
Modelization of Deterministi Rational RelationsSerge Grigorie�LIAFA, Universit�e Paris 72, pl. Jussieu 75251 Paris Cedex 05 Franeseg�liafa.jussieu.frNovember 23, 2001AbstratThe de�nition of the lass of deterministi rational relations is fun-damentally based on the Read-only One-way Turingmahine approah.The notion of deterministi automata developed up to now is too strongand asks for an unnatural detour via end-markers to give all determin-isti rational relations (f. x3.1). We stress that several onditionsusually onsidered as related to determinism are mere normalizationsof determinism and are not inherent to the notion (f. x3.2). In thispaper, we introdue pertinent notions of deterministi labelled graphautomata (f. x3.3) whih avoid any use of end-markers: strong de-terministi, n-deterministi automata for n 2 N. These notions forman inreasing in�nite hierarhy of lasses of automata whih all leadto the same usual lass of deterministi rational relations. Moreover,the lass orresponding to the natural extension to the ase n =1 isexatly the lass of unambiguous automata .We also onsider Nivat's haraterization via multimorphisms ap-plied to rational languages and introdue a hierarhy of deterministiversions of multimorphisms.Properties of determinism and unambiguity are ompared. Thedeision problems for ambiguity or determinism relative to automataand multimorphisms are settled. Roughly, all problems are undeidablein ase of arity � 2 with at least two non binary alphabets, else theyare deidable, most being even polynomial time deidable.1
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De�nition 1.1. 1) The length and depth of a multiword u = (u1; : : : ; uk)are juj = ju1j+ : : :+ jumj (1)depth(u) = sup(ju1j; : : : ; jumj) (2)2) The support of a k-tuple u is Supp(u) = fi 2 f1; : : : ; kg j ui 6= �g.Remark 1.2. The set of multiwords with length 1 (i.e. multiwords with allomponents equal to � exept one whih is a letter) generates the monoidQ��i . In fat, it is the smallest (relative to set inlusion) set of generators.The set-theoretial de�nition of rational relations inluded in Q��i andthe assoiated mahine-like models (namely automata) are mere partiularases of notions de�ned in the general ontext of monoids. We reall thesenotions in the next subsetions and refer to the litterature for proofs ofTheorems (f. Eilenberg, 1974, [4℄, Berstel, 1979, [1℄, Sakarovith, 2001, [28℄II.1.3 Thm 1.1).1.2 Rational relations de�ned via set theoretial operationsDe�nition 1.3. 1) The produt operation on elements of a monoidM (withneutral element 1M) indues operations on subsets of M . If R and S aresubsets of M then the onatenation produt of R; S and the plus and starof R are the relationsRS = fxy j x 2 R and y 2 SgR+ = Sn�1Rn R� = f1Mg [R+2) The family Rat(M) of rational subsets of M is the losure of the familyof �nite relations by the operations of union, produt and star.1.3 Multitape automataThere are several mahine ounterparts for Rat(M). Though the historialmahine is the Read-only One-way multitape Turing Mahine (f.x1.7), thereferene mahine model is the labelled graph automaton introdued by JohnMyhill, 1957 [18℄.De�nition 1.4. 1) A �nite automatonA over a monoidM (with neutral el-ement 1M ) is a �nite direted graph A = hQ;M; Æ; I; F i labelled by elementsofM nf1Mg. Nodes and edges form the respetive sets Q and Æ � Q�M�Qand are also alled states and transitions. I and F are distinguished subsetsof Q alled initial states and �nal states.3



2) An A-path  is a �nite sequene of transitionsp0 a1�! p1 a2�! p2 : : :pn�1 an�! pnThe origin and end of the path  are p0 and pn. The label of  is the elementa1a2 : : : an of the monoid M . Case n = 0 orresponds to an empty path,with label 1M and p0 as both origin and end. Path  is suessful if its originis in I and its end is in F .3) The behaviour of A is the set of labels of suessful paths.4) States whih belong to some path with origin in I (resp. last state in F )are alled aessible (resp. oaessible). Automaton A is trim if all statesare aessible and oaessible.Notation 1.5. 1) In ase M is a free monoid �� (with � a �nite alphabet),the behaviour of A is also alled the language assoiated to A and denotedL(A).2) In ase M is a produt of free monoids ��1 � : : :� ��k (where all �i's are�nite alphabets), A is alled a �nite multitape (or k-tape) automaton andthe behaviour of A is also alled the relation assoiated to A and denotedRel(A).The basi ase M = �� of the following fundamental theorem is due toKleene, 1956 [15℄. The general statement for arbitrary monoids is due toElgot & Mezei, 1965 [6℄, who detailed the ase Q��i in [6℄ Prop.3.5, andmentioned the general result in a footnote p.50.Theorem 1.6 (Kleene's theorem). A subset ofM is rational if and onlyif it is the behaviour of some �nite automaton (resp. trim automaton).1.4 MultipliitiesAs in the ase of languages, the set-theoretial operations de�ning Rat(Q��i )an be augmented with a notion of multipliity so as to allow deep algebraionsiderations. This is done by replaing relations (whih may be viewed asfuntions R : Q��i ! f0; 1g) by N-series over Q��i , i.e. multipliity fun-tions s : Q��i ! N. The three set operations of union, produt and staron relations respetively orrespond to the following algebrai operations onseries: sum s+ t, Cauhy produt st and Cauhy star s�, wherest(u) = Xfs(v)t(w) : vw = ug (3)s�(u) = Xfsn(u) : n 2 Ng de�ned if s(�) = 0 (4)4



with the onvention that s0 is the neutral element for Cauhy produt, i.e.suh that s0(�) = 1 and s0(u) = 0 for u 6= �.That there are only �nitely many non zero terms in the above sums is insuredby easy onsiderations on the lengths of k-tuples of words.De�nition 1.7. The family of rational series over Q��i is the losure ofthe family of �nite relations by the operations of sum, Cauhy produt andCauhy star.De�nition 1.8. Let A be a �nite automaton over Q��i . We allow severaledges with the same label between any two states (in other words, edges havemultipliities). The A-multipliity series A-mult : Q��i ! N assoiates toany multiword u the number of aepting paths with label u (this numberis �nite due to the fat that no edge is labelled �).The ounterpart to Kleene's theorem 1.6 is due to Sh�utzenberger, 1961[30℄ for the basi ase ��. The extension to Q��i is easy and folklore.Theorem 1.9 (Kleene-Sh�utzenberger's theorem). Rational series areexatly the multipliity series of �nite automata (resp. trim and normal au-tomata).Remark 1.10. In partiular, a relation R � Q��i is rational if and only if itis the support supp(s) of some rational series s, wheresupp(s) = fu : s(u) 6= 0g1.5 Normalizing automataFor future referene (f. proof of Prop.1.21, Remarks 3.18,3.19) we makesome simple observations about normalization of automata over Q��i .De�nition 1.11. Let A be an automaton over Q��i .1) A is quasi-normal if all labels of transitions have depth 1 (f. Def.1.1)(i.e. if u = (u1; : : : ; uk) is a label then supfju1j; : : : ; jukjg = 1, whih meansthat eah ui is a letter or is � and that some ui is a letter).2) A is normal if all labels of transitions have length 1 (f. Def.1.1). (i.e.if u = (u1; : : : ; uk) is a label then ju1j + : : :+ jukj = 1, whih means thatamong the ui's exatly one is a letter and the other ones are �).The idea to normalize an automaton is to split a transition p ��! q intoa sequene of transitionsp �1�! (p; �1) �2�! (p; �1�2) : : : �m�1�! (p; �1 : : :�m�1) �m�! q (5)5



following a deomposition � = �1 : : :�m.Notation 1.12. If u is a word and u = (u1; : : : ; uk) a multiword, we letlettert(u) = IF 1 � j � juj THEN the t-th letter of u ELSE �lettert(u) = (lettert(u1); : : : ; lettert(uk))letterit(u) = (�; : : : ; �; lettert(ui); �; : : : ; �)We onsider two deompositions of u, where m = depth(u):u = letter1(u) : : : letterm(u) (6)u = letter11(u1) : : : letter1ju1j(u1) : : : letterk1(uk) : : : letterkjuk j(uk) (7)De�nition 1.13. 1) We let QuasiNormal(A) be the automaton obtainedfrom A by splitting any A-transition p ��! q as shown in equation (5) abovefollowing the deomposition of � given by equation (6) above.This introdues new states(t; letter1(�) : : : lettert(�))for 1 � t < depth(�). Notie that some of these states may ome fromseveral transitions with origin p.2) We let Normal(A) be the automaton obtained from A by splitting anyA-transition as shown in equation (5) above following the deomposition of� given by equation (7) above.This introdues new states(p; (�1; : : : ; �j; �; : : : ; �))(p; (�1; : : : ; �j ; letter1(�j+1) : : : lettert(�j+1); �; : : : ; �))for 1 � j < k and 1 � t < j�j+1j. Notie that some of these states mayome from several transitions with origin p.Proposition 1.14. Normal(A) (resp. QuasiNormal(A)) is a normal (resp.quasi-normal) automaton whih has the same behaviour and multipliity se-ries (f. x1.4) as A.1.6 Multimorphisms and Nivat's theoremRational relations overQ��i an be given still another haraterization usingusual rational languages and morphisms from some monoid �� to the monoidQ��i . This is due to M. Nivat, 1968 [19℄. Observe that a morphism � :�� ! Q��i is a tuple of morphisms ('i : �� ! ��i )i=1;::: ;k. Whene thename multimorphism. 6



De�nition 1.15. Let ' : �� ! �� be a morphism and � = ('i : �� !��i )i=1;::: ;k be a multimorphism.1) ' is alphabetial (resp. strit alphabetial) if j'(a)j � 1 (resp. j'(a)j = 1)for all a 2 �. � is alphabetial (resp. strit alphabetial) if so are all 'i's.2) ' (resp. �) is proper if '(a) 6= � (resp. �(a) 6= �) for all a 2 �.Theorem 1.16 (Nivat's theorem [19℄). A relation R � Q��i is rationalif and only if R = �(L) where L � �� is rational and � : �� ! Q��i is amultimorphism (resp. strit alphabetial multimorphism).1.7 Read-only One-way Turing MahinesThe following material will be needed for the modelization of deterministirational relations in x3.3.As said in x1.3, the referene model for multitape automaton is the labelledgraph model of De�nition 1.4. However, as pointed by Fisher & Rosenberg,1968 [7℄ p.90{91, the basi intuition for multitape automaton remains that ofnon deterministi Read-only One-way multitape Turing mahine (ROTM)with exatly one head per tape.De�nition 1.17. An ROTM is a non deterministi Turing mahine suhthat the symbols on the tapes are not modi�ed and there is no bakwardmove and every transition moves at least one head. Thus,i) the mahine starts in any initial state,ii) a transition step depends (non deterministially) on the state of themahine and on the letters (or the blank symbol B lying on the right of theinputs) read by the k heads on the k tapes,iii) a transition step hanges state and moves forward some heads (pos-sibly none),iv) the mahine stops when it enters a halting state,v) halting states are of two types: aepting or rejeting,vi) a omputation is aepting if it enters an aepting halting state.It is onvenient to introdue a variant of the ROTM whih we shall allmodi�ed ROTM 's.De�nition 1.18. A modi�ed ROTM behaves aording to i, ii of Def.1.17and toiiibis) a transition step hanges state and moves forward at least onehead (possibly several heads),ivbis) a head whih reads the blank symbol B does not move and the7



mahine stops when all heads read the blank symbol B,vbis) states are of two types: �nal and non �nal,vibis) a omputation is aepting if its last state is �nal.Formally, a modi�ed ROTM is a tupleT = hQT ;�1; : : : ;�k; ÆT ; IT ; FT iwith ÆT � Q�Q(�i [ fBg)�Q� f0; 1gkA tuple (q; a; r;m) in ÆT is interpreted as follows: q; r are the states beforeand after the transition, the k heads read a and move aording to m.The following is folklore.Proposition 1.19. A relation is omputable by an ROTM (resp. deter-ministi, resp. unambiguous ROTM) if and only if it is omputable by amodi�ed ROTM (resp. deterministi, resp. unambiguous modi�ed ROTM).Proof. 1) ROTM ) modi�ed ROTM .Get rid of �-transitions (i.e. transitions whih move no head) in the standardway:�) First, iteratively add new transitions as follows: if (p; a; q; 0); (q; a; r;m)are transitions then add transition (p; a; r;m),�) Then suppress all �-transitions.Now, fore the mahine to read entirely its input: if q is a halting state thenadd all transitions (q; a; q;m) wheremi = IF ai = B THEN 0 ELSE 1Delare as �nal states all aepting halting states and all states from whihone an aess an aepting halting state by a sequene of transitions reading(B; : : : ; B).It is easy to hek that these modi�ations transform an ROTM into amodi�ed ROTM omputing the same relation.Moreover, this transformation preserves determinism and unambiguity.But it an not preserve multipliities:- all multipliities are neessarily �nite with modi�ed ROTM 's,- in�nite multipliities are possible with ROTM 's sine �-transitions andtransitions reading (B; : : : ; B) an reate loops.2) modi�ed ROTM ) ROTM .To every state p assoiate a new state phalt and add transitions(p; (B; : : : ; B); phalt; 0)Delare as aepting (resp. rejeting) halting states those states phalt suhthat p is �nal (resp. non �nal). 28



It is also well-known that the ROTM and modi�ed ROTM models areequivalent to the labelled graph automaton model (Fisher & Rosenberg,1968 [7℄).Remark 1.20. For an ROTM (as for any modi�ed ROTM or Turing ma-hine), an ourrene of a symbol in an input on some tape is read againand again through suessive transitions while there is no move of the headof that tape. The labelled graph automaton model an thus be viewed as avery smooth normalization of the ROTM model in whih eah ourreneof a symbol of eah input is read only one.Proposition 1.21. A relation is rational if and only if it is omputed by amodi�ed ROTM . This is also true when multipliities are onsidered.Proof. 1) automaton ) modi�ed ROTMGoing from an automaton A to a modi�ed ROTM is quite easy and an bedone as follows:i) Quasi-normalize A as in De�nition 1.13,ii) A quasi-normal automaton an diretly be interpreted as a modi�edROTM .2) modi�ed ROTM ) automatonThe passage from a modi�ed ROTM to an automaton requires some are.As we shall need it for the proof of Thm.3.17, we detail the onstrution inDef.1.22. It is easy to hek that this onstrution leads to a quasi-normalautomaton A whih omputes the same relation as T and also the samemultipliity series.De�nition 1.22. Let T = hQT ;�1; : : : ;�k; ÆT ; IT ; FT i be a modi�ed ROTM .We de�ne an automaton A = hQA;Q��i ; ÆA; IA; FAi as follows:i) QA = QT �Q(�i [ fB; newg)ii) IA = I �Qfnewg , FA = FT �QfB; newgiii) ÆA = St2ÆT Trans(t)where if t = (q; a; r;m) 2 ÆT then Trans(t) is the following family of tran-sitions of A :f((q; �); �; (r; �)) : for some i = 1; : : : ; k �i = newand for all i = 1; : : : ; k�i 2 fai; newg and (ai = B ) �i = B) and�i = IF (�i = new and ai 6= B) THEN ai ELSE �and �i = IF mi = 1 THEN new ELSE aig9



Thus, Trans(t) ontains 2l � 1 transitions where l is the number of i's suhthat ai 6= B. Observe that this number is positive sine T halts when itreads (B; : : : ; B) (so that l � 1).Intuition: A letter whih has just been read in a T -omputation is retainedin the state of the emulating A-omputation. This allows A to read eahletter only one and not several times as T possibly does. Suh an emulationof T by A annot be stati (state to state and transition to transition), ithas to be somewhat dynami. This is why to a single T -transition t weassoiate a family Trans(t) of A-transitions whih may emulate t. The i-thomponent of the label of an A transition is non empty if and only if thistransition emulates a T transition in whih the symbol on tape i is read forthe �rst time and is not the blank end-marker (i.e., either this is the �rsttransition or in the preeding transition, there has been a move on tape i).Thus, in a state (q; �) of A we have �i = new if this state is initial or if itemulates a T -state obtained after a T -transition whih makes a move ontape i. Else, �i is the symbol whih was read and will again be read by T .Remark 1.23. If the modi�ed ROTM T moves exatly one head per tran-sition then all labels of A-transitions have length 1 and A is a normal au-tomaton.1.8 In-between automata and ROTM 's: ROTM transduersThe notion of (k; h)-ROTM transduer is obtained by adding to the k inputtapes of an ROTM a family of h output tapes with alphabets �1; : : : ;�h:T = hQT ;�1; : : : ;�k; ÆT ; IT ; FT ;�1; : : : ;�h; �T iwhere �T � Q� ((�1 [ fBg)� : : :� (�k [ fBg))� (�1 � : : :��h).Now, k-tape ROTM 's an be viewed as (k; 0)-ROTM transduers whilelabelled graph k-tape automata an be viewed as (0; k)-ROTM transduers.From this point of view, automata appear as pure output mahines with noinput.1.9 Tally rational relationsTally relations are relations over unary alphabets. Via an obvious bijetivemap, they orrespond to relations over N. A haraterization as lattiesin Nk was obtained by R.J. Parikh, 1961 [21℄, reprinted in Parikh, 1966[22℄ (see also Goldstine, 1977 [10℄). Another haraterization via Presburgerarithmeti was developed by Ginsburg & Spanier, 1966 [9℄.10



De�nition 1.24. A relation R � Nk is linear if there is a �nite sequeneu0; : : : ; un of elements of Nk suh thatR = u0 + u1N+ : : :+ unN= fu0 + x1u1 + : : :+ xnun : x1; : : : ; xn 2 Ng (8)A relation is semi-linear if it is the union of �nitely many linear relations.Theorem 1.25. 1) [21℄ Tally rational relations are exatly the semilinearrelations and [9℄ are losed under boolean operations and projetions.2) [9℄ Let R be a tally relation. The following onditions are equivalent:i) R is rationalii) R is de�nable in the struture hN;=;+i (i.e. Presburger arithmeti)iii) R is de�nable in the struture hN;=;+i by a �01 formulaSine Presburger arithmeti is deidable ([25℄), this gives a tool to getdeidability results about tally rational relations. For instane,Corollary 1.26. There is an algorithm to deide whether two tally rationalrelations are disjoint.A simple argument allows to extend this last result to the ase of relationswith at most one non unary omponent.Corollary 1.27. There is an algorithm to deide whether two rational re-lations with at most one non unary omponent are disjoint.Proof. Let R1; R2 be rational relations inluded in �� � (f0g�)k and letR = f(v; w) 2 (f0g�)2k : 9u 2 �� ((u; v) 2 R1 ^ (u; w) 2 R2)gbe the omposition of R1; R2 along their �� omponent. Clearly, R1; R2 aredisjoint if and only if R and the diagonal relationDiagk = f(v; v) 2 (f0g�)2k : v) 2 (f0g�)kgare disjoint. Now, R and Diagk are tally rational relations and automata toompute these relations an be polynomial time de�ned from automata forR1; R2. This gives a polynomial time redution of the disjointness problemfor rational (k+ 1)-ary relations with at most one non unary omponent tothe disjointness problem for tally 2k-ary rational relations. 2Remark 1.28. 1) The above result is also an easy appliation of the analogresult (due to Ibarra, 1978, [13℄, Theorem 3.1 p. 124) about �nite-turnmultiounter mahines, i.e. one-tape automata (over some non neessarilyunary alphabet) with k ounters making at most r alternations betweenpush and pop modes for some �xed r (all ounters being initially empty).11



Cf. the proof of Corollary 1.31.2) In ase at least two omponents are non unary, the disjointness problemis undeidable (Rabin & Sott, 1959 [26℄, f. also the proof of Theorem 2.4below).Using equation 8, the disjointness problem for k-ary tally rational rela-tions an be related to linear programming with non negative integers in-volving systems of k linear equations. Suh systems with a �xed number ofequations are polynomial time solvable (H.W. Lenstra, 1983 [16℄, f. also A.Shrijver's book [29℄, Cor.18.7 p.260). Unfortunately, the passage from theautomaton to a semi-linear representation is a priori exponentially omplex.Thus, it is not possible to diretly apply Lenstra's theorem in order to geta polynomial time algorithm in Corollary 1.26. Nevertheless, as proved byGurari & Ibarra, 1981, [11℄, this an be ahieved via an argument whihuses known sharp bounds to integral solutions of linear systems (Borosh &Treybig, 1976, [3℄, von zur Gathen & Sieveking, 1978, [31℄).As in Ibarra [13℄, the result proved by Gurari & Ibarra, 1981, [11℄ (Corol-lary 1 p. 224), deals with �nite-turn multiounter mahines (f. Remark1.28).Theorem 1.29 (Gurari & Ibarra, 1981, [11℄). For �xed k, there is apolynomial time algorithm to deide whether two �nite-turn multiountermahines ompute disjoint languages.Remark 1.30. However, the degree of the polynomial bound inreases withk. A simple polynomial time redution leads to the following improvementof Corollary 1.27Corollary 1.31. For �xed k, there is a polynomial time algorithm to deidewhether two (k+1)-tapes automata over k unary alphabets and one possiblynon unary alphabet ompute disjoint rational relations.Proof. A (k+1)-tape automaton A over k unary alphabets and one possiblynon unary alphabet an be emulated by a �nite-turn 2k-ounter mahine asfollows:i) Code the k+1 inputs 0n1 ; 0n2 ; : : : ; 0nk ; u as a binary input 0n110n21 : : :10nk1u.ii) onsider the 1-turn k-ounter mahine M whih �rst pushes the �rst kbloks of zeros 0n1 ; 0n2 ; : : : ; 0nk of its input into the k ounters of M, thenemulates A on inputs 0n1 ; 0n2 ; : : : ; 0nk ; u so that a move on the i-th tape ofA beomes a pop on the i-th ounter of M.12



This emulation is learly polynomial time omputable and gives a polyno-mial time redution of the assoiated disjointness problems. 2.2 Modelization of unambiguous rational relationsThis setion reviews known notions and fats and proves new polynomialtime deidability results for diverse problems about ambiguity in ase there isat most one non unary alphabet (f. Cor.2.6). It also stresses analogies withthe material we are going to develop for the modelization of determinism inx3.2.1 Unambiguous automata and relationsDe�nition 2.1. 1) An automaton is unambiguous if for every input thereexists at most one aepting run (but there an be many non aeptingruns), i.e. the assoiated multipliity series (f. Def.1.8) is f0; 1g-valued.2) A rational relation is unambiguous if it is aepted by some unambiguousautomaton.Example 2.2. Two unambiguous (but non deterministi) relations:1) The suÆx relation for words on a non unary alphabet �.0 1the (a; �)'s the (a; a)'sthe (a; a)'s2) R = f(0m; 0n) : m � n � 2mg. To get an unambiguous automaton forR, observe that every pair in R an be written in a unique way in the form(0p+q; 0p+2q). 0 1(0; 0) (0; 00)(0; 0)Rational relations whih annot be aepted by unambiguous automataare alled inherently ambiguous. The standard example is analog to thestandard inherently ambiguous ontext-free language:f(0m1n; 0p) : p = m or p = ng13



However, Eilenberg and Sh�utzenberger, 1969 [5℄ proved the followingtheorem.Theorem 2.3 ([5℄). Every tally rational relation is unambiguous.2.2 Deidability of ambiguity for automataAmbiguity does not orrespond to a simple property of mahines. In thegeneral ase, this is an undeidable property.Theorem 2.4 (Rabin & Sott, 1959 [26℄). Let k � 2 and suppose thatat least two among the k alphabets �1; : : : ;�k are non unary. Then thelass of unambiguous automata is not reursive. It is, in fat, �01-omplete.Proof. Rabin & Sott [26℄ really proved that the disjointness problem isundeidable, but their proof applies with no hange to the ambiguity prob-lem. We briey reall their argument. The Post Correspondene Problemfor m sequenes (PCPm) is the lass of pairs of homomorphisms ';  :f1; : : : ; mg� ! f0; 1g� suh that there exists u 6= � satisfying '(u) =  (u).Now, let A' = hfq0; q1g; Æ'; fq0g; fq1gi whereÆ = f(q; i; '(i); q1) : q 2 fq0; q1g ; i 2 f1; : : : ; mgbe the obvious 2-tape automaton whih omputes the relationR' = f(u; '(u)) : u 2 f1; : : : ; mg� ; u 6= �g.Observe that A' is unambiguous (even super-deterministi automata, f.Def.3.1). It is lear that the union automaton A' [A is ambiguous if andonly if (';  ) 2 PCPm. This gives a reursive redution (in fat polynomialtime redution) of PCPm into the lass of ambiguous automata on alpha-bets f1; : : : ; mg; f0; 1g.It is known that PCPm is not reursive and is �01-omplete for largem (Post,1946 [24℄), even for m = 7 (Matiyasevih & Senizergues, 1996 [17℄). Thisproves the theorem for the ase of alphabets f1; : : : ; mg; f0; 1g. Standardoding transfers the result to any �nite sequene of alphabets with at leasttwo non unary alphabets. 2However, when at most one alphabet is non unary, unambiguous au-tomata form a reursive lass.First, reall the notion of truth-table reduibility (f. standard textbooks onreursion theory, [27℄ p.109{110, [20℄ p.268). A lass X � �� is truth-tablereduible to Y � �� if there exists a reursive funtion � : �� ! Pfin(��)(where Pfin(��) is the set of �nite subsets of ��) suh that8u (u 2 X , �(u) � Y )14



X is polynomially truth-table reduible to Y if the above � is polynomial timeomputable (in partiular, the number of words in �(u) and their lengthsare bounded by a polynomial in juj).Proposition 2.5. Fix alphabets �1; : : : ;�k. The lass of unambiguous au-tomata is polynomially truth-table reduible to the lass of pairs of automataomputing disjoint relations.Proof. Suppose that A is a trim automaton (f. Def.1.4, point 4). Then Ais ambiguous if and only if there exists two distint paths having the samelabel, starting in the same state but having di�erent �rst transitions.Let's denote by Aq the automaton A with q as (unique) initial state. If(p; �; q) is a transition of A, let's denote A(p;�;q) the automaton obtainedfrom A by adding a new state pbis as the (unique) initial state and a newtransition (pbis; �; q). It is lear that Rel(A(p;�;q)) = � Rel(Aq).Using these notations, A is ambiguous if and only if there exists two dis-tint transitions (p; �; q); (p; �; r) with the same origin suh that � Rel(Aq) \� Rel(Ar) 6= ;.Thus, A is unambiguous if and only if Rel(A(p;�;q)) \ Rel(A(p;�;r)) = ; forall pairs (p; �; q); (p; �; r) of distint transitions with the same origin.This gives a polynomial time truth-table redution of the lass of unambigu-ous automata to the lass of pairs of automata omputing disjoint relations.2 From Prop.2.5 and Cor.1.31 we getCorollary 2.6. If there is at most one non unary alphabet then the lass ofunambiguous automata is polynomial time omputable.2.3 Unambiguous multimorphismsThe analog of Nivat's theorem 1.16 relative to unambiguous relations holds.Theorem 2.7. A relation R �Q��i is unambiguous rational if and only ifR = �(L) where L � �� is rational and � : �� ! Q��i is a multimorphism(resp. strit alphabetial multimorphism) whih is injetive on L.Proof. 1) Let L � �� be omputed by AL and � : �� ! Q��i be a mul-timorphism. A simple non deterministi automaton RA;� whih omputes�(L) ats as follows : it guesses the suessive letters of a word w 2 ��,simulates AL to hek that w 2 L and ompares �(w) to the input.If the restrition of � to L is injetive and if AL is unambiguous (whih wemay suppose without loss of generality) then the above automaton RA;� is15



learly unambiguous. This proves that �(L) is unambiguous.2) Now, le R be a rational relation omputed by a k-tape automaton A. LetÆA � QA � Q��i � QA be the �nite set of transitions of A. ConsideringÆA as an alphabet �, automaton A an be viewed as a 1-tape automatonomputing a language L � ��. Also, the label funtion (q; u; r) 7! u from �into Q��i has a unique extension to a multimorphism � : �� ! Q��i . It islear that �(L) = R.Clearly, A is unambiguous if and only if the restrition of � to L is injetive.Lastly, observe that if A is normal (whih an be supposed without loss ofgenerality) then � is stritly alphabetial. 2As an be expeted, the answer to the deision problem relative to theabove haraterization is muh the same as in Cor.2.6. However, this answeralso depends on the ardinality of the soure alphabet � of L and �.Proposition 2.8. 1) If at least two of the alphabets �i's are non unarytheni) There is a �nite alphabet � and a rational language L � �� suh thatthe family of multimorphisms � : �� ! Q��i whih are injetive on L is�01-omplete hene undeidable.ii) There is a strit alphabetial multimorphism � : f0; 1; 2; 3g�! Q��isuh that the family of rational languages on whih � injetive on L is �01-omplete hene undeidable.2) If � has at most 3 letters then there is a polynomial time algorithm todeide whether an alphabetial multimorphism � : �� ! Q��i is injetiveon a rational language L � ��.3) If there is at most one non unary alphabet then there is a polynomial timealgorithm to deide whether a multimorphism � : �� ! Q��i is injetive ona rational language L � ��.Remark 2.9. 1) Point 1i) annot be improved with a restrition to alpha-betial multimorphisms sine for a �xed �nite � there are �nitely manyalphabetial multimorphisms � : �� ! Q��i .2) The proof of point 1i) (together with the best known bound m = 7 forthe undeidability of PCPm, [17℄) leads to an alphabet � with 14 symbols.We do not know what is the least possible ardinality of �.Proof. 1) It is suÆient to onsider the ase k = 2 and �1 = �2 = f0; 1g.We keep the notations of the proof of Thm.2.4.i) Set � = f1; : : : ; 2mg and L = f1; : : : ; mg� [ fm + 1; : : : ; 2mg�. Let16



�'; : �� ! f0; 1g�� f0; 1g� be the multimorphism suh that�'; (i) = IF 1 � i � m THEN (0i1; '(i)) ELSE (0i�m1;  (i))It is lear that �'; is injetive on L if and only if (';  ) =2 PCPm. Thislast property is �01-omplete for m � 7 ([17℄, f. proof of Thm.thm:unamb-unde).ii) Let � : f0; 1; 2; 3g� ! Q��i be the strit alphabetial multimorphismsuh that�(0) = (�; 0) ; �(1) = (�; 1) ; �(2) = (0; �) ; �(3) = (1; �)Set L'; = f2i3'(i) : i = 1; : : : ; mg [ f2i3 (i) : i = 1; : : : ; mg. It islear that �(2i3'(i)) = (0i1; '(i)) and �(2i3 (i)) = (0i1;  (i)). So that �is injetive on L'; if and only if (';  ) =2 PCPm.2) We �rst redue the problem of injetivity of multimorphisms on rationallanguages to the ambiguity problem of multitape automata.Let � : �� ! Q��i be a multimorphism, L � �� be a rational language andA be a deterministi (one-tape) automaton omputing L. De�ne A� as thenon deterministi k-tape automaton omputing �(L) as follows:- A� (non deterministially) guesses a word u 2 ��,- A� ompares �(u) with its input � 2 Q��i ,- A� emulates A to hek if u 2 L,- A� aepts if u 2 L and �(u) = �.It is lear that the aepting runs of A� on an input � 2 Q��i are in a 1-1orrespondene with the words u 2 ��1(�). Thus, � is injetive on L if andonly if A� is unambiguous.A priori, the alphabets of the k tapes of A� are the �i's. Of ourse, one anredue the i-th alphabet �i to the subalphabet Xi formed by the letters ofthe i-th omponents of the multiwords in �(�).Now, suppose � : �� ! Q��i is alphabetial and let�i = f 2 � : �() has a non empty i-th omponentgClearly Xi is the set of i-th omponents of �(�i).The �i's form a partition of � and (denoting ℄(X) the ardinality of a setX) we have ℄(Xi) � ℄(�i).Now, if � has at most 3 letters then there is at most one omponent ifor whih �i has more than one element. A fortiori, there is at most oneomponent i for whih Xi has more than one element. But this means thatA� has at most one non unary alphabet. So that Cor.1.31 allows to deidein polynomial time if A� is unambiguous.3) Suppose now there is one non unary alphabet � and k unary alphabets.Let L � �� be a rational language and � = (';	) a multimorphism with' : �� ! ��, 	 : �� ! (f0g�)k. Set 17



T = f('(�);	(�);	(�)) : �; � 2 L ^ ('(�) = '(�) ^ � 6= �)g.Clearly, � is injetive on L if and only if the projetion of T on (f0g�)2k isdisjoint from the diagonal of (f0g�)k � (f0g�)k. To onlude via Corollary1.31, it suÆes to prove that T is rational and onstrut in polynomial timesome automaton for T .Now, the ondition � 6= � an be expressed as the disjuntion of onditions:(i) � is a strit pre�x of �(ii) � is a strit pre�x of �(iii) � = �a� and � = �b� for some �; �; � 2 �� and a; b 2 � and a 6= bso that, with obvious notationsT = T< [ T> [ Sa;b2�;a 6=b Ta;bLet A be a one-tape deterministi automaton omputing L and denote Apand Lp (resp. Ap and Lp) the automaton A with p as the unique initial(resp. �nal) state and the language it omputes. We then haveT< = Sp2QA(';	;	)(Lp) (f�g � f�g �	(Lp \ ('�1(�) n f�g)))T> = Sp2QA(';	;	)(Lp) (f�g � 	(Lp \ ('�1(�) n f�g))� f�g)Ta;b = Sp2QA(';	;	)(Lp)Ep;a;bwhereEp;a;b = f('(au);	(au);	(bv)) : au; bv 2 Lp ^ '(au) = '(bv)gAll these sets are obviously rational, hene also T , and assoiated automataan easily be onstruted in polynomial time. 23 Modelization of deterministi rational relationsFor a detailed study of deterministi rational relations, we refer to Pelletier& Sakarovith, 1999 [23℄ and Sakarovith, 2001 [28℄. Here, we shall be on-erned with the problem of modelization of determinism along the di�erentapproahes to rational relations desribed in x1.3.1 End-markers and super-deterministi automataThe obvious notion of deterministi ROTM leads to the natural lass ofdeterministi rational relations. Hene, we would like to de�ne a reasonablenotion of deterministi labelled graph automata leading to the same lass.However, from the very start of the theory (Rabin & Sott, 1959 [26℄,p.85-86, Elgot & Mezei, 1965 [6℄, p.48, Fisher & Rosenber, 1968[7℄, p.89),through its development (Bird, 1973 [2℄, Kinber, 1983 [14℄, Harju & Karhum�aki,1991, [12℄, : : : ), up to the most reent papers (Pelletier & Sakarovith, 1999[23℄ x2.2) , the notion of deterministi automata whih has been onsidered18



does not lead diretly to the lass of deterministi rational relations. A de-tour is made via auxiliary relations obtained by adding end-markers. Wereall this lassial de�nition (together with a variant in the vein of Def.3.8below).De�nition 3.1. Let A = hQ;Q��i ; E; I; F i be a multitape automaton.1) A is super-deterministi if it has a unique initial state and if the labels oftwo distint edges with a ommon origin are pre�x inompatible (i.e. haveno ommon extension).2) [Rabin & Sott, 1959 [26℄℄ A is normal super-deterministi if if it has aunique initial state and if there is a partition (Q1; : : : ; Qk) of Q suh thati) for all i 2 f1; : : : ; kg and for all p 2 Qi the label of any edge with origin phas all omponents empty but the i-th whih is a letter. In partiular, thesupport of the label is fig (f. Def.1.12).ii) di�erent edges with origin p have di�erent labels.These notions are e�etive.Proposition 3.2. One an deide in polynomial time whether an automa-ton is super-deterministi or normal super-deterministi.Remark 3.3. Super-deterministi automata are alled deterministi in theliterature. The reason why we depart from the standard terminology willbe lear from Def.3.8 and Thm.3.17 below.Remark 3.4. Exat polynomial omplexity in Prop.3.2 depends on the pa-rameters taken into aount for A (number of edges, number of nodes, outerdegree, i.e. maximum number of edges having a ommon origin) and thepresentation of the automaton (as a list of labelled edges or as a list of pairsonsisting of a node and the list of labelled edges oming out of that node).This will apply as well to Prop.3.20 below.The folllowing simple fat insures that De�nition 3.1 is sound.Proposition 3.5. Let R � ��1 � : : :� ��k and let R$ be obtained by addingan end-marker $ to eah word in tuples of R.R is omputed by a deterministi ROTM if and only if R$ is the behaviourof a super-deterministi (resp. normal super-deterministi) multitape au-tomaton.The reason for suh a detour is due to a diÆulty arising from ommuta-tion of multiwords having disjoint supports (f. Def.1.12). This is illustratedby the following simple example. Let a; b be letters and onsider the relation19



R = f(a; �); (�; b)g. This relation is obviously ROTM deterministi. How-ever, it is easy to see that it is not the behaviour of any super-deterministiautomaton. Whereas, R$ = f(a$; $); ($; b$)g is easy to ompute by a normalsuper-deterministi automaton: 0 1 2 3456 (a; �) ($; �) (�; $)($; �)(�; b)(�; $)Thus, despite the fat that multitape automata are always identi�edwith labelled graph automata, the modelization of determinism is still verymuh reminisent of the ROTM model with the blank symbol appearing atthe right of eah input.3.2 What is a deterministi automaton?Nevertheless, there does exist some reasonable notion of deterministi la-belled graph automata whih diretly ompute deterministi rational rela-tions. As far as we know (and surprisingly as it may be), suh notions seemto be original.Before entering the drier stu� of formal de�nitions, let's illustrate the intu-ition on an example.Example 3.6. The graph of the onatenation funtion,f(u; v; w) : uv = wgis obviously ROTM deterministi: �rst read (u; �; u) and then (�; v; v). It iseasy to see that it is not the behaviour of a super-deterministi automaton(argue as above with (a; �; a) and (�; a; a) instead of R = f(a; �); (�; b)g).Let's look at diverse automata whih ompute it.1) First, two automata whih an in no way be deterministi.0 1the (a; �; a)'s the (�; a; a)'sthe (a; �; a)'s 0 1the (a; �; a)'s the (�; ab; ab)'sthe (�; a; a)'sthe (�; ab; ab)'sThe �rst one is learly ambiguous on every triple (u; �; u) suh that u 6= �,hene surely non deterministi.The seond one is unambiguous. However, to deide whih transition is theright one to go from state 0 to state 1, one has to know whether jvj is evenor odd, and this is known only when v is ompletely read. So, there is noway for determinism. 20



2) Now, an automaton D1 whih is not super-deterministi beause thereare transitions 0 (a;�;a)�! 0 and 0 (�;a;a)�! 1 with pre�x ompatible labels.D10 1the (a; �; a)'s the (�; a; a)'sthe (�; a; a)'sHowever, the �rst transition reads an a on tape 1 whereas the seond doesnot and leads to a state from whih it is no more possible to read anythingon tape 1 (we shall all suh a state an 1-end). Thus, there is no problem todeide whih transition is the right one. So, we shall onsider this automatonas deterministi. The same with the following normalized versions D2;D3(whih have 2 + 3j�j states): D200a 2a 11a(�; �; a) (�; a; �)(�; �; a) (a; �; �) (�; �; a) (�; a; �)D300a 2a 11a(�; �; a) (�; a; �)(�; �; a)(a; �; �) (�; �; a) (�; a; �)3) Now, automata D4;D5 whih are not super-deterministi for two reasons:i) There are transitions with pre�x ompatible labels.ii) There are several initial states.D4 D50 1 0 1 2(a; �; a) (�; a; a) (a; �; a) (�; a; a)(a; �; a)(a; �; a) (�; a; a)Let's onsider the �rst automaton.As for i), transitions 0 (a;�;a)�! 0 and 0 (a;�;a)�! 1 have the same label. However,the seond one leads to a state (namely 1) from whih it is no more possible21



to read anything on tape 1. Whereas, from the �rst one, one is fored toread something on tape 1 in order to go to a �nal state. Thus, there is noproblem to deide whih transition is the right one.As for ii), a similar argument does work. If we start at state 0, we arefored to read something on tape 1 in order to go to a �nal state. Whereas,if we start at state 1, then nothing an be read on tape 1. Thus, there is noproblem to deide whih initial stateis the right one to start with.Let's now onsider the seond automaton.As for i) argue as with automaton of point 2 above. As for ii), if we startfrom state 2 then nothing an be read on tape 2. Whereas, from state 0 weare fored to read tape 2 in order to go to a �nal state. So, again, there isno problem to deide whih initial state to start with.Thus, we shall also onsider these automata as deterministi.Conlusion. From the above examples, we see that the pre�x inompatibil-ity of the labels of di�erent transitions from a given state is not a onditioninherent to determinism. Also, the uniity of the initial state is no moreinherent to determinism, it's a mere normalization ondition.Remark 3.7. There is still another reason whih ould be onsidered to getdeterminism. Let say that a state q is i-onsistent if the label of every pathfrom q to a �nal state has a non empty i-th omponent.Suppose q is i-onsistent and r is an i-end. If p ��! q and p ��! s are twotransitions then there is no problem to hoose between these two transitions:just look ahead at the i-th omponent of the input.However, we shall not retain this type of deterministi harater. The reasonis that it does not arry to subautomata, ontrarily to all above deterministiharaters (f. Prop.3.13 below).3.3 Strongly deterministi and n-deterministi automataNow, we ome to the desired de�nitions and introdue two types of deter-ministi multitape automata.De�nition 3.8 (Strong determinism). 1) A state p is an i-end (1 � i �k) for a k-tape automaton A if any path from p to a state in FA has anempty i-th omponent.2) A is strong deterministi if it has a unique initial state and if for everypair of distint transitions (p; �; q), (p; �; r) with the same origin, at leastone of the following onditions hold:i) � and � are pre�x inompatible 22



ii) q is an i-end and �(i) is a strit pre�x of �(i) for some i 2 f1; : : : ; kgiii) r is an i-end and �(i) is a strit pre�x of �(i) for some i 2 f1; : : : ; kg3) A is normal strong deterministi if it is strong deterministi and normal(f. Def.1.11).Remark 3.9. A super-deterministi automaton (f. Def.refdef:lassidet) isobviously strong deterministi.Notation 3.10. 1) If n 2 N[ f1g, u is a word, u = (u1; : : : ; uk) is a multi-word, we letmax(n; u) = max(n; juj) ; max(n; u) = (max(n; ju1j); : : : ;max(n; jukj))2) If p = (p1; : : : ; pk) 2 (N [ f1g)k and R a relation on words, we letn-Pre�x(u) = the pre�x of u with length min(n; juj)n-Pre�x(u) = (n-Pre�x(u1); : : : ; n-Pre�x(uk))n-Pre�x(R) = fn-Pre�x(u) : u 2 Rgp-Pre�x(u) = (p1-Pre�x(u1); : : : ; pk-Pre�x(uk))p-Pre�x(R) = fp-Pre�x(u) : u 2 RgDe�nition 3.11 (n-determinism). 1) A is n-deterministi if the follow-ing two onditions are satis�ed.i) If p; q are distint initial states thenn-Pre�x(Rel(Ap)) \ n-Pre�x(Rel(Aq)) = ;ii) If (p; �; q), (p; �; r) are distint transitions with the same origin thenmax(n; �; �)-Pre�x(�Rel(Aq)) \ max(n; �; �)-Pre�x(�Rel(Ar)) = ;In ase all labels of transitions of A have length � n (in partiular if n � 1and A is normal or quasi-normal, f. Def.1.11) then ondition ii) an beexpressed in a simpler form:iibis) n-Pre�x(�Rel(Aq)) \ n-Pre�x(�Rel(Ar)) = ;2) A is normal n-deterministi if it is n-deterministi and normal.Example 3.12. Let's review the deterministi harater of the automata in-trodued in Example 3.6.Automaton D1 is strong deterministi: (�; a; a)1 = � <prefix a = (a; �; a)1and state 1 is an 1-end.Similarly, automatonD3 is normal strong deterministi: (�; �; a)1 = � <prefixa = (a; �; �)1 and state 2a is an 1-end.23



Automata D2;D4;D5 are not strong deterministi:- there are two D2-transitions from state 0 with the same label (�; �; a),- there are two D4-transitions from state 0 with the same label (a; �; �),- D5 has two initial states 0 and 2.However, D2;D5are1�deterministiandD5 is 4-deterministi. (sine theseautomata are quasi-normal, ondition iibis is to be heked):(�; �; a)Rel((D2)0a)) = f(a1+m; a1+n; a2+m+n) : m;n 2 Ng(�; �; a)Rel((D2)2a)) = f(�; a1+n; a1+n) : n 2 Ngand the assoiated 1-Pre�x relations are disjoint.(a; �; a)Rel((D4)0)) = f(a2+m; an; a2+m+n) : m;n 2 Ng(a; �; a)Rel((D4)1)) = f(a; an; a1+n) : n 2 Ngand the assoiated 2-Pre�x relations are disjoint.Rel((D5)0)) = f(am; a1+n; a1+m+n) : m;n 2 NgRel((D5)2)) = f(a; �; a)gand the assoiated 1-Pre�x relations are disjoint. Also,(a; �; a)Rel((D5)0)) = f(a1+m; a1+n; a2+m+n) : m;n 2Ng(�; a; a)Rel((D5)1)) = f(�; a1+n; a1+n) : n 2 Ngand the assoiated 1-Pre�x relations are disjoint.It is easy to hek that D4 is not 1-deterministi.As announed in Remark 3.7, we have the following property (whih isobvious from the de�nitions).Proposition 3.13. If an automaton is n-deterministi (resp. strong deter-ministi) then so is the automaton obtained by suppressing any olletion ofnodes or edges.The following result is easy.Proposition 3.14. 1) For all n 2 NA is strong deterministi ) A is 0-deterministiA is n-deterministi ) A is (n+ 1)-deterministi2) The above impliations annot be reversed.24



Proof. Point 1 is straightforward. As for Point 2, the �rst impliation annotbe reversed sine a 0-deterministi automaton with two distint initial statesannot be strong deterministi.We now deal with the seond impliation. For n = 0, observe that thefollowing automaton is 1-deterministi but not 0-deterministi: the relationsomputed from the two initial states areRel(A0) = f(a; �)g ; Rel(A2) = f(�; b)gso that their 1-Pre�xes are distint but their 0-Pre�xes are equal.0 21 3(a; �) (�; b)For n � 1, onsider the following automaton A :012 3 4(a; �)(an�1; b) (�; b) (and; �)We have (a; �)Rel(A1) = f(an; b)g ; (�; b)Rel(A3) = f(and; b)gso that if  6= d then A is (n+ 1)-deterministi but not n-deterministi.3.4 Ambiguity and 1-determinismThough straightforward, the following result is worth notiing.Proposition 3.15. 1) For all n 2 N, every n-deterministi automaton is1-deterministi.2) An automaton A is 1-deterministi if and only if it is unambiguous.Remark 3.16. However, there are unambiguous automata whih are not n-deterministi for any n. For instane, the seond automaton given in point1 of Example 3.6.3.5 Deterministi automata ompute what is expetedTheorem 3.17. Let R be a relation. The following onditions are equiva-lent:i) For some n 2 N the relation R is the behaviour of some n-deterministiautomatonii) For all n 2 N the relation R is the behaviour of some normal n-deterministi automatoniii) R is the behaviour of some strong deterministi automaton.25



iv) R is the behaviour of some normal strong deterministi automaton.v) R is omputed by some deterministi ROTMvi) R is omputed by some modi�ed deterministi ROTMBefore oming to the proof, we observe the following fat.Remark 3.18. Normalization and quasi-normalization of automata (f. Def.1.13) do not preserve neither strong determinism nor n-determinism. Aounterexample is obtained by onsidering the following strongly determin-isti automaton A whih omputes f(a; b); (a; b)g.01 2 3(a; b) (�; b) (a; �)The assoiated normalized and quasi-normalized automataAnl and Aqnl areas follows (where A;B stand for states (0; (a; �)); (0; (�; b))):01 2 3A B(a; �) (�; b)(�; b) (�; ) (a; �)01 2 3B(a; b) (�; b) (�; ) (a; �)Anl is not strongly deterministi: the pair of transitions starting at state 0violates the ondition for strong determinism sine A is not a 2-end and Bis not a 1-end. Anl is not even 1-deterministi sine1-Pre�x((a; �)Rel(AnormalA )) = 1-Pre�x((�; b)Rel(AnormalB )) = f(a; b)gHowever, Anl is 2-deterministi. All the same properties hold with Aqnl.Proof of Theorem 3.17. We shall prove impliations i ) vi, vi ) iii,vi ) iv. All other impliations follow from these ones and Propositions3.14, 1.19.i) vi Given an n-deterministi automaton A, we desribe a deterministiROTM T whih has the same behaviour. Let m be the maximum width oflabels of transitions of A. Then T ats as follows:�) Before emulating any A-transition, T reads its tapes so as to memorizeup to max(n;m) letters of eah one of the k inputs (an information it retainsin its state).�) When T has ompleted this memorization, it emulates a transition ofA (whih is neessarily unique, sine A is n-deterministi), hanges stateaordingly and forgets the portion of the memorized input orrespondingto the label of the simulated transition.26



vi ) iii Def.1.22 assoiates to a modi�ed ROTM T a quasi-normal au-tomaton A whih omputes the same relation as T does (f. Prop.1.21). Weshow that if T is a deterministi modi�ed ROTM then A is strong deter-ministi.Sine T has a unique initial state so does A. Thus, the �rst ondition forstrong determinism is satis�ed.(A) ÆA is funtionali.e. two edges with the same origin (q; �) and label � are equal.In fat, suppose ((q; �); �; (r; �)) is an A-transition. Observe that there isa unique T -transition t = (q; a; r;m) suh that ((q; �); �; (r; �)) 2 Trans(t).The reason is that a and m are determined as follows:ai = IF �i 6= new THEN �i ELSE (IF �i = � THEN B ELSE �i)(9)mi = IF �i = new THEN 1 ELSE 0 (10)Sine T is deterministi, from q and a we get r and m. Combined withequation 9 and the de�nition of � from m, this proves that from q; �; � weget r and �, i.e. ÆA is funtional.(B) Any A-state (s; �) suh that �i = B is learly an i-endConsider now two distint edges ((q; �); �; (r; �)) and ((q; �); �; (s; �)) out ofsome A-state (q; �).Due to (A), they must have distint labels: � 6= �. Suppose these distintlabels are pre�x ompatible and let i be suh that j�ij > j�ij. Sine A isquasi-normal, this implies that �i = � and that �i 2 �i is a letter. Reall�i = IF (�i = new and ai 6= B) THEN ai ELSE �so that, from �i 2 �i we get �i = new.Let t = (q; b; s;m) be suh that ((q; �); �; (s; �)) 2 Trans(t). From �i = newand �i = � we get bi = B. Therefore T makes no move on tape i and mi = 0,whene �i = bi = B. Using (B) we see that (s; �) is an i-end. Whih provesthe ondition for strong deterlminism of A.vi) iv The above automaton A is quasi-normal. To get a normal automa-ton, we argue as follows:- Normalize the ROTM so that it moves exatly one head per transition.Observe that the obvious way to do that does preserve determinism.- Use Remark 1.23 to onlude that A is then normal. 2Remark 3.19. The diret way of normalizing a multitape automaton doesnot preserve neither n-determinism nor strong determinism (f. Remark27



3.18). We an use the above onstrution to get a (rather tortuous) methodto normalize a deterministi automaton:1) Go from A to a deterministi modi�ed ROTM TM2) Transform TM to Atomi(TM) so as there is exatly one move per tran-sition. This does preserve ROTM determinism.3) From Atomi(TM) get A normal strong deterministi using the onstru-tion given in the proof of Thm.3.17.3.6 Deidability of determinism for automataProposition 3.20. 1) The lass of strong deterministi automata is poly-nomial time deidable (f. Remark 3.4).2) Let expl-DET = f(n;A) : A is n-deterministig (where \expl" standsfor \expliit"). Caution: n is to be onsidered as an objet of length n, i.e.it is written in unary.i) If k � 2 and there are at least two non unary alphabets then the lassexpl-DET is o-NP-omplete.ii) If there is at most one non unary alphabet then the lass expl-DET ispolynomial time deidable.Proof. 1) It is easy to devise a polynomial time algorithms to deide if astate is an i-end of A.2i) Deiding if the relations omputed by two automata have a ommonn-Pre�x is learly in NP. Hene the disjointness onditions i), ii) of Def.3.11for n-determinism lead to an obvious o-NP algorithm.Conversely, a straightforward adaptation of the proof of Thm.2.4 leads toa polynomial time redution of the bounded Post Correspondene Prob-lem (whih is PCP in whih we want a solution u with length � n) tothe non-disjointness problem of the n-Pre�xes of relations omputed by �-nite super-deterministi automata. This last problem redues easily to theomplement of the lass expl-DET . We onlude using the well-known NP-ompleteness of the bounded-PCP (f. [8℄ p.228).2ii) An automaton A[n℄ omputing n-Pre�x(Rel(A)) is as follows:- QA[n℄ = QA � f0; 1; : : : ; ngk,- A[n℄ ounts the number of letters read on eah of the k omponents,- A[n℄ emulates A while all ounts are � n. Suh an automaton an beonstruted in polynomial time. Construt (as above) automata omputing- relations n-Pre�x(Rel(Ap)) where p is an initial state of A,- relations max(n; �; �)-Pre�x(�Rel(Ap)) where �; � are labels of transi-tions starting at p, 28



Using these automata (whih an be onstruted in polynomial time) andthe fat that at most one alphabet is non unary, we an apply Cor.1.31 tohek in polynomial time the disjointness of relations ouring in onditionii) of Def.3.11 for n-determinism. 2However, for existentially quanti�ed n the problem is in general unde-idable.Proposition 3.21. Let DET�1;::: ;�k = fA : 9n (A is n-deterministi)g.1) Suppose k � 2 and there are at least two non binary alphabets. ThenDET�1;::: ;�k is �01-omplete hene undeidable.2) If there is at most one non unary alphabet then DET�1;::: ;�k is deidable.Remark 3.22. We do not know the exat omplexity of the lassDET�1;::: ;�kin ase there is at most one non unary alphabet. It is bounded by that ofPresburger arithmeti.Proof. of Prop. 3.21. 1) Let M be a deterministi Turing mahine withinput alphabet �, set of states Q and initial state q0. Sequenes of in-stantaneous desriptions (i.d.) of M an be oded as words in alphabet� = � [ Q [ f$g, where $ serves as a ag separating suessive i.d.'s. If Iis an i.d. with non �nal state, we denote I+ the i.d. obtained from I withone M-transition.For eah u 2 �� we de�ne 2-tape automata Au;Bu as follows:i) Au omputes the relationf(q0u$I1$I2$ : : :$It ; I1$I2$ : : :$It) : the Ii's are i.d.'sg2 3 4(q0u$; �) the (a; a)'s the (a; a)'sthe (q; q)'s($; $)(The q's vary over QA, the a's vary over �).ii) Bu omputes the relationf(I0$I1$ : : :$It ; I+0 $I+1 $ : : :$I+t ) : the Ii's are non �nal i.d.'sg00 1the (a; a)'s the (a; a)'sT($; $)29



Labels in T are (bqa; rb); (qa; r); (qa; r) aording to the emulatedM-transition Æ(q; a) = (r; ;�1) or (r; ; 0) or (r; ; 1)(where �1; 0; 1 mean \left move", \no move", \right move" and  is whatM writes in plae of a).It is lear that Au is super-deterministi. Also, Bu is 0-deterministi:- transitions starting at state 1 have inompatible labels,- transitions in T starting at state 0 have inompatible labels,- for transitions (0; (a; a); 0) and (0; �; 1) 2 T , the value max(0; (a; a); �)is 2 or 3 andmax(0; (a; a); �)-Pre�x((a; a)Rel(Bu0) \max(0; (a; a); �)-Pre�x(�Rel(Bu1) = ;Sine Rel(Au) [ Rel(Bu) = ; the union automaton Au [ Bu is always un-ambiguous. We now look under whih ondition Au [ Bu is n-deterministifor some n.First, observe that ondition ii) in Def.3.11 is automatially satis�ed withn = 0.Condition i) in Def.3.11 is satis�ed for some n if and only there is a bound tothe depths of ommon pre�xes to a pair in Rel(Au) and a pair in Rel(Bu).Now, suh ommon pre�xes are exatly the pre�xes of the pairs(q0u$I1$I2$ : : :$It ; I1$I2$ : : :$It)where the Ii's are the suessive instantaneous on�gurations of the ompu-tation of M on input u.In partiular, there is a bound to their depths if and only if M halts oninput u. Thus, automaton Au [Bu is n-deterministi for some n if and onlyifM halts on input u (and the smallest suh n is then the sum of the lengthsof the suessive i.d.'s of the �nite M-omputation on input u).Considering a universal Turing mahine M, we get a reursive redution ofthe halting problem for M to the problem of determinism for automata.Hene the wanted undeidability and also the �01-ompleteness.2) In ase there is one non unary alphabet � and k unary alphabets, weredue to Presburger arithmeti as in the proof of Cor.1.27.Let's add an n-omponent to the sets onsidered in onditions i), ii) ofDef.3.11. For initial states q; r this leads to de�neIq;r = f(w; s; n) : w 2 �� ^ s 2 (N)k ^ n 2 N^ (w; s) 2 n-Pre�x(Rel(Aq))^ (w; s) 2 n-Pre�x(Rel(Aq))gFor transitions (p; (u; �); q), (p; (v; �); r) the sole interesting ase is when p; qare pre�x omparable (otherwise ondition ii) is trivial). Thus, we restrit30



to the ase u is a pre�x of v, i.e. v is of the form v = uu0. This leads tode�ne Sq;ru;u0 ;�;� = f(w; s; n) : w 2 �� ^ s 2 (N)k ^ n 2 N^ (w; s) 2 n-Pre�x((u; �)Rel(Aq))^ (w; s) 2 n-Pre�x((uu0; �)Rel(Ar))gHowever, these relations Iq;r; Sq;ru;u0;�;� are not rational. So we introdue vari-ants Jq;r; T q;ru;u0;�;� whih are rational:Jq;r = f(w; s; t;m; n) : w 2 �� ^ s; t 2 (N)k ^ m;n 2 N^ 9�; � 2 �� 9�; � 2 Nk^ (�; �) 2 Rel(Aq))^ (�; �) 2 Rel(Ar)^ (w; s) = m-Pre�x(�; �)^ (w; t) = n-Pre�x(�; �)gT q;ru;u0;�;� = f(w; s; t;m; n) : w 2 �� ^ s; t 2 (N)k ^ m;n 2 N^ 9�; � 2 �� 9�; � 2 Nk^ (�; �) 2 Rel(Aq))^ (�; �) 2 Rel(Ar)^ (w; s) = m-Pre�x(u�; ��)^ (w; t) = n-Pre�x(uu0�; ��)gClearly, Iq;r = f(w; s; n) : (w; s; s; n; n) 2 Jq;rgSq;ru;u0;�;� = f(w; s; n) : (w; s; s; n; n) 2 T q;ru;u0;�;�gLet Kq;r; U q;ru;u0;�;� be the projetions of Jq;r; T q;ru;u0;�;� parallel to the �� om-ponent.Now, A is deterministi if and only if there exists n suh that for all initialstates p; q and all transitions (p; (u; �); q), (p; (uu0; �); r)f(w; s) : (w; s; n) 2 Iq;rg = ; ; f(w; s) : (w; s; n) 2 Sq;ru;u0;�;�g = ;i.e. 31



f(w; s) : (w; s; s; n; n) 2 Jq;rg = ; ; f(w; s) : (w; s; s; n; n) 2 T q;ru;u0 ;�;�g = ;This amounts to say9n 8s (s; s; n; n) =2 Kq;r ; 9n 8s (s; s; n; n) =2 U q;ru;u0 ;�;� (11)Sine relations Kq;r; U q;ru;u0;�;� are rational, they an be expressed in Pres-burger arithmeti (f. Thm.1.25). Hene assertions (11) an be expressedin Presburger arithmeti and we get the wanted deidability. 23.7 Deterministi multimorphismsThe tight relation between k-tape automata and multimorphisms (f. point3 of the proof of Thm.2.7) leads to a natural notion of n-determinism andstrong determinism.De�nition 3.23. Let � : �� ! Q��i be a multimorphism and L � �� bea rational language.1) � is an i-end for a language X � �� if �(a)i = � for all letters a ourringin some word in X (where �(x)i denotes the i-th omponent of �(x)).2) � is n-deterministi on L if for all words u 2 ��, for all distint lettersa; b 2 � if ua; ub are pre�xes of words in L thenn-Pre�x(f�(ax) : uax 2 Lg) \ n-Pre�x(f�(by) : uby 2 Lg) = ;3) � is strong deterministi on L if for all words u 2 ��, for all distintletters a; b 2 �, if ua; ub are pre�xes of words in L then at least one of thefollowing onditions holds:i) �(a);�(b) are pre�x-inompatible in Q��iii) �(a)i is a strit pre�x of �(b)i and � is an i-end for (ua)�1L.iii) �(b)i is a strit pre�x of �(a)i and � is an i-end for (ub)�1L.We an now state the deterministi version of Nivat's MultimorphismTheorem, the proof of whih is straightforward from the de�nitions.Theorem 3.24. A rational relation R � Q��i is n-deterministi (resp.strong deterministi, resp. normal strong deterministi) if and only if R =�(L) where L � �� is a rational language and � : �� ! Q��i is a propermultimorphism whih is n-deterministi on L (resp. strong deterministi onL, resp. strong deterministi on L and alphabetial multimorphism).As for the e�etiveness of the notion, results are analog to those ofProp.3.21, 3.20 (with similar proofs).32



Proposition 3.25. 1) Consider the lass of triples (n;A;�) suh that A isa one-tape automaton on alphabet � and � : �� ! Q��i is a multimorphismwhih is n-deterministi on L(A). (Caution: n is to be onsidered as anobjet of length n, i.e. it is written in unary).i) If k � 2 and there are at least two non unary alphabets then this lass iso-NP-omplete.ii) If there is at most one non unary alphabet then this lass is polynomialtime deidable.2) Consider the lass of pairs (A;� suh that A is a one-tape automaton onalphabet � and � : �� ! Q��i is a multimorphism whih is n-deterministion L(A) for some n.i) If k � 2 and there are at least two non unary alphabets then this lass is�01-omplete hene not reursive.ii) If there is at most one non unary alphabet then this lass is reursiveRemark 3.26. As for the notion of deterministi automaton (f. Rk.3.22),we do not know the exat omplexity in Point 2ii. It is bounded by that ofPresburger arithmeti.4 AknowledgementsMany thanks to Christian Cho�rut and to an anonymous referee for om-ments and orretions.Referenes[1℄ J. Berstel. Transdutions and ontext-free languages. B. G. Teubner,1979.[2℄ M.R. Bird. The equivalene problem for deterministi two-tape au-tomata. J. Computer System Si., 7:218{236, 1973.[3℄ I. Borosh and L. Treybig. Bounds on positive integral solutions of lineardiophantine equations. Pro. Amer. Math. So., 55(2):299{304, 1976.[4℄ S. Eilenberg. Automata, languages and mahines, volume A. AademiPress, 1974.[5℄ S. Eilenberg and M.P. Sh�utzenberger. Rational sets in ommutativemonoids. J. Algebra, 13:173{191, 1969.33
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