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No Title GivenNo Author GivenNo Institute Given1 IntroductionUniformizing a relation belonging to some family, consists of �nding a func-tion whose graph belongs to the family and whose domain coincides with thatof the given relation. Here we are particularly concerned with the relationson �nite or in�nite strings that can be recognized in the traditional sense bysome type of �nite automaton.Eilenberg proved in 1974 a uniformization result for rational relationson �nite strings. Siefkes established in 1975 that the synchronous relationson in�nite strings enjoy the uniformization property as well. Actually theseresults can be re�ned to subfamilies of rational relations on �nite or in�nitestrings or a mixture of those: to name but the two most important, say thedeterministic and the synchronous relations. Our purpose is to give a surveyof all the known results of this type and to show how far they can or cannotbe extended. In order to more accurately evaluate how lucky we are withdealing with strings, su�ce it to say that uniformization results on trees nolonger hold, see [14]. Theoretical computer science and logic have studied thesubject with di�erent tools. We think it is time to present these results in aunifying framework by bringing the two approaches together. We hope thereader will be convinced that using both the methods of theoretical computerscience and those of logic helps greatly simplifying and clarifying some proofs.A good illustration is the investigation of the synchronous relations, whetheron �nite or in�nite strings, where the language of logic spares some tedious(but of course equivalent) set constructions. This is no wonder since it allowsus to use \for free" the powerful theory developed by B�uchi.Historically, the uniformization result on rational relations on �nite stringscan be traced back to [7], i. e., over 30 years ago. It was not stated as such,rather it was given a more precise form (technically the function by whichone can uniformize a given relation is obtained as a composition of a leftfollowed by a right \sequential" function). Since then it has been reprovedwith di�erent methods, [1], [16], see also [15] for an account on the subject.Eilenberg proved it as a corollary of his \cross-section" theorem, stating in-tuitively that it is possible to \rationally" select a representative for eachequivalence class that intersects a rational subset. This result carries over toin�nite strings as well.As previously said, most of the material here can be considered as \folk-lore" by some (actually non so many) researchers. There is one exceptionhowever: the proof of the uniformization property for rational relations on



No Title Given 3in�nite strings seems to be new, [13]. Using a di�erent approach, a similarresult was independently obtained by D. Beauquier, J. Devolder, M. Latteuxand E. Timmerman, but has not been published.2 Preliminaries2.1 Basics on uniformizationLet us recall a few elementary de�nitions in order to �x the notations. Giventwo sets X and Y and a (partially de�ned) function f : X ! Y , the graph off is the subset ]f = f(u; v) j v = f(u)g. The domain dom(R) of a relationR � X � Y is the set of elements x 2 X for which there exists an elementy 2 Y with (x; y) 2 R. The composition of relations is the operation thatassociates with the relations R � X � Y and S � Y � Z the relationR � S = f(x; z) 2 X � Z j there exists y 2 Y; with(x; y) 2 R and (y; z) 2 Sg(1)We compose the functions from left to right.Now we come to the main de�nition of this work. Given a family F ofrelations in X �Y and R 2 F , uniformizing R in F means �nding a functionfR : X ! Y such that 1) dom(fR) = dom(R) 2) ](fR) � R and 3) ](fR) 2 F .When no particular mention is given, saying that a relation belonging to afamilyF is uniformizable, implicitely means that it can be uniformized in F .2.2 Finite and in�nite stringsGiven a �nite alphabet A whose elements are symbols or letters, we denoteby A� (resp. A!) the set of �nite (resp. in�nite) strings over A. As usual wedenote by A1 = A� [A! the set consisting of the �nite and in�nite strings.The empty string is denoted by � regardless of which alphabet in relates toas no confusion usually arises and juj denotes the length of a string with theconvention juj =1 whenever u 2 A! .This paper is concerned with direct products of sets of the form A� andA!. One of the central tools that is used in this theory is that of hierarchicalordering. We recall that given a linear ordering < on an alphabet A, weextend it to the free monoid A� by posing u <hier v if juj < jvj or if juj = jvjand there exist w; u1; v1 2 A� and a; b 2 A�, such that u = wau1, v = wbv1and a < b holds.The notion of lexicographical ordering is more general. Consider a col-lection of sets Ei, where i ranges over an initial segment of the integers orover IN. Assume there exists a (possibly partial) ordering <i on each set Ei.We endow the direct product Qi2I Ei with the lexicographical ordering <lexde�ned by Qi2I xi <lex Qi2I yi if there exists i 2 I such that xj = yj forall j < i and xi <i yi. This construction applies in particular to A! . Indeed,



4 No Author Giventhis set can be viewed as a collection of copies of A indexed by IN. Any linearordering on A extends to a lexicographical ordering on A!.As usual we will assume the set A! is endowed with the product topologyof the discrete topology on A where the family of subsets of the form uA!with u 2 A� form a basis of the open sets. It is a standard result that givenan arbitrary lexicographical ordering on A! every topologically closed subsetof A! contains its lexicographically minimal element.3 Relations on �nite strings3.1 Rational relations on �nite stringsGiven an arbitrary monoid M , the least family F of subsets containing all�nite sets and closed under set union, concatenation (i. e., X and Y are inF then so is fxy j x 2 X; y 2 Y g) and Kleene closure (i. e., if X is in F thenso is f�g [X [ : : :[Xi : : :) is the family of rational subsets and is denotedby Rat(M ). As a particular case, given two monoidsM and N , a function ofM into N is rational if its graph is a rational subset of the product monoidM �N . We refer the reader to the two handbooks [5] and [2] for basic resultsin this theory.It is well-known that in the case of a direct product of free monoidsA�1 � : : : � A�n, the family of rational subsets, also called rational relations,is precisely the family of relations recognized by �nite automata. Indeed, thenotion of �nite automaton designed to recognize single strings, was extendedin the late �fties in such a way as to operate on n-tuples of strings. The ideais to provide an automaton with as many tapes as there are components inthe tuple.More precisely assume without loss of generality that the n alphabets Aiare disjoint and set A = S1�i�nAi. We denote by �i the projection of A�onto A�i for all i = 1; : : : ; n and by � the projection onto the direct productA�1 � : : : � A�n: �(w) = (�1(w); : : : ; �n(w)). A �nite n-tape automaton (weshall say also more simply an automaton) is a quadruple A = (Q; I; F; T )where Q is the �nite set of states, I � Q is the set of initial states, F � Qis the set of �nal states and T � Q � A � Q the set of transitions. Thesubset of A�1 � : : :� A�n recognized by Aconsists of those n-tuples of strings(�1(w); : : : ; �n(w)) where w is the label of a successful path, i. e., a pathstarting in an initial state and ending in a �nal state (see [2, section III.6] forbackground on n-tape automata where they are called �nite transducers).The following is well-known, see [5, Thm IX. 2. 2.] or [2, Thm 4.1].Theorem 1. A relation R � A�1 � : : :� A�n is rational if and only if thereexist a rational subset K � A� such thatR = f�(w) j w 2 Kg



No Title Given 5There exists a deterministic version of such automata but contrarily tothe free monoids, they are expressively less powerful than the non determin-istic ones. Intuitively, there exists a decomposition Q = S1�i�nQi whereQi corresponds to the subalphabet Ai. In a state q 2 Qi, only transitions ofletters of the subalphabet Ai are allowed and moreover a given letter de�nesat most one transition. Furthermore the ability to recognize the end of acomponent is required. More formally, we assume the alphabets Ai containan extra symbol ]i (the \end-marker" of the i-th tape). We modify the �i'sby considering them as mappings of A� into (Ai� ]i)� satisfying �i(a) = a ifa 2 Ai � ]i and �i(a) = � otherwise.An automaton is deterministic whenever the transitions satisfy the threeconditionsfor all (q; a; p); (q; b; r)2 T if a 2 Ai and b 2 Aj then j = ifor all (q; a; p); (q; b; r)2 T if a = b then p = rfor all (q; ]i; r) 2 T if w is the label of a path leaving rthen w 2 (A� Ai)� 9>>=>>; (2)A relation is deterministic rational if there exists a deterministic automa-ton in the above sense that recognizes it. Then the following is a paraphraseof the de�nition.Proposition 1. A relation R � A�1�: : :�A�n is recognized by a deterministicn-tape automaton if and only if the rational subset K � A� of Theorem 1 canbe assumed to satisfy the two conditionsfor all u; v; w 2 A�; if uv; uw 2 K; v 2 AiA�; w 2 AjA� then i = jfor all u 2 A�; if u]iv 2 K then v 2 (A� Ai)� � (3)3.2 Synchronous relations on �nite stringsSynchronous relations form an important subfamily the rational relationswhich enjoys nice closure properties. In particular it forms a Boolean algebraand some of its properties are decidable, whereas almost all properties of thegeneral rational relations are undecidable (Post Correspondence Problem canbe interpreted as a question on two rational relations).Consider a fresh symbol ] not belonging to the Ai's. With each n-tuple(u1; : : : ; un) 2 Y1�i�nA�i associate the n-tuple of strings of the same lengthde�ned as(u1; : : : ; un)] = (u1]`�ju1j; : : : ; un]`�junj) with ` = maxi juij (4)Extending the notation to subsets R � A�1 � : : :�A�n in the natural way,we identify R] with a subset of strings over the alphabet � = Y1�i�n(Ai [



6 No Author Givenf]g). Then the relation R is synchronous if the subset R] is recognized bya �nite automaton over the alphabet �. It is not di�cult to verify that thesynchronous relations form a subfamily of the rational relations that is closedunder the Boolean operations, composition of relations, direct products andprojections (e. g., [7] where these relations were called FAD-relations or [8]).Finally a function f : A�1 � : : :� A�n ! B�1 � : : :� B�m is synchronous if itsgraph ]f is a synchronous relation of A�1 � : : :� A�n �B�1 � : : :� B�m.The set of synchronous relations has been logically characterized in [6].For the reader's convenience we recall the logical language that de�nes it. Thesignature contains two symbols < and E of binary predicates and a symbolTa of unary predicate for each letter a 2 A = [1�i�nAi. The �rst orderlanguage in question is de�ned on this signature. The individual variablesbelong to the disjoint union of denumerable sets Xi, for 1 � i � n. Allformulae are interpreted as follows. The universe is the union of the A�i 's, for1 � i � n, and an individual variable x 2 Xi is interpreted as a string inA�i . Now u < v is true if and only if u and v belong to the same free monoidA�i for some 1 � i � n and u is a pre�x of v. Furthermore, uEv is trueif and only if u and v have the same length and �nally Ta(u) for some a 2 Ais true if and only if the last letter of u is a. To each formula �(x1; : : : ; xn)with set of free variables x1 2 Xk1 ; : : : ; xn 2 Xkn is assigned the set R of alln-tuples (u1; : : : ; un) 2 A�k1 � : : :� A�kn such that � is true when each ui issubstituted for xi in �. It is said that � de�nes R or that R satis�es �.Theorem 2. A subset R � A�1 � : : :A�n is synchronous if and only if it isde�ned by some formula � of the above language.As an immediate result we getCorollary 1. Let 0 � k � n be some integer. Each synchronous relationR � A�1 � : : : � A�n can be uniformized by some synchronous function f :A�1 � : : :� A�k ! A�k+1 � : : :�A�n.Proof. Observe �rst that the hierarchical ordering on the free monoid can beeasily expressed in the logic. Also, we can express the fact that a n-tuple ofstrings x1; : : : ; xn is lexicographically less than or equal to another y1; : : : ; yn.Now, let �(x1; : : : ; xn) be a formula de�ning R. It su�ces to associate witheach k-tuple of A�1 � : : : � A�k belonging to the domain of R, the (in thelexicographical ordering) least (n � k)-tuple of A�k+1 � : : : � A�n which isassociated to it. We leave it to the reader to work out the details.3.3 Uniformization on �nite stringsIntuitively, Eilenberg's cross-section theorem, [5, Thm. IX, 7. 1.] asserts thatgiven an morphism f : A� ! B� and a rational subset K � A�, it is possibleto \rationally" select a representative among all the elements of K that maponto the same element of B�.



No Title Given 7Theorem 3. Let f : A� ! B� be a morphism and let K be a rationalsubset of A�. Then there exists a rational subset L � K such that f maps Lbijectively onto Kf .This result and its appoach have been widely commented, used and re-proven. Traditionally, it has two major consequences: 1) each rational func-tion f of a free monoid into another can be recognized by some \unambigu-ous" 2-tape automaton (each pair of strings (u; v) with v = f(u) de�nes atmost one successful path in the automaton) and 2) all rational relations of afree monoid into another are uniformizable which is precisely the result thatthis paper wants to extend to in�nite strings, [5, Prop. IX, 8. 2].Proposition 2. Each rational (resp. deterministic rational) relation can beuniformizedProof. For rational relations this follows from Theorem 1 where the subsetL of the previous theorem is substituted for K. For deterministic rationalrelations it su�ces to observe that condition (2) still holds for all subsets ofK. Observe that the previous result cannot be extended to two or more com-ponents. Indeed, consider the following rational relation on the direct productfa; bg� � fag� � fag�f(anbm; an; a) j n;m � 0g [ f(anbm; am; �) j n;m � 0gand assume there exists a rational function f : fa; bg� � fag� ! fag� thatuniformizes it. Let X0; X1 � fa; bg� � fag� be the pre-images of a and �respectively and let A0 and A1 be �nite automata recognizing X0 and X1.Denote by m the maximal number of states in these automata and by � > man integer which is a multiple of the number of occurrences of a (resp. b) inany simple cycle of A0 and A1 (a simple cycle is a path where initial and�nal states coincide and where no other state is visited more than once). Setp0 = maxfn 2 IN j (anbn; an)f = ag and p1 = maxfn 2 IN j (anbn; an)f = �gAssume �rst p0 <1 and let N > maxfm; p0g. Consider (aNbN+�; aN ) 2 X0.By the pigeon-hole principle applied to the m �rst states visited by a pathlabelled by (aNbN+�; aN ) there exists a cycle labelled by a pair (ap; ap) withp < m. Since � is a multiple of p, the pair (aN+�bN+�; aN+�) belongs to X0,a contradiction. So we must assume that p0 =1. A similar argument showsthat p1 =1. For some integer M greater than m+� we have (aMbM ; aM) 2X1. Then (aM��bM ; aM��) 2 X0. By the same pigeon-hole principle appliedagain to the m �rst states visited by a path labelled by (aM��bM ; aM��),there exists a cycle labelled by a pair (ap; ap) with p < m. Thus (aMbM ; aM)belongs to X0, a contradiction.



8 No Author GivenUsing similar techniques we would prove thatX[Y � fag��fag��fa; bg�withX = f(a2m; ap; ambp) j m; p � 0g and Y = f(am+p; am; bmap) j m; p � 0gis a rational relation which cannot be uniformized by any rational functionof fag� � fag� into fa; bg�. However, when all alphabets are unary, ratio-nal relations can be uniformized for any subset of components. This followstrivially from the fact that such rational relations are de�ned by the logic ofPresburger arithmetic, [9].Proposition 3. Let 1 � k � n be some integer and let Ai be unary alphabetsfor i = 1; : : : ; n. Each rational relation R � A�1� : : :�A�n can be uniformizedby some rational function f : A�1 � : : :� A�k ! A�k+1 � : : :� A�n.4 Relations on in�nite stringsB�uchi generalized in [3] the notion of �nite automaton in order to have itoperate on in�nite strings. The family of subsets of A! recognized by someB�uchi automaton in this manner is denoted by Rat A! and is called thefamily of rational subsets of in�nite strings (this is justi�ed by the fact thatthis family is closed under extended \rational" operations, [5, Thm. XIV. 4.1.]). In the same way traditional �nite automata can be used to recognizerelations on �nite strings, B�uchi automata can be used to recognize relationson in�nite strings. We refer the interested reader to [11] for a thorough studyof these relations. Here, we will only recall what is necessary for our purpose.4.1 Rational relations on in�nite stringsA �nite n-tape automaton A = (Q; I; F; T ) can be transformed into a B�uchiautomaton and used to recognize n-tuples of possibly in�nite strings by in-terpreting F as a set of repeated states. The de�nitions of paragraph 3.1 carryover here naturally. An in�nite path is successful if it starts in an initial stateand visits in�nitely often a repeated state. The subset of A11 � : : :�A1n rec-ognized by the automaton is the set of n-tuples �(w) = (�1(w); : : : ; �n(w))where w 2 A! is the label of a successful path in the automaton (for alli = 1; : : : ; n the projections �i extend trivially from A! to A1i ).As seen in section 3.3, the key argument for Eilenberg's uniformizationresult is the cross-section theorem along with what he calls the �rst factor-ization theorem (Theorem 1). For in�nite strings we obtain the same resultvia an extension of his \second factorization theorem" which shows that allrational relations is the somposition of a synchronous relation followed bysome rational substitution [5, Thm IX. 5.1.].



No Title Given 9We recall that a morphism of B� into A� is alphabetic if it associates withevery letter of B a letter of A. A substitution of B� into a monoid M is amorphism of B� into the power set of all subsets ofM . In the case where Mis a direct product of free monoids A�1 � : : : � A�n, the substitution can beextended from B! to A11 � : : :� A1n . Hereafter we deal with substitutionsinto A�1� : : :�A�n that are rational, i. e., that mapB� into Rat(A�1� : : :�A�n)Theorem 4. [10, Prop. 2. 1.] Given a relation R � A11 � : : : � A1n thefollowing conditions are equivalent.1) R is recognized by some B�uchi automaton.2) there exist a �nite alphabet B, a rational subset K � B! , an alphabeticmorphism ' : B� ! A�1 and a rational substitution  : B� ! Rat(A�2 � : : :�A�n) such that R = '�1 � \K �  holds, where \K is the retriction of theidentity to the subset K.The subsets of A11 �: : :�A1n recognized in this manner are called rationalrelations. It can be readily veri�ed that for all rational relations R � A11 �: : :�A1n the relation R\A!1 � : : :�A!n is also rational. More generally, thefollowing holds (e. g., [11]).Proposition 4. For i = 1; : : : ; n let Si = A�i or Si = A!i . Let R be therelation recognized by a B�uchi automaton A. Then R\S1�: : :�Sn is rational.From now on we deal with \purely in�nite relations" only, i. e., with relationsin A!1 � : : :�A!n. As for �nite strings, the notion of deterministic automatonexists. A deterministic automaton satis�es the following conditions1) for all (q; a; p); (q; b; r) 2 T if a 2 Ai and b 2 Aj then j = i2) for all (q; a; p); (q; b; r) 2 T if a = b then p = r � (5)A relation R � A!1 � : : : � A!n is deterministic if there exists a determin-istic automaton that recognizes it. It is synchronous (resp. deterministicsynchronous) if viewed as a subset of (A1 � : : : : : : � An)!, it is recogniz-able by some B�uchi (resp. deterministic B�uchi) automaton on the alphabetA1 � : : :�An.4.2 Uniformization on in�nite stringsThe main result of this paper (Theorem 5) is based on the following propertywhich shows that synchronous relations can be uniformized.Proposition 5. Let 0 < k < n be some integer. Each synchronous relationR � A!1 � : : : � A!n can be uniformized by some synchronous function f :A!1 � : : :� A!k ! A!k+1 � : : :� A!n.



10 No Author GivenProof. We �rst verify that it su�ces to consider the case n = 2; k = 1. Indeed,consider two bijections � : A1 � : : :�Ak ! A and � : Ak+1 � : : :� An ! Bwhere A and B are new subsets. By identifying A!1 � : : :�A!k with (A1� : : :�Ak)!, we may extend � to an isomorphismof A!1�: : :�A!k onto A!. Similarlywe extend � to an isomorphism of A!k+1 � : : : � A!n onto B! . The relation��1�R�� � A!�B! is synchronous and can be uniformized by some functionf : A! ! B!. Then the function ��f ���1 : A!1 �: : :�A!k ! A!k+1�: : :�A!nuniformizes R as it can be readily veri�ed.From now on we deal with a synchronous relation R � A!�B! recognizedby some B�uchi automaton A = (Q; I; F; T ). It is convenient, given a pair(u; v) 2 A! � B! , to say u is the input and v is the output component. Arun is a �nite or in�nite sequence of states (qi)i<n, n � 1, visited in apath of the automaton, i. e., for which there exist (ui; vi) 2 A�B such that(qi; ui; vi; qi+1) 2 T holds for all i < n. Without loss of generality we mayenforce the following additional condition which guarantees that the outputis uniquely de�ned by an input and a runfor all q; p 2 Q; a 2 A and b1; b2 2 Bif (q; a; b1; p); (q; a; b2; p) 2 T then b1 = b2� (6)Our proof follows the usual pattern. It consists of selecting for each inputstring u 2 A! a speci�c image v 2 B! satifying (u; v) 2 R in such a waythat the selection can be performed by a �nite automaton. The initial ideaof Eilenberg of choosing v as the minimal string in some prescribed lexico-graphical ordering does not carry over to in�nite strings since whatever theordering chosen, there might not exist a minimal element associated with aninput (e. g., the relation consisting of the pairs (a!; anb!) and (b!; bna!) forall n � 0).In the present situation we show that to any arbitrary string u 2 A! in thedomain of the relation, we can assign a unique string v 2 B! with (u; v) 2 Rthrough a second order monadic formula. However, contrarily to Eilenberg'sapproach, instead of selecting the image through some of its properties wechoose it via a run of the automaton.Among the runs determined by the inputstring, we choose that which visits repeated states earliest (hence the term\greedy ordering" see below), and whenever this does not su�ce to single outone run, we will choose the minimal in the lexicographical ordering. Thus,if �(u; v) is a monadic second order formula de�ning the relation R (i., e.,R = f(u; v) 2 A!�B! j �(u; v) = trueg, then the uniformization is expressedby the following monadic second order formulafor all u 2 A!, v 2 B! the three conditions hold1) �(u; v) is true2) there exists a run � with label (u; v)3) for all runs � with label (u;w) for some w 6= v, inequality � < � holdsMore precisely, we consider a linear ordering < on Q under which the setF is an initial segment (q 2 F and p < q implies p 2 F ) and we denote by



No Title Given 11<lex the lexicographical extension of < to Q!. Let > be a new symbol andconsider the ordering on the set F [ f>g which is the trace of < on F andfor which > is the greatest element. Extend this ordering to a lexicographicalordering on the in�nite sequences on the alphabet F [ f>g and denote thisnew ordering by <F . Let �nally �F : Q! ! (F [ f>g)! be the substitutionde�ned by: q�F = � q if q 2 F> otherwiseThe greedy ordering <greedy on (Q�F )! is de�ned by setting � <greedy �if and only if ��F <F ��F or ( ��F = ��F and � <lex � ) (7)We leave it to the reader to verify that <greedy is indeed an ordering.Consider an input u and let Acceptu be the set of successful runs asso-ciated with it. We assume Acceptu is non empty and we shall \construct"its <greedy-minimal element. We start with de�ning the ordering � on theset (Q � F )�F by posing x � y if one of the following conditions holds: 1)jxj < jyj or 2) jxj = jyj and their last occurrences x0; y0 2 F satisfy x0 < y0 or3) jxj = jyj and x0 = y0 and x <lex y.Let x1 2 (Q � F )�F be the �-smallest element in (Q � F )�F which isthe pre�x of some run in Acceptu and let S1 � Acceptu be the non emptyset of successful runs starting with x1. Now let x2 2 (Q � F )�F be the �-smallest string such that x1x2 is the pre�x of some successful run in S1 andlet S2 � S1 be the non empty set of successful runs starting with x1x2. Theprocess continues and de�nes an in�nite string x1x2 : : : which is the <greedy-minimal element of Acceptu.Because of condition (6) we have de�ned in this way a mapping f : A! !B! by setting f(u) = v where v is the output associated with the run �.Since the greedy and the lexicographical orderings are monadic second orderde�nable, so is the function f which completes the proof.We are now ready to prove the result for arbitrary rational relations.Theorem 5. Let 0 < i < n. Every rational relation on A!1 � : : :� A!n canbe uniformized by some rational function : f : A!i !Yj 6=iA!j .Proof. Indeed, by Theorem 4 every relation R can be factorized into R ='�1 � \K �  where B is a �nite alphabet, K 2 RatB�, ' : B� ! A�1 is analphabetic morphismand  : B� ! Rat(A�2�: : :�A�n) a rational substitution.Choose for all b 2 B an arbitrary element in b and let  0 : B� ! A�2�: : :�A�nbe the resulting morphism. It su�ces to show that '�1 � \K �  0 can beuniformized. However the relation '�1 �\K is synchronous. By the previoustheorem, it can be uniformized by a function f : A!1 ! B!. The functionfR = f �  0 uniformizes the relation R.



12 No Author GivenThe same counter-examples of paragraph 3.3 can be adapted to in�nitestrings (by completing every �nite string with a special symbol in�nitelyrepeated) to show that uniformization in more than one component does nothold in general. Another interesting consequence is the fact that the cross-section property holds for in�nite strings.Corollary 2. Let f : A! ! B! be a morphism and let K be a rationalsubset of A!. Then there exists a rational subset L � K such that f maps Lbijectively onto Kf .Proof. Indeed, the relation \Kf � f�1 � \K � B! � A! is rational. Thereexists a rational function g : B! ! A! that uniformizes it, i., e., that selectsfor each element x 2 Kf a unique element in y 2 K with x = yf . ThenL = Kfg 2 RatA! and f maps bijectively L onto Kf .Also, since all rational subsets of in�nite strings are unambiguous, [4], wehaveCorollary 3. Every rational function f : A! ! B!1 � : : :�B!n is unambigu-ous.We observe, as a easy negative result, that the family of topologicallyclosed rational relations cannot be uniformized. Indeed, consider the closedsubset on the alphabets A = B = fa; bg(a! � A!) [ f(anbs; bs) j n � 0; s 2 A!gIf there would exist a function that would uniformize the relation, it wouldbe continuous, but this is clearly impossible.4.3 A topological interpretationThe proof of uniformization for synchronous relations can also be seen as aproof of the following result.Proposition 6. On every rational rational subset X of A! there exists a ra-tional linear ordering � such that every non empty Y � X which is relativelyclosed in X has a smallest element.Proof. Let A = (Q; I; F; T ) be a B�uchi automaton recognizing X � A!. Weassume without loss of generality that the existence of two transitions of theform (q; a; p); (q; b; p) 2 T implies a = b. A run is a �nite or in�nite sequenceof states (qi)i<n, n � 1, visited in by path of the automaton, i. e., for whichthere exist ui 2 A such that (qi; ui; qi+1) 2 T holds for all i < n. Becauseof the previous condition, there exists at most one string in A! associatedwith a given run. A run is successful if it visits in�nitely often some repeated



No Title Given 13state. For every non empty subset Y � X we denote by AcceptY the set ofall successful runs associated with some element in Y .As in Theorem 5 we can construct an in�nite string x1x2 : : : 2 Q! whichis the <greedy-minimal element of AcceptY . This string is a successful run onsome input u 2 X. Assume Y is of the form Y = X \ Z for some subsetZ � A!. Then u belongs to the adherence of Z. If Y is relatively closed, i.e., if we may assume furthermore that Z is closed, then u belongs to Y .Now de�ne a linear ordering � on X as follows : v � w if and only if the<greedy-minimal element of Acceptv is smaller than the <greedy-minimal ele-ment of Acceptw . If Y � X is relatively closed in X then the string u 2 Yobtained as explained above is clearly the �-smallest element of Y .This result can be viewed as the automaton version of a general topologicalresult which states that on every Borel subset X of A! (in fact, also on everyanalytical subset) there exists a linear ordering such that every non emptyrelatively closed subset Y � X has a smallest element. The proof of thisresult also uses an auxiliary greater topological set. A classical result (see[12, Thm 37. 1.]) states that X is a continuous image of the Baire space!! hence the projection of some closed R � A!1 � !! . The lexicographicalordering on A!1 � !! is a linear ordering such that every non empty closedset has a smallest element. It induces on X the wanted ordering de�ned asfollows : x � y i� the smallest element of R\ (fxg � !!) is smaller than thesmallest element of R \ (fyg � !!).Observe that the Baire space !! cannot be replaced by any space B!with B �nite since continuous images of compact spaces are compact.In fact, in the proof of the above Proposition, the Baire space does occurimplicitely in the de�nition of the greedy ordering. This can be seen as follows.There is a natural injection from the space of successful runs into the product!! � F! �Q! which maps a successful run onto the triple consisting of thesequence of positions of states in F , the sequence of successive states in Fand the sequence of successive states. The greedy ordering on successful runsthen corresponds to the lexicographic product of lexicographic orderings onthe components.References1. A. Arnold and M. Latteux. A new proof of two theorems about rational trans-ductions. Theoretical Computer Science, 8:261{263, 1979.2. J. Berstel. Transductions and context-free languages. B. G. Teubner, 1979.3. J.R. B�uchi. Weak Second-Order Logic and Finite Automata. Z. Math. LogikGrundlagen Math., 6:66{92, 1960.4. O. Carton. Unambiguous B�uchi automata, unpublished.5. S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press,1974.
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