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Abstract

In this paper, we consider cellular automata on special grids of the
hyperbolic plane: the grids constructed on infinigons, ¢.e. polygons with
infinitely many sides. We show that the truth of arithmetical %,, formulas
can be decided in finite time with infinite initial recursive configurations.
Next, we define a new kind of cellular automata, endowed with data and
more powerful operations that we call register cellular automata. This
time, starting from finite configurations, it is possible to decide the truth
of ¥, formulas in linear time with respect to the size of the formula.

1 Introduction.

Much of the attraction of hyperbolic geometry comes from the strong esthetic
imlzz)ression given by tilings that can be obtained in the hyperbolic plane
IH*. That plane can in fact be tiled in infinitely many regular ways by
tessellations starting from a convex regular polygon. This is well known
from Poincaré’s theorem. On that regard, hyperbolic geometry of the plane
is much richer than its euclidean counterpart. However, that latter one has
its revenge in high dimensions: there are always tilings of the euclidean space
of dimension p for any p > 2 that are based on a regular polyhedron, while
this is never true for the hyperbolic space of the same dimension p, already
when p > 5.

The study of cellular automata on regular tessellations in the hyperbolic
plane started with [3, 4]. Paper [1] gave a new impulse to the study by
bringing new tools that solve the problem of locating cells in the rectangu-
lar regular grids of the hyperbolic plane. The simple tools of elementary
arithmetics that are given in [1] strengthen the conviction that hyperbolic
geometry should be more studied and that this could bring in a lot of new
fascinating results.

The present paper considers cellular automata in a completely new set-
tings of the hyperbolic plane: regular tessellations by special polygons that
have infinitely many sides, which we call infinigons, see [2].



In such tessellations, cellular automata have infinitely many neighbours,
so that some convention must be done on the exchange of information that
should always be finite from the point of view of computer science.

In the first section, we review the main features of tessellations by in-
finigons.

In the second section, we extend the traditional definition of cellular
automata to this new context. We show then that starting from infinite
recursive configurations, it is possible to decide the truth of Y., formulas in
time n. As a consequence, this shows that the n-th iterate of the transition
function operating on configurations is A, 1 but not X,.

In the third section, we propose a new model of CA’s, that will allow us
to decide X, formulas in linear time starting from finite configurations.

2 Infinigonal grids in /H?.

2.1 Poincaré’s model of H?.

For reasons that are connected with the homogeneity property of cellular
automata, we shall consider Poincaré’s unit disk as a model of /H?. Recall
that points of JH? are identified with points of the open unit disk, say U.
Points of the unit circle 8U do not belong to IH?. However, for obvious
reasons, they are called the points at infinity of JH2. In U, a line is either
the track in U of a diameter of U or the track in U of a circle that is
orthogonal to QU . Lines that have no common point, neither in U nor on
OU are called non-secant.

Following [5] and [6], we shall argue in the south-western quarter of
Poincaré unit disk. We refer to these papers for more details.

2.2 Infinigons.

It is well known that in the hyperbolic plane JH?, there are always polygons
with equal sides for which the vertex angle is a right angle at every vertex,
provided that the number of sides is at least five.

As is indicated in [2], assume that we display these polygons for all
possible number of sides s, with s > 5, in such a way that all these polygons
have a common vertex O and their edges that meet in O are supported by
the same orthogonal lines. As is suggested by Figure 1, below, we see that
these polygons tend to a ltmit which has an infinite number of sides. It looks
like a polygon, but it is not a finite figure: it has a point at infinity.

Following [2], we call such an object an infinigon. As is shown in [2],
such an infinigon is circumscribed by a curve I' which is a circle in the
unit disk model of 72 but that is no more a circle in JH?: indeed T is an
euclidean circle that is tangent to the unit disk. It is called a horocycle.
That horocycle is also the limit of the hyperbolic circles that circumscribe
the polygons in the right part of Figure 2. Horocycles have also an important
property. They are globally invariant trajectories of tdeal rotations. This
gives another way to define infinigons As regular polygons are attached to

2m
rotations of — for which they are invariant, infinigons are attached to any

ideal rotation.
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Figure 1 The infinigon with angle 5 and some of its finite

sided approximations.

As indicated in [2], there are always infinigons with angle «, whatever
be a.

2.3 Infinigrids and their Canonical Enumerations.
Another remarkable property of the infinigons is that when the interior an-

gle between consecutive sides is e for k > 3, it is possible to tile the

plane with copies of the initial infinigon, say 7 by reflecting 7 in its sides
and, recursively, the new infinigons in their sides. This result is sometimes
considered as folklore or being implicit in classical works on hyperbolic ge-
ometry, possibly in Poincaré’s himself. As far as we know, the only explicit
and detailed construction is [2].

We shall investigate cellular automata in such grids. In order to sim-
plify the study, we shall only consider rectangular grids, i.e. grids with
rectangular infinigons. But [2] gives tools to deal with any infinigonal grid.

As is clear from Figure 1, the family of (closest) neighbours of any in-
finigon of the grid is naturally indexed by Z (as is its family of sides).

Also, in the case of rectangular grids, two consecutive neighbours of any
infinigon [ have a common neighbour different from [ (the picture is similar
to that of the hexagonal grid of the euclidean plane).

Consider the family Seq(Z) of all finite sequences of integers in 7.
Let’s denote s — j the extension of s by j. Let R be the symmetric binary
relation over Seq(Z) which contains the pairs

(s ~i~=1,s ~i—1),(s ~i—~0,9)
(s ~i~1,s~i+1),(s~i~2,s ~i+1—~=2)
where ¢ £ —2 or s is empty, and all pairs
(s—~j—~=2~=1,s~j—1~3),(s—~j~=2~0,8~j—
(s—j—~=2~1,8s~j),(s—~j—~=2~25~j—~3)

Identifying sequences s,t € Seq(Z) if (s,t) € R, we get the set .

Let A be the symmetric binary relation over ¢ which contains the pairs
(s,s—j) and (s — j,s—j + 1) modulo R identifications.

Fix a particular infinigon /. of a rectangular grid and two consecutive
neighbours [y, I1 of I.. To this triple (I, Iy, [1) we can associate a canonical
enumeration s — I of the infinigrid by ¢ such that the neighbourhood



graph of the infinigrid coincides with A”. The intuitive idea is as follows:

i) A priori the neighbours of I; are the I;.;’s.

i) The neighbourhood relation being symmetric, one of the I, ~;~;’s has
to be identified with I;. We choose to identify Iy and I, —;g.

i41) Considering the successive neighbours I;—;_1, Is~; and I;—;41 of I,
we see that [, ;1 and [, ;41 are neighbours of I;~;. Thus, some of
the I, ~;~;’s have to be identified with I, ~;_q and I, ~;411. We choose to
identify [s~;_1 with [y ~;~_1 and to identify [, ;41 with [y —; .

iv) As already observed, consecutive neighbours [s;, Is—~;+1 of I; have a
common neighbour different from I;. Thus, some of the Iy —; ~ ;’s has to be
identified with some of the I ~;11~;’s. We choose to identify [, ~;~o with
Io—iqy1~—2.

v) Points 1} to iv) give the four first families of pairs in R. The other four
families are obtained by considering the neighbours of /s ;- _5 and fixing
the needed identifications.

See Figure 2 (cf. [2] for details).
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Figure 2 The infinite tree associated to the infinigrid.
Two levels are indicated on the representation. It is not
difficult to see that Z provides natural addressesto the sons
of a node.

3 Cellular Automata on an infinigonal grid.

Now, consider a rectangular infinigrid, which we identify to the set ¢ intro-
duced above. As usual in the theory of cellular automata, we associate a
finite automaton to each cell of the infinigrid, the same automaton for each
cell.

But there is a problem: how to define the exchange of information be-
tween the cells? As indicated in the introduction, computer science asks
that whatever be the objects that we consider, they must exchange only
finite amounts of information. And when we mean finite, we really mean
bounded by a fired constant.

Before defining the local table of transition, we have to define the neigh-
bourhood of a cell. As a cell has an infinite number of neighbours, it is
difficult to select a finite set of them that could be natural and uniform for
all cells. On another side, we have to comply to the limitation set upon
the amount of information exchange between cells. And so, we suggest the
following notion.

Definition 1 — A cellular automata on the infinigrid is k-isotropic if each
cell s can only know its own state and, for each state ¢ € (), whether there
are 0,1,..., k or > k of its neighbours which are in state q.



Let () be the set of states, let X (s,4,t) (resp. X(s,iT,t)) denote the set
of states ¢ € ) such that at time ¢ there are exactly ¢ (resp. at least 7 4 1)
neighbours of s in state ¢, and let < 5,7 > denote the state of cell s at
time ¢. The above definition expresses that the transition function § maps

Q x (QQ)k‘l'z into @, so that

<s,t+1>=40(<s,t>,X(5,0,%),...,X(s,k, 1), X(5,kT,1))
Notation 1 — We denote A the global transition function which operates
on the space of configurations of the infinigrid, i.e A : Q7 — Q7.

Theorem 1 — 1) There is a boolean combination ®(x, X) of X0 for-

mulas which defines the n-th iterate A(”)(C’) of the global transition
function applied to an initial configuration C' : Q° — Q, w.e. the rela-
tion

e A(0)
2) There is an 0-isotropic cellular automata such that any ¥2 or 119
arithmetical formula F(xy, ..., x5) with k free variables is recursively

encoded in A(”+min(k’1))(CF) where Cp : 0 — Q is a (recursive) con-
figuration of ¢ and F — Cp s recursive. In particular, the above
formula ®(x, X) can not be X9 .

Proof. 1) The set X (s,i%,¢) is definable as follows:

/\qEQ(q € X(s,4,t) & Jsp...3s; (the s;'s are distinct neighbours of s))
Also, X (s,1,t) = X(s,(i—1)7,¢)\ X(s,4%,t). This shows that the global
transition function A is a boolean combination of 2(1) relations. By compo-
sition, we get a A2+1 definition of the n-th iterate A(™).

2 ) We only consider closed formulas; the general case being simple adapta-
tion. Fix n and consider a closed }J,, formula

F=3x,Vay ... £xn G(og, ..., 2p)
where G(%1,y1,...,%n,Yn) is a primitive recursive term with value 0 for
false and 1 for true and & is the quantifier V if n is even (resp. 3) if n is
odd).

Initialize the infinigrid as follows: in cell with address a; . ..a,, we put
the value of Gi(ay, ..., ap) as a state (in {0, 1}). We also put (as a second
component of the state) the parity of the depth of the cell so as to indicate
the quantifier that corresponds to the depth of the cell. The root is in a
starting state /). Beyond the n*M level of the tree, all cells are in a quiescent
state .

We can also view the display as indicated in Figure 3, where each cell
appears as a supervisor of a line constituted of infinitely many cells. By
definition of O-isotropic cellular automata, the supervisor s can see whether
or not (at time ¢) there is some cell in state 1 (it checks whether X (s,0% )
is non empty or empty).



Figure 3 A subgraph of the infinigrid neighbourhood

It is now easy to see that the cells that supervise a line of #’s enter a
flashing state 0 or 1, depending on their initial value. The supervisor knows
whether it is an existential or a universal quantifier and it enters state 0 or
1 according to the nature of this quantifier. This parallel bottom-up process
goes on until the root is reached. According to the global state of the line,
the root displays a final state 0 or 1, depending on whether there is an 0 on
its supervised line or there are only 1’s. [}

To stress the role of the hyperbolic plane in the previous result, let’s con-
sider diverse notions of cellular automata in the euclidean plane which also
use sets of states of infinite subfamilies of cells. Fix a finite neighbourhood
V = {v1,...,0} of the euclidean plane. Let’s denote < (z,y) + V,t >
the sequence (< (z,y) + v1),t >,..., < (z,y) + i), t >)

i) Let 01 : Q" x 29 — @ be a transition function such that
<(zyt+1>=8(< (z,y)+V,t > {< (z,y+ 1)t >: 2 € Z} it)
Let d5 : @ x 2@ @ be the transition function such that

< (z,y),t+1 >= (< (z,y)+V, t >, {< (&, ¥),t >: (&, y) # (2,9)}

One can prove the n-th iterations A(ln) and A(zn) of the global transition

functions of such cellular automata in the euclidean plane are always Ag.
Which contrasts with the result of the above theorem relative to the hyper-
bolic plane.

4 Register Cellular Automata on an in-
finigonal grid.

The previous construction to decide X2 arithmetical truth has the
inconvenient to use infinite initial configurations. It should be nice
to initialize an infinite configuration in finite time, which seems to
be possible with infinigons. Indeed, a cell may start infinitely many
computations at the same time by sending an appropriate signal to its
neighbours which shall be seen by all of them at the same top of the
clock.

However, sending a signal is not enough. The (neighbour) cells
must be able to perform distinct computations. To that purpose, it
1s reasonable that they know their address and have the possibility to



use 1t for computation. As the address may be encoded in arbitrary
large natural numbers, we give the cell decoding functions that are
considered as working in one step of computation. For the same reason,
as the cell has at its disposal finitely many states only, we give it the
possibility to translate the result of its computation into an appropriate
state in one step of computation.

Accordingly, we introduce an extension of the notion of cellular
automata that is adapted to infinigrids:

Definition 2 — Register cellular automata on the rectangular in-
finigrid are variants of isotropic cellular automata such that

- each cell is fitted with a fizred finite automaton A; one of the states
of the cell is called quiescent; two states are called final, one for
acceptation, the other one for rejection.
- each cell is fitted with two registers, a and x; a is read-only and
contains an wnteger which encodes the address of the cell; x 1s a read-
write register that contains an integer and that the cell uses for its
computations;
- each cell s also endowed with the following facilities:
- it may freely copy the contents of a into x;
- it computes the following functions in one step:
+, -, /, ¥, mod, sg, 3¢ and (n); for all i with 1 < i < |n|,
where |n| is the number of terms encoded in n, the address of
the cell or the content of x.
- data are given to the root in unary and at the initial time, all cells
but the root are in the quiescent state;
- the computation ends when the root enters a final state;

Notice that (apart from the distribution of adresses) register cellu-
lar automata have finite initial configurations: the sole root may be in
non quiescent state.

Taking as guidelines the proof of Theorem 1, it is possible to prove
the following result:

Theorem 2 — Register cellular automata on the rectangular infinigrid
are able to decide the truth of any X, formula. Moreover, they can
perform the needed computation in time linear in the length of the
formula.

Proof. To the proof of Theorem 1, we add the following ingredient,
taken from [5]:

There is a polynomial P such that for all e, n and y, pc(n) ~y if
and only if there are integers &1, ..., xg such that P(e,n,y, x1,...,29) =
0, where @, is the partial recursive function with number e.

From the definition, after a time which is linear in e+n-+y, all cells

with address <e,n,y, #1,..., 9> compute the value of P(e,n,y, x1,...,x9).
This needs the same time for all of them. And so, it is possible to
perform the computation of P(e,n,y,#1,...,29) on the infinigrid in

constant time. From the argument of Theorem 1, the backward signal
reaches the root in 12 steps. And so, our claim is proved for ¥, for-
mulas. Now, we repeat the argument of Theorem 1 and, by induction
on n, we get that the register cellular automaton is able to decide the
truth of any formula of ¥,,. i}
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