, 2006, Theorem 13.12)

FuRtHeR Reading

References. Tree-width was defined by Robertson and Seymour (1986a) in the context of
their epic multi-article proof of the Graph Minor Theorem (see Section 8.1). Tree-width
has however found a large number of applications in multiple fields; for a short survey see
(Eppstein, 2025). Most of the material from this chapter is inspired by (Flum and Grohe,
2006, Chapters 11 and 13) and (Kreutzer, 2009).

ComputingTreeDecompositions. More efficient algorithms than Bodlaender’s (see Fact 6.14)
are known if we are content with tree decompositions of somewhat larger width; for in-
stance, there is an algorithm in time 2O(k) ·|G| building a tree decomposition of width 2k+1
or rejecting the input if tw(G) > k (Korhonen, 2022). Recent results by Bonnet (2025)—
besides providing a direct reduction from 3SAT to TREE-WIDTH and thus an alternative
proof of Fact 6.13—indicate that tree-width is not approximable in its non-parameterised
version.

Tree-Width and Conjunctive Queries. Proposition 6.18 was first observed by Kolaitis
and Vardi (2000, Lemma 5.2); the full characterisation in terms of rewritings in Corollary 6.19
was stated by Dalmau, Kolaitis, and Vardi (2002, Theorem 7).

Bojańczyk and Pilipczuk, 2016





CHAPTER 7

The Case of Bounded Clique-Width

clique width Courcelle, Makowsky, and Rotics, 2000; Oum, 2008
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CHAPTER 8

The Case of Grids

Proposition 8.1 (Tree-Width of Grids). For all k ≥ 1, tw(Gk×k) = k.

(Arenas et al., 2022, Proposition 21.7)
grids Robertson and Seymour, 1986b grids again Seese, 1991

8.1. GRapH MinoRs

graph minors
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