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MPRI 2-09-1: Exam
Games That Cannot Go on Forever!

Duration: 2 hours 15 minutes. You may answer in French or in English at your
convenience. The numbers in brackets in the margin are indications of length or
difficulty.

Fellows and Rosamond (2025) recently proposed a game to be played with children over
a wqo. The general setup is a wqo (X,≤X) with a “size” function | · |X : X → N, such that
(X, | · |X) forms a combinatorial class, i.e., for all n ∈ N,X=n

def= {x ∈ X | |x|X = n} is finite.
Given an initial size n0 ∈ N, a game is a sequence of elements x0, x1, x2, . . . fromX such

that, at each step j,

1. for all i < j, xi ̸≤X xj , and

2. |xj|X = n0 + j.

The game stops before step j if no element xj satisfying the two conditions exists in X . In
the short game, the players are attempting to minimise the duration of the game, while in the
long game, they are trying to maximise it.

Exercise 1. Long games over tuples of natural numbers.
We are interested in this exercise in long games played on the simplest wqo considered
by Fellows and Rosamond: the integer sum games with T channels, i.e., the games played
over NT for some finite T ∈ N, endowed with the product ordering ≤, and using the
1-norm defined by |u⃗|1 def=

∑
1≤k≤T u⃗(k) for all u⃗ ∈ NT .

(a)[0.5] Show that any game played over NT , ≤, and | · |1 that starts with an initial size n0 is
an (amortised) (H,n0)-controlled bad sequence over the normed wqo (NT ,≤, | · |∞)

(where |u⃗|∞ def= max1≤k≤T u⃗(k)) when using the control function H(x) def= x+ 1.

Answer: Given a game u⃗0, u⃗1, u⃗2, . . . over NT , for all i < j we have u⃗i ̸≤ uj , so
this is a bad sequence. Furthermore, |u⃗|∞ ≤ |u⃗|1 for all u⃗ ∈ NT , hence for all j we
have |u⃗j|∞ ≤ Hj(n0) = n0 + j as desired.

As seen in class, there is therefore an upper bound on the length of long games with initial
size n0: their length is bounded by LNT ,H(n0), which is itself bounded by hωT (n0T ) in the
Cichoń hierarchy for h(x) def= x + T . This function hωT (n0T ) is a primitive-recursive
function in FT+1 for each fixed T (see Theorem 2.8 in the lecture notes). This is a very
large upper bound, hence onemightwonderwhether such long games are indeed possible.

A good candidate in order to obtain a very large lower bound on the length of long games
is to play instead over the ordinal ωT , endowed with the usual ordinal ordering <. Any
such ordinal α ∈ ωT can be written uniquely as α = ωT−1 · cT−1 + · · ·+ω0 · c0 in Cantor
Normal Form, with 0 ≤ cT−1, . . . , c0 < ω; its size will be |α|1 def=

∑
0≤j<T cj .
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(b)[0.5] Show that any long game played over ωT starting with initial size n0 is also a game
played over NT with the same initial size, when mapping each α = ωT−1 · cT−1 +
· · ·+ ω0 · c0 ∈ ωT to u⃗(α) def= (cT−1, . . . , c0) ∈ NT .

Answer: One can check that α ̸≤ β implies u⃗(α) ̸≤ u⃗(β): in such a case, we
actually have α > β since the order is total, hence there is an index 0 ≤ j < T such
that u⃗(α)(j) > u⃗(β)(j) and indeed u⃗(α) ̸≤ u⃗(β). Furthermore, |α|1 = |u⃗(α)|1.

Thus any lower bound on the length of long games over ωT is also a lower bound on the
length of long games over NT .

Exercise 2. Long games over ordinals in ωω.
Let us write Gα(n0) for the length of the long games played over an ordinal α ∈ ωω with
size function | · |1 and initial size n0. Our ultimate goal of this exercise is to establish a
lower bound for GωT (n0).
Note that we have “index monotonicity:” if α ≤ β are ordinals in ωω, then Gα(n0) ≤
Gβ(n0) for all initial sizes n0, as any game over α is also a game over β ⊇ α.
(a)[1] Provide a long game over ωT in the case T = 2 and n0 = 3, with length Gω2(3) = 4

(no proof required).

Answer: Here is a long game over ωT in the case T = 2 and n0 = 3:

ω · 3 + 0 , ω · 2 + 2 , ω · 1 + 4 , ω · 0 + 6 .

(b)[3] i. Prove the following descent equation for all ordinals α ∈ ωω and n0 ∈ N:

Gα(n0) = max
β<α s.t. |β|1=n0

1 +Gβ(n0 + 1) . (1)

ii. Which choice of β maximises eq. (1) when α = ωT ?

Answer: Let us fix α, n0, and β maximising Gβ(n0 + 1) as in eq. (1).
Assume α0 > α1 > α2 > · · · > αℓ−1 is a long game played over α with initial
size n0, thus of length ℓ = Gα(n0). Then α0 < α, |α0|1 = n0, and for all j, |αj+1|1 =
(n0 + 1) + j and αj+1 < α0, hence α1 > α2 > · · · is a game played over α0 with
initial size (n0 + 1). Since β maximises the length of such games, this suffix has
length ℓ− 1 ≤ Gβ(n+ 1) and therefore

Gα(n0) ≤ 1 +Gβ(n0 + 1) .

Conversely, let β0 > β1 > · · · > βℓ′−1 be a long game played over β with initial size
(n0+1), thus of length ℓ′ = Gβ(n0+1). Then β > β0 > β1 > · · · > βℓ′−1 is a game
played over α with initial size n0, thus of length 1 + ℓ′ ≤ Gα(n0) and therefore

1 +Gβ(n0 + 1) ≤ Gα(n0) .

In the case α = ωT ,
β def= ωT−1 · n0
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is such that β < α, |β|1 = n0, and for all γ < α with |γ|1 = n0 we have γ ≤ β,
therefore by index monotonicity of G, Gγ(n0 + 1) ≤ Gβ(n0 + 1): this value of β
maximises eq. (1):

GωT (n0) = 1 +GωT−1·n0
(n0 + 1) .

Consider any ordinal β ≥ ω in ωω. It can be written in Cantor Normal Form as β =
γ+ωd+1+m for some γ ∈ ωω and d,m < ω. Define itsmaximal next ordinal maxnext(β)
by

maxnext(γ + ωd+1 +m) def= γ + ωd · (m+ 2) . (2)

(c)[2] i. Show that for all n ∈ N and β ≥ ω in ωω such that |β|1 = n,

Gβ(n+ 1) = 1 +Gmaxnext(β)(n+ 2) . (3)

ii. What is Gβ(n+ 1) when |β|1 = n and β < ω?

Answer: Assume β ≥ ω is in ωω with |β|1 = n. Write β as γ + ωd+1 + m for
some γ ∈ ωω and d,m < ω; then n = |β|1 = |γ|1 + 1 + m and |maxnext(β)|1 =
|γ + ωd · (m+2)|1 = |γ|1 +m+2 = n+1 and maxnext(β) is the maximal ordinal
with this property. By “index monotonicity” of theGα functions, we have therefore
that maxnext(β) maximises Gδ(n+ 2) over all choices of δ < β with |δ|1 = n+ 1,
and therefore by the descent equation (1), Gβ(n+ 1) = 1 +Gmaxnext(β)(n+ 2).

In the case β < ω, |β|1 = n entails β = n. Then there does not exist any ordinal
δ < n with |δ|1 = n+ 1, thus by the descent equation (1), Gβ(n+ 1) = 0.

A “Cichoń-like” Family of Functions. Equations (2) and (3) are not so convenient,
so we define for all α ∈ ωω and x ∈ N

E0(x)
def= 0 , (4)

Eα+1(x)
def= 1 + Eα(x+ 2) , (5)

Eλ(x)
def= 1 + Eλ(x+1)(0) , (6)

where, as in the lecture notes, the assignment of fundamental sequences λ(x) is defined
as γ+ωd ·(x+1)when λ = γ+ωd+1 (which is the only case occurring for λ < ωω). Recall
that ordinals have a “left quotient with remainder” operation, so that α = ω · q(α)+ r(α)
for some uniquely defined remainder r(α) < ω and quotient q(α).
(d)[3] Show that Gα(|α|1 + 1) = Eq(α)(r(α)) for all α ∈ ωω.

Answer: We proceed by transfinite induction over q(α) ∈ ωω. Let n def= |α|1 in each
case.

• If q(α) = 0, then α < ω and r(α) = α = n. Then as seen in (2.c),Gα(n+1) =

0
(4)
= E0(r(α)).
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• If q(α) = β + 1 is a successor ordinal, then α = ω · β + ω + r(α) and
maxnext(α) (2)

= ω ·β+ω0 ·(r(α)+2) thusGα(n+1)
(3)
= 1+Gmaxnext(α)(n+2) i.h.=

1 + Eβ(r(α) + 2)
(5)
= Eβ+1(r(α)).

• If q(α) = λ = γ+ωd+1 is a limit ordinal, then α = ω ·λ+r(α) = ω ·γ+ωd+2+

r(α). Thus maxnext(α) (2)
= ω · γ+ωd+1 · (r(α)+2) = ω · (γ+ωd · (r(α)+2))

and Gα(n+ 1)
(3)
= 1 +Gmaxnext(α)(n+ 2) i.h.= 1 + E(γ+ωd·(r(α)+2))(0)

(6)
= Eλ(0).

A “Hardy-like” Family of Functions. Equation (6) is still not quite “Cichoń-like” and
we would also prefer working with a “Hardy-like” definition. Consider the functions
defined for α ∈ ωω and x ∈ N by

E0(x) def= x , (7)
Eα+1(x) def= Eα(x+ 2) , (8)
Eλ(x) def= Eλ(x+1)(0) (9)

again with the usual assignment of fundamental sequences (so that (γ + ωd+1)(x+ 1) =
γ + ωd · (x+ 2)).
(e)[1.5] Show that, for all α ∈ ωω and x ∈ N, Eα(x) = Eα(x) + x+ |α|1.

Answer: By transfinite induction over α.

• For the zero case, E0(x)
(7)
= x = 0 + x+ 0

(4)
= E0(x) + x+ |0|1.

• For the successor case, Eα+1(x)
(8)
= Eα(x+ 2) i.h.= Eα(x+ 2) + x+ 2 + |α|1 =

1 + Eα(x+ 2) + x+ |α|1 + 1
(5)
= Eα+1(x) + x+ |α + 1|1.

• For the limit case λ = γ + ωd+1, Eλ(x)
(9)
= Eγ+ωd·(x+2)(0) i.h.= Eγ+ωd·(x+2)(0) +

0+ |γ|1+x+2 = 1+Eγ+ωd·(x+2)(0)+x+ |γ|1+1
(6)
= Eλ(x)+x+ |γ+ωd+1|1.

We will use the following facts about these functions: if x ≤ y, then for all α ∈ ωω

Eα(x) ≤ Eα(y) (10)

and if α + β is a term in Cantor Normal Form, then for all x

Eα+β(x) = Eα
(
Eβ(x)

)
. (11)

(f)[2] Show that Eωd·x(0) ≥ 2x for all d, x ∈ N.

Answer: By recurrence over d ∈ N.

• Base case d = 0: Ex(0) = 2x by eq. (7) when x = 0 and by a straightforward
recurrence over x using eq. (8) otherwise.

• Recurrence step d+ 1: by recurrence over x.
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– If x = 0 then Eωd+1·0(0)
(7)
= 0 = 2x.

– Otherwise, if x > 0,Eωd+1·x(0)
(11)
= Eωd+1(

Eωd+1·(x−1)(0)
)
. By recurrence

hypothesis on x − 1 < x, Eωd+1·(x−1)(0) ≥ 2x − 2, hence by eq. (10)
Eωd+1(

Eωd+1·(x−1)(0)
)
≥ Eωd+1

(2x − 2)
(9)
= Eωd·(2x)(0). By recurrence

hypothesis on d < d+ 1, the latter is ≥ 4x ≥ 2x.

(g)[2] Recall that the Hardy functions relativised to the successor function H(x) def= x + 1

are defined through H0(x) def= x, Hα+1(x) def= Hα(x + 1), and Hλ(x) def= Hλ(x)(x).
Show that Eα(2x) ≥ Hα(x) for all α ∈ ωω and x ∈ N.

Answer: By transfinite induction over α.

• For the zero case, E0(2x)
(7)
= 2x ≥ x = H0(x).

• For the successor case, Eα+1(2x)
(8)
= Eα(2x+ 2)

i.h.
≥ Hα(x+ 1) = Hα+1(x).

• For the limit case λ = γ + ωd+1, we have

Eγ+ωd+1

(2x)
(9)
= Eγ+ωd·(x+1)+ωd·(x+1)(0)
(11)
= Eγ+ωd·(x+1)

(
Eγ+ωd·(x+1)(0)

)
(10)
≥ Eγ+ωd·(x+1)(2x) as Eγ+ωd·(x+1)(0)

(2.f)
≥ 2x+ 2 ≥ 2x

i.h.
≥ Hγ+ωd·(x+1)(x)

= Hλ(x) .

(h)[1.5] Recall that one may define the Ackermann function as Ack(n) def= Hωn+1
(n). In order

to conclude, show that

Ack(n)− 2n− 1 ≤ GωT (n0)

when setting T def= n + 2 and n0
def= 2n + 2; this is also a lower bound for the length

of long integer sum games with T channels and initial size n0 by Exercise (1.b).

Answer: We have

Ack(n)− 2n− 1 = Hωn+1

(n)− 2n− 1
(2.g)
≤ Eωn+1

(2n)− 2n− 1
(2.e)
= Eωn+1(2n)
(6)
= 1 + Eωn·(2n+2)(0)
(2.d)
= 1 +Gωn+1·(2n+2)(2n+ 3)
(2.b)
= Gωn+2(2n+ 2) .
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Exercise 3. Short games over tuples of natural numbers.
Let us return to NT with the product ordering and 1-norm. Let us write SX(n0) for the
length of the short games played over a subset X ⊆ NT with starting size n0. By a
reasoning analogous to Question (2.b), we have a descent equation

SX(n0) = 0 if X=n0 = ∅ ,

SX(n0) = min
u⃗∈X=n0

1 + SX\↑u⃗(n0 + 1) otherwise . (12)

(a)[2] Consider the family of vectors (u⃗k)1≤k≤T defined by u⃗k(k)
def= n0+k−1 and u⃗k(i)

def= 0
for i ̸= k. The set (· · · ((NT \ ↑u⃗1) \ ↑u⃗2) · · · ) \ ↑u⃗T is a downwards-closed subset of
NT . What is its ideal decomposition?

Answer: In general, in order to compute an ideal decomposition forD\↑u⃗k where
D is a downwards-closed subset ofNT , it suffices to compute one forDk

def= NT \↑u⃗k

and then to intersect with D.
Observe that Dk = (↓v⃗k) ∩ NT where v⃗k(k) def= n0 + k − 2 and v⃗k(i) = ω for i ̸= k.
Hence the decomposition we are looking for is NT ∩ D1 ∩ · · · ∩ DT = (↓v⃗) ∩ NT

where v⃗ is a (finite) vector defined by v⃗(i) def= n0 + i− 2 for all 1 ≤ i ≤ T .

(b)[1] Show that SNT (n0) ≤ T + (n0 + T )T .

Answer: Here is a strategy ensuring the game uses at most that many steps.

1. For the first 1 ≤ k ≤ T steps, choose u⃗k in the descent equation (12). Then
SNT (n0) ≤ T + SX(n0 + T ) where X is the downwards-closed set of the
previous question.

2. By the previous question, X is a finite set, of cardinal |X| ≤
∏T−1

k=0 (n0 − 2 +
k) ≤ (n0 + T )T , hence SX(n0 + T ) ≤ (n0 + T )T .
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Extras
. . . Finished already? If you are bored, you might as well prove equations (11) and (10).

Answer: Let us prove eq. (11) by transfinite induction over β: for all x,

• for the zero case, Eα+0(x) = Eα(x)
(7)
= Eα

(
E0(x)

)
;
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• for the successor case,Eα+β+1(x)
(8)
= Eα+β(x+2) i.h.= Eα

(
Eβ(x+2)

) (8)
= Eα

(
Eβ+1(x)

)
;

• for the limit case, Eα+λ(x)
(9)
= Eα+λ(x+1)(0) i.h.= Eα

(
Eλ(x+1)(0)

) (9)
= Eα

(
Eλ(x)

)
.

Let us prove eq. (10) by transfinite induction over α: for all y ≥ x,

• for the zero case, E0(y)
(7)
= y ≥ x

(7)
= E0(x);

• for the successor case, Eα+1(y)
(8)
= Eα(y + 2)

i.h.
≥ Eα(x+ 2)

(8)
= Eα+1(x);

• for the limit case, let z def= y − x, then

Eγ+ωd+1

(y)
(9)
= Eγ+ωd·(y+2)(0)
(11)
= Eγ+ωd·(x+2)

(
Eωd·z(0)

)
i.h.
≥ Eγ+ωd·(x+2)(0) because Eωd·z(0) ≥ 0
(9)
= Eγ+ωd+1

(x) .
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