Modelization of Deterministic Rational Relations

Serge Grigorieff
LIAFA, Université Paris 7
2, pl. Jussieu 75251 Paris Cedex 05 France

seg@liafa. jussieu.fr

November 23, 2001

Abstract

The definition of the class of deterministic rational relations is fun-
damentally based on the Read-only One-way Turing machine approach.
The notion of deterministic automata developed up to now is too strong
and asks for an unnatural detour via end-markers to give all determin-
istic rational relations (cf. §3.1). We stress that several conditions
usually considered as related to determinism are mere normalizations
of determinism and are not inherent to the notion (cf. §3.2). In this
paper, we introduce pertinent notions of deterministic labelled graph
automata (cf. §3.3) which avoid any use of end-markers: strong de-
terministic, n-deterministic automata for n € N. These notions form
an increasing infinite hierarchy of classes of automata which all lead
to the same usual class of deterministic rational relations. Moreover,
the class corresponding to the natural extension to the case n = co is
exactly the class of unambiguous automata .

We also consider Nivat’s characterization via multimorphisms ap-
plied to rational languages and introduce a hierarchy of deterministic
versions of multimorphisms.

Properties of determinism and unambiguity are compared. The
decision problems for ambiguity or determinism relative to automata
and multimorphisms are settled. Roughly, all problems are undecidable
in case of arity > 2 with at least two non binary alphabets, else they
are decidable, most being even polynomial time decidable.

Contents

1 Modelization of rational relations over words 2
1.1 The product monoid X7 x ... XX} 2
1.2 Rational relations defined via set theoretical operations .. 3
1.3 Multitape automata L Lo 3
1.4 Multiplicities 4
1.5 Normalizing automata, 5
1.6 Multimorphisms and Nivat’s theorem 6
1.7 Read-only One-way Turing Machines 7
1.8 In-between automata and ROTM’s: ROTM transducers . . 10
1.9 Tally rational relations 0oL 10

2 Modelization of unambiguous rational relations 13
2.1 Unambiguous automata and relations 13
2.2 Decidability of ambiguity for automata 14
2.3 Unambiguous multimorphisms 15

3 Modelization of deterministic rational relations 18
3.1 End-markers and super-deterministic automata 18
3.2 What is a deterministic automaton? 20
3.3 Strongly deterministic and n-deterministic automata 22
3.4 Ambiguity and co-determinism 25
3.5 Deterministic automata compute what is expected 25
3.6 Decidability of determinism for automata 28
3.7 Deterministic multimorphismso 32

4 Acknowledgements 33

1 Modelization of rational relations over words

1.1 The product monoid X} x ... x ¥}

As usual, X* denotes the set of finite words in a finite alphabet ¥. The
empty word is € and |u| is the length of u. We identify u with an application

from {0,1,...,|u] — 1} into X.

We shall denote words by u, v, w and tuples of words by @, v, w.

Let ¥, ... X be finite alphabets, £ > 2 . The product monoid X7 X ... X
Y7, also denoted [] X7, consists of k-tuples of words with componentwise
concatenation product. Its neutral element is € = (e, ... ,€).

Definition 1.1. 1) The length and depth of a multiword @ = (uq, ..., ux)
are

[ul = |ug]+ ...+ |un) (1)
depth(w) = sup(|ul,...,|tmnl) (2)

2) The support of a k-tuple wis Supp(w) ={i € {1,...,k} | u; # €}.

Remark 1.2. The set of multiwords with length 1 (i.e. multiwords with all
components equal to € except one which is a letter) generates the monoid
[1X7. In fact, it is the smallest (relative to set inclusion) set of generators.

The set-theoretical definition of rational relations included in] XF and
the associated machine-like models (namely automata) are mere particular
cases of notions defined in the general context of monoids. We recall these
notions in the next subsections and refer to the litterature for proofs of
Theorems (cf. Eilenberg, 1974, [4], Berstel, 1979, [1], Sakarovitch, 2001, [28]
II1.1.3 Thm 1.1).

1.2 Rational relations defined via set theoretical operations

Definition 1.3. 1) The product operation on elements of a monoid M (with
neutral element 1p/) induces operations on subsets of M. If R and S are
subsets of M then the concatenation product of R,.S and the plus and star
of R are the relations

RS = {zylzec RandyeS}

Rt = U,s R" R* = {ly}UR"

2) The family Rat(M) of rational subsets of M is the closure of the family
of finite relations by the operations of union, product and star.

1.3 Multitape automata

There are several machine counterparts for Rat(M). Though the historical
machine is the Read-only One-way multitape Turing Machine (cf.§1.7), the
reference machine model is the labelled graph automaton introduced by John

Myhill, 1957 [18].

Definition 1.4. 1) A finite automaton A over a monoid M (with neutral el-
ement 1p7) is a finite directed graph A = (Q, M, 6, I, I) labelled by elements
of M\ {1ps}. Nodes and edges form the respective sets Q and § C Q x M xQ
and are also called states and transitions. [and F are distinguished subsets
of () called initial states and final states.

2) An A-path c is a finite sequence of transitions

Po £>201 gpz---Pn—l ﬂ>JUn
The origin and end of the path ¢ are pg and p,. The label of ¢ is the element
aiasy . ..a, of the monoid M. Case n = 0 corresponds to an empty path,
with label 1p; and pg as both origin and end. Path ¢ is successful if its origin
is in I and its end is in F.

3) The behaviour of A is the set of labels of successful paths.

4) States which belong to some path with origin in I (resp. last state in F)
are called accessible (resp. coaccessible). Automaton A is trim if all states
are accessible and coaccessible.

Notation 1.5. 1) In case M is a free monoid X* (with ¥ a finite alphabet),
the behaviour of A is also called the language associated to A and denoted
L(A).

2) In case M is a product of free monoids X7 x ... x X} (where all 3;’s are
finite alphabets), A is called a finite multitape (or k-tape) automaton and
the behaviour of A is also called the relation associated to A and denoted
Rel(A).

The basic case M = 3* of the following fundamental theorem is due to
Kleene, 1956 [15]. The general statement for arbitrary monoids is due to
Elgot & Mezei, 1965 [6], who detailed the case [[X* in [6] Prop.3.5, and
mentioned the general result in a footnote p.50.

Theorem 1.6 (Kleene’s theorem). A subset of M is rational if and only
if it is the behaviour of some finite automaton (resp. trim automaton).

1.4 Multiplicities

Asin the case of languages, the set-theoretical operations defining Rat(] [X¥)
can be augmented with a notion of multiplicity so as to allow deep algebraic
considerations. This is done by replacing relations (which may be viewed as
functions R : [[¥F — {0,1}) by N-series over [[X7, i.e. multiplicity func-
tions s : [[X7 — N. The three set operations of union, product and star
on relations respectively correspond to the following algebraic operations on

series: sum s 4+ t, Cauchy product st and Cauchy star s*, where

st@) = Y {s@)t®) : vw =1} (3)
s = > {s"(W) : n €N} defined if 5(&) =0 (4)

=

with the convention that s% is the neutral element for Cauchy product, i.e.
such that s°(¢) = 1 and s°(w) = 0 for w # =.

That there are only finitely many non zero terms in the above sums is insured
by easy considerations on the lengths of k-tuples of words.

Definition 1.7. The family of rational series over [[3* is the closure of
the family of finite relations by the operations of sum, Cauchy product and
Cauchy star.

Definition 1.8. Let A be a finite automaton over [[X*. We allow several
edges with the same label between any two states (in other words, edges have
multiplicities). The A-multiplicity series A-mult : [[X* — N associates to
any multiword @ the number of accepting paths with label @ (this number
is finite due to the fact that no edge is labelled €).

The counterpart to Kleene’s theorem 1.6 is due to Schiitzenberger, 1961
[30] for the basic case X*. The extension to [[X¥ is easy and folklore.

Theorem 1.9 (Kleene-Schutzenberger’s theorem). Rational series are
exactly the multiplicity series of finite automata (resp. trim and normal au-
tomata).

Remark 1.10. In particular, a relation R C [] X7 is rational if and only if it
is the support supp(s) of some rational series s, where

supp(s) = {7+ s(w) # 0}

1.5 Normalizing automata

For future reference (cf. proof of Prop.1.21, Remarks 3.18,3.19) we make
some simple observations about normalization of automata over [X7.

Definition 1.11. Let A be an automaton over [7.

1) A is quasi-normal if all labels of transitions have depth 1 (cf. Def.1.1)
(i.e. ifw= (ul,...,ux) is alabel then sup{|u1],...,|ur|} = 1, which means
that each u; is a letter or is € and that some wu; is a letter).

2) A is normal if all labels of transitions have length 1 (cf. Def.1.1). (i.e.
if w= (ul,...,ux) is a label then |us| 4+ ...+ Jug| = 1, which means that
among the u;’s exactly one is a letter and the other ones are ¢).

The idea to normalize an automaton is to split a transition p N q into
a sequence of transitions

p B 0B S 0B T e) Dy)

following a decomposition & = BsL...pm.

Notation 1.12. 1f w is a word and @ = (uy,...,ux) a multiword, we let
letter(u) = 1F 1< j < |u| THEN the ¢-th letter of u ELSE ¢
letter(w) = (lettery(uy), ..., letteri(ug))
letteri(@) = (e,..., € letters(us), €, ... €

We consider two decompositions of @, where m = depth(u):

w = lettery(u)...letter,(a) (6)
= letteri(uy) .. .letterﬁu”(ul) o detterY (uy) .. .letterﬁk|(uk) (7)

=

Definition 1.13. 1) We let QuasiNormal(A) be the automaton obtained
from A by splitting any A-transition p —— ¢ as shown in equation (5) above
following the decomposition of @ given by equation (6) above.
This introduces new states

(t,letteri(@) .. .letter,(@))
for 1 <t < depth(@). Notice that some of these states may come from
several transitions with origin p.

2) We let Normal(A) be the automaton obtained from A by splitting any
A-transition as shown in equation (5) above following the decomposition of
@ given by equation (7) above.
This introduces new states
(p, (a1, ... a5, 6.0 ,€))

(p, (a1, ..., lettery(a;yq) .. letteri(ajq1), €, ..., €))
for 1 < j < kand 1 <t < |ajq1|. Notice that some of these states may
come from several transitions with origin p.

Proposition 1.14. Normal(A) (resp. QuasiNormal(A)) is a normal (resp.
quasi-normal) automaton which has the same behaviour and multiplicity se-

ries (cf. §1.4) as A.

1.6 Multimorphisms and Nivat’s theorem

Rational relations over [[¥ can be given still another characterization using
usual rational languages and morphisms from some monoid I'* to the monoid
[1X7. This is due to M. Nivat, 1968 [19]. Observe that a morphism & :
' — [[X7 is a tuple of morphisms (¢; : [— X¥);=1 . k. Whence the
name multimorphism.

Definition 1.15. Let ¢ : ['* — ¥* be a morphism and & = (¢; : [—
Y%)i=1,.. k be a multimorphism.

1) ¢ is alphabetical (resp. strict alphabetical) if |p(a)| < 1 (resp. |¢(a)| = 1)
for all @ € I'. ® is alphabetical (resp. strict alphabetical) if so are all ¢,;’s.

2) ¢ (resp. ®) is proper if p(a) # € (resp. ®(a) £ €) for all a € I'.

Theorem 1.16 (Nivat’s theorem [19]). A relation R C [[X} is rational
if and only if R = ®(L) where L C I'* is rational and ® : I — [[X7 is a
multimorphism (resp. strict alphabetical multimorphism).

1.7 Read-only One-way Turing Machines

The following material will be needed for the modelization of deterministic
rational relations in §3.3.

As said in §1.3, the reference model for multitape automaton is the labelled
graph model of Definition 1.4. However, as pointed by Fischer & Rosenberg,
1968 [7] p.90-91, the basic intuition for multitape automaton remains that of
non deterministic Read-only One-way multitape Turing machine (ROT M)
with exactly one head per tape.

Definition 1.17. An ROTM is a non deterministic Turing machine such
that the symbols on the tapes are not modified and there is no backward
move and every transition moves at least one head. Thus,

i) the machine starts in any initial state,

ii) a transition step depends (non deterministically) on the state of the
machine and on the letters (or the blank symbol B lying on the right of the
inputs) read by the k heads on the & tapes,

iii) a transition step changes state and moves forward some heads (pos-
sibly none),

iv) the machine stops when it enters a halting state,

v) halting states are of two types: accepting or rejecting,

vi) a computation is accepting if it enters an accepting halting state.

It is convenient to introduce a variant of the ROT M which we shall call

modified ROT M’s.

Definition 1.18. A modified ROT M behaves according to i, ii of Def.1.17
and to

iiibis) a transition step changes state and moves forward at least one
head (possibly several heads),

ivbis) a head which reads the blank symbol B does not move and the

machine stops when all heads read the blank symbol B,

vbis) states are of two types: final and non final,

vibis) a computation is accepting if its last state is final.
Formally, a modified ROTM is a tuple

T=@Q71,%1,..., %507, I, Fr)
with
SrC QX1 U{B}) xQ x {0,1}*

A tuple (q,@,r,m) in &7 is interpreted as follows: ¢, r are the states before
and after the transition, the k heads read @ and move according to m.

The following is folklore.

Proposition 1.19. A relation is computable by an ROTM (resp. deter-
ministic, resp. unambiguous ROTM) if and only if it is computable by a
modified ROT M (resp. deterministic, resp. unambiguous modified ROTM).

Proof. 1) ROTM = modified ROTM.
Get rid of étransitions (i.e. transitions which move no head) in the standard
way:
«) First, iteratively add new transitions as follows: if (p,@,q,0), (¢, @,r,m)
are transitions then add transition (p,@,r,m),
§) Then suppress all etransitions.
Now, force the machine to read entirely its input: if ¢ is a halting state then
add all transitions (¢, @, ¢, m) where
m; = IF a; = B THEN 0 ELSE 1

Declare as final states all accepting halting states and all states from which
one can access an accepting halting state by a sequence of transitions reading
(B,...,B).
It is easy to check that these modifications transform an ROTM into a
modified ROT M computing the same relation.
Moreover, this transformation preserves determinism and unambiguity.
But it can not preserve multiplicities:

- all multiplicities are necessarily finite with modified ROT M’s,

- infinite multiplicities are possible with ROT M’s since €-transitions and
transitions reading (B, ..., B) can create loops.

2) modified ROTM = ROTM.

To every state p associate a new state p and add transitions

(p7 (B7 s 7B)7phalt76)
Declare as accepting (resp. rejecting) halting states those states p

halt

halt such

that p is final (resp. non final).]

It is also well-known that the ROTM and modified ROT M models are

equivalent to the labelled graph automaton model (Fisher & Rosenberg,
1968 [7]).
Remark 1.20. For an ROTM (as for any modified ROTM or Turing ma-
chine), an occurrence of a symbol in an input on some tape is read again
and again through successive transitions while there is no move of the head
of that tape. The labelled graph automaton model can thus be viewed as a
very smooth normalization of the ROTM model in which each occurrence
of a symbol of each input is read only once.

Proposition 1.21. A relation is rational if and only if it is computed by a
modified ROT M. This is also true when multiplicities are considered.

Proof. 1) automaton = modified ROT M

Going from an automaton A to a modified ROT M is quite easy and can be
done as follows:

i) Quasi-normalize A as in Definition 1.13,

ii) A quasi-normal automaton can directly be interpreted as a modified

ROTM.

2) modified ROTM = automaton

The passage from a modified ROTM to an automaton requires some care.
As we shall need it for the proof of Thm.3.17, we detail the construction in
Def.1.22. It is easy to check that this construction leads to a quasi-normal
automaton A which computes the same relation as 7 and also the same
multiplicity series.

Definition 1.22. Let 7 = (Q7, %4, ..., Xk, 07, I7, F'r) be a modified ROT M.

We define an automaton A = (Qa, [[27,04, L4, F4) as follows:

) Qa = Q7 x TI(S: U{B, new))

i) Ia=1x[[{new} , Fa = Fr x [[{B,new}

iti) 04 = Uyes, Trans(t)
where if ¢t = (q,@,r,m) € 7 then Trans(t) is the following family of tran-
sitions of A :

{((¢,8),a,(r,7)) : forsomei=1,....k & = new
and forall i =1,...,k
& € {a;,new} and (a; = B = & = B) and
a; = 1F (§ = new and a; # B) THEN q; ELSE ¢
and 7; = IF m; = 1 THEN new ELSE «a;}

Thus, Trans(t) contains 2! — 1 transitions where [is the number of i’s such
that a; # B. Observe that this number is positive since 7 halts when it
reads (B,...,B) (so that { > 1).

Intuition: A letter which has just been read in a 7-computation is retained
in the state of the emulating .A-computation. This allows A to read each
letter only once and not several times as T possibly does. Such an emulation
of T by A cannot be static (state to state and transition to transition), it
has to be somewhat dynamic. This is why to a single 7-transition ¢ we
associate a family T'rans(t) of A-transitions which may emulate ¢. The i-th
component of the label of an A transition is non empty if and only if this
transition emulates a 7 transition in which the symbol on tape ¢ is read for
the first time and is not the blank end-marker (i.e., either this is the first
transition or in the preceding transition, there has been a move on tape).
Thus, in a state (q,&) of A we have & = new if this state is initial or if it
emulates a 7T-state obtained after a 7-transition which makes a move on
tape i. Else, & is the symbol which was read and will again be read by 7.

Remark 1.23. 1f the modified ROTM T moves exactly one head per tran-
sition then all labels of A-transitions have length 1 and A is a normal au-
tomaton.

1.8 In-between automata and ROT M’s: ROT M transducers

The notion of (k, h)-ROT M transducer is obtained by adding to the k input
tapes of an ROTM a family of h output tapes with alphabets Ay, ..., Ay:
T = <Q7‘7 S X0 0 I Py Ay L Ay, /\7‘>

where A7 C Q X (1 U{B}) X ...x (8, U{B})) X (A1 x ... X Ay).

Now, k-tape ROTM’s can be viewed as (k,0)-ROTM transducers while
labelled graph k-tape automata can be viewed as (0, k)-ROT M transducers.
From this point of view, automata appear as pure output machines with no
input.

1.9 Tally rational relations

Tally relations are relations over unary alphabets. Via an obvious bijective
map, they correspond to relations over N. A characterization as lattices
in N* was obtained by R.J. Parikh, 1961 [21], reprinted in Parikh, 1966
[22] (see also Goldstine, 1977 [10]). Another characterization via Presburger
arithmetic was developed by Ginsburg & Spanier, 1966 [9].

10

Definition 1.24. A relation R C N¥ is linear if there is a finite sequence
g, ... , 0, of elements of N¥ such that

R = uwp+wN+...+u,N
{wo+z1or+...+ 2,4, ¢ q,...,0, € N} (8)

A relation is semi-linear if it is the union of finitely many linear relations.

Theorem 1.25. 1) [21] Tally rational relations are exactly the semilinear
relations and [9] are closed under boolean operations and projections.

2) [9] Let R be a tally relation. The following conditions are equivalent:
i) R is rational

ii) R is definable in the structure (N,=,4) (i.e. Presburger arithmetic)
iii) R is definable in the structure (N, =,+) by a %9 formula

Since Presburger arithmetic is decidable ([25]), this gives a tool to get
decidability results about tally rational relations. For instance,

Corollary 1.26. There is an algorithm to decide whether two tally rational
relations are disjoint.

A simple argument allows to extend this last result to the case of relations
with at most one non unary component.

Corollary 1.27. There is an algorithm to decide whether two rational re-
lations with at most one non unary component are disjoint.

Proof. Let Ry, Ry be rational relations included in ¥* x ({0}*)* and let
R={(v,w) € ({0})% : Jue = ((v,0) € B A (u, W) € Ra)}
be the composition of Ry, Ry along their X* component. Clearly, Ry, Ry are
disjoint if and only if R and the diagonal relation
Diagy = {(5,7) € ({0})%* 1) € ({0}7)*}

are disjoint. Now, R and Diagy are tally rational relations and automata to
compute these relations can be polynomial time defined from automata for
Ry, Ry. This gives a polynomial time reduction of the disjointness problem
for rational (k+ 1)-ary relations with at most one non unary component to
the disjointness problem for tally 2k-ary rational relations. a
Remark 1.28. 1) The above result is also an easy application of the analog
result (due to Ibarra, 1978, [13], Theorem 3.1 p. 124) about finite-turn
multicounter machines, i.e. one-tape automata (over some non necessarily
unary alphabet) with & counters making at most r alternations between
push and pop modes for some fixed r (all counters being initially empty).

11

Cf. the proof of Corollary 1.31.

2) In case at least two components are non unary, the disjointness problem
is undecidable (Rabin & Scott, 1959 [26], cf. also the proof of Theorem 2.4
below).

Using equation 8, the disjointness problem for k-ary tally rational rela-
tions can be related to linear programming with non negative integers in-
volving systems of k linear equations. Such systems with a fixed number of
equations are polynomial time solvable (H.W. Lenstra, 1983 [16], cf. also A.
Schrijver’s book [29], Cor.18.7 p.260). Unfortunately, the passage from the
automaton to a semi-linear representation is a priori exponentially complex.
Thus, it is not possible to directly apply Lenstra’s theorem in order to get
a polynomial time algorithm in Corollary 1.26. Nevertheless, as proved by
Gurari & Ibarra, 1981, [11], this can be achieved via an argument which
uses known sharp bounds to integral solutions of linear systems (Borosh &
Treybig, 1976, [3], von zur Gathen & Sieveking, 1978, [31]).

Asin Ibarra [13], the result proved by Gurari & Ibarra, 1981, [11] (Corol-
lary 1 p. 224), deals with finite-turn multicounter machines (cf. Remark
1.28).

Theorem 1.29 (Gurari & Ibarra, 1981, [11]). For fized k, there is a
polynomial time algorithm to decide whether two finite-turn multicounter
machines compute disjoint languages.

Remark 1.30. However, the degree of the polynomial bound increases with

k.

A simple polynomial time reduction leads to the following improvement
of Corollary 1.27

Corollary 1.31. For fized k, there is a polynomial time algorithm to decide
whether two (k4 1)-tapes automata over k unary alphabets and one possibly
non unary alphabet compute disjoint rational relations.

Proof. A (k+1)-tape automaton A over k unary alphabets and one possibly
non unary alphabet can be emulated by a finite-turn 2k-counter machine as
follows:

i) Code the k+1 inputs 0”1,072, ..., 0™ was a binary input 0”10”21 ...10" Lu.
ii) consider the 1-turn k-counter machine M which first pushes the first k
blocks of zeros 0™1,072,...,0™ of its input into the k counters of M, then
emulates A on inputs 07,072, ..., 0™ u so that a move on the ¢-th tape of

A becomes a pop on the i-th counter of M.

12

This emulation is clearly polynomial time computable and gives a polyno-
mial time reduction of the associated disjointness problems. a.

2 Modelization of unambiguous rational relations

This section reviews known notions and facts and proves new polynomial
time decidability results for diverse problems about ambiguity in case there is
at most one non unary alphabet (cf. Cor.2.6). It also stresses analogies with
the material we are going to develop for the modelization of determinism in

§3.

2.1 Unambiguous automata and relations

Definition 2.1. 1) An automaton is unambiguous if for every input there
exists at most one accepting run (but there can be many non accepting
runs), i.e. the associated multiplicity series (cf. Def.1.8) is {0, 1}-valued.

2) A rational relation is unambiguous if it is accepted by some unambiguous
automaton.

Fzample 2.2. Two unambiguous (but non deterministic) relations:
1) The suffix relation for words on a non unary alphabet X.

the (a,€)’s the (a,a)’s

the (a,a)’s
O O

2) R={(0m,0") : m <n < 2m}. To get an unambiguous automaton for

R, observe that every pair in R can be written in a unique way in the form
(()p-l—q7 ()p-l—?q)_

(0,0) (0,00)

O—="—C

Rational relations which cannot be accepted by unambiguous automata

are called inherently ambiguous. The standard example is analog to the
standard inherently ambiguous context-free language:
{(0™1™,07) : p=morp=n}

13

However, Eilenberg and Schiitzenberger, 1969 [5] proved the following
theorem.

Theorem 2.3 ([5]). Fvery tally rational relation is unambiguous.

2.2 Decidability of ambiguity for automata

Ambiguity does not correspond to a simple property of machines. In the
general case, this is an undecidable property.

Theorem 2.4 (Rabin & Scott, 1959 [26]). Let k > 2 and suppose that
at least two among the k alphabets Xq,...,% are non unary. Then the
class of unambiguous automata is not recursive. It is, in fact, I1{-complete.

Proof. Rabin & Scott [26] really proved that the disjointness problem is
undecidable, but their proof applies with no change to the ambiguity prob-
lem. We briefly recall their argument. The Post Correspondence Problem
for m sequences (PCP,,) is the class of pairs of homomorphisms ¢, :
{1,...,m}* = {0, 1}* such that there exists u # € satisfying ¢(u) = 1 (u).
Now, let A, = ({90, 01}, 64, {0}, {¢1}) where

6 ={(q:4,0(0);q1) : g€ g}, 1€{L,...,m}
be the obvious 2-tape automaton which computes the relation

R,={(u,p(u)) : we{l,... , m}*, ue}

Observe that A, is unambiguous (even super-deterministic automata, cf.
Def.3.1). It is clear that the union automaton A, U Ay is ambiguous if and
only if (¢, 1) € PCP,,. This gives a recursive reduction (in fact polynomial
time reduction) of PC'P,, into the class of ambiguous automata on alpha-
bets {1,...,m},{0,1}.
It is known that PCP,, is not recursive and is {-complete for large m (Post,
1946 [24]), even for m = 7 (Matiyasevich & Senizergues, 1996 [17]). This
proves the theorem for the case of alphabets {1,...,m},{0,1}. Standard
coding transfers the result to any finite sequence of alphabets with at least
two non unary alphabets. a

However, when at most one alphabet is non unary, unambiguous au-
tomata form a recursive class.
First, recall the notion of truth-table reducibility (cf. standard textbooks on
recursion theory, [27] p.109-110, [20] p.268). A class X C X* is truth-table
reducible to Y C A* if there exists a recursive function ® : ¥* — Py, (A¥)
(where Py;,, (A*) is the set of finite subsets of A*) such that

Vu (ue X & ¢(u) CY)

14

X is polynomially truth-table reducible to Y if the above ® is polynomial time
computable (in particular, the number of words in ®(u) and their lengths
are bounded by a polynomial in |ul).

Proposition 2.5. Fir alphabets X4, ... ,X. The class of unambiguous au-
tomata is polynomially truth-table reducible to the class of pairs of automata
computing disjoint relations.

Proof. Suppose that A is a trim automaton (cf. Def.1.4, point 4). Then A
is ambiguous if and only if there exists two distinct paths having the same
label, starting in the same state but having different first transitions.

Let’s denote by A, the automaton A with ¢ as (unique) initial state. If
(p, @, q) is a transition of A, let’s denote A(,z,,) the automaton obtained
from A by adding a new state p”*® as the (unique) initial state and a new
transition (p"*,@,q). It is clear that Rel(A(,z,)) = @ Rel(A,).

Using these notations, A is ambiguous if and only if there exists two dis-
tinct transitions (p, @, ¢), (p, B, r) with the same origin such that @ Rel(A,) N
B Rel(A,) #0.

Thus, A is unambigli)us if and only if Rel(Ag,zq)) N Rel(A,5,)) = 0 for
all pairs (p, @, q), (p, 5,) of distinct transitions with the same origin.

This gives a polynomial time truth-table reduction of the class of unambigu-

ous automata to the class of pairs of automata computing disjoint relations.
O

bis

From Prop.2.5 and Cor.1.31 we get

Corollary 2.6. If there is at most one non unary alphabet then the class of
unambiguous automata is polynomial time computable.

2.3 Unambiguous multimorphisms
The analog of Nivat’s theorem 1.16 relative to unambiguous relations holds.

Theorem 2.7. A relation R C [[X7 is unambiguous rational if and only if
R = ®(L) where L CI'* is rational and ® : I'* — [[X¥ is a multimorphism
(resp. strict alphabetical multimorphism) which is injective on L.

Proof. 1) Let L C I'" be computed by Az and ¢ : I — [[X" be a mul-
timorphism. A simple non deterministic automaton R 4,¢ which computes
®(L) acts as follows : it guesses the successive letters of a word w € I'*,
simulates Az, to check that w € L and compares ®(w) to the input.

If the restriction of ® to L is injective and if Ay, is unambiguous (which we
may suppose without loss of generality) then the above automaton R 4.4 is

15

clearly unambiguous. This proves that ®(L) is unambiguous.

2) Now, le R be a rational relation computed by a k-tape automaton A. Let
04 C Qa x J[X7 X Qa be the finite set of transitions of A. Considering
d4 as an alphabet I', automaton A can be viewed as a 1-tape automaton
computing a language L C I'*. Also, the label function (q,@,r) — u from I'
into [[X7 has a unique extension to a multimorphism & : ['* — [X7, It is
clear that ®(L) = R.

Clearly, A is unambiguous if and only if the restriction of ® to L is injective.
Lastly, observe that if A is normal (which can be supposed without loss of
generality) then & is strictly alphabetical. a

As can be expected, the answer to the decision problem relative to the
above characterization is much the same as in Cor.2.6. However, this answer
also depends on the cardinality of the source alphabet I' of L and ®.

Proposition 2.8. 1) If at least two of the alphabets ¥;’s are non unary
then

i) There is a finite alphabet I' and a rational language L C I'™* such that
the family of multimorphisms ® : I — [[XF which are injective on L is
119-complete hence undecidable.

ii) There is a strict alphabetical multimorphism ® :{0,1,2,3}* — [[XF
such that the family of rational languages on which ® injective on L is I19-
complete hence undecidable.

2) If I' has at most 3 letters then there is a polynomial time algorithm to
decide whether an alphabetical multimorphism ® : I'* — [[X¥ is injective
on a rational language L C T'*.

3) If there is at most one non unary alphabet then there is a polynomial time
algorithm to decide whether a multimorphism ® : I'* — [[X7 is injective on
a rational language L C T'*.

Remark 2.9. 1) Point 1i) cannot be improved with a restriction to alpha-
betical multimorphisms since for a fixed finite I' there are finitely many
alphabetical multimorphisms & : ['* — [3%,

2) The proof of point 1i) (together with the best known bound m = 7 for
the undecidability of PC'P,,, [17]) leads to an alphabet I' with 14 symbols.
We do not know what is the least possible cardinality of I'.

Proof. 1) It is sufficient to consider the case k = 2 and ¥; = ¥3 = {0,1}.
We keep the notations of the proof of Thm.2.4.
i)Set I' = {1,...,2m} and L = {1,... m}P*U{m+1,...,2m}*. Let

16

G,y [— {0,1} x {0,1}* be the multimorphism such that

®,,(1) =1F 1 <i<m THEN (0'1, (i) ELSE (0°=™1,%(3))
It is clear that &, , is injective on L if and only if (p,v) ¢ PCP,. This
last property is I19-complete for m > 7 ([17], cf. proof of Thm.thm:unamb-
undec).
ii) Let & : {0,1,2,3} — [[XF be the strict alphabetical multimorphism
such that

¢(0) = (6,0) , (1) = (¢,1), ©(2) = (0,¢) , ®(3) = (1,¢)

Set L,y = {28p(i) @ i=1,...,myU{23¢(i) : i=1,...,m}. Itis
clear that ®(2'3p(i)) = (0°1, ¢(i)) and ®(2°34(i)) = (0°1,1(i)). So that &
is injective on L, y if and only if (¢,) ¢ PCP,,.

2) We first reduce the problem of injectivity of multimorphisms on rational
languages to the ambiguity problem of multitape automata.

Let @ : I — [[X¥ be a multimorphism, L C I'* be a rational language and
A be a deterministic (one-tape) automaton computing L. Define A® as the
non deterministic A-tape automaton computing ®(L) as follows:

- A? (non deterministically) guesses a word u € I'*,

- A? compares ®(u) with its input 7 € [[¥,

- A® emulates A to check if v € L,

- A% accepts if u € L and ®(u) = 5.

It is clear that the accepting runs of A® on an input & € [] MY arein a 1-1
correspondence with the words « € ®71(7). Thus, @ is injective on L if and
only if A® is unambiguous.

A priori, the alphabets of the k tapes of A® are the ¥;’s. Of course, one can
reduce the 2-th alphabet X; to the subalphabet X; formed by the letters of
the i-th components of the multiwords in ®(I').

Now, suppose ® : I'* — [[X7 is alphabetical and let

I''={y €l : ®(y) has a non empty i-th component}
Clearly X; is the set of i-th components of ®(I';).
The I';’s form a partition of I' and (denoting (X)) the cardinality of a set
X) we have f(X;) < #(I';).

Now, if I' has at most 3 letters then there is at most one component ¢
for which I'; has more than one element. A fortiori, there is at most one
component ¢ for which X; has more than one element. But this means that
A? has at most one non unary alphabet. So that Cor.1.31 allows to decide
in polynomial time if A® is unambiguous.

3) Suppose now there is one non unary alphabet 3 and k unary alphabets.
Let L C I'* be a rational language and ® = (¢, ¥) a multimorphism with
o™ = X5 W T — ({0})%. Set

17

T = {(p(), W(a), W(3) : a,BEL A (pla) = ¢(8) A a#B)}.
Clearly, ® is injective on L if and only if the projection of 7" on ({0}*)%* is
disjoint from the diagonal of ({0}*)* x ({0}*)*. To conclude via Corollary
1.31, it suffices to prove that T' is rational and construct in polynomial time
some automaton for 7.

Now, the condition « # 3 can be expressed as the disjunction of conditions:

(i) o is a strict prefix of

(i) f is a strict prefix of a

(iii) a = Ean and § = £b¢ for some &, 1, € I and a,b€ " and a # b
so that, with obvious notations

T=T< UTs U U,pesaps Tap

Let A be a one-tape deterministic automaton computing L and denote A,
and L, (resp. AP and L?) the automaton A with p as the unique initial
(resp. final) state and the language it computes. We then have

Te = Uyeg (oW, W)(17) ({6} x {6} x W(L, 1 (¢740)\ {e})))

T =Upeq, (9, W, W) (LP) ({e} x W(Ly 0 (¢7He) \ {e})) x {e})

Toy = UpEQA (¢, 0, W) (Lp)Ep#Lb

where

E, b= A{(plav), ¥(au), ¥(bv)) : au,bv € L, A p(au) = ¢(bv)}

All these sets are obviously rational, hence also T', and associated automata
can easily be constructed in polynomial time. a

3 Modelization of deterministic rational relations

For a detailed study of deterministic rational relations, we refer to Pelletier
& Sakarovitch, 1999 [23] and Sakarovitch, 2001 [28]. Here, we shall be con-
cerned with the problem of modelization of determinism along the different
approaches to rational relations described in §1.

3.1 End-markers and super-deterministic automata

The obvious notion of deterministic ROTM leads to the natural class of
deterministic rational relations. Hence, we would like to define a reasonable
notion of deterministic labelled graph automata leading to the same class.
However, from the very start of the theory (Rabin & Scott, 1959 [26],
p.85-86, Elgot & Mezei, 1965 [6], p.48, Fischer & Rosenber, 1968[7], p.89),
through its development (Bird, 1973 [2], Kinber, 1983 [14], Harju & Karhumaki,
1991, [12], ...), up to the most recent papers (Pelletier & Sakarovitch, 1999
[23] §2.2) , the notion of deterministic automata which has been considered

18

does not lead directly to the class of deterministic rational relations. A de-
tour is made via auxiliary relations obtained by adding end-markers. We
recall this classical definition (together with a variant in the vein of Def.3.8

below).
Definition 3.1. Let A = (Q,[[X5, F, I, F) be a multitape automaton.

K3

1) A is super-deterministic if it has a unique initial state and if the labels of
two distinct edges with a common origin are prefix incompatible (i.e. have
no common extension).

2) [Rabin & Scott, 1959 [26]] A is normal super-deterministic if if it has a
unique initial state and if there is a partition (Q1,...,Q%) of @ such that
i)forall i € {1,...,k} and for all p € Q); the label of any edge with origin p
has all components empty but the ¢-th which is a letter. In particular, the
support of the label is {¢} (cf. Def.1.12).

ii) different edges with origin p have different labels.

These notions are effective.

Proposition 3.2. One can decide in polynomial time whether an automa-
ton is super-deterministic or normal super-deterministic.

Remark 3.3. Super-deterministic automata are called deterministic in the
literature. The reason why we depart from the standard terminology will
be clear from Def.3.8 and Thm.3.17 below.

Remark 3.4. Exact polynomial complexity in Prop.3.2 depends on the pa-
rameters taken into account for A (number of edges, number of nodes, outer
degree, i.e. maximum number of edges having a common origin) and the
presentation of the automaton (as a list of labelled edges or as a list of pairs
consisting of a node and the list of labelled edges coming out of that node).
This will apply as well to Prop.3.20 below.

The folllowing simple fact insures that Definition 3.1 is sound.

Proposition 3.5. Let R C 3] X ... x X} and let R% be obtained by adding
an end-marker $ to each word in tuples of R.

R is computed by a deterministic ROTM if and only if R® is the behaviour
of a super-deterministic (resp. normal super-deterministic) multitape au-
tomaton.

The reason for such a detour is due to a difficulty arising from commuta-
tion of multiwords having disjoint supports (cf. Def.1.12). This is illustrated
by the following simple example. Let a, b be letters and consider the relation

19

R = {(a,€), (¢,b)}. This relation is obviously ROTM deterministic. How-
ever, it is easy to see that it is not the behaviour of any super-deterministic
automaton. Whereas, R® = {(a$,$), ($,0$)} is easy to compute by a normal
super-deterministic automaton:

(e,$)(e DIN_($, ¢ @ = > $76)

Thus, despite the fact that multitape automata are always identified

with labelled graph automata, the modelization of determinism is still very
much reminiscent of the ROT M model with the blank symbol appearing at
the right of each input.

3.2 What is a deterministic automaton?

Nevertheless, there does exist some reasonable notion of deterministic la-
belled graph automata which directly compute deterministic rational rela-
tions. As far as we know (and surprisingly as it may be), such notions seem
to be original.

Before entering the drier stuff of formal definitions, let’s illustrate the intu-
ition on an example.

FEzxample 3.6. The graph of the concatenation function,

{(w,v,w) : wv=w}
is obviously ROT M deterministic: first read (u, €, u) and then (e, v,v). It is
easy to see that it is not the behaviour of a super-deterministic automaton
(argue as above with (a, ¢, a) and (¢, a, a) instead of R = {(a,¢), (¢,b)}).
Let’s look at diverse automata which compute it.
1) First, two automata which can in no way be deterministic.

the (a, €, a) the (e,a,a)’s the (a,€,a)’s the (e, ab, ab)’s

gthe (a,¢€,a) 8

the (e, ab, ab)’s

The first one is clearly ambiguous on every triple (u, €, u) such that u # e,

hence surely non deterministic.

The second one is unambiguous. However, to decide which transition is the
right one to go from state 0 to state 1, one has to know whether |v| is even
or odd, and this is known only when v is completely read. So, there is no
way for determinism.

20

2) Now, an automaton D; which is not super-deterministic because there
(a,e,a) (e,a,a)

are transitions 0 —" 0 and 0 "—" 1 with prefix Compatible labels.

the (a,€,a)’ the (e, a,a)’

the (€, a,a)

However, the first transition reads an a on tape 1 whereas the second does
not and leads to a state from which it is no more possible to read anything
on tape 1 (we shall call such a state an 1-end). Thus, there is no problem to
decide which transition is the right one. So, we shall consider this automaton
as deterministic. The same with the following normalized versions Dj, Ds
(which have 2 4 3|X| states):

—~
)
)
]

~—

DO
G>

—~
)
>
[

~—

3) Now, automata Dy, D5 which are not super-deterministic for two reasons:
i) There are transitions with prefix compatible labels.
ii) There are several initial states.

(a,¢€,a) (€,a,a) (a,¢€,a) (e,a,a)(a, ¢ a)

Let’s consider the first automaton.
As for i), transitions 0 (M) 0 and 0 (M) 1 have the same label. However,

the second one leads to a state (namely 1) from which it is no more possible

21

to read anything on tape 1. Whereas, from the first one, one is forced to
read something on tape 1 in order to go to a final state. Thus, there is no
problem to decide which transition is the right one.
As for i), a similar argument does work. If we start at state 0, we are
forced to read something on tape 1 in order to go to a final state. Whereas,
if we start at state 1, then nothing can be read on tape 1. Thus, there is no
problem to decide which initial stateis the right one to start with.
Let’s now consider the second automaton.
As for i) argue as with automaton of point 2 above. As for ii), if we start
from state 2 then nothing can be read on tape 2. Whereas, from state 0 we
are forced to read tape 2 in order to go to a final state. So, again, there is
no problem to decide which initial state to start with.

Thus, we shall also consider these automata as deterministic.

Conclusion. From the above examples, we see that the prefix incompatibil-
ity of the labels of different transitions from a given state is not a condition
inherent to determinism. Also, the unicity of the initial state is no more
inherent to determinism, it’s a mere normalization condition.

Remark 3.7. There is still another reason which could be considered to get
determinism. Let say that a state ¢ is i-consistent if the label of every path
from ¢ to a final state has a non empty ¢-th component.

Suppose ¢ is i-consistent and r is an i-end. If p == ¢ and p — s are two
transitions then there is no problem to choose between these two transitions:
just look ahead at the i-th component of the input.

However, we shall not retain this type of deterministic character. The reason
is that it does not carry to subautomata, contrarily to all above deterministic
characters (cf. Prop.3.13 below).

3.3 Strongly deterministic and n-deterministic automata

Now, we come to the desired definitions and introduce two types of deter-
ministic multitape automata.

Definition 3.8 (Strong determinism). 1) A state pis an i-end (1 <@ <
k) for a k-tape automaton A if any path from p to a state in F4 has an
empty i-th component.

2) A is strong deterministic if it has a unique initial state and if for every
pair of distinct transitions (p,&,q), (p,7,7) with the same origin, at least
one of the following conditions hold:

i) € and 7 are prefix incompatible

22

i) q is an i-end and £(7) is a strict prefix of 7(7) for some i € {1,... ,k}
iii) r is an i-end and 7(4) is a strict prefix of £(i) for some i € {1,... ,k}
3) A is normal strong deterministic if it is strong deterministic and normal
(cf. Def.1.11).

Remark 3.9. A super-deterministic automaton (cf. Def.refdef:classicdet) is
obviously strong deterministic.

Notation 3.10. 1) If n € NU{oo}, w is a word, w = (uq,...,ux) is a multi-
word, we let
max(n,u) = max(n,|u|) , max(n,w) = (max(n, |u1]), ..., max(n, |ug|))

) Ifp = (p1,...,p) € (NU{oo})® and R a relation on words, we let

) = the prefix of w with length min(n, |ul)

) = (n-Prefix(uy),...,n-Prefix(ug))
n-Prefix(R) = {n-Prefix(w) : we R}

) = (p1-Prefix(uy), ..., pr-Prefix(ug))

) = {p-Prefix(@w) : we R}

Definition 3.11 (n-determinism). 1) A is n-deterministic if the follow-
ing two conditions are satisfied.

i) If p, q are distinct initial states then
n-Prefix(Rel(A,)) N n-Prefix(Rel(A,)) = 0
i) If (p, &, q), (p,7,r) are distinct transitions with the same origin then
max(n, &, 7)-Prefix(ERel(A,)) N max(n, &, 7)-Prefix(MRel(A,)) = 0

In case all labels of transitions of A have length < n (in particular if n > 1
and A is normal or quasi-normal, cf. Def.1.11) then condition ii) can be
expressed in a simpler form:

iibis) n-Prefix(ERel(A,)) N n-Prefix(fRel(A,)) =0
2) Ais normal n-deterministic if it is n-deterministic and normal.

FEzxample 3.12. Let’s review the deterministic character of the automata in-
troduced in Example 3.6.

Automaton Dy is strong deterministic: (€,a,a)1 = € <prepiz @ = (a,¢,a)q
and state 1 is an l-end.

Similarly, automaton D3 is normal strong deterministic: (€, ¢, a)1 = € <prefin
a = (a,€,€); and state 2¢ is an 1-end.

23

Automata Dy, Dy, Dy are not strong deterministic:
- there are two Dy-transitions from state 0 with the same label (e, €, a),
- there are two Dy-transitions from state 0 with the same label (a, ¢, €),
- Dy has two initial states 0 and 2.

However, Dy, Dsarel—deterministicandDs is 4-deterministic. (since these

automata are quasi-normal, condition iibis is to be checked):

(e,6,a)Rel((D2)os)) = {(a'T™ '™ a*T™ ")+ m n € N}
(e,6,a)Rel((D2)24)) = {(e,a't" a'™™) : n € N}

and the associated 1-Prefix relations are disjoint.

(a,€,a)Rel((D4)o)) = {(a2+m,a”,a2+m+”) : m,n € N}
(a,e,a)Rel((Dy)1)) = {(a,a",a't™) : n € N}

and the associated 2-Prefix relations are disjoint.

Rel((Ds)o)) = {(am,al"'”,al‘i'm‘i'”) : m,n € N}
Rel((Ds)2)) = {(a,e,0)}

and the associated 1-Prefix relations are disjoint. Also,

(a,€,a)Rel((D5)o)) = {(a1+m,a1+”,a2+m+”) : m,n € N}
(e,a,a)Rel((Ds)1)) = {(e,a'™ ") : n e N}

and the associated 1-Prefix relations are disjoint.
It is easy to check that D, is not 1-deterministic.

As announced in Remark 3.7, we have the following property (which is
obvious from the definitions).

Proposition 3.13. If an automaton is n-deterministic (resp. strong deter-
ministic) then so is the automaton obtained by suppressing any collection of
nodes or edges.

The following result is easy.

Proposition 3.14. 1) For alln € N
A is strong deterministic = A is 0-deterministic
A is n-deterministic = A is (n+ 1)-deterministic
2) The above implications cannot be reversed.

24

Proof. Point 1 is straightforward. As for Point 2, the first implication cannot
be reversed since a 0-deterministic automaton with two distinct initial states
cannot be strong deterministic.
We now deal with the second implication. For » = 0, observe that the
following automaton is 1-deterministic but not 0-deterministic: the relations
computed from the two initial states are

Rel(Ao) = {(a,0)} , Rel(Az) = {(e,b)}

so that their 1-Prefixes are distinct but their 0-Prefixes are equal.

O ® OO0

For n > 1, consider the following automaton A :

@(a”_lc,b)@ (a,€) @ e @ _s @

We have

(a,€)Rel(Ay) = {(a"c,b)}, (¢,b)Rel(As) = {(a"d,b)}
so that if ¢ # d then A is (n 4 1)-deterministic but not n-deterministic.

3.4 Ambiguity and co-determinism
Though straightforward, the following result is worth noticing.

Proposition 3.15. 1) For all n € N, every n-deterministic automaton is
oo-deterministic.

2) An automaton A is co-deterministic if and only if it is unambiguous.

Remark 3.16. However, there are unambiguous automata which are not n-
deterministic for any n. For instance, the second automaton given in point
1 of Example 3.6.

3.5 Deterministic automata compute what is expected

Theorem 3.17. Let R be a relation. The following conditions are equiva-
lent:

i) For some n € N the relation R is the behaviour of some n-deterministic
automaton

ii) For all n € N the relation R is the behaviour of some normal n-
deterministic automaton

iii) R is the behaviour of some strong deterministic automaton.

25

iv) R is the behaviour of some normal strong deterministic automaton.
v) R is computed by some deterministic ROT M
vi) R is computed by some modified deterministic ROT M

Before coming to the proof, we observe the following fact.

Remark 3.18. Normalization and quasi-normalization of automata (cf. Def.
1.13) do not preserve neither strong determinism nor n-determinism. A
counterexample is obtained by considering the following strongly determin-

istic automaton A which computes {(a,b), (a,bc)}.
(av 6) @

@ (a,b) -

The associated normalized and quasi-normalized automata A™ and A?™ are
as follows (where A, B stand for states (0, (a,€)), (0, (¢,b))):

(€,b) (€,¢) (a,€)
O O OnnO

(€,b) (€,¢) (a,€)
O— O OnnO

A™ is not strongly deterministic: the pair of transitions starting at state 0
violates the condition for strong determinism since A is not a 2-end and B
is not a 1-end. A™ is not even 1-deterministic since

1-Prefix((a, €) Rel (A%™l)) = 1-Prefix((e, b) Rel (A"} = {(a,b)}

However, A™ is 2-deterministic. All the same properties hold with A7,

)

20

C

-0-0

Proof of Theorem 3.17. We shall prove implications ¢ = wvi, vi = i,
vt = tw. All other implications follow from these ones and Propositions
3.14, 1.19.

¢t = vt Given an n-deterministic automaton A, we describe a deterministic
ROTM T which has the same behaviour. Let m be the maximum width of
labels of transitions of A. Then T acts as follows:

«) Before emulating any .A-transition, 7 reads its tapes so as to memorize
up to max(n, m) letters of each one of the k inputs (an information it retains
in its state).

#) When T has completed this memorization, it emulates a transition of
A (which is necessarily unique, since A is n-deterministic), changes state
accordingly and forgets the portion of the memorized input corresponding
to the label of the simulated transition.

26

vi = 211 Def.1.22 associates to a modified ROTM T a quasi-normal au-
tomaton A which computes the same relation as 7 does (cf. Prop.1.21). We
show that if 7 is a deterministic modified ROTM then A is strong deter-
ministic.

Since T has a unique initial state so does A. Thus, the first condition for
strong determinism is satisfied.

(A) 44 is functional

i.e. two edges with the same origin (¢,&) and label @ are equal.

In fact, suppose ((¢,&),@, (r,7)) is an A-transition. Observe that there is

a unique 7-transition ¢ = (¢, @, r,m) such that ((¢,), @, (r,7)) € Trans(t).
The reason is that @ and 7 are determined as follows:

4 = IF & # new THEN & ELSE (IF a; = ¢ THEN B ELSE a;)(9)
m; = IF g, =new THEN 1 ELSE 0 (10)

Since T is deterministic, from ¢ and @ we get r and ™. Combined with
equation 9 and the definition of 7 from 7, this proves that from ¢, & & we
get r and 7, i.e. d4 is functional.

(B) Any A-state (s,8) such that §; = B is clearly an i-end

Consider now two distinct edges ((¢,&), @, (r,7)) and ((¢, &), 3, (s,0)) out of

some A-state (q,&).

Due to (A), they must have distinct labels: @ # 3. Suppose these distinct

labels are prefix compatible and let i be such that |a;| > |3;|. Since A is

quasi-normal, this implies that #; = € and that «; € ¥; is a letter. Recall
a; = 1F (& = new and a; # B) THEN «; ELSE ¢

so that, from «; € 3; we get & = new.

Let t = (q,b,s,7m) be such that ((¢q,£), 3, (s,0)) € Trans(t). From & = new

and f§; = € we get b; = B. Therefore 7 makes no move on tape ¢ and m; = 0,

whence §; = b; = B. Using (B) we see that (s,8) is an i-end. Which proves

the condition for strong deterlminism of A.

vi = tv The above automaton A is quasi-normal. To get a normal automa-
ton, we argue as follows:

- Normalize the ROTM so that it moves exactly one head per transition.
Observe that the obvious way to do that does preserve determinism.

- Use Remark 1.23 to conclude that A is then normal. a

Remark 3.19. The direct way of normalizing a multitape automaton does
not preserve neither n-determinism nor strong determinism (cf. Remark

27

3.18). We can use the above construction to get a (rather tortuous) method
to normalize a deterministic automaton:

1) Go from A to a deterministic modified ROTM TM

2) Transform T'M to Atomic(T M) so as there is exactly one move per tran-
sition. This does preserve ROT M determinism.

3) From Atomic(TM) get A normal strong deterministic using the construc-
tion given in the proof of Thm.3.17.

3.6 Decidability of determinism for automata

Proposition 3.20. 1) The class of strong deterministic automata is poly-
nomial time decidable (cf. Remark 3.4).

2) Let expl-DET = {(n, A) : A is n-deterministic} (where “expl” stands
for “explicit”). Caution: n is to be considered as an object of length n, i.e.
it 1s written in unary.

i) If k > 2 and there are at least two non unary alphabets then the class
expl-DET is co-NP-complete.

ii) If there is at most one non unary alphabet then the class expl-DET is
polynomial time decidable.

Proof. 1) 1t is easy to devise a polynomial time algorithms to decide if a
state is an i-end of A.
2i) Deciding if the relations computed by two automata have a common
n-Prefix is clearly in NP. Hence the disjointness conditions i), i) of Def.3.11
for n-determinism lead to an obvious co-NP algorithm.
Conversely, a straightforward adaptation of the proof of Thm.2.4 leads to
a polynomial time reduction of the bounded Post Correspondence Prob-
lem (which is PC'P in which we want a solution u with length < n) to
the non-disjointness problem of the n-Prefixes of relations computed by fi-
nite super-deterministic automata. This last problem reduces easily to the
complement of the class expl-DET. We conclude using the well-known NP-
completeness of the bounded-PC'P (cf. [8] p.228).
2ii) An automaton Al computing n-Prefix(Rel(A)) is as follows:

- QA[W] =Qa X {0717"' 7n}k7

- Al counts the number of letters read on each of the k components,

- A"l emulates A while all counts are < n. Such an automaton can be
constructed in polynomial time. Construct (as above) automata computing

- relations n-Prefix(Rel(A,)) where p is an initial state of A,

- relations max(n, &,)-Prefix(ERel(A,)) where £, 7 are labels of transi-
tions starting at p,

28

Using these automata (which can be constructed in polynomial time) and
the fact that at most one alphabet is non unary, we can apply Cor.1.31 to
check in polynomial time the disjointness of relations occuring in condition
ii) of Def.3.11 for n-determinism. 0

However, for existentially quantified n the problem is in general unde-

cidable.

Proposition 3.21. Let DETy, v, ={A : dn (A is n-deterministic)}.
1) Suppose k > 2 and there are at least two non binary alphabets. Then

DFETx, . %, is E?-complete hence undecidable.

k

2) If there is at most one non unary alphabet then DETs., v, is decidable.

Remark 3.22. We do not know the exact complexity of the class DETY, | v,
in case there is at most one non unary alphabet. It is bounded by that of
Presburger arithmetic.

Proof. of Prop. 3.21. 1) Let M be a deterministic Turing machine with
input alphabet ¥, set of states ¢ and initial state ¢o. Sequences of in-
stantaneous descriptions (i.d.) of M can be coded as words in alphabet
A =Y UQU{S$}, where $ serves as a flag separating successive i.d.’s. If T
is an i.d. with non final state, we denote It the i.d. obtained from I with
one M-transition.

For each u € ¥* we define 2-tape automata A%, B* as follows:

i) A" computes the relation

{(qou$1$1:% .. .81; , [1S:$...81;) : the I;’s arei.d.’s}
the (a,a)’s the (a,a)’s

@ (qou3, €)

(The ¢’s vary over) 4, the a’s vary over X).
ii) B* computes the relation
{(I$1,$...81, \IFSIFS .. .$I) : the I’s are non final i.d.’s}
the (a,a)’s the (a,a)’s

Labels in T" are (bga, rbc), (qa, rc), (ga, cr) according to the emulated M-
transition
5(¢,a) = (r,e,—1) or (r,c,0) or (r,c,1)
(where —1,0,1 mean “left move”, “no move”, “right move” and ¢ is what
M writes in place of a).

It is clear that A" is super-deterministic. Also, B* is 0-deterministic:

- transitions starting at state 1 have incompatible labels,

- transitions in 7T starting at state 0 have incompatible labels,

- for transitions (0, (a,a),0) and (0,£,1) € T, the value max(0, (a, a), &)
is 2 or 3 and
max(0, (a, a),&)-Prefix((a, a) Rel (By) N max(0, (a, a), £)-Prefix({Rel (BY) =
Since Rel(A") U Rel(B*) = () the union automaton A" U B* is always un-
ambiguous. We now look under which condition A* U B* is n-deterministic
for some n.
First, observe that condition 7i) in Def.3.11 is automatically satisfied with
n = 0.
Condition ¢)in Def.3.11 is satisfied for some n if and only there is a bound to
the depths of common prefixes to a pair in Rel(.A") and a pair in Rel(B").
Now, such common prefixes are exactly the prefixes of the pairs

(q0u$11$12$. $It ,]1$]2$. $It)

where the I;’s are the successive instantaneous configurations of the compu-
tation of M on input u.
In particular, there is a bound to their depths if and only if M halts on
input u. Thus, automaton A* U B* is n-deterministic for some n if and only
if M halts on input u (and the smallest such n is then the sum of the lengths
of the successive i.d.’s of the finite M-computation on input u).
Considering a universal Turing machine M, we get a recursive reduction of
the halting problem for M to the problem of determinism for automata.
Hence the wanted undecidability and also the ¥9-completeness.

2) In case there is one non unary alphabet ¥ and k unary alphabets, we
reduce to Presburger arithmetic as in the proof of Cor.1.27.

Let’s add an n-component to the sets considered in conditions i), i) of
Def.3.11. For initial states ¢, r this leads to define

19" = {(w,5,n) : weX* AFe(N}f AneN
A (w,3) € n-Prefix(Rel(A,))
A (w,3) € n-Prefix(Rel(A,))}

For transitions (p, (u, &), q), (p, (v,7), r) the sole interesting case is when p, ¢
are prefix comparable (otherwise condition ii) is trivial). Thus, we restrict

30

to the case u is a prefix of v, i.e. v is of the form v = ww/. This leads to

define
ST __={(w,5n) : weX AFe(N}f A neN

wyu! &
A (w,5) € n-Prefix((u, &) Rel(A,))
A (w,5) € n-Prefix((uu',) Rel(A,))}

However, these relations 17", S?" _ _ are not rational. So we introduce vari-
U u ? 777

ants J97, T%" _ _ which are ratlonal
u u bl 777

J ={(w,5,t,m,n) : weX* AFIec(NF A mneN
A Ja,f e X IN e NF
A (o, A) € Rel(A,))
A (.70 € Rel(A,)
A (w,3) = m-Prefix(a, A)
A (w,t) = n-Prefix(3,7) }

Tj:Z',E,ﬁ ={(w,5t,mn) : weX* AFte (N A mneN
A Jo,f e X IN, e NF
A (a, N) € Rel(A,))
A (B 1) € Rel(A,)
A (w,3) = m-Prefix(ue,)
A (w, 1) = n-Prefix (uu'S3, 77) }

Clearly,

17" = {(w,5,
Sqﬁ,/—— = {(=h

u7u 75777

Let K%" Uq: - be the projections of J%" Tq: Er parallel to the ¥* com-
ponent.
Now, A is deterministic if and only if there exists n such that for all initial
states p, ¢ and all transitions (p, (u,£), q), (p, (ut/,7),r)

{(w,s): (w,5,n) € [} =0, {(w,3): (w,5,n) € SZ:Z',E,E} =10

le.

31

{(w,9): (w55nn) €} =0, {(w,5): (w55nn0)eT" } =0

u7u/7£7
This amounts to say

dn Vs (5,5,n,n) ¢ K¥ | InVs (5,5n,n)¢ U (11)

u7u/ 7£7ﬁ

Since relations K?", UZQ'EE are rational, they can be expressed in Pres-
burger arithmetic (cf. Thm.1.25). Hence assertions (11) can be expressed

in Presburger arithmetic and we get the wanted decidability. a

3.7 Deterministic multimorphisms

The tight relation between k-tape automata and multimorphisms (cf. point
3 of the proof of Thm.2.7) leads to a natural notion of n-determinism and
strong determinism.

Definition 3.23. Let @ : ['" — [[X* be a multimorphism and L C I'* be
a rational language.

1) @ is an i-end for a language X C I'* if ®(a); = € for all letters a occurring
in some word in X (where ®(z); denotes the i-th component of ®(z)).

2) & is n-deterministic on L if for all words u € I'*, for all distinct letters
a,b € ' if wa, ub are prefixes of words in L then
n-Prefix({®(az) : waxz € L}) Nn-Prefix({®(by) : uby € L}) =10

3) ® is strong deterministic on L if for all words u € I'*, for all distinct
letters a,b € I, if wa, ub are prefixes of words in L then at least one of the
following conditions holds:

i) ®(a), ®(b) are prefix-incompatible in [] X*

i) ®(a); is a strict prefix of ®(b); and ® is an i-end for (ua)~'L.

iii) ®(b); is a strict prefix of ®(a); and ® is an i-end for (ub)~1L.

We can now state the deterministic version of Nivat’s Multimorphism
Theorem, the proof of which is straightforward from the definitions.

Theorem 3.24. A rational relation R C [[X* is n-deterministic (resp.
strong deterministic, resp. normal strong deterministic) if and only if R =
O(L) where L C I is a rational language and ® : ' — [[X7 is a proper
multimorphism which is n-deterministic on L (resp. strong deterministic on
L, resp. strong deterministic on L and alphabetical multimorphism).

As for the effectiveness of the notion, results are analog to those of
Prop.3.21, 3.20 (with similar proofs).

32

Proposition 3.25. 1) Consider the class of triples (n, A, ®) such that A is
a one-tape automaton on alphabet I' and ® : I — [[X7 is a multimorphism
which is n-deterministic on L(A). (Caution: n is to be considered as an
object of length n, i.e. it is written in unary).

i) If k > 2 and there are at least two non unary alphabets then this class is
co-NP-complete.

ii) If there is at most one non unary alphabet then this class is polynomial
time decidable.

2) Consider the class of pairs (A, ® such that A is a one-tape automaton on
alphabet I' and ® : I'* — [[XF is a multimorphism which is n-deterministic
on L(A) for some n.

i) If k > 2 and there are at least two non unary alphabets then this class is
Y9-complete hence not recursive.

ii) If there is at most one non unary alphabet then this class is recursive

Remark 3.26. As for the notion of deterministic automaton (cf. Rk.3.22),
we do not know the exact complexity in Point 2¢i. It is bounded by that of
Presburger arithmetic.

4 Acknowledgements

Many thanks to Christian Choffrut and to an anonymous referee for com-
ments and corrections.

References

[1] J. Berstel. Transductions and context-free languages. B. G. Teubner,
1979.

[2] M.R. Bird. The equivalence problem for deterministic two-tape au-
tomata. J. Computer System Sci., 7:218-236, 1973.

[3] 1. Borosh and L. Treybig. Bounds on positive integral solutions of linear
diophantine equations. Proc. Amer. Math. Soc., 55(2):299-304, 1976.

[4] S. Eilenberg. Automata, languages and machines, volume A. Academic
Press, 1974.

[5] S. Eilenberg and M.P. Schiitzenberger. Rational sets in commutative
monoids. J. Algebra, 13:173-191, 1969.

33

[6]

C.C. Elgot and J.EE. Mezei. On relations defined by finite automata.
IBM J. Res. and Develop., 9:47-68, 1965.

P.C. Fischer and A. Rosenberg. Multitape one-way nonwriting au-
tomata. J. Computer System Sei., 2:88-101, 1968.

M; Garey and D. Johnson. Computers and intractability. A guide to
the theory of NP-comppleteness. Freeman, 1979.

S. Ginsburg and E.H. Spanier. Semigroups, presburger formulas, and
languages. Pacific J. Math., 16:285-296, 1966.

J. Goldstine. A simplified proof of parikh’s theorem. Discrete Math.,
19:235-240, 1977.

E. Gurari and O. Ibarra. The complexity of dcision problems for finite-
turn multicounter machines. J. Computer System Sci., 22:220-229,
1981.

T. Harju and J. Karhumiki. The equivalence problem of multitape
finite automata. Theoret. Comput. Sei., 78:347-355, 1991.

O. Ibarra. Reversal-bounded multicounter machines and their decision
probems. J. Assoc. Comput. Mach., 25(1):116-133, 1978.

E.B. Kinber. The inclusion problem for some classes of deterministic
automata. Theoret. Comput. Sci., 26:1-24, 1983.

S.C. Kleene. Representations of events in nerve nets and finite au-
tomata. In Automata Studies, pages 3-41, 1956.

H.W. Lenstra. Integer programming with a fixed number of variables.
Mathematics of Operations Research., 8(4):538-548, 1983.

Y. Matiyasevich and G. Senizergues. Decision problems for semi-Thue
systems with a few rules. In 17th Symposium on Logic in Computer
Science, pages 523-531, 1996.

J. Myhill. Finite automata and the representation of events. WADD
Technical Report, Wright-Paterson Air Force Base, 57-624, November,
1957.

M. Nivat. Transductions des langages de Chomsky. Ann. Inst. Fourier,
108:339-456, 1968.

34

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

P. Odifreddi. Classical recursion theory, volume 125 of Studies in logic
and the foundations of mathematics. North-Holland, 1989.

R.J. Parikh. Language-generating devices. Quarterly Progress Report,
60:199-212, 1961.

R.J. Parikh. On context-free languages. J. Assoc. Comput. Mach.,
13:570-581, 1966.

M. Pelletier and J. Sakarovitch. On the representation of finite deter-
ministic 2-tape automata. Theoret. Comput. Sci., 225:1-63, 1999.

E. Post. A variant of a recursively unsolvable problem. Bull. Amer.
Math. Soc., 52:264-268, 1946.

M. Presburger. Ueber die Vollstandigkeit eines gewissen Systems ganzer
Zahlen, in welchen die Addition als einzige Operation hervortritt. In
ler Congreés des Math. des Pays Slaves, Varsovie, pages 92-101, 1930.
English translation : On the completeness of a certain system of arith-
metic of whole numbers in which addition occurs as the only operation,
History and Philosophy of Logic, 12, 1991, 225-233.

M.O. Rabin and D. Scott. Finite automata and their decision problems.
IBM J. Res. and Develop., 3:63-90, 1959. Reprinted in Sequential Ma-
chines, Moore editor, 1964, Addison-Wesley.

H. Rogers. Theory of recursive functions and effective computability.
McGraw-Hill, 1967.

J. Sakarovitch. Fléments de théorie des automates. 2001. To appear.
A. Schrijver. Theory of linear and integer programming. Wiley, 1987.

M.P. Schiitzenberger. On the definition of a family of automata. Inform.
and Control, 4:245-270, 1961.

J. Von zur Gathen and M. Sieveking. A bound on solutions of linear
integer equalities and inequalities. Proc. Amer. Math. Soc., 72(1):155—
158, 1978.

35

