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1 Introduction

Uniformizing a relation belonging to some family, consists of finding a func-
tion whose graph belongs to the family and whose domain coincides with that
of the given relation. Here we are particularly concerned with the relations
on finite or infinite strings that can be recognized in the traditional sense by
some type of finite automaton.

Eilenberg proved in 1974 a uniformization result for rational relations
on finite strings. Siefkes established in 1975 that the synchronous relations
on infinite strings enjoy the uniformization property as well. Actually these
results can be refined to subfamilies of rational relations on finite or infinite
strings or a mixture of those: to name but the two most important, say the
deterministic and the synchronous relations. Qur purpose is to give a survey
of all the known results of this type and to show how far they can or cannot
be extended. In order to more accurately evaluate how lucky we are with
dealing with strings, suffice it to say that uniformization results on trees no
longer hold, see [14]. Theoretical computer science and logic have studied the
subject with different tools. We think it is time to present these results in a
unifying framework by bringing the two approaches together. We hope the
reader will be convinced that using both the methods of theoretical computer
science and those of logic helps greatly simplifying and clarifying some proofs.
A good illustration is the investigation of the synchronous relations, whether
on finite or infinite strings, where the language of logic spares some tedious
(but of course equivalent) set constructions. This is no wonder since it allows
us to use “for free” the powerful theory developed by Bichi.

Historically, the uniformization result on rational relations on finite strings
can be traced back to [7], i. e., over 30 years ago. It was not stated as such,
rather it was given a more precise form (technically the function by which
one can uniformize a given relation is obtained as a composition of a left
followed by a right “sequential” function). Since then it has been reproved
with different methods, [1], [16], see also [15] for an account on the subject.
Eilenberg proved it as a corollary of his “cross-section” theorem, stating in-
tuitively that it is possible to “rationally” select a representative for each
equivalence class that intersects a rational subset. This result carries over to
infinite strings as well.

As previously said, most of the material here can be considered as “folk-
lore” by some (actually non so many) researchers. There is one exception
however: the proof of the uniformization property for rational relations on
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infinite strings seems to be new, [13]. Using a different approach, a similar
result was independently obtained by D. Beauquier, J. Devolder, M. Latteux
and E. Timmerman, but has not been published.

2 Preliminaries

2.1 Basics on uniformization

Let us recall a few elementary definitions in order to fix the notations. Given
two sets X and Y and a (partially defined) function f: X — Y, the graph of
f is the subset §f = {(u,v) | v = f(u)}. The domain dom(R) of a relation
R C X x Y is the set of elements « € X for which there exists an element
y € Y with (2,y) € R. The composition of relations is the operation that
associates with the relations R C X x Y and S CY x Z the relation

RoS ={(x,2) € X x 7| there exists y € Y, with(z,y) € R and (y,2) € S}
(1)

We compose the functions from left to right.

Now we come to the main definition of this work. Given a family F of
relations in X x Y and R € F, uniformizing R in F means finding a function
fr : X = Y such that 1) dom(fr) = dom(R) 2) #(fr) € Rand 3) §(fr) € F.
When no particular mention is given, saying that a relation belonging to a
family F is uniformizable, implicitely means that it can be uniformized in F.

2.2 Finite and infinite strings

Given a finite alphabet A whose elements are symbols or letters, we denote
by A* (resp. A¥) the set of finite (resp. infinite) strings over A. As usual we
denote by A*® = A* U A% the set consisting of the finite and infinite strings.
The empty string is denoted by € regardless of which alphabet in relates to
as no confusion usually arises and |u| denotes the length of a string with the
convention |u| = co whenever u € A¥.

This paper is concerned with direct products of sets of the form A* and
AY. One of the central tools that is used in this theory is that of hierarchical
ordering. We recall that given a linear ordering < on an alphabet A, we
extend it to the free monoid A* by posing u <. v if |u| < |v| or if |u| = |v]
and there exist w, uy,v; € A* and a,b € A*, such that v = wauy, v = wbv;
and a < b holds.

The notion of lexicographical ordering is more general. Consider a col-
lection of sets F;, where i ranges over an initial segment of the integers or
over IN. Assume there exists a (possibly partial) ordering <; on each set F;.
We endow the direct product Hie[ FE; with the lexicographical ordering <.,
defined by HiEI T <jex HiEI y; if there exists ¢ € [ such that z; = y; for
all j <7 and x; <; y;. This construction applies in particular to A“. Indeed,
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this set can be viewed as a collection of copies of A indexed by IN. Any linear
ordering on A extends to a lexicographical ordering on A%.

As usual we will assume the set A is endowed with the product topology
of the discrete topology on A where the family of subsets of the form wAY
with u € A* form a basis of the open sets. It is a standard result that given
an arbitrary lexicographical ordering on A% every topologically closed subset
of A¥ contains its lexicographically minimal element.

3 Relations on finite strings

3.1 Rational relations on finite strings

Given an arbitrary monoid M, the least family F of subsets containing all
finite sets and closed under set union, concatenation (i. e., X and Y are in
F then so is {zy | # € X,y € Y}) and Kleene closure (i. e., if X is in F then
sois {e}UX U...UX"..)) is the family of rational subsets and is denoted
by Rat(M). As a particular case, given two monoids M and N, a function of
M into N is rational if its graph is a rational subset of the product monoid
M x N. We refer the reader to the two handbooks [5] and [2] for basic results
in this theory.

It 1s well-known that in the case of a direct product of free monoids
Al x ... x A}, the family of rational subsets, also called rational relations,
is precisely the family of relations recognized by finite automata. Indeed, the
notion of finite automaton designed to recognize single strings, was extended
in the late fifties in such a way as to operate on n-tuples of strings. The idea
is to provide an automaton with as many tapes as there are components in
the tuple.

More precisely assume without loss of generality that the n alphabets A;
are disjoint and set A = |J,«,<,, Ai- We denote by m; the projection of A*
onto A7 for all7 =1,...,n and by 7 the projection onto the direct product
AT x o ox AL m(w) = (m(w), ..., ma(w)). A finite n-tape automaton (we
shall say also more simply an automaton) is a quadruple A = (Q, I, F,T)
where () is the finite set of states, I C () is the set of initial states, I' C @)
i1s the set of final states and T C ) x A x ) the set of transitions. The
subset of A7 x ... x A} recognized by Aconsists of those n-tuples of strings
(m1(w), ..., mp(w)) where w is the label of a successful path, i. e.; a path
starting in an initial state and ending in a final state (see [2, section III.6] for
background on n-tape automata where they are called finite transducers).

The following is well-known, see [5, Thm IX. 2. 2.] or [2, Thm 4.1].

Theorem 1. A relation R C A} x ... x A}, is rational if and only if there
exist a rational subset K C A* such that

R={n(w) |we K}
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There exists a deterministic version of such automata but contrarily to
the free monoids, they are expressively less powerful than the non determin-
istic ones. Intuitively, there exists a decomposition @ = [J;<,«, @i where
Q; corresponds to the subalphabet A;. In a state ¢ € @;, only transitions of
letters of the subalphabet A; are allowed and moreover a given letter defines
at most one transition. Furthermore the ability to recognize the end of a
component is required. More formally, we assume the alphabets A; contain
an extra symbol §; (the “end-marker” of the i-th tape). We modify the m;’s
by considering them as mappings of A* into (A4; —4;)* satisfying m;(a) = a if
a € A; — t; and m;(a) = € otherwise.

An automaton is deterministic whenever the transitions satisfy the three
conditions

for all (¢,a,p),(¢,b, 7)€ T ifa € A; and b € A;j then j =1
for all (¢,a,p),(q,b,r)eT ifa="bthenp=r 2)
for all (¢, 8;,7) € T if w is the label of a path leaving r

then w € (A — A;)*

A relation 1s deterministic rational if there exists a deterministic automa-
ton in the above sense that recognizes it. Then the following is a paraphrase
of the definition.

Proposition 1. A relation R C A} x...x A}, is recognized by a deterministic
n-tape automaton if and only if the rational subset K C A* of Theorem 1 can
be assumed to satisfy the two conditions

for all u,v,w € A*, if wv,uw € K,v € A; A", w € A;A* then i = (3)
for all u € A*, if ufjv € K then v € (A — A;)*

3.2 Synchronous relations on finite strings

Synchronous relations form an important subfamily the rational relations
which enjoys nice closure properties. In particular it forms a Boolean algebra
and some of 1ts properties are decidable, whereas almost all properties of the
general rational relations are undecidable (Post Correspondence Problem can
be interpreted as a question on two rational relations).

Consider a fresh symbol § not belonging to the A;’s. With each n-tuple

(Ug,...,upn) € H A} associate the n-tuple of strings of the same length
1<i<n
defined as

(ur, .. un)f = (w1l w1l with £ = max |ug) (4)

Extending the notation to subsets & C A} x ... x A% in the natural way,

we identify RY with a subset of strings over the alphabet ¥ = H (A; U
1<i<n
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{#}). Then the relation R is synchronous if the subset R! is recognized by
a finite automaton over the alphabet X. It is not difficult to verify that the
synchronous relations form a subfamily of the rational relations that is closed
under the Boolean operations, composition of relations, direct products and
projections (e. g., [7] where these relations were called FAD-relations or [8]).
Finally a function f : A7 x ... x A} — B} x ... x B} is synchronous if its
graph tf is a synchronous relation of A x ... x Af x By x...x B},.

The set of synchronous relations has been logically characterized in [6].
For the reader’s convenience we recall the logical language that defines it. The
signature contains two symbols < and E of binary predicates and a symbol
T, of unary predicate for each letter « € A = U A;. The first order

1<i<n

language in question is defined on this signature. The individual variables
belong to the disjoint union of denumerable sets X;, for 1 < 7 < n. All
formulae are interpreted as follows. The universe is the union of the A}’s, for
1 < ¢ < n, and an individual variable # € X; is interpreted as a string in
AY. Now u < v is true if and only if v and v belong to the same free monoid
AY for some 1 < ¢ < n and u is a prefix of v. Furthermore, uEv is true
if and only if v and v have the same length and finally T, (u) for some a € A
is true if and only if the last letter of u is a. To each formula ¢(x1,...,z,)
with set of free variables 1 € Xj,,..., 2, € Xj, 1s assigned the set R of all
n-tuples (uy,...,u,) € A; x ... x A} such that ¢ is true when each w; is
substituted for z; in ¢. It is said that ¢ defines R or that R satisfies ¢.

Theorem 2. A subset B C A} x ... A} 1is synchronous if and only if it 1s

defined by some formula ¢ of the above language.
As an immediate result we get

Corollary 1. Let 0 < k < n be some integer. Fach synchronous relation
R C A7 x ... x A} can be uniformized by some synchronous function f :
AT x X A =5 Af g XX AL

Proof. Observe first that the hierarchical ordering on the free monoid can be
easily expressed in the logic. Also, we can express the fact that a n-tuple of
strings 1, . . ., &, 18 lexicographically less than or equal to another yy, ..., y,.
Now, let ¢(x1,...,2,) be a formula defining R. Tt suffices to associate with
each k-tuple of A} x ... x A} belonging to the domain of R, the (in the
lexicographical ordering) least (n — k)-tuple of A; , x ... x A} which is
associated to it. We leave 1t to the reader to work out the details.

3.3 Uniformization on finite strings

Intuitively, Eilenberg’s cross-section theorem, [5, Thm. IX, 7. 1.] asserts that
given an morphism f : A* — B* and a rational subset K C A*, it 1s possible
to “rationally” select a representative among all the elements of K that map
onto the same element of B*.
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Theorem 3. Let f : A* — B* be a morphism and let K be a rational
subset of A*. Then there exists a rational subset L C K such that f maps L
bijectively onto K f.

This result and its appoach have been widely commented, used and re-
proven. Traditionally, it has two major consequences: 1) each rational func-
tion f of a free monoid into another can be recognized by some “unambigu-
ous” 2-tape automaton (each pair of strings (u,v) with v = f(u) defines at
most one successful path in the automaton) and 2) all rational relations of a
free monoid into another are uniformizable which is precisely the result that
this paper wants to extend to infinite strings, [5, Prop. IX, 8. 2].

Proposition 2. Each rational (resp. deterministic rational} relation can be
untformized

Proof. For rational relations this follows from Theorem 1 where the subset
L of the previous theorem is substituted for K. For deterministic rational
relations it suffices to observe that condition (2) still holds for all subsets of
K.

Observe that the previous result cannot be extended to two or more com-
ponents. Indeed, consider the following rational relation on the direct product

{a, b} x {a}" x {a}”
{(a™b™,a" a) | n,m >0} U {(a"b™,a™, €) | n,m >0}

and assume there exists a rational function f : {a,b}* x {a}* — {a}* that
uniformizes it. Let Xy, X; C {a,b}" x {a}* be the pre-images of a and ¢
respectively and let A4g and A; be finite automata recognizing X, and Xj.
Denote by m the maximal number of states in these automata and by g > m
an integer which is a multiple of the number of occurrences of a (resp. b) in
any simple cycle of Ay and A; (a simple cycle is a path where initial and
final states coincide and where no other state is visited more than once). Set

po = max{n € N | (a"b"”,a")f = a} and p; = max{n € N | (¢a"b",a™)f = ¢}

Assume first pg < oo and let N > max{m, po}. Consider (a6 +t# a™) € Xj.
By the pigeon-hole principle applied to the m first states visited by a path
labelled by (a™V 6™ +# a) there exists a cycle labelled by a pair (af, a?) with
p < m. Since g is a multiple of p, the pair (a¥t#bpN+# oV +#) belongs to X,
a contradiction. So we must assume that py = co. A similar argument shows
that p; = co. For some integer M greater than m+ p we have (a6 aM) €
X1. Then (aM—#bM oaM~#) € Xy. By the same pigeon-hole principle applied
again to the m first states visited by a path labelled by (a™=#bM @M —#),
there exists a cycle labelled by a pair (a?, a?) with p < m. Thus (a6 a#)
belongs to Xy, a contradiction.
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Using similar techniques we would prove that XUY C {a}*x{a}* x{a,b}"
with

X = {(a® @, a”¥) [ m,p> 0} and ¥ = {(a”*?,a”, b"a) | m,p > 0}

is a rational relation which cannot be uniformized by any rational function
of {a}* x {a}* into {a,b}*. However, when all alphabets are unary, ratio-
nal relations can be uniformized for any subset of components. This follows
trivially from the fact that such rational relations are defined by the logic of
Presburger arithmetic, [9].

Proposition 3. Let 1 < k < n be some integer and let A; be unary alphabets
fori=1,... n. Each rational relation R C A} x ... x A} can be uniformized
by some rational function f: AT x ... x Ap — Ap ) x ... x AL

4 Relations on infinite strings

Biichi generalized in [3] the notion of finite automaton in order to have it
operate on infinite strings. The family of subsets of A% recognized by some
Biuchi automaton in this manner is denoted by Rat AY and is called the
family of rational subsets of infinite strings (this is justified by the fact that
this family is closed under extended “rational” operations, [5, Thm. XIV. 4.
1.]). In the same way traditional finite automata can be used to recognize
relations on finite strings, Biuchi automata can be used to recognize relations
on infinite strings. We refer the interested reader to [11] for a thorough study
of these relations. Here, we will only recall what is necessary for our purpose.

4.1 Rational relations on infinite strings

A finite n-tape automaton A = (@, I, F,T) can be transformed into a Biichi
automaton and used to recognize n-tuples of possibly infinite strings by in-
terpreting F' as a set of repeated states. The definitions of paragraph 3.1 carry
over here naturally. An infinite path is successful if it starts in an initial state
and visits infinitely often a repeated state. The subset of A7% x ... x A% rec-

ognized by the automaton is the set of n-tuples m(w) = (7w (w), ..., m(w))
where w € AY is the label of a successful path in the automaton (for all
i=1,...,n the projections m; extend trivially from A“ to A$°).

As seen in section 3.3, the key argument for Eilenberg’s uniformization
result is the cross-section theorem along with what he calls the first factor-
ization theorem (Theorem 1). For infinite strings we obtain the same result
via an extension of his “second factorization theorem” which shows that all
rational relations is the somposition of a synchronous relation followed by
some rational substitution [5, Thm IX. 5.1.].
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We recall that a morphism of B* into A* is alphabetic if it associates with
every letter of B a letter of A. A substitution of B* into a monoid M is a
morphism of B* into the power set of all subsets of M. In the case where M
is a direct product of free monoids A7 x ... x A%, the substitution can be
extended from B“ to A}® x ... x A2°. Hereafter we deal with substitutions
into A% x...x A} that are rational, i. ., that map B* into Rat(A] x...x A%)

Theorem 4. [10, Prop. 2. 1.] Given a relation R C AS® x ... x AZ the
following conditions are equivalent.

1) R is recognized by some Btichi automaton.

2) there exist a finite alphabet B, a rational subset K C B¥, an alphabetic
morphism @ : B* — A} and a rational substitution ¢ : B* — Rat(A% x ... x
A% such that R = ¢~ o NK o ¢ holds, where NK is the retriction of the
wdentity to the subset K.

The subsets of A7% x...x A% recognized in this manner are called rational
relations. It can be readily verified that for all rational relations R C A x
... x A} the relation RN AY x ... x A% is also rational. More generally, the
following holds (e. g., [11]).

Proposition 4. For i = 1,...,n let S; = A} or S; = AY. Let R be the
relation recognized by a Buchi automaton A. Then RNS1 X...x .S, ts rational.

From now on we deal with “purely infinite relations” only, 1. e., with relations
in AY x ... x A%. As for finite strings, the notion of deterministic automaton
exists. A deterministic automaton satisfies the following conditions

1) for all (¢,a,p), (¢,b,r) €T ifa € A; and b € A; then j =1 5)
2) for all (¢,a,p), (¢,b,7) € T if a=b then p=17r

A relation R C AY x ... x A¥ is deterministic if there exists a determin-
istic automaton that recognizes it. It is synchronous (resp. deterministic
synchronous) if viewed as a subset of (A x ... .. X Ap)¥, it is recogniz-
able by some Biichi (resp. deterministic Biichi) automaton on the alphabet

Al x ... x A,

4.2 Uniformization on infinite strings

The main result of this paper (Theorem 5) is based on the following property
which shows that synchronous relations can be uniformized.

Proposition 5. Let 0 < k < n be some integer. Each synchronous relation
R C AY x ... x AY can be uniformized by some synchronous function f :
AY XX AR =AY X x AR
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Proof. We first verify that it suffices to consider the case n = 2,k = 1. Indeed,
consider two bijections a: A3 X ... x Ay > Aand §: Ag41 X ... x A, > B
where A and B are new subsets. By identifying Ay x...x AY with (4 x...x
Ag)¥, we may extend a to an isomorphism of AY x...x AY onto A“. Similarly
we extend 3 to an isomorphism of A, x ... x A} onto B“. The relation
a"loRof C A¥ x B¥ is synchronous and can be uniformized by some function
[ AY — B“. Then the function o fo371 : AY x...x AY — Af L X X AR
uniformizes R as it can be readily verified.

From now on we deal with a synchronous relation R C A“ x B¥ recognized
by some Biichi automaton A = (@, I, F,T). It is convenient, given a pair
(u,v) € A¥ x B¥ to say w is the input and v is the output component. A
run is a finite or infinite sequence of states (¢;);<pn, n < oo, visited in a
path of the automaton, i. e., for which there exist (u;,v;) € A x B such that
(qi, s, vi, qi41) € T holds for all ¢ < n. Without loss of generality we may
enforce the following additional condition which guarantees that the output
1s uniquely defined by an input and a run

forall g,pe @Q,a € A and by,b, € B
if (Qaaablap)a (QaaabZap) eT then bl = bZ

(6)

Our proof follows the usual pattern. It consists of selecting for each input
string u € A% a specific image v € BY satifying (u,v) € R in such a way
that the selection can be performed by a finite automaton. The initial idea
of Eilenberg of choosing v as the minimal string in some prescribed lexico-
graphical ordering does not carry over to infinite strings since whatever the
ordering chosen, there might not exist a minimal element associated with an
input (e. g., the relation consisting of the pairs (a*, a™b*') and (0¥, b"a*) for
all n > 0).

In the present situation we show that to any arbitrary string u € A“ in the
domain of the relation, we can assign a unique string v € B with (u,v) € R
through a second order monadic formula. However, contrarily to Eilenberg’s
approach, instead of selecting the image through some of its properties we
choose it via a run of the automaton. Among the runs determined by the input
string, we choose that which visits repeated states earliest (hence the term
“greedy ordering” see below), and whenever this does not suffice to single out
one run, we will choose the minimal in the lexicographical ordering. Thus,
if ¢(u,v) is a monadic second order formula defining the relation R (i., e.,
R = {(u,v) € AYxB* | ¢(u,v) = true}, then the uniformization is expressed
by the following monadic second order formula

for all u € A, v € B¥ the three conditions hold

1) ¢(u,v) is true

2) there exists a run & with label (u, v)

3) for all runs n with label (u, w) for some w # v, inequality £ < n holds

More precisely, we consider a linear ordering < on ) under which the set
F is an initial segment (¢ € F and p < ¢ implies p € F') and we denote by
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<,x the lexicographical extension of < to @¥. Let T be a new symbol and
consider the ordering on the set F'U{T} which is the trace of < on F' and
for which T is the greatest element. Extend this ordering to a lexicographical
ordering on the infinite sequences on the alphabet U {T} and denote this
new ordering by <p. Let finally 7p : Q¥ = (F U {T})* be the substitution

defined by:
ifge F

T otherwise

The greedy ordering < ..y, on (Q*F)* is defined by setting 7 < reeay &
if and only if

nrp <p rpor (nup =&np and ) <. £ ) (7)

We leave it to the reader to verify that <,,..., 18 indeed an ordering.

Consider an input u and let Accept, be the set of successful runs asso-
ciated with it. We assume Accept, is non empty and we shall “construct”
1ts < reeay-minimal element. We start with defining the ordering < on the
set (Q — F)*F by posing # < y if one of the following conditions holds: 1)
|z] < |y| or 2) |z| = |y| and their last occurrences @', y' € F satisfy @’ < ¢/ or
3) |#] = |yl and ' = ¢ and = <jep y.

Let 21 € (@ — F)*F be the <-smallest element in (@ — F)*F which is
the prefix of some run in Accept,, and let S; C Accept,, be the non empty
set of successful runs starting with 1. Now let z9 € (Q — F)*F be the <-
smallest string such that z;2 is the prefix of some successful run in S; and
let S5 C 51 be the non empty set of successful runs starting with zy22. The
process continues and defines an infinite string 2> ... which is the <j..q,-
minimal element of Accept,,.

Because of condition (6) we have defined in this way a mapping f : AY —
BY by setting f(u) = v where v is the output associated with the run 5.
Since the greedy and the lexicographical orderings are monadic second order
definable, so is the function f which completes the proof.

We are now ready to prove the result for arbitrary rational relations.

Theorem 5. Let 0 < ¢ < n. Every rational relation on Ay x ... x A% can
be uniformized by some rational function : f : AY — HA;‘)
J#

Proof. Indeed, by Theorem 4 every relation R can be factorized into R =
@~ 1 oNK o1 where B is a finite alphabet, K € RatB*, ¢ : B* — A} is an
alphabetic morphism and ¢ : B* — Rat(A%x...x A%) arational substitution.
Choose for all b € B an arbitrary element in bt and let ¢/ : B* — Afx...x A%
be the resulting morphism. It suffices to show that ¢! o NK o ¢’ can be
uniformized. However the relation ¢~ ! o NK is synchronous. By the previous
theorem, it can be uniformized by a function f : AY — B“. The function
fr = f o' uniformizes the relation R.
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The same counter-examples of paragraph 3.3 can be adapted to infinite
strings (by completing every finite string with a special symbol infinitely
repeated) to show that uniformization in more than one component does not
hold in general. Another interesting consequence 1s the fact that the cross-
section property holds for infinite strings.

Corollary 2. Let f : AY — BY be a morphism and let K be a rational
subset of AY. Then there exists a rational subset L C K such that f maps L
bijectively onto K f.

Proof. Indeed, the relation NKfo f~1 o NK C B* x A% is rational. There
exists a rational function g : BY — A“ that uniformizes it, 1., e., that selects
for each element © € Kf a unique element in y € K with * = yf. Then
L =K fg € RatA* and f maps bijectively L onto K f.

Also, since all rational subsets of infinite strings are unambiguous, [4], we
have

Corollary 3. Every rational function f: AY — BY x...x BY 1is unambigu-
ous.

We observe, as a easy negative result, that the family of topologically
closed rational relations cannot be uniformized. Indeed, consider the closed
subset on the alphabets A = B = {a,b}

(a* x A*YU {(a"bs,bs) |n>0,s € A}

If there would exist a function that would uniformize the relation, it would
be continuous, but this is clearly impossible.

4.3 A topological interpretation

The proof of uniformization for synchronous relations can also be seen as a
proof of the following result.

Proposition 6. On every rational rational subset X of A there exists a ra-
tional linear ordering < such that every non empty Y C X which is relatively
closed in X has a smallest element.

Proof. Let A= (Q,I,F,T) be a Biichi automaton recognizing X C A“. We
assume without loss of generality that the existence of two transitions of the
form (g¢,a,p), (¢,b,p) € T implies a = b. A run is a finite or infinite sequence
of states (¢;)i<n, n < 0o, visited in by path of the automaton, i. e., for which
there exist u; € A such that (¢;, u;, ¢;41) € T holds for all i < n. Because
of the previous condition, there exists at most one string in A¥ associated
with a given run. A run is successful if 1t visits infinitely often some repeated
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state. For every non empty subset ¥ C X we denote by Accepty the set of
all successful runs associated with some element in Y.

As in Theorem 5 we can construct an infinite string z1z5 ... € Q¥ which
is the < ..q,-minimal element of Accepty . This string is a successful run on
some input u € X. Assume Y is of the form Y = X N Z for some subset
Z C A¥. Then u belongs to the adherence of Z. If Y is relatively closed, i.
e., if we may assume furthermore that Z is closed, then u belongs to Y.

Now define a linear ordering < on X as follows : v < w if and only if the
Cgreeay-minimal element of Accept, is smaller than the <,,..q,-minimal ele-
ment of Accepty, . If Y C X is relatively closed in X then the string u € YV
obtained as explained above is clearly the <-smallest element of Y.

This result can be viewed as the automaton version of a general topological
result which states that on every Borel subset X of A (in fact, also on every
analytical subset) there exists a linear ordering such that every non empty
relatively closed subset Y C X has a smallest element. The proof of this
result also uses an auxiliary greater topological set. A classical result (see
[12, Thm 37. 1.]) states that X is a continuous image of the Baire space
w* hence the projection of some closed R C AY x w“. The lexicographical
ordering on Ay x w* is a linear ordering such that every non empty closed
set has a smallest element. It induces on X the wanted ordering defined as
follows : & < y iff the smallest element of RN ({#} x w*) is smaller than the
smallest element of RN ({y} x w).

Observe that the Baire space w* cannot be replaced by any space B
with B finite since continuous images of compact spaces are compact.

In fact, in the proof of the above Proposition, the Baire space does occur
implicitely in the definition of the greedy ordering. This can be seen as follows.
There is a natural injection from the space of successful runs into the product
w x F¥ x ¥ which maps a successful run onto the triple consisting of the
sequence of positions of states in F', the sequence of successive states in F
and the sequence of successive states. The greedy ordering on successful runs
then corresponds to the lexicographic product of lexicographic orderings on
the components.
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