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Abstract

We are concerned with Kolmogorov complexity of strings produced

by non-deterministic algorithms. For this, we consider five classes of

non-deterministic description modes : (i) Bounded description modes

in which the number of outputs depends on programs, (ii) distributed

description modes in which the number of outputs depends on the size

of the outputs, (iii) spread description modes in which the number of

outputs depends on both programs and the size of the outputs, (iv)

description modes for which each string has a unique minimal descrip-

tion, and lastly (v) description modes for which the set of minimal

length descriptions is a prefix set.
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1 Introduction : Complexity of Description Modes

Uspensky and Shen in [11] compare various standard definitions of Kol-

mogorov complexities. For this, they introduce the concept of description

modes. In essence, a description mode is a binary recursively enumerable

(r.e.) relation. So when a description mode turns out to be the graph of a

function, it denotes a deterministic computation. Our starting point is to

consider description modes in which a program may output more than one

string. From this, we attempt to investigate the information content of a

string when we deal with non-deterministic algorithms.

In the next subsections, we shall define description modes and their

associated complexity measures. Then, we shall give in Subsection 1.5 a full

account of each class of description modes that we introduce.

1.1 Description modes and non-determinism

Preliminary Notations 1. 1. Let ∆, Σ both denote the alphabet {0, 1}.

Throughout, ∆∗ (resp. Σ∗) denotes words from the alphabet ∆ (resp.

Σ). The length of a word p is denoted |p|.

2. We shall use the bijection val : ∆∗ → N defined by val(ǫ) = 0 and

val(u0 · · ·un) =
∑n

i=0(ui + 1) · 2i, where ui ∈ ∆ (Caution : this is not

the binary development using digits 0, 1 but the dyadic one which uses

digits 1, 2). We have |ǫ| = 0 and |u| = ⌊log(1 + val(u))⌋, for u 6= ǫ,

where log denotes the base 2 logarithm.

Notice that val(u) ≤ val(v) if u is a prefix or a suffix of v.

3. We shall use the length anti-lexicographic ordering on ∆∗, i.e. length

first and then anti-lexicographically, so that p < q iff val(p) < val(q).

4. We take as pairing function the function defined by
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〈x, y〉 = x1x1x2x2 · · ·xnxn01y if x = x1 · · ·xn.

It satisfies the equality |〈e, p〉| = |p| + 2.|e| + 2.

5. Measures of information being considered up to some additive con-

stant, we let ≤ct denote the partial order on functions over natu-

ral numbers N defined by f≤ctg if there is a constant c such that

f(x) ≤ g(x) + c for all x.

Also f=ctg if f≤ctg and g≤ctf , and f<ctg if f≤ctg but g 6≤ctf .

6. Throughout, we consider some fixed standard enumeration (We) of

r.e. binary relations included in ∆∗ × Σ∗. The set We is the domain

of the two arguments partial recursive function {e}.

Refer to [7] for details on plain Kolmogorov complexity.

Description Modes

Following Uspensky and Shen in [10, 11], a description mode R is a binary

relation on ∆∗ × Σ∗ which is r.e. with the following intended meaning. If

(p, x) is in R then we shall say that the program 1 p generates the string x.

Thus, the domain ∆∗ is called the set of programs, and the range Σ∗ of R

is called the set of outputs.

Definition 2. Let R be a description mode and x be a string in Σ∗. The

complexity of x is KR(x) = min{|p| : (p, x) ∈ R}.

It must be emphasised that a R-program can generate more than one

string. Henceforth, a description mode is naturally constructed as the

graph of a non-deterministic computation. To fix thoughts, consider a non-

deterministic Turing machine (NDTM) with an output tape. We say that a

string x is produced by a NDTM on input p if x is written on the output tape

1We shall use typewriter font for programs
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of an accepting computation. Then, define the graph GM of a NDTM M

by (p, x) ∈ GM if there is an accepting computation of M(p) which outputs

x. It is clear that GM is r.e. and so GM is a description mode. Conversely,

from a description mode R, construct MR as follows. Given p, MR checks

if (p, x) appears in R. So, the graph MR is exactly R.

1.2 Optimal Mode and Entropy for a class of modes

Definition 3. According to [10], an additively optimal mode, or in short

optimal mode, O for a class C of description modes is a description mode

which is in C and such that KO≤ctKR for every mode R ∈ C.

Definition 4. An entropy for a class C is the complexity measure KO pro-

vided by an optimal mode O for C.

Two entropies are clearly equal up to an additive constant. As a conse-

quence, we shall pick up a particular entropy that we shall consider as the

entropy of the class C up to an additive constant.

Classical Kolmogorov (resp. prefix Kolmogorov, cf. Subsection 1.5.6)

complexity theory deals with the class of deterministic modes, i.e. graphs of

partial recursive functions (resp. with prefix domains). And the theory leans

on the existence of optimal modes which lends some credence to intrinsic

amount of information inherent to an object.

1.3 Universality

Let C be a class of description modes.

Definition 5. 1. A description mode U ∈ C is a universal mode for C if

there is a recursive function comp : ∆∗ × ∆∗ → ∆∗ (comp stands for

compiler) such that, letting Ue = {(p, x) : (comp(e, p), x) ∈ U}, the

family (Ue)e∈∆∗ is an enumeration of the class C.
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2. A strong universal mode U for C is an universal mode for C which

satisfies: for each index e, there is a constant c such that for all p ∈ ∆∗,

we have |comp(e, p)| ≤ |p| + c.

Proposition 6. A strong universal mode U for the class C of description

modes is optimal for C.

Proof. Let S be a description mode in the class C and let e be such that

S = Ue. For all x ∈ Σ∗, if KS(x) is defined then KS(x) = |p| with (p, x) ∈ S.

Therefore (comp(e, p), x) ∈ U and KU (x) ≤ |comp(e, p)| ≤ |p|+ c = KS(x)+

c. Whence, KU≤ctKS .

Remark 7. A simple way to implement comp is to use a pairing function, i.e.

an injective function 〈 , 〉 : ∆∗ ×∆∗ → ∆∗. Throughout, we take as pairing

function the function 〈x, y〉 defined in Notation 1, Item 4.

Remark 8. Let us make a short digression. Think of a description mode

S ∈ C as a programming language. An index e of S may be then consid-

ered as an interpreter of S-programs. It turns out that λp. comp(e, p) is a

compiler of S-programs into U -programs, and so comp(e, p) is the compiled

U -program obtained from the S-program p. (We shall use lambda-notation

for functions.) This compiler is based on the interpreter e of S-programs. In

fact, the compiler specialises the interpreter e to an S-program p to produce

a U -program. That is, it combines both indexes into a suitable program for

U . This construction is a very elementary partial evaluation, known as Fu-

tamura projection, which is based on the Kleene sn
m-Theorem. (See the

book of Jones [2] for further details.) Now, the function λe. λp. comp(e, p),

which is obtained by currifying comp, is then a generator of compiler from

an interpreter of a description mode in C.
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1.4 Effective Universality and Optimality

In practice, Ue is effectively related to We and somewhat close to this mode.

This leads to the next definition.

Definition 9. 1. U is max-inclusive universal for C if U ∈ C and such

that for each e, Ue is some maximal (wrt inclusion) submode of We

lying in C.

2. An effectively universal mode U for C is a universal mode such that

for each e if We ∈ C then Ue = We.

3. A strong universal mode U for C is effectively strong in case the con-

stant c in the above definition of strong universality depends recur-

sively on e, i.e. there exists a recursive function c : ∆∗ → N such that

∀p∀e |comp(e, p)| ≤ |p| + c(e).

4. U is a normal universal mode for C if it is universal with respect to

the function comp(e, p) = 〈e, p〉.

5. O is effectively optimal for C if it is in C and there exists a recursive

function c : ∆∗ → N such that KO(x) ≤ KR(x) + c(e) for every mode

R = We ∈ C and every string x ∈ Σ∗.

Notice that the existence of a max-inclusive universal mode implies that

every description mode contains a maximal submode lying in C. The follow-

ing proposition is easy (but useful).

Proposition 10. 1. If U is normal universal then it is effectively strong

universal, hence optimal.

2. If U is max-inclusive universal then it is effectively universal.

3. If U is effectively strong effectively universal (in particular, if U is

normal max-inclusive universal) then it is effectively optimal.
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Remark 11. 1. It is easy to check that the usual construction of an optimal

mode for the class of all deterministic description modes leads to a normal

max-inclusive universal mode, hence an effectively optimal mode. The same

is true with prefix complexity.

2. All the classes of non deterministic description modes that we shall in-

troduce admit optimal modes, except that of bounded modes. Also, the

harmonic classes (cf. Section 6) have optimal modes but no effectively op-

timal mode.

1.5 Road Map

We shall introduce different classes of description modes in which programs

may produce more than one output. Those classes of description modes

somehow generalise the classes presented by Uspensky and Shen in [10, 11].

We have to restrict the class of description modes that we shall consider

to have a meaningful measure KR of information. Let us illustrate our

intention. Consider the trivial mode {0} × Σ∗. The complexity of each

string is |0| = 1. Although this mode is optimal, it says nothing about the

information content of a string.

In the next subsections, we shall make an overview of the kind of descrip-

tion modes that we shall investigate. For each kind, we shall give the exact

definition, discuss their meanings as computational models, and state the

main results. The next Sections will detail the proofs when it is necessary.

1.5.1 Bounded modes

We begin with the study of description modes for which a program outputs

a finite number of words.

Definition 12. A bounded description mode R is a description mode such

that for each program p, the set {x : (p, x) ∈ R} is finite.
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Theorem 13. The class of bounded description modes has no optimal mode.

Proof. By contradiction. Suppose that there is an optimal bounded descrip-

tion mode R which provides an entropy KR. Consider an enumeration of R

and let S = ∪k≥0Sk, where Sk is defined as follows. Suppose that at step t

of the enumeration of R, a new pair (p, x) of R is generated where |p| ≤ 2k.

Then, we add (1k, y) to Sk where y is a word which was not produced during

the first t steps of the enumeration of R by a program of size ≤ 2k. Hence,

when every pair (p, x) of R with |p| ≤ 2k has been enumerated (which neces-

sarily happens since R is bounded), we are sure that the last word y added

to Sk is not computed by a R program of size ≤ 2k. Each Sk is a finite

subset of {1k} × Σ∗ (again because R is a bounded mode). It follows that

S is a bounded mode. Now, ∀k ∃y KR(y) ≥ KS(y) + k. It follows that

KR 6≤ctKS which contradicts the hypothesis.

Remark 14. The problem of deciding whether or not an index is the code of

a bounded description mode is Π0
3-complete.

1.5.2 β-bounded modes

The above result says that we must restrict more drastically the number of

outputs produced by a program, if we seek a notion of entropy. A solution

is to bound by a recursive function the number of outputs generated by a

program.

Definition 15. Let β : ∆∗ → N be a recursive function. A β-bounded mode

R is a description mode R satisfying,

card({x : (p, x) ∈ R}) ≤ β(p)

We shall particularly consider the case where β is suffix increasing :

β(p) ≤ β(q) when p is a suffix of q (i.e. q = rp for some r ∈ ∆∗).
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Remark 16. The reason why we deal with suffix increasing functions lies

on the standard pairing function, which was defined in Notation 1, Item 4.

Though not strictly necessary, it is a convenient hypothesis with which ar-

guments are presented in a clearer way.

Let us give some examples. Consider a NDTM M whose runtime is

bounded by t(n) on input of size n. As seen before, M is the graph of some

description mode GM where programs of GM are considered as inputs of

M . Because of the time bound, a program p shall generate at most ct(|p|)

strings. Put β(p) = ct(|p|). If t is increasing, then β is suffix increasing. And

so, GM is a β-bounded mode.

In a deterministic mode, each program generates at most one string. So

a deterministic mode is a λx. 1-bounded mode. Conversely, a λx. 1-bounded

mode is deterministic because each program produces at most one string.

We could also see R as a problem. Then, (p, x) ∈ R would mean

that the instance p of the problem R has a solution x. Now, saying that

card({x : (p, x) ∈ R}) ≤ β(p) is equivalent to limit the number of solutions

of an instance of a problem. In resource bounded computations, there is an

analogous concept which are the counting classes. Of course, this remark

is just an analogy, and we don’t know what it’s worth. But we think it is

important to mention it because reasoning by analogy could be fruitful.

In Section 2, we shall establish the existence of optimal β-bounded

modes. We shall also relate β-bounded modes to deterministic description

modes. Finally, we compare the Kolmogorov complexities associated to the

various classes of β-bounded modes and get hierarchy results. As a conclu-

sion to the section, in Subsection 2.6, we consider the case of β-bounded

modes with β not necessarily suffix-increasing.
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1.5.3 Distributed modes

A description mode R may be also regarded as a class of languages. Indeed,

each R-program p generates the language Rp = {x : (p, x) ∈ R}. Up to

now, we have introduced description modes in which each Rp was finite. We

now consider the case where each Rp might be infinite. The quantity KR(x)

measures the smallest size of a R-program generating a language which

contains x. In other words, KR(x) is the smallest quantity of information

which specifies a property that x satisfies. Similar discussion may be found

in [9], in the context of resource bounded computations.

Definition 17. A description mode R is η-distributed if for each p ∈ ∆∗,

card{x : (p, x) ∈ R and |x| = n} ≤ η(n) where η is a recursive function.

Notice that the definition above is meaningful when η(n) ≤ 2n. In

fact, each description mode R is a λn.2n-distributed mode because for each

p ∈ ∆∗, the cardinal of {x : (p, x) ∈ R and |x| = n} is always bounded by

2n. When η is polynomially increasing, a η-distributed mode R is sparse in

the sense that the languages of (Rp)p∈dom(R) are sparse in the usual sense.

We shall establish in Section 3 that there is an optimal mode for η-

distributed modes. We shall examine tradeoffs between information size

and the density of distributed modes. Then, we shall establish that the

length conditional Kolmogorov entropy Kdet(x||x|) is closely related to the

entropies of distributed modes. Finally, we discuss about Loveland uniform

entropy and distributed modes.

1.5.4 Spread modes

We now consider a generalisation of both β-bounded modes and η-distributed

modes.
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Definition 18. Let θ : ∆∗ × N → N be suffix increasing with respect to its

first argument. A description mode R is a θ-spread mode if for each p ∈ ∆∗,

card{x : (p, x) ∈ R and |x| = n} ≤ θ(p, n)

This means, that a program p of a θ-spread mode may output at most θ(p, n)

words of length n.

Clearly, a β-bounded mode R is also a θ-spread mode where θ(p, k) =

β(p). Now, take a η-distributed mode S, we see that S is a θ-spread mode

where for all p, θ(p, k) = η(k). In particular, any description mode is a

λpλk.2k-spread mode.

In Section 4, we shall show that there is an entropy for the class of

θ-spread modes. Then, we shall establish a hierarchy Theorem for spread

modes.

1.5.5 Discriminating modes

A deterministic mode D satisfies the following condition : if (p, x) ∈ D

and (p, y) ∈ D then x = y. That is, there is a partial recursive function

f : ∆∗ → Σ∗ such that (p, x) ∈ D iff f(p) = x. Deterministic modes are

named simple in [11]. The foundation of Kolmogorov Complexity theory is

the Invariance Theorem, due to Kolmogorov-Solomonoff.

Theorem 19 (Invariance Theorem). There is an optimal mode for de-

terministic modes. The entropy of deterministic modes is denoted Kdet.

Definition 20. Let R be a description mode. The minimal description of

a word x ∈ Σ∗ in R is

ER(x) =











min{p : (p, x) ∈ R} if non empty

undefined otherwise

12



(ER stands for ExactR and < is the length anti-lexicographically order on

words introduced in Preliminary Notation 1, Item 3.)

Then, KR(x) = |ER(x)| is the minimal quantity of information which is

necessary to compute x.

A major feature of a deterministic mode is that a program computes a

unique string. So, the function ED is injective if D is a deterministic mode.

Notice that geometrically, ER corresponds to the left contour line of a planar

representation of the description mode R.

In general R is not necessarily deterministic. Several strings in Σ∗ may

have the same minimal description given by ER. So, those strings are not

distinguishable. This leads us to consider the case where ER is injective.

Definition 21. A discriminating mode R is a description mode R for which

ER is injective (though not necessarily total).

Take a discriminating mode R and p a program. There is at most one

x produced by p such that ER(x) = p. Hence ER(y) < p for every output y

of p which is different from x. In particular, the number of outputs of p is

at most val(p) + 1.

Proposition 22. Every discriminating mode is a λp.(1 + val(p))-bounded

mode.

Remark 23. Given a program p in the range of ER and the number n of

outputs of p, we can recover the unique string x such that ER(x) = p. To

discriminate x among the outputs x0, · · · , xn of p, it suffices to notice that

each xi, except x has a description smaller than p. Otherwise, the injectivity

of ER would be violated. Henceforth to recover x, we simulate all programs

less than p and wait until n−1 strings among x0, · · · , xn are generated. The

remaining string is necessarily x.
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In Section 5, we shall establish that the class of discriminating modes

has an optimal mode which is equivalent, up to an additive constant, to the

entropy Kdet of deterministic modes.

1.5.6 Prefix modes

The domain of a mode R is the set dom(R) = {p : ∃x (p, x) ∈ R}.

Deterministic prefix modes were introduced by Chaitin [1] and Levin [3]

in the context of deterministic computations. We shall consider the non

deterministic version.

Definition 24. A deterministic prefix mode R is a non deterministic mode

for which dom(R) is prefix-free, i.e. is a set of words such that no word is

prefix of another word.

The invariance Theorem for deterministic prefix modes (cf. Chaitin [1],

Levin [3]) asserts :

Theorem 25. There is an optimal mode for the class of deterministic prefix

modes. The entropy is denoted KP.

We shall also consider two related conditions

1. Kraft condition :
∑

p∈dom(R) 2|p| ≤ 1

2. harmonic condition :
∑

p∈dom(R) 2|p| is convergent

The issue of Section 6 now is to see what could be a non-deterministic

prefix mode with respect to the three prefix-like conditions expressed in

Defintions above.
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2 β-bounded modes

2.1 Universality and entropy

Theorem 26. Let β be a suffix increasing recursive function. There is a

strong universal mode U for β-bounded modes.

Proof. We construct an injective recursive function which transforms an

index e of a description mode into an index of a β-bounded mode. Using

Kleene sn
m-Theorem, we construct an injective recursive function f :∆∗→∆∗

such that the computation of {f(e)} on input (p, x) halts in t steps iff

• |x| ≤ t and |p| ≤ t and the computation of {e}(p, x) halts in t steps,

• card{y : y < x and {e}(p, y) halts in less than t steps} < β(p) where

< is the length anti-lexicographically order on Σ∗ (cf. Notation 1,

Item 3).

So, f(e) is the index of a β-bounded mode. Define U as the set of pairs

(〈f(e), p〉, x) such that (p, x) ∈ Wf(e). Thus, Ue = Wf(e) and Ue is β-

bounded. Also, if e is the index of a β-bounded mode then Wf(e) = We,

so that Ue = Wf(e) = We. Thus, the Ue’s constitute an enumeration of

β-bounded modes.

Now, we show that U is β-bounded. Consider a program q for U . If q is

not a pair 〈f(e), p〉 then it has no output. If q is such a pair 〈f(e), p〉 then

e and p are uniquely determined since f is injective. And the ouptuts of q

for U are exactly those of p for Wf(e), hence their number is at most β(p).

The choice of the pairing function (cf. Notation 1, Item 4) implies that p is

a suffix of 〈f(e), p〉. Since β is suffix increasing we have β(p) ≤ β(〈f(e), p〉).

So U is indeed β-bounded, whence universal for β-bounded modes.

Moreover, since |〈f(e), p〉| ≤ |p| + 2 · |f(e)| + 2, we see that U is strong

universal.
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Corollary 27. There exists an entropy for β-bounded modes, denoted Kβ
bndd.

Remark 28. It is clear that the above universal mode is normal and max-

inclusive, hence effectively optimal.

2.2 An alternative definition

In the previous subsection, we have provided a limitation of description

modes from which optimal modes were definable. This limitation was made

by uniformly restricting the number of outputs produced by a program. An

alternative definition consists in uniformly bounding the number of outputs

generated by programs of the same size.

Definition 29. Let η : N → R be a function such that the function λn.2η(n)

is a recursive function from N to N and η is strictly increasing. A η-size

mode is a description mode R that satisfies, for all n,

card({x : (p, x) ∈ R and |p| = n}) ≤ 2η(n)

Say that the volume of computation is the number of all outputs which

are produced by all programs of the same size. Following the above defi-

nition, the volume of computation of a η-size mode is ≤ 2η(n). Roughly, it

turns out that the volume of computation is the pertinent measure to estab-

lish a classification of the β-bounded modes. We first introduce the function

#β which measures this volume of computation for β-bounded modes.

Definition 30. Let β : ∆∗ → N be a suffix increasing function. The function

#β : N → R is defined by #β(n) = log(
∑

|p|=n β(p)).

Proposition 31. If β is a suffix increasing function, then #β is strictly

increasing. More precisely, #β(n + 1) ≥ #β(n) + 1 for each n. Hence,

#β(n + c) ≥ #β(n) + c for every c, and #β(n − c) ≤ #β(n) − c if c ≤ n.

16



Proof. For each n, we have

∑

|p|=n+1

β(p) =
∑

i∈∆

∑

|p|=n

β(ip) ≥ 2 ·
∑

|p|=n

β(p)

We obtain 2#β(n+1) ≥ 2 · 2#β(n). So we have #β(n + 1) ≥ #β(n) + 1.

The relationship between β-bounded modes and η-size modes is as fol-

lows.

Proposition 32. Let β : ∆∗ → N be a suffix increasing function. Then

1. Each β-bounded mode is a #β-size mode

2. {KR : R is a β-bounded mode} = {KS : S is a #β-size mode}

Proof. (1) Immediate. (2) The left to right inclusion is a consequence of

(1). As for the other inclusion, let S be a #β-size mode. We define some

β-bounded mode R in such a way that the outputs of S-programs of size n

are redistributed as outputs of R-programs of size n so that the number of

outputs assigned to any R-program p does not exceed β(p). Since the volume

of potential computation of R is #β, we know that there is enough free space

to perform the above construction. Formally, we let Sn = S ∩ (∆n × Σ∗)

and (Jn) be a recursive sequence of functions such that Jn enumerates Sn

without repetition. We construct R as follows : if Jn(i) = (p, x) and k is

such that
∑

j<k β(j) ≤ i <
∑

j≤k β(j) (where
∑

j<0 β(j) = 0) then put the

pair (q, x) in R where q is the k + 1-th program of size n (with respect to

the length anti-lexicographic ordering).

Remark 33. 1. The β-bounded mode R constructed from S in the above

proof of item (2) is clearly recursive in S but not many-one reducible to S

since it does depend on an enumeration of S.

2. As already said, the key notion is the volume of computation. So, it can
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be convenient to consider η-size modes with programs written in unary, i.e.

which are a subset of {1}∗ ⊂ ∆∗. Indeed, it is not difficult to see that an

η-size mode S can be reduced to an η-size mode T with programs in {1}∗

which has the same complexity function, that is KS = KT . For this, it

suffices to relocate each output of a program of size n of S on the program

1n of T .

Remark 34. One can also define a function sum#β : N → R as follows :

(sum#β)(n) = log(
∑

|p|≤n β(p)) = log(
∑

i≤n 2#β(i))

From Proposition 31 we see that

2#β(n) ≤ 2(sum#β)(n) ≤ (
∑

i≤n 2i−n) × 2#β(n) < 2 × 2#β(n)

Thus, #β(n) ≤ (sum#β)(n) < #β(n) + 1.

2.3 Information quantity tradeoffs

In order to give a precise relationship between β-bounded modes and deter-

ministic modes in Subsection 2.4 and to establish a hierarchy Theorem for

β-bounded modes in Subsection 2.5, we show the following Lemma, which

roughly states that the overall quantity of information to generate a string

is invariant if we switch from α-bounded modes to β-bounded modes. For

this, we extend #β to negative numbers by putting #β(z) = 0 for all z < 0.

Lemma 35. Let α and β be two suffix increasing functions. There is a

constant c such that for all x ∈ Σ∗, we have

#β(Kβ
bndd(x) − c) ≤ #α(Kα

bndd(x))

Proof. Consider an α-bounded mode S. We shall construct a #β-size mode

T from S such that ∀x ∈ Σ∗ #β(KT (x) − 1) ≤ #α(KS(x)). On the other

hand, by Proposition 32, we shall obtain a β-bounded mode R verifying

KR=ctKT . Next by Corollary 27, we have Kβ
bndd≤ctKR. Therefore, we shall

conclude that there is c such that for all x ∈ Σ∗, we have #β(Kβ
bndd(x)−c) ≤
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#α(KS(x)). In particular this inequality holds when S is an optimal α-

bounded mode and so the proof will be completed.

Now let us describe the #β-size mode T . Define the sequence (In) of

intervals of integers as follows.

• I0 = {m : 2#α(m) ≤ 2#β(0)−1},

• In = {m : 2#β(n−1)−1 < 2#α(m) ≤ 2#β(n)−1} for n > 0

Then define T such that (1n, x) is in T if there is a pair (q, x) in S such that

|q| ∈ In. Clearly, KT (x) is the unique n such that KS(x) ∈ In.

We verify that T is a #β-size mode. By proposition 31, #α is necessarily

strictly increasing. So, we have

∑

m∈In

2#α(m) ≤
∑

0≤m≤m′

2#α(m) < 2#α(m′)+1

where m′ ∈ In is the upper bound of In. Next, since by construction

#α(m′) ≤ #β(n) − 1, we obtain that
∑

m∈In
2#α(m) < 2#β(n). Therefore,

the number of outputs produced by programs of size n of T is bounded by

2#β(n). So, T is a #β-size mode.

Since #β is strictly increasing, for each (q, x) ∈ S, there exists n such

that |q| ∈ In. When n > 0, we have #β(n − 1) ≤ #α(|q|). Taking q such

that |q| = KS(x) we have n = KT (x), so that #β(KT (x)− 1) ≤ #α(KS(x))

for all x ∈ Σ∗.

A very naive approach to Lemma 35 would ask for an improvement to an

equality #α(Kα
bndd(x)) = #β(Kβ

bndd(x)). But, Kα
bndd and Kβ

bndd are defined

up to a constant ! Applying a function to Kα
bndd really means applying this

function to the equivalence class [Kα
bndd]=ct . Thus, a less naive approach

would ask for an equality

{#α ◦ f : f ∈ [Kα
bndd]=ct} = {#β ◦ f : f ∈ [Kβ

bndd]=ct}
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But #α and #β may have very different ranges (possibly disjoint) so that

again there is no hope for such an equality.

To get an equality from Lemma 35, introduce the partial ordering ≤ on

functions from N to R as f ≤ g if for each x, f(x) ≤ g(x). Let

Final(X) = {h : there is f ∈ X such that h ≥ f}

Observe that

(*) ∀f ∈ X ∃g ∈ Y g ≤ f is equivalent to Final(X) ⊆ Final(Y )

We can reformulate Lemma 35 as follows :

Lemma 36. The family of functions Final({#β ◦ f : f=ctK
β
bndd}) does not

depend on the suffix increasing function β.

Proof. Lemma 35 can be applied with every f=ctK
α
bndd and insures that

there exists g=ctK
β
bndd such that #β ◦ g ≤ #α ◦ f . Similarly with α, β

exchanged. Then condition (*) insures the equality

Final({#α ◦ f : f=ctK
α
bndd}) = Final({#β ◦ f : f=ctK

β
bndd}).

2.4 Relationship with deterministic modes

A (λp.1)-bounded mode is a mode in which a program outputs at most

one string. It follows that the class of (λp.1)-bounded modes is exactly the

class of deterministic modes. The volume of computation of deterministic

programs of size n is bounded by
∑

|p|=n 1 = 2n. So, a deterministic mode

is a (λn.n)-size mode.

The following result was pointed to us by A. Shen (private communication).

Theorem 37. There is a constant c such that for all x ∈ Σ∗,

#β(Kβ
bndd(x) − c) ≤ Kdet(x) ≤ #β(Kβ

bndd(x)) + c ≤ #β(Kβ
bndd(x) + c)

20



Proof. Set α = λp.1 (whence #α = λn.n) and apply Lemma 35 twice : once

as stated and once with α, β exchanged.

Actually, this relationship can be given a more expressive form. For this,

we use the notion of retract. Let f : N → R be an injective function. A

retract, also named a left inversion, of f is any mapping g : R → N such

that ∀n ∈ N g(f(n)) = n.

Notice that a strictly increasing function from N to R is injective and in fact

we consider throughout only retracts of strictly increasing functions.

Proposition 38. Let f be a strictly increasing function. Among (non-

strictly) increasing retracts of f there is a least one and also a greatest one.

The difference between these two extreme monotone retracts is bounded by

1. Hence all monotone retracts of f are equal up to the constant 1. We

denote f−1 the least monotone retract of f , which is defined as follows :

for every r ∈ R, f−1(r) is the greatest n ∈ N such that f(n) ≤ r

Proof. All statements are clear when noticing that the greatest monotone

retract g of f is defined by the dual condition

g(r) is the least n ∈ N such that f(n) ≥ r

Using Proposition 31, we can now restate Theorem 37 as follows.

Theorem 39. Kβ
bndd=ct#β−1(Kdet)

From the classical inequality Kdet(x)≤ct|x| we get :

Corollary 40. There exists a constant c such that for each x

Kβ
bndd(x) ≤ #β−1(|x| + c)
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Constant-bounded modes Finally, consider a mode R in which each

R-program may produce at most c outputs. Then, R is a λn. n + log(c)-size

mode. Another consequence of Lemma 35 is that such a non-deterministic

mode R can be translated into a deterministic description mode with an

equivalent entropy.

Theorem 41. For every constant c > 0, we have Kdet=ctK
λp. c
bndd

The previous result is, in fact, a reformulation of a result of Uspensky

and Shen, [11] page 276, that we could loosely rephrase as follows. Suppose

that there is a constant c such that for all n, card{x :KR(x) ≤ n} is bounded

by 2n+c, where R is a description mode. Then, Uspensky and Shen have

proved that Kdet≤ctKR.

2.5 An hierarchy theorem for β-bounded modes

In order to compare β-bounded modes, we introduce a partial order on

functions.

Definition 42. We denote � the partial order on functions from ∆∗ to N

defined as follows.

α�β if ∃c ∈ N ∀n ∈ N #α(n) ≤ #β(n + c)

By α≃β, we mean α�β and β�α, and by α≺β, we mean α�β but β 6�α.

For example, take α(p) = (|p| + c)2 and β(p) = |p|2, we can check that

α�β and so α≃β. Or yet, if α = O(β) then we have #α≃#β. Geometrically,

α�β means that #α ≤ #β̃ where #β̃ is obtained by translating #β along

the abscissa axis.

Theorem 43. Let α and β be two suffix increasing functions.

1. α≺β iff Kβ
bndd<ctK

α
bndd
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2. α≃β iff Kβ
bndd=ctK

α
bndd

Proof. Consequence of Lemmas 46 and 48 below.

Proof of α�β implies Kβ
bndd≤ctK

α
bndd

Lemma 44. Let f and g be two strictly increasing functions from N to R

and c be a positive integer. Assume that for every n ∈ N, f(n) ≤ g(n + c).

Then, for every z ∈ R, f−1(z) ≥ g−1(z) − c.

Proof. By definition, we have f−1(z) = max(n : f(n) ≤ z). Since f(n) ≤

g(n + c), we get f−1(z) ≥ max(n : g(n + c) ≤ z). Now, if g(c) ≤ z then

max(n : g(n + c) ≤ z) = max(t : g(t) ≤ z)− c = g−1(z)− c. If g(c) > z then

g−1(z) < c and the wanted inequality is trivial.

Lemma 45. Let α and β be two suffix increasing functions such that α�β.

Then, #β−1≤ct#α−1

Proof. Suppose that α�β. There is c such that for all n, we have #α(n) ≤

#β(n + c). Since #α and #β are strictly increasing, Lemma 44 yields that

the above inequality is equivalent to #α−1(z) ≥ #β−1(z)−c for every z ∈ R.

Consequently, #β−1≤ct#α−1

Remark that the converse of both Lemmas above holds.

Lemma 46. Let α and β be two suffix increasing functions such that α�β.

Then, Kβ
bndd≤ctK

α
bndd.

Proof. By Lemma 35, there is a constant c such that #β(Kβ
bndd(x) − c) ≤

#α(Kα
bndd(x)). Since #α−1 is increasing, we have

#α−1(#β(Kβ
bndd(x) − c)) ≤ Kα

bndd(x) (1)

Now, since α�β, Lemma 45 states that there is a constant d such that for

every z ∈ R #β−1(z) − d ≤ #α−1(z). In particular,
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#β−1(#β(Kβ
bndd(x) − c)) − d ≤ #α−1(#β(Kβ

bndd(x) − c))

That is,

Kβ
bndd(x) − c − d ≤ #α−1(#β(Kβ

bndd(x) − c))

Combining the previous inequality with (1), we get Kβ
bndd≤ctK

α
bndd.

For example, let α(x) = log(|x|) and β(x) = |x|. It is easy to show that

α�β and so Kβ
bndd≤ctK

α
bndd.

Proof of Kβ
bndd≤ctK

α
bndd implies α�β

We first show an incompressibility Lemma for β-bounded modes.

Lemma 47. There is k such that for each m there is x of size ⌊#β(m)⌋

such that

m − k ≤ Kβ
bndd(x) ≤ m + k

Note : In particular, if we consider deterministic mode, we have #β(m) = m

and the Lemma says that there is a string x of length m such that Kdet(x) ≥

m − c, which is a slight weakening of the traditional incompressibility The-

orem, as formulated in [7].

Proof. The deterministic incompressibility Theorem asserts that for every

n there is a string x of length n such that Kdet(x) ≥ n. We also know that

Kdet(x) ≤ n + c, for some constant c. Therefore, we have n ≤ Kdet(x) ≤

n + c. Now, fix m and put n = ⌊#β(m)⌋ in the inequality above. Hence,

there is a string x of size ⌊#β(m)⌋ such that

⌊#β(m)⌋ ≤ Kdet(x) ≤ ⌊#β(m)⌋ + c

where x is of size ⌊#β(m)⌋.

Since #β−1 is increasing, we also have

#β−1(⌊#β(m)⌋) ≤ #β−1(Kdet(x)) ≤ #β−1(⌊#β(m)⌋ + c)

whence #β−1(#β(m) − 1) ≤ #β−1(Kdet(x)) ≤ #β−1(#β(m) + c)

Using Proposition 31 and the monotonicity of #β−1, we get
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m − 1 = #β−1(#β(m − 1)) ≤ #β−1(#β(m) − 1)

#β−1(#β(m) + c) ≤ #β−1(#β(m + c)) = m + c

Therefore

m − 1 ≤ #β−1(Kdet(x)) ≤ m + c

By Theorem 39, there is a constant d such that for all x,

Kβ
bndd(x) − d ≤ #β−1(Kdet(x)) ≤ Kβ

bndd(x) + d

Hence, in the one hand Kβ
bndd(x) − d ≤ m + c and on the other m − 1 ≤

Kβ
bndd(x) + d. Therefore, we see that

m − 1 − d ≤ Kβ
bndd(x) ≤ m + c + d

Finally, setting k = c+d+1, we conclude that m−k ≤ Kβ
bndd(x) ≤ m+k

Lemma 48. Let α and β be two suffix increasing functions.

If Kβ
bndd≤ctK

α
bndd then α�β.

Proof. Suppose that Kβ
bndd≤ctK

α
bndd. That is, there is a constant c such that

Kβ
bndd(x) ≤ Kα

bndd(x) + c for each x ∈ Σ∗. Since #β is increasing, we have

#β(Kβ
bndd(x)) ≤ #β(Kα

bndd(x) + c). Now by Lemma 35, there is a constant

d such that #α(Kα
bndd(x) − d) ≤ #β(Kβ

bndd(x)). By combining both former

inequalities, we get

#α(Kα
bndd(x) − d) ≤ #β(Kα

bndd(x) + c) (2)

Now, for every m, Lemma 47 claims that there is x such that

m − k ≤ Kα
bndd(x) ≤ m + k

Since #α and #β are monotonic, by replacing, in the inequality (2), the

two occurences of Kα
bndd(x) by m − k and m + k respectively, we obtain

#α(m − k − d) ≤ #β(m + k + c). Hence, #α(u) ≤ #β(u + 2k + c + d) for

every u, which means α�β.
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2.6 Relaxing the suffix-increasing hypothesis

As we already observed in Subsection 1.5.2, the hypothesis that β is suffix-

increasing is a convenient one but is not really needed to get the diverse

results of the preceding subsections. We now look for the exact necessary

conditions on β.

First, we consider the existence of a universal mode.

Theorem 49. Let β : ∆∗ → N be a recursive function. The class of β-

bounded modes contains an universal mode if and only if

for all p there are infinitely many q’s such that β(q) ≥ β(p).

Proof. 1 (⇒). For r ∈ Σ∗ we define Rr as follows :

Rr = {(p, 〈r, x〉) :
∑

q<p
β(q) ≤ val(x) <

∑

q≤p
β(q)}

where val is defined in Item 2 of Notation 1. Then,

1. card({x : (p, x) ∈ Rr}) = β(p) for all p, r

2. {x : (p, x) ∈ Rr} and {x : (q, x) ∈ Rs} are disjoint if (p, r) 6= (q, s).

Suppose U is an universal β-bounded mode, relatively to a recursive function

comp and let er be such that Rr = Uer
. Since U is universal, for every r, p

the program comp(er, p) has the same outputs for U as the program p has

for Rr. Due to Item 1 above and the fact that U is β-bounded, this implies

that β(comp(er, p)) ≥ β(p).

Fix p. Due to Item 2 above, the comp(er, p)’s are distinct when r varies.

Thus, there are infinitely many q’s such that β(q) ≥ β(p).

2 (⇐). As in the proof of Theorem 26 let f be an injective and recursive

function such that Wf(e) is a maximal β-bounded mode included in We. The

hypothesis about β allows to define comp(e, p) by induction on val(〈e, p〉)

as follows : comp(e, p) is the first program q such that β(q) ≥ β(p) and

q 6= comp(e1, p1) for every pair (e1, p1) such that val(〈e1, p1〉) < val(〈e, p〉).
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Define U as the set of pairs (comp(e, p), x) such that (p, x) ∈ Wf(e). The

very choice of the function comp shows that U is β-bounded. Also, as in

the proof of Theorem 26, we see that the Ue’s constitute an enumeration of

β-bounded modes. Thus, U is universal for β-bounded modes.

Remark 50. 1. Theorems 49 together with Theorem 53 below show that

there are functions β such that there exists a universal β-mode but no

optimal β-mode.

2. A proof similar to that of the above Theorem allows to characterize

the β’s such that there exists a strong universal β-bounded mode (cf.

Definition 5). The (somewhat technical) condition is as follows :

∀N ∃A ∀n ∃Q

(Q : N × ∆≤n → ∆≤n+A is injective ∧ ∀i∀p β(Q(i, p)) ≥ β(p))

To get the condition for the existence of an optimal mode, we need a

lemma, the proof of which is an easy adaptation of that of Proposition 32.

Lemma 51. Suppose A ∈ N and R is such that for all n ∈ N

∑

nA≤i<(n+1)A

⋃

|p|=i

card({x : (p, x) ∈ R}) ≤
∑

nA≤|p|<(n+1)A

β(p)

Then there exists a β-bounded mode S such that KS=ctKR.

Yet another lemma relating diverse conditions on β.

Lemma 52. Let β : ∆∗ → N be a recursive function. The following condi-

tions are equivalent.

1. ∀N ∃A ∀n
∑

|p|<n+A β(p) ≥ N ×
∑

|p|<n β(p)

2. ∃A ∀n
∑

n≤|p|<n+A β(p) ≥
∑

|p|<n β(p)

3. ∀N ∃B ∀n
∑

(n+1)B≤|p|<(n+2)B β(p) ≥ N ×
∑

nB≤|p|<(n+1)B β(p)
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Proof. 1 ⇒ 2. Take N = 2 and subtract. 2 ⇒ 3 : Apply Condition 2 with

n, n + A, n + 2A, . . . , n + (N − 1)A and set B = NA.

3 ⇒ 1 : Applying recursively Condition 3 with 2N yields

∑

nB≤|p|<(n+1)B β(p) ≥ (2N)i ×
∑

(n−i)B≤|p|<(n+1−i)B β(p)

(
∑i=n

i=1 (2N)−i) ×
∑

nB≤|p|<(n+1)B β(p) ≥
∑

|p|<nB β(p)

1
N

×
∑

nB≤|p|<(n+1)B β(p) ≥
∑

|p|<nB β(p)

which is condition 1.

Theorem 53. Let β : ∆∗ → N be a recursive function. The class of β-

bounded modes contains an optimal mode if and only if β satisfies the equiv-

alent conditions of Lemma 52.

Proof. 1 (⇒). For r ∈ Σ∗ let Rr be defined as in the proof of Theorem49 so

that

1. card({x : (p, x) ∈ Rr}) = β(p) for all p, r

2. {x : (p, x) ∈ Rr} and {x : (q, x) ∈ Rs} are disjoint if (p, r) 6= (q, s).

Suppose O is an optimal β-bounded mode. Consider N many distinct strings

r1, . . . , rN . Since O is optimal there is a constant A such that

(*) KO ≤ KRri
+ A for i = 1, . . . , N .

Fix n. Condition (*) means that for every p, i such that |p| ≤ n and 1 ≤ i ≤

N each output of program p for Rri
is an output for O of some program q

such that |q| ≤ n + A. Due to Item 1 and 2 above, this implies that

N ×
∑

|p|<n

β(p) ≤ card(
⋃

|q|<n+A

{x : (q, x) ∈ O})
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Since O is β-bounded the right member is ≤
∑

|q|<n+A β(q), which gives

Condition 1 of Lemma 52.

2 (⇐). As in the proof of Theorem 26 let f be an injective and recursive

function such that Wf(e) is a maximal β-bounded mode included in We.

Suppose A is as in condition 2 of Lemma 52 above and set

comp(e, p) = 0A×val(e) 1A p

U = {(comp(e, p), x) : (p, x) ∈ Wf(e)}.

Clearly, comp is injective. As in the proof of Theorem 26, we see that the

Ue’s constitute an enumeration of β-bounded modes.

Also, by very construction we have KU (x) ≤ KWf(e)
(x) + A(val(e) + 1) for

all x. Thus,

(*) KU (x)≤ctKR for every β-bounded mode R.

We now show that U satifies the condition of Lemma 51. In fact,
∑

nA≤|q|<(n+1)A card({x : (q, x) ∈ U})

=
∑

nA≤|p|+A(val(e)+1)<(n+1)A card({x : (comp(e, p), x) ∈ U})

≤
∑

nA≤|p|+A(val(e)+1)<(n+1)A β(p) =
∑i=n−1

i=0

∑

(n−i−1)A≤|p|<(n−i)A β(p)

=
∑

|p|<nA β(p) ≤
∑

nA≤|q|<(n+1)A β(p) by condition 1 of of Lemma 52.

Thus, we can apply Lemma 51 and get a β-bounded mode O such that

KO=ctKU . Using property (*) above, we see that O is optimal for β-bounded

modes.

Remark 54. 1. Entropies associated to suffix-increasing functions β are

exactly those associated to functions β satisfying condition 3 of Lemma 52

with N = 2 and the constant B = 1. In fact, suppose this condition

is true with B = 1 and let γ be defined as follows :

if |p| = n then γ(p) =
∑

|q|=n β(p)

2n

(i.e. we equidistribute the outputs on programs having the same

29



length). Condition 3 of Lemma 52 with N = 2, B = 1 insures that γ

is suffix-increasing. Also, the proof of Proposition 32 easily adapts. In

particular, Kβ
bndd = Kγ

bndd.

2. Up to now, we always suppposed β to be recursive. One can weaken

this hypothesis to β is recursively enumerable from below, i.e. there ex-

ists a recursive (non strictly) increasing sequence of functions (βn)n∈N

such that β(p) = sup{βn(p) : n ∈ N}. All results go through with

no problem. The interest of such an extension lies in the fact that

the function which associates to any program p the number of its out-

puts for a mode R is not recursive in the general case but is always

recursively enumerable from below.

3 Distributed modes

3.1 Universal Distributed modes

Theorem 55. There is a strong universal mode for η-distributed modes (cf.

Definition 17).

Proof. Suppose that e is the index of a description mode. We define an

injective recursive function f : ∆∗ → ∆∗ which transforms e into an index

of an η-distributed mode. For this, the program f(e) checks, by dovetailing,

if (p, x) ∈ We for every x such that |x| = n. If, during this process, the

computation of {e}(p, x) halts and no more than η(n) other computations

were terminated, then it outputs 1, i.e. (p, x) ∈ Wf(e), otherwise it diverges.

Define U as the set of pairs (〈f(e), p〉, x) such that (p, x) ∈ Wf(e). Thus,

Ue = Wf(e) and Ue is η-distributed. Also, if e is the index of an η-distributed

mode then Wf(e) = We, so that Ue = Wf(e) = We. Thus, the Ue’s constitute

an enumeration of η-distributed modes.
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Now, we show that U is η-distributed. Consider a program q for U . If

q is not a pair 〈f(e), p〉 then it has no output. If q is such a pair 〈f(e), p〉

then e and p are uniquely determined since f is injective. And the ouptuts

of q for U are exactly those of p for Wf(e). In particular, there are no more

than η(n) outputs with length n since Wf(e) is η-distributed. So U is indeed

η-distributed, whence universal.

As usual, the strong universal mode for η-distributed modes constructed

above (is normal max-inclusive universal and) provides an (effectively) op-

timal mode and so an entropy.

Corollary 56. There is an entropy Kη
distri for the class of η-distributed

modes.

3.2 An hierarchy theorem for distributed modes

Finally, we prove the following relationship between distributed modes.

Theorem 57. For all x ∈ Σ∗ such that θ(|x|) > 0 and η(|x|) > 0

Kθ
distri(x) + log(θ(|x|))=ctK

θ
distri(x) + log(η(|x|))

Proof. Consider a η-distributed mode R. We construct a θ-distributed mode

S as follows. The S-program p produces all words of size n which are the

outputs of R-programs whose associated numerical values are in

[val(p) · θ(n)
η(n) , (val(p) + 1) · θ(n)

η(n) [

So, if (q, x) ∈ R, there is (p, x) ∈ S such that p = ⌊val(q) · η(|x|)
θ(|x|)⌋.

This implies that KS(x) ≤ KR(x)−(log(θ(|x|))−log(η(|x|))). By considering

an optimal R we conclude that . Kθ
distri(x)≤ctK

θ
distri(x) − (log(θ(|x|)) −

log(η(|x|))). By symmetry, we get the wanted equality.

Remark 58. If η(|x|) = 0 then an η-distributed mode has no length n output,

so that Kθ
distri(x) = +∞ for every x ∈ Σn, while log(η(|x|)) = −∞.
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3.3 Loveland uniform entropy

It is worth noticing that an example of distributed modes is given by the

uniform entropy proposed by Loveland in [8]. Again, we follow the pre-

sentation given by [11] to present the uniform entropy. (Although, we are

not following their terminology where the uniform entropy is called decision

entropy.) A description mode R is uniform if

• If (p, x) ∈ R then for each y <prefix x, (p, y) ∈ R.

• If (p, x) ∈ R and (p, y) ∈ R then either y ≤prefix x or x <prefix y.

where <prefix is the prefix order on Σ∗. Clearly, uniform modes form a

subclass of λn.1-distributed modes. Loveland has shown that there is an

optimal mode for uniform description modes.

We can combine both properties, i.e. consider description modes which

are both distributed and uniform.

Definition 59. A description mode R is η-distributed uniform if R is η-

distributed and if (p, x) ∈ R then for each y <prefix x, (p, y) ∈ R.

Theorem 60. There is a universal mode for η-distributed uniform modes.

Proof. Let U be the universal and optimal mode which is described in the

proof of Theorem 55. Define the mode U ′ as the r.e. mode which satisfies

the following condition :

(q, x) ∈ U ′ iff ∀y ≤prefix x, (q, y) ∈ U

U ′ is η-distributed as is U . The uniformity condition is implied by the very

construction. It follows that U ′ is an optimal mode for the η-distributed

uniform modes.
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3.4 Distributed modes and length conditional complexity

It is shown in [8, 11] that Loveland uniform entropy (see Definition 59) is

strictly less than the deterministic entropy Kdet, with respect to <ct. As

a consequence, each entropy Kη
distri is strictly less than the deterministic

entropy Kdet, i.e. Kη
distri<ctKdet.

Now, we compare the length conditional Kolmogorov entropy Kdet(x||x|)

with entropies of distributed modes. In our setting, the Kdet(x||x|) might be

defined as follows. Consider a r.e. ternary relation T on ∆∗×N×Σ∗. Say that

T is a length conditional mode if there is a partial recursive function h such

that (p, n, x) ∈ T iff h(p, n) = x and |x| = n. We readily adapt the notion of

strong universal mode (and its existence proof) to length conditional modes.

Hence, Kdet(x||x|) = min{|p| : (p, n, x) ∈ T} where T is a strong universal

mode for length conditional modes.

Theorem 61. 1. Kη
distri(x) + log(η(|x|))=ct sup(Kdet(x||x|), log(η(|x|)))

for all x ∈ Σ∗ such that η(|x|) 6= 0.

2. Kη
distri(x)=ct sup(0,Kdet(x||x|) − log(η(|x|))) for all x ∈ Σ∗.

Proof. Item 1 is a reformulation of Item 2.

First, we establish that Kdet(x||x|)≤ctK
η
distri(x) + log(η(|x|)). Consider an

enumeration of a η-distributed mode R. Define the ternary partial recursive

function f as follows. f(p, i, n) = x iff |x| = n and i is the rank (relative to

the enumeration) of pair (p, x) among R-pairs (p, y) where |y| = n. Since

R is a η-distributed mode, we have i ≤ η(n). Define enc(i) as the binary

expansion of i of length ⌈log(η(n))⌉. We can encode the pair (p, i) by merely

concatenating enc(i) and p. Indeed from n and a program which computes

the function η, we can recover i and p from the word enc(i)p.

Let T be the length conditional mode defined by g(enc(i)p, n) = f(p, i, n).

Since |enc(i)p| ≤ |enc(i)| + |p| ≤ |p| + log(η(|x|)) we get
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KT (x||x|)≤ctKR(x) + log(η(|x|))

Taking R optimal, this yields

KT (x||x|)≤ctK
η
distri(x) + log(η(|x|))

Whence

Kdet(x||x|)≤ctK
η
distri(x) + log(η(|x|))

Now, we establish the reverse inequality. For this, consider a length

conditional mode T . We define a η-distributed mode R as follows.

The pair (q, x) is in R iff there is a program p such that

val(p) ∈ [val(q) · η(|x|), (val(q) + 1) · η(|x|)[ and (p, |x|, x) ∈ T

If val(q) 6= 0, we have |q|≤ct|p| − log(η(|x|)).

It follows that |q|≤ct sup(0, |p| − log(η(|x|))).

We conclude that KR≤ct sup(0, KT (x||x|) − log(η(x))). Taking T optimal

leads to the wanted inequality.

Remark 62. 1. Observe that Kdet(x||x|)− log(η(|x|)) < 0 does happen. For

instance, with η(n) = 2n.

2. Cf. also Remark 58.

4 Spread modes

In this section, we present results on spread modes (cf. Definition18). Ac-

tually, most of the proofs can be readily adapted from proofs in Section 2,

so we shall just sketch them.

Theorem 63. Let θ : ∆∗ × N → N be a recursive function which is suffix-

increasing with respect to its first argument. There is a strong universal

θ-spread mode. We denote Kθ
spreadthe associated entropy.

Proof. For each p ∈ ∆∗, replace η(n) in the proof of Theorem 55 by θ(p, n).
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In order to compare θ-spread modes with deterministic modes and fur-

ther to state a hierarchy Theorem, we establish a result which is analogous

to Lemma 35. Let #θ(n, k) = log(
∑

|p|=n θ(p, k)).

Lemma 64. There is a constant c such that for all x ∈ Σ∗, we have

#θ2(K
θ2
spread(x) − c) ≤ #θ1(K

θ1
spread(x))

Proof. Suppose that S is a θ1-spread mode. Fix k and define Sk as the

description mode which contains all pairs (p, x) of S where |x| = k. Actually,

Sk is a αk-bounded mode where αk(p) = θ1(p, k). Now, define βk : ∆∗ → N

as the suffix increasing function satisfying βk(p) = θ2(p, k). We can apply

the construction of the proof of Lemma 35 to obtain a βk-bounded mode Tk

from the αk-bounded mode Sk such that #βk(KTk
(x) − 1) ≤ #αk(KSk

(x)),

for every x ∈ Σ∗.

We construct a θ2-spread mode T from the sequence of βk-bounded

modes Tk’s. A string x of length k is produced by a program p of T (i.e.

(p, x) ∈ T ) iff (p, x) ∈ Tk. It follows that #βk(KT (x) − 1) ≤ #αk(KS(x)).

T is a θ2-spread mode because βk(p) = θ2(p, k) for each p and so we have

#θ2(KT (x) − 1) ≤ #θ1(KS(x)). We conclude as in the proof of Lemma 35.

Since deterministic modes are surely λpλk.1-spread modes, the above

Lemma yields

Corollary 65. There is c such that for all x,

#θ(Kθ
spread(x)−c, |x|) ≤ Kdet(x) ≤ #θ(Kθ

spread(x), |x|)+c ≤ #θ(Kθ
spread(x)+c, |x|)

Let f : N×N → R be strictly increasing function with respect to its first

variable. We define f−1 : R × N → N as the function such that for every

r ∈ R,
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f−1(r, k) is the greatest n ∈ N such that f(n, k) ≥ r

Notice that f−1(f(n, k), k) = n.

Theorem 66.

Kθ
spread(x)=ct#θ−1(Kdet(x), |x|)

We extend the ordering � to θ functions as follows.

θ1�θ2 if ∃c ∈ N∀n ∈ N ∀k ∈ N #θ1(n, k) ≤ #θ2(n + c, k)

Theorem 67. Let θ1 and θ2 be suffix increasing functions wrt to their first

argument.

1. θ1≺θ2 iff Kθ2
spread<ctK

θ1
spread

2. θ1≃θ2 iff Kθ2
spread=ctK

θ1
spread

The proof is similar to that of Theorem 43.

5 Discriminating modes

5.1 Universal modes

The notion of discriminating mode was introduced in Definition 21.

Lemma 68. There is a recursive injective function f : ∆∗ → ∆∗ such that

Wf(e) is a maximal (with respect to inclusion) discriminating submode of

We.

Proof. From e we (recursively) get a recursive increasing sequence (Rn)n∈N

of finite modes included in We such that the union of the Rn’s is We. We

shall now write R for We. Notice that the relation (p, x) ∈ Rn (in p, x, n) is

recursive. We then recursively define a sequence (Sn)n so that

(*) Sn is maximal among discriminating submodes of Rn which contain

Sn−1 (convention S−1 = ∅)
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The existence of Sn is insured by the finiteness of Rn

We set S to be the union of the Sn’s. Since the Sn’s are increasing, we see

that for every string x the sequence (ESn(x))n∈N is (non strictly) decreasing

with respect to the length-antilexicographic ordering on ∆∗. Thus, for every

string x there exists k such that ESm(x) = ESn(x) for all m, n ≥ k. Hence,

ES is the pointwise limit of the ESn . Since the ESn ’s are injective so is their

limit ES . Thus, S is a discriminating mode.

It remains to show that S is maximal among discriminating submodes

of R. Take a discriminating mode T such that S ⊂ T ⊆ R. Suppose that

T \ S is not empty. Suppose that (p, x) is a pair of T \ S for which p is

least possible with respect to the length anti-lexicographic ordering on ∆∗.

Suppose that (p, x) ∈ Rm. There are two cases to consider.

1. ES(x) < p. Suppose (ES(x), x) ∈ Sn where n ≥ m. Then ESn∪{(p,x)} =

ESn so that Sn ∪ {(p, x)} would also be a discriminating mode, con-

tradicting the maximality of Sn.

2. Either ES(x) > p or ES(x) is undefined. If q < p then the very

choice of p implies that (q, x) /∈ T . Thus, we have ET (x) = p. For

each (p, y) ∈ Sm, we have (p, y) ∈ T , because Sm ⊆ S ⊂ T . Now,

T is discriminating, so ET (y) < p. The minimality of p implies that

(ET (y), y) ∈ S. It follows that Sm ∪ {(p, x)} is discriminating. The

fact that Sm is maximal in Rm is violated.

Consequently, S = T , and it turns out that S is maximal.

Remark 69. Observe that the above construction is a greedy one.

Theorem 70. There is a strong universal mode for discriminating modes.

The entropy of discriminating modes is denoted Kdiscri.
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Proof. Let f : ∆∗ → ∆∗ be the recursive injective function defined in Lemma 68.

We define the mode U by (〈f(e), p〉, x) ∈ U holds iff (p, x) ∈ Wf(e). We now

check that U is a discriminating mode. Suppose EU (x) = EU (x′) where

EU (x) = 〈f(e), p〉 and EU (x′) = 〈f(e′), p′〉. Then e = e′ and p = p′. Since

Wf(e) is discriminating, we conclude x = x′. It follows that U is a strong

universal mode for discriminating modes.

Remark 71. Clearly, U is a normal max-inclusive universal mode.

5.2 Relations between Kdet and Kdiscri

Lemma 72. Let S be a discriminating mode, then

card{x : (p, x) ∈ S and |p| ≤ n} < 2n+1

In particular, we see that a discriminating mode is a λn.n+1-size mode.

Proof. Since {x : (x, p) ∈ S and |p| ≤ n} = {x : |ES(x)| ≤ n} and ES

is injective, we have card{x : |ES(x)| ≤ n} < 2n+1. So, the conclusion

follows.

Theorem 73. Kdet=ctKdiscri

Proof. By Lemma 72, a discriminating mode is a λn.(n + 1)-size mode.

So, Theorem 41 yields Kdet≤ctKdiscri. Conversely, we have Kdiscri≤ctKdet

because any deterministic mode is a discriminating mode.

6 Non-deterministic prefix modes

6.1 Prefix modes.

We begin by extending deterministic prefix modes to non-deterministic modes

in the most obvious way.
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Definition 74. Let R be a non deterministic mode.

1. R is prefix if the set of programs dom(R) is prefix free.

2. R is Kraft if
∑

p∈dom(R) 2|p| ≤ 1

3. R is harmonic if
∑

p∈dom(R) 2|p| is convergent

It is easy to see that a prefix mode is a Kraft mode, and a Kraft mode

is a harmonic mode.

Actually, as concerns entropies, there is no difference between description

modes and prefix modes. Which is unlike the deterministic case.

Proposition 75. For each description mode S, there is a prefix mode R

such that KS=ctKR. Moreover, R is many-one reducible to S. A fortiori,

the same is true with Kraft and harmonic modes.

Proof. Put f((p, x)) = (1|p|0, x). The function f is obviously recursive. Put

R = {f((p, x)) : (p, x) ∈ S}. So, R is a weak prefix mode and is many-one

reducible to S. Also, KR(x) = KS(x) + 1 for each x.

The other claims follow from the observed inclusions.

6.2 Prefix-free set of minimal descriptions

Another direction is to require that the sole set of minimal descriptions (Def-

inition 20) satisfies a prefix condition. For this purpose, define range(ER) =

{p : ∃x ER(x) = p}.

Definition 76.

1. A min-prefix mode R is a description mode R for which range(ER) is

prefix free.

2. A min-Kraft mode R is a description mode R for which
∑

p∈range(ER) 2|p| ≤ 1
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3. A min-harmonic mode R is a description mode R for which
∑

p∈range(ER) 2|p| is convergent

But again, the prefix mode R, which is constructed in the proof of Propo-

sition 75 is, in fact, a min-prefix mode. Consequently, the class of modes

thus defined does not delineate a new class of entropies.

6.3 Prefix-free set of minimal discriminating descriptions

Definition 77. A (non-deterministic) discriminating min-prefix mode is de-

scription mode R which is both min-prefix and discriminating, i.e. such that

1. range(ER) is prefix free,

2. ER is an injective function.

The two other prefix-like conditions readily adapt as follows.

Definition 78.

1. A discriminating min-Kraft mode R is a min-Kraft mode for which ER

is injective.

2. A discriminating min-harmonic mode R is a min-harmonic mode for

which ER is injective.

Theorem 79. 1. There is a strong universal mode for discriminating

min-Kraft modes. The associated entropy is denoted Kdis.minkraft

2. There is a strong universal mode for discriminating min-harmonic

modes. The associated entropy is denoted Kdis.minharmonic

Proof. The proof of (1) is a straightforward adaptation of Theorem 25 in

order to enumerate min-Kraft modes and of Lemma 68 in order to construct

maximal discriminating modes.
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The proof of (2) goes as follows. Say that a discriminating min-harmonic

mode is c-min-harmonic if it satisfies
∑

x∈Σ∗ 2|ER(x)| ≤ c. As in the previous

case, there is a strong universal mode for c-min-harmonic modes. To obtain

an universal mode for discriminating min-harmonic modes, we follow Theo-

rem 70. The sole modification is that the function f has now two parameters

(the index e and a constant c) and computes an index for Wf(e,c). Moreover,

Wf(e,c) is a maximal mode included in We.

Remark 80. The second parameter c in the construction of the min-harmonic

universal mode prevents this mode to be effective universal (cf. Definition 9).

In fact, one can prove that there is no effective universal mode in the class

of min-harmonic modes. The reason is as follows :

1. {e : We = Ue} is Π0
2,

2. {e : We is min-harmonic} is Σ0
2-complete,

3. if U were effectively universal then the two above sets would be equal.

Except for the harmonic and min-harmonic classes, all universal modes de-

fined in this paper are effective.

In order to get a discriminating min-prefix mode we first prove the analog

of Lemma 68.

Lemma 81. There is a recursive injective function f : ∆∗ → ∆∗ such that

1. Wf(e) is a discriminating min-prefix mode included in We,

2. Wf(e) = We whenever We is itself discriminating min-prefix.

Proof. From e we (recursively) get a recursive increasing sequence (Rn)n of

finite modes included in We such that the union of the (Rn)n’s is We. We

shall now write R for We. Notice that the relation (p, x) ∈ Rn is recursive.
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We then recursively define a sequence (Sn) of finite discriminating min-prefix

modes as follows

1. S0 = ∅

2. If ERn+1 = ESn then (Rn+1 is surely discriminating min-prefix as is

Sn and) we let Sn+1 = Rn+1

3. Else, let x be the smallest string such that

either ERn+1(x) < ESn(x) or ERn+1(x) is defined but not ESn(x)

If there is some discriminating min-prefix submode M of Rn+1 which

contains Sn∪{(ERn+1(x), x)}, then consider a maximal (wrt inclusion)

such M and set Sn+1 = M .

Otherwise, we freeze the construction by setting Sn+1 = Sn.

We set S to be the union of the Sn’s. Observe that the function ES is the

pointwise limit of the ESn ’s. Since the Sn’s are discriminating min-prefix so

is S.

Observe the following property :

(*) If p ≥ ES(x) and (p, x) ∈ R then (p, x) ∈ S

In fact, if (ES(x), x) ∈ Sn then ESn(x) = ES(x) so that adding any

(p, x) ∈ Rn+1 to any supermode of Sn can not destroy its discriminating

min-prefix character. Thus, the maximality of M implies that (p, x) ∈ Sn+1.

It remains to show that if R is discriminating min-prefix, then R = S.

By way of contradiction, suppose that R \ S is non empty. Using (*) there

must be some x such that ER(x) < ES(x). Consider the least such x. Then

∀y < x (ER(y) is defined ⇒ (ER(y) = ES(y) ∧ (ES(y), y) ∈ S))

Let m be such that

(ER(x), x) ∈ Rm and ∀y < x (ER(y) is defined ⇒ (ER(y), y) ∈ Sm)).
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Then x is the smallest string considered in Item 3 of the construction of Sn

for every n ≥ m.

By very construction of the Sn’s, we see that after step m they remain

stationary : Sm = Sm+1 = . . . = S.

However, range(Rm) = {x : ∃p (p, x) ∈ R} is finite so that there is

some n > m such that (ER(y), y) ∈ Rn for all y ∈ range(Rm). Hence Rn ∩

(∆∗×range(Rm)) is discriminating min-prefix. Since it properly contains Sn

(which is equal to Sm), this contradicts Item 3 of the above construction.

Remark 82. The discriminating min-prefix submode S of R can not be taken

maximal in general. This is in contrast with Lemma 68. The reason is

that a greedy algorithm to get a maximal submode does not work. This is

illustrated by the following example. Let R be the discriminating min-prefix

enumerated as follows.

R0 = ∅

R1 = R0 ∪ {(11, 0), (011, 1), (0011, 2)}

R2 = R1 ∪ {(01, 0), (00011, 3)}

R3 = R2 ∪ {(001, 1), (000011, 4)}

R4 = R3 ∪ {(0001, 2), (0000011, 5)}

. . .

Then, a greedy algorithm would compute

S0 = ∅

S1 = R1

S2 = S1 ∪ {(00011, 3)}

S3 = S2 ∪ {(000011, 4)}

S4 = S2 ∪ {(0000011, 5)}

. . .

Indeed, it was not possible to put (01, 0) in S2 (and preserve the min-prefix

character) because (011, 1) had already been put in S1. Similarly with other
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steps. Thus, though R is discriminating min-prefix, S is strictly included in

R.

Theorem 83. There is a strong universal mode for discriminating min-

prefix modes. The entropy of discriminating min-prefix modes is denoted

Kdis.minprefix.

Proof. As in the proof of discriminating modes, let f : ∆∗ → ∆∗ be as in

Lemma 81. Put U = {(〈f(e), p〉, x) : (p, x) ∈ Wf(e)}. We see that the Ue’s

constitute an enumeration of discriminating min-prefix modes. We prove

that U is discriminating exactly as in Theorem 70.

Now observe that 〈f(e), p〉 is a prefix of 〈f(e′), q〉 only if e = e′ and p is

a prefix of p′. Since each Wf(e) is min-prefix, so is U .

Remark 84. The discriminating min-prefix universal mode defined above is

not max-inclusive, but is effective.

The next Proposition, due to Levin [6] and also reported in [11] claims

that for each non-deterministic prefix mode, there is a deterministic prefix

mode with the same set of minimal descriptions and consequently the same

entropy.

Definition 85. A function f : ∆∗ → N is recursively enumerable from

above if the set {(p, n) : f(p) ≤ n} is recursively enumerable.

Proposition 86. Let f be a recursively enumerable function from above

such that
∑

p∈∆∗ 2−f(p) is convergent. Then, there is a deterministic prefix

mode S such that KS=ctf .

Proposition above yields that for each discriminating min-harmonic mode

R there is a deterministic prefix mode S such that KR=ctKS . In particular,

this also holds for discriminating min-kraft and min-prefix modes.
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Theorem 87.

KP =ct Kdis.minprefix =ct Kdis.minkraft =ct Kdis.minharmonic

Remark 88. We can say that the above results on min-prefix modes show

the robustness of the notion of deterministic description modes. The funda-

mental reason lies on a result of Levin in [4, 5, 6] where it is demonstrated

that the series
∑

x∈Σ∗ 2−KP(x) is the greatest real valued r.e. series which

converges, up to a multiplicative factor. (By a real valued r.e. series f ,

we mean that f is recursively enumerable from below (when considering

rational Dedekind cuts), i.e. {y ∈ Q : y ≤ f(x)} is recursively enumerable).
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