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tThe de�nition of the 
lass of deterministi
 rational relations is fun-damentally based on the Read-only One-way Turingma
hine approa
h.The notion of deterministi
 automata developed up to now is too strongand asks for an unnatural detour via end-markers to give all determin-isti
 rational relations (
f. x3.1). We stress that several 
onditionsusually 
onsidered as related to determinism are mere normalizationsof determinism and are not inherent to the notion (
f. x3.2). In thispaper, we introdu
e pertinent notions of deterministi
 labelled graphautomata (
f. x3.3) whi
h avoid any use of end-markers: strong de-terministi
, n-deterministi
 automata for n 2 N. These notions forman in
reasing in�nite hierar
hy of 
lasses of automata whi
h all leadto the same usual 
lass of deterministi
 rational relations. Moreover,the 
lass 
orresponding to the natural extension to the 
ase n =1 isexa
tly the 
lass of unambiguous automata .We also 
onsider Nivat's 
hara
terization via multimorphisms ap-plied to rational languages and introdu
e a hierar
hy of deterministi
versions of multimorphisms.Properties of determinism and unambiguity are 
ompared. Thede
ision problems for ambiguity or determinism relative to automataand multimorphisms are settled. Roughly, all problems are unde
idablein 
ase of arity � 2 with at least two non binary alphabets, else theyare de
idable, most being even polynomial time de
idable.1
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knowledgements 331 Modelization of rational relations over words1.1 The produ
t monoid ��1 � : : :� ��kAs usual, �� denotes the set of �nite words in a �nite alphabet �. Theempty word is � and juj is the length of u. We identify u with an appli
ationfrom f0; 1; : : : ; juj � 1g into �.We shall denote words by u; v; w and tuples of words by u; v; w.Let �1, : : : ,�k be �nite alphabets, k � 2 . The produ
t monoid ��1 � : : :���k, also denoted Q��i , 
onsists of k-tuples of words with 
omponentwise
on
atenation produ
t. Its neutral element is � = (�; : : : ; �).2



De�nition 1.1. 1) The length and depth of a multiword u = (u1; : : : ; uk)are juj = ju1j+ : : :+ jumj (1)depth(u) = sup(ju1j; : : : ; jumj) (2)2) The support of a k-tuple u is Supp(u) = fi 2 f1; : : : ; kg j ui 6= �g.Remark 1.2. The set of multiwords with length 1 (i.e. multiwords with all
omponents equal to � ex
ept one whi
h is a letter) generates the monoidQ��i . In fa
t, it is the smallest (relative to set in
lusion) set of generators.The set-theoreti
al de�nition of rational relations in
luded in Q��i andthe asso
iated ma
hine-like models (namely automata) are mere parti
ular
ases of notions de�ned in the general 
ontext of monoids. We re
all thesenotions in the next subse
tions and refer to the litterature for proofs ofTheorems (
f. Eilenberg, 1974, [4℄, Berstel, 1979, [1℄, Sakarovit
h, 2001, [28℄II.1.3 Thm 1.1).1.2 Rational relations de�ned via set theoreti
al operationsDe�nition 1.3. 1) The produ
t operation on elements of a monoidM (withneutral element 1M) indu
es operations on subsets of M . If R and S aresubsets of M then the 
on
atenation produ
t of R; S and the plus and starof R are the relationsRS = fxy j x 2 R and y 2 SgR+ = Sn�1Rn R� = f1Mg [R+2) The family Rat(M) of rational subsets of M is the 
losure of the familyof �nite relations by the operations of union, produ
t and star.1.3 Multitape automataThere are several ma
hine 
ounterparts for Rat(M). Though the histori
alma
hine is the Read-only One-way multitape Turing Ma
hine (
f.x1.7), thereferen
e ma
hine model is the labelled graph automaton introdu
ed by JohnMyhill, 1957 [18℄.De�nition 1.4. 1) A �nite automatonA over a monoidM (with neutral el-ement 1M ) is a �nite dire
ted graph A = hQ;M; Æ; I; F i labelled by elementsofM nf1Mg. Nodes and edges form the respe
tive sets Q and Æ � Q�M�Qand are also 
alled states and transitions. I and F are distinguished subsetsof Q 
alled initial states and �nal states.3



2) An A-path 
 is a �nite sequen
e of transitionsp0 a1�! p1 a2�! p2 : : :pn�1 an�! pnThe origin and end of the path 
 are p0 and pn. The label of 
 is the elementa1a2 : : : an of the monoid M . Case n = 0 
orresponds to an empty path,with label 1M and p0 as both origin and end. Path 
 is su

essful if its originis in I and its end is in F .3) The behaviour of A is the set of labels of su

essful paths.4) States whi
h belong to some path with origin in I (resp. last state in F )are 
alled a

essible (resp. 
oa

essible). Automaton A is trim if all statesare a

essible and 
oa

essible.Notation 1.5. 1) In 
ase M is a free monoid �� (with � a �nite alphabet),the behaviour of A is also 
alled the language asso
iated to A and denotedL(A).2) In 
ase M is a produ
t of free monoids ��1 � : : :� ��k (where all �i's are�nite alphabets), A is 
alled a �nite multitape (or k-tape) automaton andthe behaviour of A is also 
alled the relation asso
iated to A and denotedRel(A).The basi
 
ase M = �� of the following fundamental theorem is due toKleene, 1956 [15℄. The general statement for arbitrary monoids is due toElgot & Mezei, 1965 [6℄, who detailed the 
ase Q��i in [6℄ Prop.3.5, andmentioned the general result in a footnote p.50.Theorem 1.6 (Kleene's theorem). A subset ofM is rational if and onlyif it is the behaviour of some �nite automaton (resp. trim automaton).1.4 Multipli
itiesAs in the 
ase of languages, the set-theoreti
al operations de�ning Rat(Q��i )
an be augmented with a notion of multipli
ity so as to allow deep algebrai

onsiderations. This is done by repla
ing relations (whi
h may be viewed asfun
tions R : Q��i ! f0; 1g) by N-series over Q��i , i.e. multipli
ity fun
-tions s : Q��i ! N. The three set operations of union, produ
t and staron relations respe
tively 
orrespond to the following algebrai
 operations onseries: sum s+ t, Cau
hy produ
t st and Cau
hy star s�, wherest(u) = Xfs(v)t(w) : vw = ug (3)s�(u) = Xfsn(u) : n 2 Ng de�ned if s(�) = 0 (4)4



with the 
onvention that s0 is the neutral element for Cau
hy produ
t, i.e.su
h that s0(�) = 1 and s0(u) = 0 for u 6= �.That there are only �nitely many non zero terms in the above sums is insuredby easy 
onsiderations on the lengths of k-tuples of words.De�nition 1.7. The family of rational series over Q��i is the 
losure ofthe family of �nite relations by the operations of sum, Cau
hy produ
t andCau
hy star.De�nition 1.8. Let A be a �nite automaton over Q��i . We allow severaledges with the same label between any two states (in other words, edges havemultipli
ities). The A-multipli
ity series A-mult : Q��i ! N asso
iates toany multiword u the number of a

epting paths with label u (this numberis �nite due to the fa
t that no edge is labelled �).The 
ounterpart to Kleene's theorem 1.6 is due to S
h�utzenberger, 1961[30℄ for the basi
 
ase ��. The extension to Q��i is easy and folklore.Theorem 1.9 (Kleene-S
h�utzenberger's theorem). Rational series areexa
tly the multipli
ity series of �nite automata (resp. trim and normal au-tomata).Remark 1.10. In parti
ular, a relation R � Q��i is rational if and only if itis the support supp(s) of some rational series s, wheresupp(s) = fu : s(u) 6= 0g1.5 Normalizing automataFor future referen
e (
f. proof of Prop.1.21, Remarks 3.18,3.19) we makesome simple observations about normalization of automata over Q��i .De�nition 1.11. Let A be an automaton over Q��i .1) A is quasi-normal if all labels of transitions have depth 1 (
f. Def.1.1)(i.e. if u = (u1; : : : ; uk) is a label then supfju1j; : : : ; jukjg = 1, whi
h meansthat ea
h ui is a letter or is � and that some ui is a letter).2) A is normal if all labels of transitions have length 1 (
f. Def.1.1). (i.e.if u = (u1; : : : ; uk) is a label then ju1j + : : :+ jukj = 1, whi
h means thatamong the ui's exa
tly one is a letter and the other ones are �).The idea to normalize an automaton is to split a transition p ��! q intoa sequen
e of transitionsp �1�! (p; �1) �2�! (p; �1�2) : : : �m�1�! (p; �1 : : :�m�1) �m�! q (5)5



following a de
omposition � = �1 : : :�m.Notation 1.12. If u is a word and u = (u1; : : : ; uk) a multiword, we letlettert(u) = IF 1 � j � juj THEN the t-th letter of u ELSE �lettert(u) = (lettert(u1); : : : ; lettert(uk))letterit(u) = (�; : : : ; �; lettert(ui); �; : : : ; �)We 
onsider two de
ompositions of u, where m = depth(u):u = letter1(u) : : : letterm(u) (6)u = letter11(u1) : : : letter1ju1j(u1) : : : letterk1(uk) : : : letterkjuk j(uk) (7)De�nition 1.13. 1) We let QuasiNormal(A) be the automaton obtainedfrom A by splitting any A-transition p ��! q as shown in equation (5) abovefollowing the de
omposition of � given by equation (6) above.This introdu
es new states(t; letter1(�) : : : lettert(�))for 1 � t < depth(�). Noti
e that some of these states may 
ome fromseveral transitions with origin p.2) We let Normal(A) be the automaton obtained from A by splitting anyA-transition as shown in equation (5) above following the de
omposition of� given by equation (7) above.This introdu
es new states(p; (�1; : : : ; �j; �; : : : ; �))(p; (�1; : : : ; �j ; letter1(�j+1) : : : lettert(�j+1); �; : : : ; �))for 1 � j < k and 1 � t < j�j+1j. Noti
e that some of these states may
ome from several transitions with origin p.Proposition 1.14. Normal(A) (resp. QuasiNormal(A)) is a normal (resp.quasi-normal) automaton whi
h has the same behaviour and multipli
ity se-ries (
f. x1.4) as A.1.6 Multimorphisms and Nivat's theoremRational relations overQ��i 
an be given still another 
hara
terization usingusual rational languages and morphisms from some monoid �� to the monoidQ��i . This is due to M. Nivat, 1968 [19℄. Observe that a morphism � :�� ! Q��i is a tuple of morphisms ('i : �� ! ��i )i=1;::: ;k. When
e thename multimorphism. 6



De�nition 1.15. Let ' : �� ! �� be a morphism and � = ('i : �� !��i )i=1;::: ;k be a multimorphism.1) ' is alphabeti
al (resp. stri
t alphabeti
al) if j'(a)j � 1 (resp. j'(a)j = 1)for all a 2 �. � is alphabeti
al (resp. stri
t alphabeti
al) if so are all 'i's.2) ' (resp. �) is proper if '(a) 6= � (resp. �(a) 6= �) for all a 2 �.Theorem 1.16 (Nivat's theorem [19℄). A relation R � Q��i is rationalif and only if R = �(L) where L � �� is rational and � : �� ! Q��i is amultimorphism (resp. stri
t alphabeti
al multimorphism).1.7 Read-only One-way Turing Ma
hinesThe following material will be needed for the modelization of deterministi
rational relations in x3.3.As said in x1.3, the referen
e model for multitape automaton is the labelledgraph model of De�nition 1.4. However, as pointed by Fis
her & Rosenberg,1968 [7℄ p.90{91, the basi
 intuition for multitape automaton remains that ofnon deterministi
 Read-only One-way multitape Turing ma
hine (ROTM)with exa
tly one head per tape.De�nition 1.17. An ROTM is a non deterministi
 Turing ma
hine su
hthat the symbols on the tapes are not modi�ed and there is no ba
kwardmove and every transition moves at least one head. Thus,i) the ma
hine starts in any initial state,ii) a transition step depends (non deterministi
ally) on the state of thema
hine and on the letters (or the blank symbol B lying on the right of theinputs) read by the k heads on the k tapes,iii) a transition step 
hanges state and moves forward some heads (pos-sibly none),iv) the ma
hine stops when it enters a halting state,v) halting states are of two types: a

epting or reje
ting,vi) a 
omputation is a

epting if it enters an a

epting halting state.It is 
onvenient to introdu
e a variant of the ROTM whi
h we shall 
allmodi�ed ROTM 's.De�nition 1.18. A modi�ed ROTM behaves a

ording to i, ii of Def.1.17and toiiibis) a transition step 
hanges state and moves forward at least onehead (possibly several heads),ivbis) a head whi
h reads the blank symbol B does not move and the7



ma
hine stops when all heads read the blank symbol B,vbis) states are of two types: �nal and non �nal,vibis) a 
omputation is a

epting if its last state is �nal.Formally, a modi�ed ROTM is a tupleT = hQT ;�1; : : : ;�k; ÆT ; IT ; FT iwith ÆT � Q�Q(�i [ fBg)�Q� f0; 1gkA tuple (q; a; r;m) in ÆT is interpreted as follows: q; r are the states beforeand after the transition, the k heads read a and move a

ording to m.The following is folklore.Proposition 1.19. A relation is 
omputable by an ROTM (resp. deter-ministi
, resp. unambiguous ROTM) if and only if it is 
omputable by amodi�ed ROTM (resp. deterministi
, resp. unambiguous modi�ed ROTM).Proof. 1) ROTM ) modi�ed ROTM .Get rid of �-transitions (i.e. transitions whi
h move no head) in the standardway:�) First, iteratively add new transitions as follows: if (p; a; q; 0); (q; a; r;m)are transitions then add transition (p; a; r;m),�) Then suppress all �-transitions.Now, for
e the ma
hine to read entirely its input: if q is a halting state thenadd all transitions (q; a; q;m) wheremi = IF ai = B THEN 0 ELSE 1De
lare as �nal states all a

epting halting states and all states from whi
hone 
an a

ess an a

epting halting state by a sequen
e of transitions reading(B; : : : ; B).It is easy to 
he
k that these modi�
ations transform an ROTM into amodi�ed ROTM 
omputing the same relation.Moreover, this transformation preserves determinism and unambiguity.But it 
an not preserve multipli
ities:- all multipli
ities are ne
essarily �nite with modi�ed ROTM 's,- in�nite multipli
ities are possible with ROTM 's sin
e �-transitions andtransitions reading (B; : : : ; B) 
an 
reate loops.2) modi�ed ROTM ) ROTM .To every state p asso
iate a new state phalt and add transitions(p; (B; : : : ; B); phalt; 0)De
lare as a

epting (resp. reje
ting) halting states those states phalt su
hthat p is �nal (resp. non �nal). 28



It is also well-known that the ROTM and modi�ed ROTM models areequivalent to the labelled graph automaton model (Fisher & Rosenberg,1968 [7℄).Remark 1.20. For an ROTM (as for any modi�ed ROTM or Turing ma-
hine), an o

urren
e of a symbol in an input on some tape is read againand again through su

essive transitions while there is no move of the headof that tape. The labelled graph automaton model 
an thus be viewed as avery smooth normalization of the ROTM model in whi
h ea
h o

urren
eof a symbol of ea
h input is read only on
e.Proposition 1.21. A relation is rational if and only if it is 
omputed by amodi�ed ROTM . This is also true when multipli
ities are 
onsidered.Proof. 1) automaton ) modi�ed ROTMGoing from an automaton A to a modi�ed ROTM is quite easy and 
an bedone as follows:i) Quasi-normalize A as in De�nition 1.13,ii) A quasi-normal automaton 
an dire
tly be interpreted as a modi�edROTM .2) modi�ed ROTM ) automatonThe passage from a modi�ed ROTM to an automaton requires some 
are.As we shall need it for the proof of Thm.3.17, we detail the 
onstru
tion inDef.1.22. It is easy to 
he
k that this 
onstru
tion leads to a quasi-normalautomaton A whi
h 
omputes the same relation as T and also the samemultipli
ity series.De�nition 1.22. Let T = hQT ;�1; : : : ;�k; ÆT ; IT ; FT i be a modi�ed ROTM .We de�ne an automaton A = hQA;Q��i ; ÆA; IA; FAi as follows:i) QA = QT �Q(�i [ fB; newg)ii) IA = I �Qfnewg , FA = FT �QfB; newgiii) ÆA = St2ÆT Trans(t)where if t = (q; a; r;m) 2 ÆT then Trans(t) is the following family of tran-sitions of A :f((q; �); �; (r; �)) : for some i = 1; : : : ; k �i = newand for all i = 1; : : : ; k�i 2 fai; newg and (ai = B ) �i = B) and�i = IF (�i = new and ai 6= B) THEN ai ELSE �and �i = IF mi = 1 THEN new ELSE aig9



Thus, Trans(t) 
ontains 2l � 1 transitions where l is the number of i's su
hthat ai 6= B. Observe that this number is positive sin
e T halts when itreads (B; : : : ; B) (so that l � 1).Intuition: A letter whi
h has just been read in a T -
omputation is retainedin the state of the emulating A-
omputation. This allows A to read ea
hletter only on
e and not several times as T possibly does. Su
h an emulationof T by A 
annot be stati
 (state to state and transition to transition), ithas to be somewhat dynami
. This is why to a single T -transition t weasso
iate a family Trans(t) of A-transitions whi
h may emulate t. The i-th
omponent of the label of an A transition is non empty if and only if thistransition emulates a T transition in whi
h the symbol on tape i is read forthe �rst time and is not the blank end-marker (i.e., either this is the �rsttransition or in the pre
eding transition, there has been a move on tape i).Thus, in a state (q; �) of A we have �i = new if this state is initial or if itemulates a T -state obtained after a T -transition whi
h makes a move ontape i. Else, �i is the symbol whi
h was read and will again be read by T .Remark 1.23. If the modi�ed ROTM T moves exa
tly one head per tran-sition then all labels of A-transitions have length 1 and A is a normal au-tomaton.1.8 In-between automata and ROTM 's: ROTM transdu
ersThe notion of (k; h)-ROTM transdu
er is obtained by adding to the k inputtapes of an ROTM a family of h output tapes with alphabets �1; : : : ;�h:T = hQT ;�1; : : : ;�k; ÆT ; IT ; FT ;�1; : : : ;�h; �T iwhere �T � Q� ((�1 [ fBg)� : : :� (�k [ fBg))� (�1 � : : :��h).Now, k-tape ROTM 's 
an be viewed as (k; 0)-ROTM transdu
ers whilelabelled graph k-tape automata 
an be viewed as (0; k)-ROTM transdu
ers.From this point of view, automata appear as pure output ma
hines with noinput.1.9 Tally rational relationsTally relations are relations over unary alphabets. Via an obvious bije
tivemap, they 
orrespond to relations over N. A 
hara
terization as latti
esin Nk was obtained by R.J. Parikh, 1961 [21℄, reprinted in Parikh, 1966[22℄ (see also Goldstine, 1977 [10℄). Another 
hara
terization via Presburgerarithmeti
 was developed by Ginsburg & Spanier, 1966 [9℄.10



De�nition 1.24. A relation R � Nk is linear if there is a �nite sequen
eu0; : : : ; un of elements of Nk su
h thatR = u0 + u1N+ : : :+ unN= fu0 + x1u1 + : : :+ xnun : x1; : : : ; xn 2 Ng (8)A relation is semi-linear if it is the union of �nitely many linear relations.Theorem 1.25. 1) [21℄ Tally rational relations are exa
tly the semilinearrelations and [9℄ are 
losed under boolean operations and proje
tions.2) [9℄ Let R be a tally relation. The following 
onditions are equivalent:i) R is rationalii) R is de�nable in the stru
ture hN;=;+i (i.e. Presburger arithmeti
)iii) R is de�nable in the stru
ture hN;=;+i by a �01 formulaSin
e Presburger arithmeti
 is de
idable ([25℄), this gives a tool to getde
idability results about tally rational relations. For instan
e,Corollary 1.26. There is an algorithm to de
ide whether two tally rationalrelations are disjoint.A simple argument allows to extend this last result to the 
ase of relationswith at most one non unary 
omponent.Corollary 1.27. There is an algorithm to de
ide whether two rational re-lations with at most one non unary 
omponent are disjoint.Proof. Let R1; R2 be rational relations in
luded in �� � (f0g�)k and letR = f(v; w) 2 (f0g�)2k : 9u 2 �� ((u; v) 2 R1 ^ (u; w) 2 R2)gbe the 
omposition of R1; R2 along their �� 
omponent. Clearly, R1; R2 aredisjoint if and only if R and the diagonal relationDiagk = f(v; v) 2 (f0g�)2k : v) 2 (f0g�)kgare disjoint. Now, R and Diagk are tally rational relations and automata to
ompute these relations 
an be polynomial time de�ned from automata forR1; R2. This gives a polynomial time redu
tion of the disjointness problemfor rational (k+ 1)-ary relations with at most one non unary 
omponent tothe disjointness problem for tally 2k-ary rational relations. 2Remark 1.28. 1) The above result is also an easy appli
ation of the analogresult (due to Ibarra, 1978, [13℄, Theorem 3.1 p. 124) about �nite-turnmulti
ounter ma
hines, i.e. one-tape automata (over some non ne
essarilyunary alphabet) with k 
ounters making at most r alternations betweenpush and pop modes for some �xed r (all 
ounters being initially empty).11



Cf. the proof of Corollary 1.31.2) In 
ase at least two 
omponents are non unary, the disjointness problemis unde
idable (Rabin & S
ott, 1959 [26℄, 
f. also the proof of Theorem 2.4below).Using equation 8, the disjointness problem for k-ary tally rational rela-tions 
an be related to linear programming with non negative integers in-volving systems of k linear equations. Su
h systems with a �xed number ofequations are polynomial time solvable (H.W. Lenstra, 1983 [16℄, 
f. also A.S
hrijver's book [29℄, Cor.18.7 p.260). Unfortunately, the passage from theautomaton to a semi-linear representation is a priori exponentially 
omplex.Thus, it is not possible to dire
tly apply Lenstra's theorem in order to geta polynomial time algorithm in Corollary 1.26. Nevertheless, as proved byGurari & Ibarra, 1981, [11℄, this 
an be a
hieved via an argument whi
huses known sharp bounds to integral solutions of linear systems (Borosh &Treybig, 1976, [3℄, von zur Gathen & Sieveking, 1978, [31℄).As in Ibarra [13℄, the result proved by Gurari & Ibarra, 1981, [11℄ (Corol-lary 1 p. 224), deals with �nite-turn multi
ounter ma
hines (
f. Remark1.28).Theorem 1.29 (Gurari & Ibarra, 1981, [11℄). For �xed k, there is apolynomial time algorithm to de
ide whether two �nite-turn multi
ounterma
hines 
ompute disjoint languages.Remark 1.30. However, the degree of the polynomial bound in
reases withk. A simple polynomial time redu
tion leads to the following improvementof Corollary 1.27Corollary 1.31. For �xed k, there is a polynomial time algorithm to de
idewhether two (k+1)-tapes automata over k unary alphabets and one possiblynon unary alphabet 
ompute disjoint rational relations.Proof. A (k+1)-tape automaton A over k unary alphabets and one possiblynon unary alphabet 
an be emulated by a �nite-turn 2k-
ounter ma
hine asfollows:i) Code the k+1 inputs 0n1 ; 0n2 ; : : : ; 0nk ; u as a binary input 0n110n21 : : :10nk1u.ii) 
onsider the 1-turn k-
ounter ma
hine M whi
h �rst pushes the �rst kblo
ks of zeros 0n1 ; 0n2 ; : : : ; 0nk of its input into the k 
ounters of M, thenemulates A on inputs 0n1 ; 0n2 ; : : : ; 0nk ; u so that a move on the i-th tape ofA be
omes a pop on the i-th 
ounter of M.12



This emulation is 
learly polynomial time 
omputable and gives a polyno-mial time redu
tion of the asso
iated disjointness problems. 2.2 Modelization of unambiguous rational relationsThis se
tion reviews known notions and fa
ts and proves new polynomialtime de
idability results for diverse problems about ambiguity in 
ase there isat most one non unary alphabet (
f. Cor.2.6). It also stresses analogies withthe material we are going to develop for the modelization of determinism inx3.2.1 Unambiguous automata and relationsDe�nition 2.1. 1) An automaton is unambiguous if for every input thereexists at most one a

epting run (but there 
an be many non a

eptingruns), i.e. the asso
iated multipli
ity series (
f. Def.1.8) is f0; 1g-valued.2) A rational relation is unambiguous if it is a

epted by some unambiguousautomaton.Example 2.2. Two unambiguous (but non deterministi
) relations:1) The suÆx relation for words on a non unary alphabet �.0 1the (a; �)'s the (a; a)'sthe (a; a)'s2) R = f(0m; 0n) : m � n � 2mg. To get an unambiguous automaton forR, observe that every pair in R 
an be written in a unique way in the form(0p+q; 0p+2q). 0 1(0; 0) (0; 00)(0; 0)Rational relations whi
h 
annot be a

epted by unambiguous automataare 
alled inherently ambiguous. The standard example is analog to thestandard inherently ambiguous 
ontext-free language:f(0m1n; 0p) : p = m or p = ng13



However, Eilenberg and S
h�utzenberger, 1969 [5℄ proved the followingtheorem.Theorem 2.3 ([5℄). Every tally rational relation is unambiguous.2.2 De
idability of ambiguity for automataAmbiguity does not 
orrespond to a simple property of ma
hines. In thegeneral 
ase, this is an unde
idable property.Theorem 2.4 (Rabin & S
ott, 1959 [26℄). Let k � 2 and suppose thatat least two among the k alphabets �1; : : : ;�k are non unary. Then the
lass of unambiguous automata is not re
ursive. It is, in fa
t, �01-
omplete.Proof. Rabin & S
ott [26℄ really proved that the disjointness problem isunde
idable, but their proof applies with no 
hange to the ambiguity prob-lem. We brie
y re
all their argument. The Post Corresponden
e Problemfor m sequen
es (PCPm) is the 
lass of pairs of homomorphisms ';  :f1; : : : ; mg� ! f0; 1g� su
h that there exists u 6= � satisfying '(u) =  (u).Now, let A' = hfq0; q1g; Æ'; fq0g; fq1gi whereÆ = f(q; i; '(i); q1) : q 2 fq0; q1g ; i 2 f1; : : : ; mgbe the obvious 2-tape automaton whi
h 
omputes the relationR' = f(u; '(u)) : u 2 f1; : : : ; mg� ; u 6= �g.Observe that A' is unambiguous (even super-deterministi
 automata, 
f.Def.3.1). It is 
lear that the union automaton A' [A is ambiguous if andonly if (';  ) 2 PCPm. This gives a re
ursive redu
tion (in fa
t polynomialtime redu
tion) of PCPm into the 
lass of ambiguous automata on alpha-bets f1; : : : ; mg; f0; 1g.It is known that PCPm is not re
ursive and is �01-
omplete for largem (Post,1946 [24℄), even for m = 7 (Matiyasevi
h & Senizergues, 1996 [17℄). Thisproves the theorem for the 
ase of alphabets f1; : : : ; mg; f0; 1g. Standard
oding transfers the result to any �nite sequen
e of alphabets with at leasttwo non unary alphabets. 2However, when at most one alphabet is non unary, unambiguous au-tomata form a re
ursive 
lass.First, re
all the notion of truth-table redu
ibility (
f. standard textbooks onre
ursion theory, [27℄ p.109{110, [20℄ p.268). A 
lass X � �� is truth-tableredu
ible to Y � �� if there exists a re
ursive fun
tion � : �� ! Pfin(��)(where Pfin(��) is the set of �nite subsets of ��) su
h that8u (u 2 X , �(u) � Y )14



X is polynomially truth-table redu
ible to Y if the above � is polynomial time
omputable (in parti
ular, the number of words in �(u) and their lengthsare bounded by a polynomial in juj).Proposition 2.5. Fix alphabets �1; : : : ;�k. The 
lass of unambiguous au-tomata is polynomially truth-table redu
ible to the 
lass of pairs of automata
omputing disjoint relations.Proof. Suppose that A is a trim automaton (
f. Def.1.4, point 4). Then Ais ambiguous if and only if there exists two distin
t paths having the samelabel, starting in the same state but having di�erent �rst transitions.Let's denote by Aq the automaton A with q as (unique) initial state. If(p; �; q) is a transition of A, let's denote A(p;�;q) the automaton obtainedfrom A by adding a new state pbis as the (unique) initial state and a newtransition (pbis; �; q). It is 
lear that Rel(A(p;�;q)) = � Rel(Aq).Using these notations, A is ambiguous if and only if there exists two dis-tin
t transitions (p; �; q); (p; �; r) with the same origin su
h that � Rel(Aq) \� Rel(Ar) 6= ;.Thus, A is unambiguous if and only if Rel(A(p;�;q)) \ Rel(A(p;�;r)) = ; forall pairs (p; �; q); (p; �; r) of distin
t transitions with the same origin.This gives a polynomial time truth-table redu
tion of the 
lass of unambigu-ous automata to the 
lass of pairs of automata 
omputing disjoint relations.2 From Prop.2.5 and Cor.1.31 we getCorollary 2.6. If there is at most one non unary alphabet then the 
lass ofunambiguous automata is polynomial time 
omputable.2.3 Unambiguous multimorphismsThe analog of Nivat's theorem 1.16 relative to unambiguous relations holds.Theorem 2.7. A relation R �Q��i is unambiguous rational if and only ifR = �(L) where L � �� is rational and � : �� ! Q��i is a multimorphism(resp. stri
t alphabeti
al multimorphism) whi
h is inje
tive on L.Proof. 1) Let L � �� be 
omputed by AL and � : �� ! Q��i be a mul-timorphism. A simple non deterministi
 automaton RA;� whi
h 
omputes�(L) a
ts as follows : it guesses the su

essive letters of a word w 2 ��,simulates AL to 
he
k that w 2 L and 
ompares �(w) to the input.If the restri
tion of � to L is inje
tive and if AL is unambiguous (whi
h wemay suppose without loss of generality) then the above automaton RA;� is15




learly unambiguous. This proves that �(L) is unambiguous.2) Now, le R be a rational relation 
omputed by a k-tape automaton A. LetÆA � QA � Q��i � QA be the �nite set of transitions of A. ConsideringÆA as an alphabet �, automaton A 
an be viewed as a 1-tape automaton
omputing a language L � ��. Also, the label fun
tion (q; u; r) 7! u from �into Q��i has a unique extension to a multimorphism � : �� ! Q��i . It is
lear that �(L) = R.Clearly, A is unambiguous if and only if the restri
tion of � to L is inje
tive.Lastly, observe that if A is normal (whi
h 
an be supposed without loss ofgenerality) then � is stri
tly alphabeti
al. 2As 
an be expe
ted, the answer to the de
ision problem relative to theabove 
hara
terization is mu
h the same as in Cor.2.6. However, this answeralso depends on the 
ardinality of the sour
e alphabet � of L and �.Proposition 2.8. 1) If at least two of the alphabets �i's are non unarytheni) There is a �nite alphabet � and a rational language L � �� su
h thatthe family of multimorphisms � : �� ! Q��i whi
h are inje
tive on L is�01-
omplete hen
e unde
idable.ii) There is a stri
t alphabeti
al multimorphism � : f0; 1; 2; 3g�! Q��isu
h that the family of rational languages on whi
h � inje
tive on L is �01-
omplete hen
e unde
idable.2) If � has at most 3 letters then there is a polynomial time algorithm tode
ide whether an alphabeti
al multimorphism � : �� ! Q��i is inje
tiveon a rational language L � ��.3) If there is at most one non unary alphabet then there is a polynomial timealgorithm to de
ide whether a multimorphism � : �� ! Q��i is inje
tive ona rational language L � ��.Remark 2.9. 1) Point 1i) 
annot be improved with a restri
tion to alpha-beti
al multimorphisms sin
e for a �xed �nite � there are �nitely manyalphabeti
al multimorphisms � : �� ! Q��i .2) The proof of point 1i) (together with the best known bound m = 7 forthe unde
idability of PCPm, [17℄) leads to an alphabet � with 14 symbols.We do not know what is the least possible 
ardinality of �.Proof. 1) It is suÆ
ient to 
onsider the 
ase k = 2 and �1 = �2 = f0; 1g.We keep the notations of the proof of Thm.2.4.i) Set � = f1; : : : ; 2mg and L = f1; : : : ; mg� [ fm + 1; : : : ; 2mg�. Let16



�'; : �� ! f0; 1g�� f0; 1g� be the multimorphism su
h that�'; (i) = IF 1 � i � m THEN (0i1; '(i)) ELSE (0i�m1;  (i))It is 
lear that �'; is inje
tive on L if and only if (';  ) =2 PCPm. Thislast property is �01-
omplete for m � 7 ([17℄, 
f. proof of Thm.thm:unamb-unde
).ii) Let � : f0; 1; 2; 3g� ! Q��i be the stri
t alphabeti
al multimorphismsu
h that�(0) = (�; 0) ; �(1) = (�; 1) ; �(2) = (0; �) ; �(3) = (1; �)Set L'; = f2i3'(i) : i = 1; : : : ; mg [ f2i3 (i) : i = 1; : : : ; mg. It is
lear that �(2i3'(i)) = (0i1; '(i)) and �(2i3 (i)) = (0i1;  (i)). So that �is inje
tive on L'; if and only if (';  ) =2 PCPm.2) We �rst redu
e the problem of inje
tivity of multimorphisms on rationallanguages to the ambiguity problem of multitape automata.Let � : �� ! Q��i be a multimorphism, L � �� be a rational language andA be a deterministi
 (one-tape) automaton 
omputing L. De�ne A� as thenon deterministi
 k-tape automaton 
omputing �(L) as follows:- A� (non deterministi
ally) guesses a word u 2 ��,- A� 
ompares �(u) with its input � 2 Q��i ,- A� emulates A to 
he
k if u 2 L,- A� a

epts if u 2 L and �(u) = �.It is 
lear that the a

epting runs of A� on an input � 2 Q��i are in a 1-1
orresponden
e with the words u 2 ��1(�). Thus, � is inje
tive on L if andonly if A� is unambiguous.A priori, the alphabets of the k tapes of A� are the �i's. Of 
ourse, one 
anredu
e the i-th alphabet �i to the subalphabet Xi formed by the letters ofthe i-th 
omponents of the multiwords in �(�).Now, suppose � : �� ! Q��i is alphabeti
al and let�i = f
 2 � : �(
) has a non empty i-th 
omponentgClearly Xi is the set of i-th 
omponents of �(�i).The �i's form a partition of � and (denoting ℄(X) the 
ardinality of a setX) we have ℄(Xi) � ℄(�i).Now, if � has at most 3 letters then there is at most one 
omponent ifor whi
h �i has more than one element. A fortiori, there is at most one
omponent i for whi
h Xi has more than one element. But this means thatA� has at most one non unary alphabet. So that Cor.1.31 allows to de
idein polynomial time if A� is unambiguous.3) Suppose now there is one non unary alphabet � and k unary alphabets.Let L � �� be a rational language and � = (';	) a multimorphism with' : �� ! ��, 	 : �� ! (f0g�)k. Set 17



T = f('(�);	(�);	(�)) : �; � 2 L ^ ('(�) = '(�) ^ � 6= �)g.Clearly, � is inje
tive on L if and only if the proje
tion of T on (f0g�)2k isdisjoint from the diagonal of (f0g�)k � (f0g�)k. To 
on
lude via Corollary1.31, it suÆ
es to prove that T is rational and 
onstru
t in polynomial timesome automaton for T .Now, the 
ondition � 6= � 
an be expressed as the disjun
tion of 
onditions:(i) � is a stri
t pre�x of �(ii) � is a stri
t pre�x of �(iii) � = �a� and � = �b� for some �; �; � 2 �� and a; b 2 � and a 6= bso that, with obvious notationsT = T< [ T> [ Sa;b2�;a 6=b Ta;bLet A be a one-tape deterministi
 automaton 
omputing L and denote Apand Lp (resp. Ap and Lp) the automaton A with p as the unique initial(resp. �nal) state and the language it 
omputes. We then haveT< = Sp2QA(';	;	)(Lp) (f�g � f�g �	(Lp \ ('�1(�) n f�g)))T> = Sp2QA(';	;	)(Lp) (f�g � 	(Lp \ ('�1(�) n f�g))� f�g)Ta;b = Sp2QA(';	;	)(Lp)Ep;a;bwhereEp;a;b = f('(au);	(au);	(bv)) : au; bv 2 Lp ^ '(au) = '(bv)gAll these sets are obviously rational, hen
e also T , and asso
iated automata
an easily be 
onstru
ted in polynomial time. 23 Modelization of deterministi
 rational relationsFor a detailed study of deterministi
 rational relations, we refer to Pelletier& Sakarovit
h, 1999 [23℄ and Sakarovit
h, 2001 [28℄. Here, we shall be 
on-
erned with the problem of modelization of determinism along the di�erentapproa
hes to rational relations des
ribed in x1.3.1 End-markers and super-deterministi
 automataThe obvious notion of deterministi
 ROTM leads to the natural 
lass ofdeterministi
 rational relations. Hen
e, we would like to de�ne a reasonablenotion of deterministi
 labelled graph automata leading to the same 
lass.However, from the very start of the theory (Rabin & S
ott, 1959 [26℄,p.85-86, Elgot & Mezei, 1965 [6℄, p.48, Fis
her & Rosenber, 1968[7℄, p.89),through its development (Bird, 1973 [2℄, Kinber, 1983 [14℄, Harju & Karhum�aki,1991, [12℄, : : : ), up to the most re
ent papers (Pelletier & Sakarovit
h, 1999[23℄ x2.2) , the notion of deterministi
 automata whi
h has been 
onsidered18



does not lead dire
tly to the 
lass of deterministi
 rational relations. A de-tour is made via auxiliary relations obtained by adding end-markers. Were
all this 
lassi
al de�nition (together with a variant in the vein of Def.3.8below).De�nition 3.1. Let A = hQ;Q��i ; E; I; F i be a multitape automaton.1) A is super-deterministi
 if it has a unique initial state and if the labels oftwo distin
t edges with a 
ommon origin are pre�x in
ompatible (i.e. haveno 
ommon extension).2) [Rabin & S
ott, 1959 [26℄℄ A is normal super-deterministi
 if if it has aunique initial state and if there is a partition (Q1; : : : ; Qk) of Q su
h thati) for all i 2 f1; : : : ; kg and for all p 2 Qi the label of any edge with origin phas all 
omponents empty but the i-th whi
h is a letter. In parti
ular, thesupport of the label is fig (
f. Def.1.12).ii) di�erent edges with origin p have di�erent labels.These notions are e�e
tive.Proposition 3.2. One 
an de
ide in polynomial time whether an automa-ton is super-deterministi
 or normal super-deterministi
.Remark 3.3. Super-deterministi
 automata are 
alled deterministi
 in theliterature. The reason why we depart from the standard terminology willbe 
lear from Def.3.8 and Thm.3.17 below.Remark 3.4. Exa
t polynomial 
omplexity in Prop.3.2 depends on the pa-rameters taken into a

ount for A (number of edges, number of nodes, outerdegree, i.e. maximum number of edges having a 
ommon origin) and thepresentation of the automaton (as a list of labelled edges or as a list of pairs
onsisting of a node and the list of labelled edges 
oming out of that node).This will apply as well to Prop.3.20 below.The folllowing simple fa
t insures that De�nition 3.1 is sound.Proposition 3.5. Let R � ��1 � : : :� ��k and let R$ be obtained by addingan end-marker $ to ea
h word in tuples of R.R is 
omputed by a deterministi
 ROTM if and only if R$ is the behaviourof a super-deterministi
 (resp. normal super-deterministi
) multitape au-tomaton.The reason for su
h a detour is due to a diÆ
ulty arising from 
ommuta-tion of multiwords having disjoint supports (
f. Def.1.12). This is illustratedby the following simple example. Let a; b be letters and 
onsider the relation19



R = f(a; �); (�; b)g. This relation is obviously ROTM deterministi
. How-ever, it is easy to see that it is not the behaviour of any super-deterministi
automaton. Whereas, R$ = f(a$; $); ($; b$)g is easy to 
ompute by a normalsuper-deterministi
 automaton: 0 1 2 3456 (a; �) ($; �) (�; $)($; �)(�; b)(�; $)Thus, despite the fa
t that multitape automata are always identi�edwith labelled graph automata, the modelization of determinism is still verymu
h reminis
ent of the ROTM model with the blank symbol appearing atthe right of ea
h input.3.2 What is a deterministi
 automaton?Nevertheless, there does exist some reasonable notion of deterministi
 la-belled graph automata whi
h dire
tly 
ompute deterministi
 rational rela-tions. As far as we know (and surprisingly as it may be), su
h notions seemto be original.Before entering the drier stu� of formal de�nitions, let's illustrate the intu-ition on an example.Example 3.6. The graph of the 
on
atenation fun
tion,f(u; v; w) : uv = wgis obviously ROTM deterministi
: �rst read (u; �; u) and then (�; v; v). It iseasy to see that it is not the behaviour of a super-deterministi
 automaton(argue as above with (a; �; a) and (�; a; a) instead of R = f(a; �); (�; b)g).Let's look at diverse automata whi
h 
ompute it.1) First, two automata whi
h 
an in no way be deterministi
.0 1the (a; �; a)'s the (�; a; a)'sthe (a; �; a)'s 0 1the (a; �; a)'s the (�; ab; ab)'sthe (�; a; a)'sthe (�; ab; ab)'sThe �rst one is 
learly ambiguous on every triple (u; �; u) su
h that u 6= �,hen
e surely non deterministi
.The se
ond one is unambiguous. However, to de
ide whi
h transition is theright one to go from state 0 to state 1, one has to know whether jvj is evenor odd, and this is known only when v is 
ompletely read. So, there is noway for determinism. 20



2) Now, an automaton D1 whi
h is not super-deterministi
 be
ause thereare transitions 0 (a;�;a)�! 0 and 0 (�;a;a)�! 1 with pre�x 
ompatible labels.D10 1the (a; �; a)'s the (�; a; a)'sthe (�; a; a)'sHowever, the �rst transition reads an a on tape 1 whereas the se
ond doesnot and leads to a state from whi
h it is no more possible to read anythingon tape 1 (we shall 
all su
h a state an 1-end). Thus, there is no problem tode
ide whi
h transition is the right one. So, we shall 
onsider this automatonas deterministi
. The same with the following normalized versions D2;D3(whi
h have 2 + 3j�j states): D200a 2a 11a(�; �; a) (�; a; �)(�; �; a) (a; �; �) (�; �; a) (�; a; �)D300a 2a 11a(�; �; a) (�; a; �)(�; �; a)(a; �; �) (�; �; a) (�; a; �)3) Now, automata D4;D5 whi
h are not super-deterministi
 for two reasons:i) There are transitions with pre�x 
ompatible labels.ii) There are several initial states.D4 D50 1 0 1 2(a; �; a) (�; a; a) (a; �; a) (�; a; a)(a; �; a)(a; �; a) (�; a; a)Let's 
onsider the �rst automaton.As for i), transitions 0 (a;�;a)�! 0 and 0 (a;�;a)�! 1 have the same label. However,the se
ond one leads to a state (namely 1) from whi
h it is no more possible21



to read anything on tape 1. Whereas, from the �rst one, one is for
ed toread something on tape 1 in order to go to a �nal state. Thus, there is noproblem to de
ide whi
h transition is the right one.As for ii), a similar argument does work. If we start at state 0, we arefor
ed to read something on tape 1 in order to go to a �nal state. Whereas,if we start at state 1, then nothing 
an be read on tape 1. Thus, there is noproblem to de
ide whi
h initial stateis the right one to start with.Let's now 
onsider the se
ond automaton.As for i) argue as with automaton of point 2 above. As for ii), if we startfrom state 2 then nothing 
an be read on tape 2. Whereas, from state 0 weare for
ed to read tape 2 in order to go to a �nal state. So, again, there isno problem to de
ide whi
h initial state to start with.Thus, we shall also 
onsider these automata as deterministi
.Con
lusion. From the above examples, we see that the pre�x in
ompatibil-ity of the labels of di�erent transitions from a given state is not a 
onditioninherent to determinism. Also, the uni
ity of the initial state is no moreinherent to determinism, it's a mere normalization 
ondition.Remark 3.7. There is still another reason whi
h 
ould be 
onsidered to getdeterminism. Let say that a state q is i-
onsistent if the label of every pathfrom q to a �nal state has a non empty i-th 
omponent.Suppose q is i-
onsistent and r is an i-end. If p ��! q and p ��! s are twotransitions then there is no problem to 
hoose between these two transitions:just look ahead at the i-th 
omponent of the input.However, we shall not retain this type of deterministi
 
hara
ter. The reasonis that it does not 
arry to subautomata, 
ontrarily to all above deterministi

hara
ters (
f. Prop.3.13 below).3.3 Strongly deterministi
 and n-deterministi
 automataNow, we 
ome to the desired de�nitions and introdu
e two types of deter-ministi
 multitape automata.De�nition 3.8 (Strong determinism). 1) A state p is an i-end (1 � i �k) for a k-tape automaton A if any path from p to a state in FA has anempty i-th 
omponent.2) A is strong deterministi
 if it has a unique initial state and if for everypair of distin
t transitions (p; �; q), (p; �; r) with the same origin, at leastone of the following 
onditions hold:i) � and � are pre�x in
ompatible 22



ii) q is an i-end and �(i) is a stri
t pre�x of �(i) for some i 2 f1; : : : ; kgiii) r is an i-end and �(i) is a stri
t pre�x of �(i) for some i 2 f1; : : : ; kg3) A is normal strong deterministi
 if it is strong deterministi
 and normal(
f. Def.1.11).Remark 3.9. A super-deterministi
 automaton (
f. Def.refdef:
lassi
det) isobviously strong deterministi
.Notation 3.10. 1) If n 2 N[ f1g, u is a word, u = (u1; : : : ; uk) is a multi-word, we letmax(n; u) = max(n; juj) ; max(n; u) = (max(n; ju1j); : : : ;max(n; jukj))2) If p = (p1; : : : ; pk) 2 (N [ f1g)k and R a relation on words, we letn-Pre�x(u) = the pre�x of u with length min(n; juj)n-Pre�x(u) = (n-Pre�x(u1); : : : ; n-Pre�x(uk))n-Pre�x(R) = fn-Pre�x(u) : u 2 Rgp-Pre�x(u) = (p1-Pre�x(u1); : : : ; pk-Pre�x(uk))p-Pre�x(R) = fp-Pre�x(u) : u 2 RgDe�nition 3.11 (n-determinism). 1) A is n-deterministi
 if the follow-ing two 
onditions are satis�ed.i) If p; q are distin
t initial states thenn-Pre�x(Rel(Ap)) \ n-Pre�x(Rel(Aq)) = ;ii) If (p; �; q), (p; �; r) are distin
t transitions with the same origin thenmax(n; �; �)-Pre�x(�Rel(Aq)) \ max(n; �; �)-Pre�x(�Rel(Ar)) = ;In 
ase all labels of transitions of A have length � n (in parti
ular if n � 1and A is normal or quasi-normal, 
f. Def.1.11) then 
ondition ii) 
an beexpressed in a simpler form:iibis) n-Pre�x(�Rel(Aq)) \ n-Pre�x(�Rel(Ar)) = ;2) A is normal n-deterministi
 if it is n-deterministi
 and normal.Example 3.12. Let's review the deterministi
 
hara
ter of the automata in-trodu
ed in Example 3.6.Automaton D1 is strong deterministi
: (�; a; a)1 = � <prefix a = (a; �; a)1and state 1 is an 1-end.Similarly, automatonD3 is normal strong deterministi
: (�; �; a)1 = � <prefixa = (a; �; �)1 and state 2a is an 1-end.23



Automata D2;D4;D5 are not strong deterministi
:- there are two D2-transitions from state 0 with the same label (�; �; a),- there are two D4-transitions from state 0 with the same label (a; �; �),- D5 has two initial states 0 and 2.However, D2;D5are1�deterministi
andD5 is 4-deterministi
. (sin
e theseautomata are quasi-normal, 
ondition iibis is to be 
he
ked):(�; �; a)Rel((D2)0a)) = f(a1+m; a1+n; a2+m+n) : m;n 2 Ng(�; �; a)Rel((D2)2a)) = f(�; a1+n; a1+n) : n 2 Ngand the asso
iated 1-Pre�x relations are disjoint.(a; �; a)Rel((D4)0)) = f(a2+m; an; a2+m+n) : m;n 2 Ng(a; �; a)Rel((D4)1)) = f(a; an; a1+n) : n 2 Ngand the asso
iated 2-Pre�x relations are disjoint.Rel((D5)0)) = f(am; a1+n; a1+m+n) : m;n 2 NgRel((D5)2)) = f(a; �; a)gand the asso
iated 1-Pre�x relations are disjoint. Also,(a; �; a)Rel((D5)0)) = f(a1+m; a1+n; a2+m+n) : m;n 2Ng(�; a; a)Rel((D5)1)) = f(�; a1+n; a1+n) : n 2 Ngand the asso
iated 1-Pre�x relations are disjoint.It is easy to 
he
k that D4 is not 1-deterministi
.As announ
ed in Remark 3.7, we have the following property (whi
h isobvious from the de�nitions).Proposition 3.13. If an automaton is n-deterministi
 (resp. strong deter-ministi
) then so is the automaton obtained by suppressing any 
olle
tion ofnodes or edges.The following result is easy.Proposition 3.14. 1) For all n 2 NA is strong deterministi
 ) A is 0-deterministi
A is n-deterministi
 ) A is (n+ 1)-deterministi
2) The above impli
ations 
annot be reversed.24



Proof. Point 1 is straightforward. As for Point 2, the �rst impli
ation 
annotbe reversed sin
e a 0-deterministi
 automaton with two distin
t initial states
annot be strong deterministi
.We now deal with the se
ond impli
ation. For n = 0, observe that thefollowing automaton is 1-deterministi
 but not 0-deterministi
: the relations
omputed from the two initial states areRel(A0) = f(a; �)g ; Rel(A2) = f(�; b)gso that their 1-Pre�xes are distin
t but their 0-Pre�xes are equal.0 21 3(a; �) (�; b)For n � 1, 
onsider the following automaton A :012 3 4(a; �)(an�1
; b) (�; b) (and; �)We have (a; �)Rel(A1) = f(an
; b)g ; (�; b)Rel(A3) = f(and; b)gso that if 
 6= d then A is (n+ 1)-deterministi
 but not n-deterministi
.3.4 Ambiguity and 1-determinismThough straightforward, the following result is worth noti
ing.Proposition 3.15. 1) For all n 2 N, every n-deterministi
 automaton is1-deterministi
.2) An automaton A is 1-deterministi
 if and only if it is unambiguous.Remark 3.16. However, there are unambiguous automata whi
h are not n-deterministi
 for any n. For instan
e, the se
ond automaton given in point1 of Example 3.6.3.5 Deterministi
 automata 
ompute what is expe
tedTheorem 3.17. Let R be a relation. The following 
onditions are equiva-lent:i) For some n 2 N the relation R is the behaviour of some n-deterministi
automatonii) For all n 2 N the relation R is the behaviour of some normal n-deterministi
 automatoniii) R is the behaviour of some strong deterministi
 automaton.25



iv) R is the behaviour of some normal strong deterministi
 automaton.v) R is 
omputed by some deterministi
 ROTMvi) R is 
omputed by some modi�ed deterministi
 ROTMBefore 
oming to the proof, we observe the following fa
t.Remark 3.18. Normalization and quasi-normalization of automata (
f. Def.1.13) do not preserve neither strong determinism nor n-determinism. A
ounterexample is obtained by 
onsidering the following strongly determin-isti
 automaton A whi
h 
omputes f(a; b); (a; b
)g.01 2 3(a; b) (�; b
) (a; �)The asso
iated normalized and quasi-normalized automataAnl and Aqnl areas follows (where A;B stand for states (0; (a; �)); (0; (�; b))):01 2 3A B(a; �) (�; b)(�; b) (�; 
) (a; �)01 2 3B(a; b) (�; b) (�; 
) (a; �)Anl is not strongly deterministi
: the pair of transitions starting at state 0violates the 
ondition for strong determinism sin
e A is not a 2-end and Bis not a 1-end. Anl is not even 1-deterministi
 sin
e1-Pre�x((a; �)Rel(AnormalA )) = 1-Pre�x((�; b)Rel(AnormalB )) = f(a; b)gHowever, Anl is 2-deterministi
. All the same properties hold with Aqnl.Proof of Theorem 3.17. We shall prove impli
ations i ) vi, vi ) iii,vi ) iv. All other impli
ations follow from these ones and Propositions3.14, 1.19.i) vi Given an n-deterministi
 automaton A, we des
ribe a deterministi
ROTM T whi
h has the same behaviour. Let m be the maximum width oflabels of transitions of A. Then T a
ts as follows:�) Before emulating any A-transition, T reads its tapes so as to memorizeup to max(n;m) letters of ea
h one of the k inputs (an information it retainsin its state).�) When T has 
ompleted this memorization, it emulates a transition ofA (whi
h is ne
essarily unique, sin
e A is n-deterministi
), 
hanges statea

ordingly and forgets the portion of the memorized input 
orrespondingto the label of the simulated transition.26



vi ) iii Def.1.22 asso
iates to a modi�ed ROTM T a quasi-normal au-tomaton A whi
h 
omputes the same relation as T does (
f. Prop.1.21). Weshow that if T is a deterministi
 modi�ed ROTM then A is strong deter-ministi
.Sin
e T has a unique initial state so does A. Thus, the �rst 
ondition forstrong determinism is satis�ed.(A) ÆA is fun
tionali.e. two edges with the same origin (q; �) and label � are equal.In fa
t, suppose ((q; �); �; (r; �)) is an A-transition. Observe that there isa unique T -transition t = (q; a; r;m) su
h that ((q; �); �; (r; �)) 2 Trans(t).The reason is that a and m are determined as follows:ai = IF �i 6= new THEN �i ELSE (IF �i = � THEN B ELSE �i)(9)mi = IF �i = new THEN 1 ELSE 0 (10)Sin
e T is deterministi
, from q and a we get r and m. Combined withequation 9 and the de�nition of � from m, this proves that from q; �; � weget r and �, i.e. ÆA is fun
tional.(B) Any A-state (s; �) su
h that �i = B is 
learly an i-endConsider now two distin
t edges ((q; �); �; (r; �)) and ((q; �); �; (s; �)) out ofsome A-state (q; �).Due to (A), they must have distin
t labels: � 6= �. Suppose these distin
tlabels are pre�x 
ompatible and let i be su
h that j�ij > j�ij. Sin
e A isquasi-normal, this implies that �i = � and that �i 2 �i is a letter. Re
all�i = IF (�i = new and ai 6= B) THEN ai ELSE �so that, from �i 2 �i we get �i = new.Let t = (q; b; s;m) be su
h that ((q; �); �; (s; �)) 2 Trans(t). From �i = newand �i = � we get bi = B. Therefore T makes no move on tape i and mi = 0,when
e �i = bi = B. Using (B) we see that (s; �) is an i-end. Whi
h provesthe 
ondition for strong deterlminism of A.vi) iv The above automaton A is quasi-normal. To get a normal automa-ton, we argue as follows:- Normalize the ROTM so that it moves exa
tly one head per transition.Observe that the obvious way to do that does preserve determinism.- Use Remark 1.23 to 
on
lude that A is then normal. 2Remark 3.19. The dire
t way of normalizing a multitape automaton doesnot preserve neither n-determinism nor strong determinism (
f. Remark27



3.18). We 
an use the above 
onstru
tion to get a (rather tortuous) methodto normalize a deterministi
 automaton:1) Go from A to a deterministi
 modi�ed ROTM TM2) Transform TM to Atomi
(TM) so as there is exa
tly one move per tran-sition. This does preserve ROTM determinism.3) From Atomi
(TM) get A normal strong deterministi
 using the 
onstru
-tion given in the proof of Thm.3.17.3.6 De
idability of determinism for automataProposition 3.20. 1) The 
lass of strong deterministi
 automata is poly-nomial time de
idable (
f. Remark 3.4).2) Let expl-DET = f(n;A) : A is n-deterministi
g (where \expl" standsfor \expli
it"). Caution: n is to be 
onsidered as an obje
t of length n, i.e.it is written in unary.i) If k � 2 and there are at least two non unary alphabets then the 
lassexpl-DET is 
o-NP-
omplete.ii) If there is at most one non unary alphabet then the 
lass expl-DET ispolynomial time de
idable.Proof. 1) It is easy to devise a polynomial time algorithms to de
ide if astate is an i-end of A.2i) De
iding if the relations 
omputed by two automata have a 
ommonn-Pre�x is 
learly in NP. Hen
e the disjointness 
onditions i), ii) of Def.3.11for n-determinism lead to an obvious 
o-NP algorithm.Conversely, a straightforward adaptation of the proof of Thm.2.4 leads toa polynomial time redu
tion of the bounded Post Corresponden
e Prob-lem (whi
h is PCP in whi
h we want a solution u with length � n) tothe non-disjointness problem of the n-Pre�xes of relations 
omputed by �-nite super-deterministi
 automata. This last problem redu
es easily to the
omplement of the 
lass expl-DET . We 
on
lude using the well-known NP-
ompleteness of the bounded-PCP (
f. [8℄ p.228).2ii) An automaton A[n℄ 
omputing n-Pre�x(Rel(A)) is as follows:- QA[n℄ = QA � f0; 1; : : : ; ngk,- A[n℄ 
ounts the number of letters read on ea
h of the k 
omponents,- A[n℄ emulates A while all 
ounts are � n. Su
h an automaton 
an be
onstru
ted in polynomial time. Constru
t (as above) automata 
omputing- relations n-Pre�x(Rel(Ap)) where p is an initial state of A,- relations max(n; �; �)-Pre�x(�Rel(Ap)) where �; � are labels of transi-tions starting at p, 28



Using these automata (whi
h 
an be 
onstru
ted in polynomial time) andthe fa
t that at most one alphabet is non unary, we 
an apply Cor.1.31 to
he
k in polynomial time the disjointness of relations o

uring in 
onditionii) of Def.3.11 for n-determinism. 2However, for existentially quanti�ed n the problem is in general unde-
idable.Proposition 3.21. Let DET�1;::: ;�k = fA : 9n (A is n-deterministi
)g.1) Suppose k � 2 and there are at least two non binary alphabets. ThenDET�1;::: ;�k is �01-
omplete hen
e unde
idable.2) If there is at most one non unary alphabet then DET�1;::: ;�k is de
idable.Remark 3.22. We do not know the exa
t 
omplexity of the 
lassDET�1;::: ;�kin 
ase there is at most one non unary alphabet. It is bounded by that ofPresburger arithmeti
.Proof. of Prop. 3.21. 1) Let M be a deterministi
 Turing ma
hine withinput alphabet �, set of states Q and initial state q0. Sequen
es of in-stantaneous des
riptions (i.d.) of M 
an be 
oded as words in alphabet� = � [ Q [ f$g, where $ serves as a 
ag separating su

essive i.d.'s. If Iis an i.d. with non �nal state, we denote I+ the i.d. obtained from I withone M-transition.For ea
h u 2 �� we de�ne 2-tape automata Au;Bu as follows:i) Au 
omputes the relationf(q0u$I1$I2$ : : :$It ; I1$I2$ : : :$It) : the Ii's are i.d.'sg2 3 4(q0u$; �) the (a; a)'s the (a; a)'sthe (q; q)'s($; $)(The q's vary over QA, the a's vary over �).ii) Bu 
omputes the relationf(I0$I1$ : : :$It ; I+0 $I+1 $ : : :$I+t ) : the Ii's are non �nal i.d.'sg00 1the (a; a)'s the (a; a)'sT($; $)29



Labels in T are (bqa; rb
); (qa; r
); (qa; 
r) a

ording to the emulatedM-transition Æ(q; a) = (r; 
;�1) or (r; 
; 0) or (r; 
; 1)(where �1; 0; 1 mean \left move", \no move", \right move" and 
 is whatM writes in pla
e of a).It is 
lear that Au is super-deterministi
. Also, Bu is 0-deterministi
:- transitions starting at state 1 have in
ompatible labels,- transitions in T starting at state 0 have in
ompatible labels,- for transitions (0; (a; a); 0) and (0; �; 1) 2 T , the value max(0; (a; a); �)is 2 or 3 andmax(0; (a; a); �)-Pre�x((a; a)Rel(Bu0) \max(0; (a; a); �)-Pre�x(�Rel(Bu1) = ;Sin
e Rel(Au) [ Rel(Bu) = ; the union automaton Au [ Bu is always un-ambiguous. We now look under whi
h 
ondition Au [ Bu is n-deterministi
for some n.First, observe that 
ondition ii) in Def.3.11 is automati
ally satis�ed withn = 0.Condition i) in Def.3.11 is satis�ed for some n if and only there is a bound tothe depths of 
ommon pre�xes to a pair in Rel(Au) and a pair in Rel(Bu).Now, su
h 
ommon pre�xes are exa
tly the pre�xes of the pairs(q0u$I1$I2$ : : :$It ; I1$I2$ : : :$It)where the Ii's are the su

essive instantaneous 
on�gurations of the 
ompu-tation of M on input u.In parti
ular, there is a bound to their depths if and only if M halts oninput u. Thus, automaton Au [Bu is n-deterministi
 for some n if and onlyifM halts on input u (and the smallest su
h n is then the sum of the lengthsof the su

essive i.d.'s of the �nite M-
omputation on input u).Considering a universal Turing ma
hine M, we get a re
ursive redu
tion ofthe halting problem for M to the problem of determinism for automata.Hen
e the wanted unde
idability and also the �01-
ompleteness.2) In 
ase there is one non unary alphabet � and k unary alphabets, weredu
e to Presburger arithmeti
 as in the proof of Cor.1.27.Let's add an n-
omponent to the sets 
onsidered in 
onditions i), ii) ofDef.3.11. For initial states q; r this leads to de�neIq;r = f(w; s; n) : w 2 �� ^ s 2 (N)k ^ n 2 N^ (w; s) 2 n-Pre�x(Rel(Aq))^ (w; s) 2 n-Pre�x(Rel(Aq))gFor transitions (p; (u; �); q), (p; (v; �); r) the sole interesting 
ase is when p; qare pre�x 
omparable (otherwise 
ondition ii) is trivial). Thus, we restri
t30



to the 
ase u is a pre�x of v, i.e. v is of the form v = uu0. This leads tode�ne Sq;ru;u0 ;�;� = f(w; s; n) : w 2 �� ^ s 2 (N)k ^ n 2 N^ (w; s) 2 n-Pre�x((u; �)Rel(Aq))^ (w; s) 2 n-Pre�x((uu0; �)Rel(Ar))gHowever, these relations Iq;r; Sq;ru;u0;�;� are not rational. So we introdu
e vari-ants Jq;r; T q;ru;u0;�;� whi
h are rational:Jq;r = f(w; s; t;m; n) : w 2 �� ^ s; t 2 (N)k ^ m;n 2 N^ 9�; � 2 �� 9�; � 2 Nk^ (�; �) 2 Rel(Aq))^ (�; �) 2 Rel(Ar)^ (w; s) = m-Pre�x(�; �)^ (w; t) = n-Pre�x(�; �)gT q;ru;u0;�;� = f(w; s; t;m; n) : w 2 �� ^ s; t 2 (N)k ^ m;n 2 N^ 9�; � 2 �� 9�; � 2 Nk^ (�; �) 2 Rel(Aq))^ (�; �) 2 Rel(Ar)^ (w; s) = m-Pre�x(u�; ��)^ (w; t) = n-Pre�x(uu0�; ��)gClearly, Iq;r = f(w; s; n) : (w; s; s; n; n) 2 Jq;rgSq;ru;u0;�;� = f(w; s; n) : (w; s; s; n; n) 2 T q;ru;u0;�;�gLet Kq;r; U q;ru;u0;�;� be the proje
tions of Jq;r; T q;ru;u0;�;� parallel to the �� 
om-ponent.Now, A is deterministi
 if and only if there exists n su
h that for all initialstates p; q and all transitions (p; (u; �); q), (p; (uu0; �); r)f(w; s) : (w; s; n) 2 Iq;rg = ; ; f(w; s) : (w; s; n) 2 Sq;ru;u0;�;�g = ;i.e. 31



f(w; s) : (w; s; s; n; n) 2 Jq;rg = ; ; f(w; s) : (w; s; s; n; n) 2 T q;ru;u0 ;�;�g = ;This amounts to say9n 8s (s; s; n; n) =2 Kq;r ; 9n 8s (s; s; n; n) =2 U q;ru;u0 ;�;� (11)Sin
e relations Kq;r; U q;ru;u0;�;� are rational, they 
an be expressed in Pres-burger arithmeti
 (
f. Thm.1.25). Hen
e assertions (11) 
an be expressedin Presburger arithmeti
 and we get the wanted de
idability. 23.7 Deterministi
 multimorphismsThe tight relation between k-tape automata and multimorphisms (
f. point3 of the proof of Thm.2.7) leads to a natural notion of n-determinism andstrong determinism.De�nition 3.23. Let � : �� ! Q��i be a multimorphism and L � �� bea rational language.1) � is an i-end for a language X � �� if �(a)i = � for all letters a o

urringin some word in X (where �(x)i denotes the i-th 
omponent of �(x)).2) � is n-deterministi
 on L if for all words u 2 ��, for all distin
t lettersa; b 2 � if ua; ub are pre�xes of words in L thenn-Pre�x(f�(ax) : uax 2 Lg) \ n-Pre�x(f�(by) : uby 2 Lg) = ;3) � is strong deterministi
 on L if for all words u 2 ��, for all distin
tletters a; b 2 �, if ua; ub are pre�xes of words in L then at least one of thefollowing 
onditions holds:i) �(a);�(b) are pre�x-in
ompatible in Q��iii) �(a)i is a stri
t pre�x of �(b)i and � is an i-end for (ua)�1L.iii) �(b)i is a stri
t pre�x of �(a)i and � is an i-end for (ub)�1L.We 
an now state the deterministi
 version of Nivat's MultimorphismTheorem, the proof of whi
h is straightforward from the de�nitions.Theorem 3.24. A rational relation R � Q��i is n-deterministi
 (resp.strong deterministi
, resp. normal strong deterministi
) if and only if R =�(L) where L � �� is a rational language and � : �� ! Q��i is a propermultimorphism whi
h is n-deterministi
 on L (resp. strong deterministi
 onL, resp. strong deterministi
 on L and alphabeti
al multimorphism).As for the e�e
tiveness of the notion, results are analog to those ofProp.3.21, 3.20 (with similar proofs).32



Proposition 3.25. 1) Consider the 
lass of triples (n;A;�) su
h that A isa one-tape automaton on alphabet � and � : �� ! Q��i is a multimorphismwhi
h is n-deterministi
 on L(A). (Caution: n is to be 
onsidered as anobje
t of length n, i.e. it is written in unary).i) If k � 2 and there are at least two non unary alphabets then this 
lass is
o-NP-
omplete.ii) If there is at most one non unary alphabet then this 
lass is polynomialtime de
idable.2) Consider the 
lass of pairs (A;� su
h that A is a one-tape automaton onalphabet � and � : �� ! Q��i is a multimorphism whi
h is n-deterministi
on L(A) for some n.i) If k � 2 and there are at least two non unary alphabets then this 
lass is�01-
omplete hen
e not re
ursive.ii) If there is at most one non unary alphabet then this 
lass is re
ursiveRemark 3.26. As for the notion of deterministi
 automaton (
f. Rk.3.22),we do not know the exa
t 
omplexity in Point 2ii. It is bounded by that ofPresburger arithmeti
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