
Cellular Automata on Infinigonal Gridsof the Hyperboli PlaneSerge GRIGORIEFFLIAFA, Universit�e Paris 72, pl. Jussieu 75251 Paris Cedex 05Franeseg�liafa.jussieu.fr Maurie MARGENSTERNLITA, UFR MIM, Universit�e de MetzIle du Sauly 57045 Metz CedexFranemargens�lita.univ-metz.frJanuary 31, 2002AbstratIn this paper, we onsider ellular automata on speial grids of thehyperboli plane: the grids onstruted on in�nigons, i.e. polygons within�nitely many sides. We show that the truth of arithmetial �n formulasan be deided in �nite time with in�nite initial reursive on�gurations.Next, we de�ne a new kind of ellular automata, endowed with data andmore powerful operations that we all register ellular automata. Thistime, starting from �nite on�gurations, it is possible to deide the truthof �n formulas in linear time with respet to the size of the formula.1 Introdution.Muh of the attration of hyperboli geometry omes from the strong esthetiimpression given by tilings that an be obtained in the hyperboli planeIH2. That plane an in fat be tiled in in�nitely many regular ways bytessellations starting from a onvex regular polygon. This is well knownfrom Poinar�e's theorem. On that regard, hyperboli geometry of the planeis muh riher than its eulidean ounterpart. However, that latter one hasits revenge in high dimensions: there are always tilings of the eulidean spaeof dimension p for any p � 2 that are based on a regular polyhedron, whilethis is never true for the hyperboli spae of the same dimension p, alreadywhen p � 5.The study of ellular automata on regular tessellations in the hyperboliplane started with [3, 4℄. Paper [1℄ gave a new impulse to the study bybringing new tools that solve the problem of loating ells in the retangu-lar regular grids of the hyperboli plane. The simple tools of elementaryarithmetis that are given in [1℄ strengthen the onvition that hyperboligeometry should be more studied and that this ould bring in a lot of newfasinating results.The present paper onsiders ellular automata in a ompletely new set-tings of the hyperboli plane: regular tessellations by speial polygons thathave in�nitely many sides, whih we all in�nigons, see [2℄.1



In suh tessellations, ellular automata have in�nitely many neighbours,so that some onvention must be done on the exhange of information thatshould always be �nite from the point of view of omputer siene.In the �rst setion, we review the main features of tessellations by in-�nigons.In the seond setion, we extend the traditional de�nition of ellularautomata to this new ontext. We show then that starting from in�nitereursive on�gurations, it is possible to deide the truth of �n formulas intime n. As a onsequene, this shows that the n-th iterate of the transitionfuntion operating on on�gurations is �n+1 but not �n.In the third setion, we propose a new model of CA0s, that will allow usto deide �n formulas in linear time starting from �nite on�gurations.2 In�nigonal grids in IH2.2.1 Poinar�e's model of IH2.For reasons that are onneted with the homogeneity property of ellularautomata, we shall onsider Poinar�e's unit disk as a model of IH2. Reallthat points of IH2 are identi�ed with points of the open unit disk, say U .Points of the unit irle �U do not belong to IH2. However, for obviousreasons, they are alled the points at in�nity of IH2. In U , a line is eitherthe trak in U of a diameter of �U or the trak in U of a irle that isorthogonal to �U . Lines that have no ommon point, neither in U nor on�U are alled non-seant.Following [5℄ and [6℄, we shall argue in the south-western quarter ofPoinar�e unit disk. We refer to these papers for more details.2.2 In�nigons.It is well known that in the hyperboli plane IH2, there are always polygonswith equal sides for whih the vertex angle is a right angle at every vertex,provided that the number of sides is at least �ve.As is indiated in [2℄, assume that we display these polygons for allpossible number of sides s, with s � 5, in suh a way that all these polygonshave a ommon vertex O and their edges that meet in O are supported bythe same orthogonal lines. As is suggested by Figure 1, below, we see thatthese polygons tend to a limit whih has an in�nite number of sides. It lookslike a polygon, but it is not a �nite �gure: it has a point at in�nity.Following [2℄, we all suh an objet an in�nigon. As is shown in [2℄,suh an in�nigon is irumsribed by a urve � whih is a irle in theunit disk model of IH2 but that is no more a irle in IH2: indeed � is aneulidean irle that is tangent to the unit disk. It is alled a horoyle.That horoyle is also the limit of the hyperboli irles that irumsribethe polygons in the right part of Figure 2. Horoyles have also an importantproperty. They are globally invariant trajetories of ideal rotations. Thisgives another way to de�ne in�nigons As regular polygons are attahed torotations of 2�k for whih they are invariant, in�nigons are attahed to anyideal rotation. 2
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Figure 1 The in�nigon with angle �2 and some of its �nitesided approximations.As indiated in [2℄, there are always in�nigons with angle �, whateverbe �.2.3 In�nigrids and their Canonial Enumerations.Another remarkable property of the in�nigons is that when the interior an-gle between onseutive sides is 2�k for k � 3, it is possible to tile theplane with opies of the initial in�nigon, say I by reeting I in its sidesand, reursively, the new in�nigons in their sides. This result is sometimesonsidered as folklore or being impliit in lassial works on hyperboli ge-ometry, possibly in Poinar�e's himself. As far as we know, the only expliitand detailed onstrution is [2℄.We shall investigate ellular automata in suh grids. In order to sim-plify the study, we shall only onsider retangular grids, i.e. grids withretangular in�nigons. But [2℄ gives tools to deal with any in�nigonal grid.As is lear from Figure 1, the family of (losest) neighbours of any in-�nigon of the grid is naturally indexed by ZZ (as is its family of sides).Also, in the ase of retangular grids, two onseutive neighbours of anyin�nigon I have a ommon neighbour di�erent from I (the piture is similarto that of the hexagonal grid of the eulidean plane).Consider the family Seq(ZZ) of all �nite sequenes of integers in ZZ.Let's denote s _ j the extension of s by j. Let R be the symmetri binaryrelation over Seq(ZZ) whih ontains the pairs(s _ i _ �1; s _ i� 1) , (s _ i _ 0; s)(s _ i _ 1; s _ i+ 1) , (s _ i _ 2; s _ i + 1_ �2)where i 6= �2 or s is empty, and all pairs(s_ j _ �2_� 1; s _ j � 1_ 3) , (s_ j _ �2 _0; s _ j � 1)(s_ j _ �2_1; s _ j) , (s_ j _ �2_2; s _ j _ 3)Identifying sequenes s; t 2 Seq(ZZ) if (s; t) 2 R, we get the set �.Let N be the symmetri binary relation over � whih ontains the pairs(s; s_j) and (s _ j; s_j + 1) modulo R identi�ations.Fix a partiular in�nigon I� of a retangular grid and two onseutiveneighbours I0; I1 of I�. To this triple (I�; I0; I1) we an assoiate a anonialenumeration s 7! Is of the in�nigrid by � suh that the neighbourhood3



graph of the in�nigrid oinides with N . The intuitive idea is as follows:i) A priori the neighbours of Is are the Is_i's.ii) The neighbourhood relation being symmetri, one of the Is_i_j's hasto be identi�ed with Is. We hoose to identify Is and Is_i_0.iii) Considering the suessive neighbours Is_i�1, Is_i and Is_i+1 of Is,we see that Is_i�1 and Is_i+1 are neighbours of Is_i. Thus, some ofthe Is_i_j's have to be identi�ed with Is_i�1 and Is_i+1. We hoose toidentify Is_i�1 with Is_i_�1 and to identify Is_i+1 with Is_i_1.iv) As already observed, onseutive neighbours Is_i, Is_i+1 of Is have aommon neighbour di�erent from Is. Thus, some of the Is_i_j 's has to beidenti�ed with some of the Is_i+1_j 's. We hoose to identify Is_i_2 withIs_i+1_�2.v) Points i) to iv) give the four �rst families of pairs in R. The other fourfamilies are obtained by onsidering the neighbours of Is_i_�2 and �xingthe needed identi�ations.See Figure 2 (f. [2℄ for details).
Figure 2 The in�nite tree assoiated to the in�nigrid.Two levels are indiated on the representation. It is notdiÆult to see that ZZ provides natural addresses to the sonsof a node.3 Cellular Automata on an in�nigonal grid.Now, onsider a retangular in�nigrid, whih we identify to the set � intro-dued above. As usual in the theory of ellular automata, we assoiate a�nite automaton to eah ell of the in�nigrid, the same automaton for eahell.But there is a problem: how to de�ne the exhange of information be-tween the ells? As indiated in the introdution, omputer siene asksthat whatever be the objets that we onsider, they must exhange only�nite amounts of information. And when we mean �nite, we really meanbounded by a �xed onstant.Before de�ning the loal table of transition, we have to de�ne the neigh-bourhood of a ell. As a ell has an in�nite number of neighbours, it isdiÆult to selet a �nite set of them that ould be natural and uniform forall ells. On another side, we have to omply to the limitation set uponthe amount of information exhange between ells. And so, we suggest thefollowing notion.De�nition 1 � A ellular automata on the in�nigrid is k-isotropi if eahell s an only know its own state and, for eah state q 2 Q, whether thereare 0; 1; : : : ; k or > k of its neighbours whih are in state q.4



Let Q be the set of states, let X(s; i; t) (resp. X(s; i+ ; t)) denote the setof states q 2 Q suh that at time t there are exatly i (resp. at least i+ 1)neighbours of s in state q, and let < s; t > denote the state of ell s attime t. The above de�nition expresses that the transition funtion Æ mapsQ� (2Q)k+2 into Q, so that< s; t+ 1 >= Æ(< s; t >;X(s; 0; t); : : : ; X(s; k; t); X(s; k+; t))Notation 1 � We denote � the global transition funtion whih operateson the spae of on�gurations of the in�nigrid, i.e � : Q� ! Q�.Theorem 1 � 1) There is a boolean ombination �(x;X) of �0n for-mulas whih de�nes the n-th iterate �(n)(C) of the global transitionfuntion applied to an initial on�guration C : Q� ! Q, i.e. the rela-tion x 2 �(n)(C) .2) There is an 0-isotropi ellular automata suh that any �0n or �0narithmetial formula F (x1; : : : ; xk) with k free variables is reursivelyenoded in �(n+min(k;1))(CF ) where CF : � ! Q is a (reursive) on-�guration of � and F 7! CF is reursive. In partiular, the aboveformula �(x;X) an not be �0n.Proof. 1) The set X(s; i+ ; t) is de�nable as follows:Vq2Q(q 2 X(s; i; t), 9s0 : : :9si (the sj `s are distint neighbours of s))Also, X(s; i; t) = X(s; (i�1)+ ; t)nX(s; i+; t). This shows that the globaltransition funtion � is a boolean ombination of �01 relations. By ompo-sition, we get a �0n+1 de�nition of the n-th iterate �(n).2) We only onsider losed formulas; the general ase being simple adapta-tion. Fix n and onsider a losed �n formulaF = 9x1 8x2 : : : � xn G(x1; : : : ; xn)where G(x1; y1; : : : ; xn; yn) is a primitive reursive term with value 0 forfalse and 1 for true and � is the quanti�er 8 if n is even (resp. 9) if n isodd).Initialize the in�nigrid as follows: in ell with address a1 : : : an, we putthe value of G(a1; : : : ; an) as a state (in f0; 1g). We also put (as a seondomponent of the state) the parity of the depth of the ell so as to indiatethe quanti�er that orresponds to the depth of the ell. The root is in astarting state D. Beyond the nth level of the tree, all ells are in a quiesentstate #.We an also view the display as indiated in Figure 3, where eah ellappears as a supervisor of a line onstituted of in�nitely many ells. Byde�nition of 0-isotropi ellular automata, the supervisor s an see whetheror not (at time t) there is some ell in state 1 (it heks whether X(s; 0+; t)is non empty or empty).
5



Figure 3 A subgraph of the in�nigrid neighbourhoodIt is now easy to see that the ells that supervise a line of #'s enter aashing state 0 or 1, depending on their initial value. The supervisor knowswhether it is an existential or a universal quanti�er and it enters state 0 or1 aording to the nature of this quanti�er. This parallel bottom-up proessgoes on until the root is reahed. Aording to the global state of the line,the root displays a �nal state 0 or 1, depending on whether there is an 0 onits supervised line or there are only 1's.To stress the role of the hyperboli plane in the previous result, let's on-sider diverse notions of ellular automata in the eulidean plane whih alsouse sets of states of in�nite subfamilies of ells. Fix a �nite neighbourhoodV = f~v1; : : : ; ~vkg of the eulidean plane. Let's denote < (x; y) + V; t >the sequene (< (x; y) + ~v1); t >; : : : ; < (x; y) + ~vk); t >)i) Let Æ1 : Qk � 2Q ! Q be a transition funtion suh that< (x; y); t+ 1 >= Æ1(< (x; y) + V; t >; f< (z; y + 1); t > : z 2 ZZg ii)Let Æ2 : Q� 2Q ! Q be the transition funtion suh that< (x; y); t+1 >= Æ2(< (x; y)+V; t >; f< (x0; y0); t > : (x0; y0) 6= (x; y)gOne an prove the n-th iterations �(n)1 and �(n)2 of the global transitionfuntions of suh ellular automata in the eulidean plane are always �02.Whih ontrasts with the result of the above theorem relative to the hyper-boli plane.4 Register Cellular Automata on an in-�nigonal grid.The previous onstrution to deide �0n arithmetial truth has theinonvenient to use in�nite initial on�gurations. It should be nieto initialize an in�nite on�guration in �nite time, whih seems tobe possible with in�nigons. Indeed, a ell may start in�nitely manyomputations at the same time by sending an appropriate signal to itsneighbours whih shall be seen by all of them at the same top of thelok.However, sending a signal is not enough. The (neighbour) ellsmust be able to perform distint omputations. To that purpose, itis reasonable that they know their address and have the possibility to6



use it for omputation. As the address may be enoded in arbitrarylarge natural numbers, we give the ell deoding funtions that areonsidered as working in one step of omputation. For the same reason,as the ell has at its disposal �nitely many states only, we give it thepossibility to translate the result of its omputation into an appropriatestate in one step of omputation.Aordingly, we introdue an extension of the notion of ellularautomata that is adapted to in�nigrids:De�nition 2 � Register ellular automata on the retangular in-�nigrid are variants of isotropi ellular automata suh that- eah ell is �tted with a �xed �nite automaton A; one of the statesof the ell is alled quiesent; two states are alled �nal, one foraeptation, the other one for rejetion.- eah ell is �tted with two registers, a and x; a is read-only andontains an integer whih enodes the address of the ell; x is a read-write register that ontains an integer and that the ell uses for itsomputations;- eah ell is also endowed with the following failities:- it may freely opy the ontents of a into x;- it omputes the following funtions in one step:+, -, /, *, mod, sg, sg and (n)i for all i with 1 � i � jnj,where jnj is the number of terms enoded in n, the address ofthe ell or the ontent of x.- data are given to the root in unary and at the initial time, all ellsbut the root are in the quiesent state;- the omputation ends when the root enters a �nal state;Notie that (apart from the distribution of adresses) register ellu-lar automata have �nite initial on�gurations: the sole root may be innon quiesent state.Taking as guidelines the proof of Theorem 1, it is possible to provethe following result:Theorem 2 � Register ellular automata on the retangular in�nigridare able to deide the truth of any �n formula. Moreover, they anperform the needed omputation in time linear in the length of theformula.Proof. To the proof of Theorem 1, we add the following ingredient,taken from [5℄:There is a polynomial P suh that for all e, n and y, 'e(n) ' y ifand only if there are integers x1; : : : ; x9 suh that P (e; n; y; x1; : : : ; x9) =0, where 'e is the partial reursive funtion with number e.From the de�nition, after a time whih is linear in e+n+y, all ellswith address <e; n; y; x1; : : : ; x9> ompute the value of P (e; n; y; x1; : : : ; x9).This needs the same time for all of them. And so, it is possible toperform the omputation of P (e; n; y; x1; : : : ; x9) on the in�nigrid inonstant time. From the argument of Theorem 1, the bakward signalreahes the root in 12 steps. And so, our laim is proved for �1 for-mulas. Now, we repeat the argument of Theorem 1 and, by indutionon n, we get that the register ellular automaton is able to deide thetruth of any formula of �n. 7
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