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tIn this paper, we 
onsider 
ellular automata on spe
ial grids of thehyperboli
 plane: the grids 
onstru
ted on in�nigons, i.e. polygons within�nitely many sides. We show that the truth of arithmeti
al �n formulas
an be de
ided in �nite time with in�nite initial re
ursive 
on�gurations.Next, we de�ne a new kind of 
ellular automata, endowed with data andmore powerful operations that we 
all register 
ellular automata. Thistime, starting from �nite 
on�gurations, it is possible to de
ide the truthof �n formulas in linear time with respe
t to the size of the formula.1 Introdu
tion.Mu
h of the attra
tion of hyperboli
 geometry 
omes from the strong estheti
impression given by tilings that 
an be obtained in the hyperboli
 planeIH2. That plane 
an in fa
t be tiled in in�nitely many regular ways bytessellations starting from a 
onvex regular polygon. This is well knownfrom Poin
ar�e's theorem. On that regard, hyperboli
 geometry of the planeis mu
h ri
her than its eu
lidean 
ounterpart. However, that latter one hasits revenge in high dimensions: there are always tilings of the eu
lidean spa
eof dimension p for any p � 2 that are based on a regular polyhedron, whilethis is never true for the hyperboli
 spa
e of the same dimension p, alreadywhen p � 5.The study of 
ellular automata on regular tessellations in the hyperboli
plane started with [3, 4℄. Paper [1℄ gave a new impulse to the study bybringing new tools that solve the problem of lo
ating 
ells in the re
tangu-lar regular grids of the hyperboli
 plane. The simple tools of elementaryarithmeti
s that are given in [1℄ strengthen the 
onvi
tion that hyperboli
geometry should be more studied and that this 
ould bring in a lot of newfas
inating results.The present paper 
onsiders 
ellular automata in a 
ompletely new set-tings of the hyperboli
 plane: regular tessellations by spe
ial polygons thathave in�nitely many sides, whi
h we 
all in�nigons, see [2℄.1



In su
h tessellations, 
ellular automata have in�nitely many neighbours,so that some 
onvention must be done on the ex
hange of information thatshould always be �nite from the point of view of 
omputer s
ien
e.In the �rst se
tion, we review the main features of tessellations by in-�nigons.In the se
ond se
tion, we extend the traditional de�nition of 
ellularautomata to this new 
ontext. We show then that starting from in�nitere
ursive 
on�gurations, it is possible to de
ide the truth of �n formulas intime n. As a 
onsequen
e, this shows that the n-th iterate of the transitionfun
tion operating on 
on�gurations is �n+1 but not �n.In the third se
tion, we propose a new model of CA0s, that will allow usto de
ide �n formulas in linear time starting from �nite 
on�gurations.2 In�nigonal grids in IH2.2.1 Poin
ar�e's model of IH2.For reasons that are 
onne
ted with the homogeneity property of 
ellularautomata, we shall 
onsider Poin
ar�e's unit disk as a model of IH2. Re
allthat points of IH2 are identi�ed with points of the open unit disk, say U .Points of the unit 
ir
le �U do not belong to IH2. However, for obviousreasons, they are 
alled the points at in�nity of IH2. In U , a line is eitherthe tra
k in U of a diameter of �U or the tra
k in U of a 
ir
le that isorthogonal to �U . Lines that have no 
ommon point, neither in U nor on�U are 
alled non-se
ant.Following [5℄ and [6℄, we shall argue in the south-western quarter ofPoin
ar�e unit disk. We refer to these papers for more details.2.2 In�nigons.It is well known that in the hyperboli
 plane IH2, there are always polygonswith equal sides for whi
h the vertex angle is a right angle at every vertex,provided that the number of sides is at least �ve.As is indi
ated in [2℄, assume that we display these polygons for allpossible number of sides s, with s � 5, in su
h a way that all these polygonshave a 
ommon vertex O and their edges that meet in O are supported bythe same orthogonal lines. As is suggested by Figure 1, below, we see thatthese polygons tend to a limit whi
h has an in�nite number of sides. It lookslike a polygon, but it is not a �nite �gure: it has a point at in�nity.Following [2℄, we 
all su
h an obje
t an in�nigon. As is shown in [2℄,su
h an in�nigon is 
ir
ums
ribed by a 
urve � whi
h is a 
ir
le in theunit disk model of IH2 but that is no more a 
ir
le in IH2: indeed � is aneu
lidean 
ir
le that is tangent to the unit disk. It is 
alled a horo
y
le.That horo
y
le is also the limit of the hyperboli
 
ir
les that 
ir
ums
ribethe polygons in the right part of Figure 2. Horo
y
les have also an importantproperty. They are globally invariant traje
tories of ideal rotations. Thisgives another way to de�ne in�nigons As regular polygons are atta
hed torotations of 2�k for whi
h they are invariant, in�nigons are atta
hed to anyideal rotation. 2
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Figure 1 The in�nigon with angle �2 and some of its �nitesided approximations.As indi
ated in [2℄, there are always in�nigons with angle �, whateverbe �.2.3 In�nigrids and their Canoni
al Enumerations.Another remarkable property of the in�nigons is that when the interior an-gle between 
onse
utive sides is 2�k for k � 3, it is possible to tile theplane with 
opies of the initial in�nigon, say I by re
e
ting I in its sidesand, re
ursively, the new in�nigons in their sides. This result is sometimes
onsidered as folklore or being impli
it in 
lassi
al works on hyperboli
 ge-ometry, possibly in Poin
ar�e's himself. As far as we know, the only expli
itand detailed 
onstru
tion is [2℄.We shall investigate 
ellular automata in su
h grids. In order to sim-plify the study, we shall only 
onsider re
tangular grids, i.e. grids withre
tangular in�nigons. But [2℄ gives tools to deal with any in�nigonal grid.As is 
lear from Figure 1, the family of (
losest) neighbours of any in-�nigon of the grid is naturally indexed by ZZ (as is its family of sides).Also, in the 
ase of re
tangular grids, two 
onse
utive neighbours of anyin�nigon I have a 
ommon neighbour di�erent from I (the pi
ture is similarto that of the hexagonal grid of the eu
lidean plane).Consider the family Seq(ZZ) of all �nite sequen
es of integers in ZZ.Let's denote s _ j the extension of s by j. Let R be the symmetri
 binaryrelation over Seq(ZZ) whi
h 
ontains the pairs(s _ i _ �1; s _ i� 1) , (s _ i _ 0; s)(s _ i _ 1; s _ i+ 1) , (s _ i _ 2; s _ i + 1_ �2)where i 6= �2 or s is empty, and all pairs(s_ j _ �2_� 1; s _ j � 1_ 3) , (s_ j _ �2 _0; s _ j � 1)(s_ j _ �2_1; s _ j) , (s_ j _ �2_2; s _ j _ 3)Identifying sequen
es s; t 2 Seq(ZZ) if (s; t) 2 R, we get the set �.Let N be the symmetri
 binary relation over � whi
h 
ontains the pairs(s; s_j) and (s _ j; s_j + 1) modulo R identi�
ations.Fix a parti
ular in�nigon I� of a re
tangular grid and two 
onse
utiveneighbours I0; I1 of I�. To this triple (I�; I0; I1) we 
an asso
iate a 
anoni
alenumeration s 7! Is of the in�nigrid by � su
h that the neighbourhood3



graph of the in�nigrid 
oin
ides with N . The intuitive idea is as follows:i) A priori the neighbours of Is are the Is_i's.ii) The neighbourhood relation being symmetri
, one of the Is_i_j's hasto be identi�ed with Is. We 
hoose to identify Is and Is_i_0.iii) Considering the su

essive neighbours Is_i�1, Is_i and Is_i+1 of Is,we see that Is_i�1 and Is_i+1 are neighbours of Is_i. Thus, some ofthe Is_i_j's have to be identi�ed with Is_i�1 and Is_i+1. We 
hoose toidentify Is_i�1 with Is_i_�1 and to identify Is_i+1 with Is_i_1.iv) As already observed, 
onse
utive neighbours Is_i, Is_i+1 of Is have a
ommon neighbour di�erent from Is. Thus, some of the Is_i_j 's has to beidenti�ed with some of the Is_i+1_j 's. We 
hoose to identify Is_i_2 withIs_i+1_�2.v) Points i) to iv) give the four �rst families of pairs in R. The other fourfamilies are obtained by 
onsidering the neighbours of Is_i_�2 and �xingthe needed identi�
ations.See Figure 2 (
f. [2℄ for details).
Figure 2 The in�nite tree asso
iated to the in�nigrid.Two levels are indi
ated on the representation. It is notdiÆ
ult to see that ZZ provides natural addresses to the sonsof a node.3 Cellular Automata on an in�nigonal grid.Now, 
onsider a re
tangular in�nigrid, whi
h we identify to the set � intro-du
ed above. As usual in the theory of 
ellular automata, we asso
iate a�nite automaton to ea
h 
ell of the in�nigrid, the same automaton for ea
h
ell.But there is a problem: how to de�ne the ex
hange of information be-tween the 
ells? As indi
ated in the introdu
tion, 
omputer s
ien
e asksthat whatever be the obje
ts that we 
onsider, they must ex
hange only�nite amounts of information. And when we mean �nite, we really meanbounded by a �xed 
onstant.Before de�ning the lo
al table of transition, we have to de�ne the neigh-bourhood of a 
ell. As a 
ell has an in�nite number of neighbours, it isdiÆ
ult to sele
t a �nite set of them that 
ould be natural and uniform forall 
ells. On another side, we have to 
omply to the limitation set uponthe amount of information ex
hange between 
ells. And so, we suggest thefollowing notion.De�nition 1 � A 
ellular automata on the in�nigrid is k-isotropi
 if ea
h
ell s 
an only know its own state and, for ea
h state q 2 Q, whether thereare 0; 1; : : : ; k or > k of its neighbours whi
h are in state q.4



Let Q be the set of states, let X(s; i; t) (resp. X(s; i+ ; t)) denote the setof states q 2 Q su
h that at time t there are exa
tly i (resp. at least i+ 1)neighbours of s in state q, and let < s; t > denote the state of 
ell s attime t. The above de�nition expresses that the transition fun
tion Æ mapsQ� (2Q)k+2 into Q, so that< s; t+ 1 >= Æ(< s; t >;X(s; 0; t); : : : ; X(s; k; t); X(s; k+; t))Notation 1 � We denote � the global transition fun
tion whi
h operateson the spa
e of 
on�gurations of the in�nigrid, i.e � : Q� ! Q�.Theorem 1 � 1) There is a boolean 
ombination �(x;X) of �0n for-mulas whi
h de�nes the n-th iterate �(n)(C) of the global transitionfun
tion applied to an initial 
on�guration C : Q� ! Q, i.e. the rela-tion x 2 �(n)(C) .2) There is an 0-isotropi
 
ellular automata su
h that any �0n or �0narithmeti
al formula F (x1; : : : ; xk) with k free variables is re
ursivelyen
oded in �(n+min(k;1))(CF ) where CF : � ! Q is a (re
ursive) 
on-�guration of � and F 7! CF is re
ursive. In parti
ular, the aboveformula �(x;X) 
an not be �0n.Proof. 1) The set X(s; i+ ; t) is de�nable as follows:Vq2Q(q 2 X(s; i; t), 9s0 : : :9si (the sj `s are distin
t neighbours of s))Also, X(s; i; t) = X(s; (i�1)+ ; t)nX(s; i+; t). This shows that the globaltransition fun
tion � is a boolean 
ombination of �01 relations. By 
ompo-sition, we get a �0n+1 de�nition of the n-th iterate �(n).2) We only 
onsider 
losed formulas; the general 
ase being simple adapta-tion. Fix n and 
onsider a 
losed �n formulaF = 9x1 8x2 : : : � xn G(x1; : : : ; xn)where G(x1; y1; : : : ; xn; yn) is a primitive re
ursive term with value 0 forfalse and 1 for true and � is the quanti�er 8 if n is even (resp. 9) if n isodd).Initialize the in�nigrid as follows: in 
ell with address a1 : : : an, we putthe value of G(a1; : : : ; an) as a state (in f0; 1g). We also put (as a se
ond
omponent of the state) the parity of the depth of the 
ell so as to indi
atethe quanti�er that 
orresponds to the depth of the 
ell. The root is in astarting state D. Beyond the nth level of the tree, all 
ells are in a quies
entstate #.We 
an also view the display as indi
ated in Figure 3, where ea
h 
ellappears as a supervisor of a line 
onstituted of in�nitely many 
ells. Byde�nition of 0-isotropi
 
ellular automata, the supervisor s 
an see whetheror not (at time t) there is some 
ell in state 1 (it 
he
ks whether X(s; 0+; t)is non empty or empty).
5



Figure 3 A subgraph of the in�nigrid neighbourhoodIt is now easy to see that the 
ells that supervise a line of #'s enter a
ashing state 0 or 1, depending on their initial value. The supervisor knowswhether it is an existential or a universal quanti�er and it enters state 0 or1 a

ording to the nature of this quanti�er. This parallel bottom-up pro
essgoes on until the root is rea
hed. A

ording to the global state of the line,the root displays a �nal state 0 or 1, depending on whether there is an 0 onits supervised line or there are only 1's.To stress the role of the hyperboli
 plane in the previous result, let's 
on-sider diverse notions of 
ellular automata in the eu
lidean plane whi
h alsouse sets of states of in�nite subfamilies of 
ells. Fix a �nite neighbourhoodV = f~v1; : : : ; ~vkg of the eu
lidean plane. Let's denote < (x; y) + V; t >the sequen
e (< (x; y) + ~v1); t >; : : : ; < (x; y) + ~vk); t >)i) Let Æ1 : Qk � 2Q ! Q be a transition fun
tion su
h that< (x; y); t+ 1 >= Æ1(< (x; y) + V; t >; f< (z; y + 1); t > : z 2 ZZg ii)Let Æ2 : Q� 2Q ! Q be the transition fun
tion su
h that< (x; y); t+1 >= Æ2(< (x; y)+V; t >; f< (x0; y0); t > : (x0; y0) 6= (x; y)gOne 
an prove the n-th iterations �(n)1 and �(n)2 of the global transitionfun
tions of su
h 
ellular automata in the eu
lidean plane are always �02.Whi
h 
ontrasts with the result of the above theorem relative to the hyper-boli
 plane.4 Register Cellular Automata on an in-�nigonal grid.The previous 
onstru
tion to de
ide �0n arithmeti
al truth has thein
onvenient to use in�nite initial 
on�gurations. It should be ni
eto initialize an in�nite 
on�guration in �nite time, whi
h seems tobe possible with in�nigons. Indeed, a 
ell may start in�nitely many
omputations at the same time by sending an appropriate signal to itsneighbours whi
h shall be seen by all of them at the same top of the
lo
k.However, sending a signal is not enough. The (neighbour) 
ellsmust be able to perform distin
t 
omputations. To that purpose, itis reasonable that they know their address and have the possibility to6



use it for 
omputation. As the address may be en
oded in arbitrarylarge natural numbers, we give the 
ell de
oding fun
tions that are
onsidered as working in one step of 
omputation. For the same reason,as the 
ell has at its disposal �nitely many states only, we give it thepossibility to translate the result of its 
omputation into an appropriatestate in one step of 
omputation.A

ordingly, we introdu
e an extension of the notion of 
ellularautomata that is adapted to in�nigrids:De�nition 2 � Register 
ellular automata on the re
tangular in-�nigrid are variants of isotropi
 
ellular automata su
h that- ea
h 
ell is �tted with a �xed �nite automaton A; one of the statesof the 
ell is 
alled quies
ent; two states are 
alled �nal, one fora

eptation, the other one for reje
tion.- ea
h 
ell is �tted with two registers, a and x; a is read-only and
ontains an integer whi
h en
odes the address of the 
ell; x is a read-write register that 
ontains an integer and that the 
ell uses for its
omputations;- ea
h 
ell is also endowed with the following fa
ilities:- it may freely 
opy the 
ontents of a into x;- it 
omputes the following fun
tions in one step:+, -, /, *, mod, sg, sg and (n)i for all i with 1 � i � jnj,where jnj is the number of terms en
oded in n, the address ofthe 
ell or the 
ontent of x.- data are given to the root in unary and at the initial time, all 
ellsbut the root are in the quies
ent state;- the 
omputation ends when the root enters a �nal state;Noti
e that (apart from the distribution of adresses) register 
ellu-lar automata have �nite initial 
on�gurations: the sole root may be innon quies
ent state.Taking as guidelines the proof of Theorem 1, it is possible to provethe following result:Theorem 2 � Register 
ellular automata on the re
tangular in�nigridare able to de
ide the truth of any �n formula. Moreover, they 
anperform the needed 
omputation in time linear in the length of theformula.Proof. To the proof of Theorem 1, we add the following ingredient,taken from [5℄:There is a polynomial P su
h that for all e, n and y, 'e(n) ' y ifand only if there are integers x1; : : : ; x9 su
h that P (e; n; y; x1; : : : ; x9) =0, where 'e is the partial re
ursive fun
tion with number e.From the de�nition, after a time whi
h is linear in e+n+y, all 
ellswith address <e; n; y; x1; : : : ; x9> 
ompute the value of P (e; n; y; x1; : : : ; x9).This needs the same time for all of them. And so, it is possible toperform the 
omputation of P (e; n; y; x1; : : : ; x9) on the in�nigrid in
onstant time. From the argument of Theorem 1, the ba
kward signalrea
hes the root in 12 steps. And so, our 
laim is proved for �1 for-mulas. Now, we repeat the argument of Theorem 1 and, by indu
tionon n, we get that the register 
ellular automaton is able to de
ide thetruth of any formula of �n. 7
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