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1 Introduction

In order to explain the purpose of this paper, we recall briefly how the
theory of “rationality” developed in the last fourty years.

The theory of sets of finite strings recognized by finite automata,
also known as regular or rational sets was developed in the fifties. It
rapidly extended in two directions. Indeed, by solving the decidability
problem of the second order monadic theory of one successor, Büchi
was led naturally to introduce the notion of finite automata working on
infinite strings. He further extended this result to the monadic theory
of all denumerable ordinals, and by doing so he again modified the
original notion of finite automata to suit his new purpose, [9]. At this
point, the equivalence between the notions of recognizability (by “finite
automata”), rationality (by “rational expressions”) and definability
(by “monadic second order logics”) was achieved as far as strings of
denumerable lengths were concerned.

In the late sixties, Elgot and Mezei wrote an historical paper on
rational relations [15] which was a successful attempt to construct the
theory of relations between free monoids that could be recognized by
so-called n-tape automata. Though hard to read, it contained the ba-
sic results of the theory. In the mid eighties Gire and Nivat showed
that the theory of rational relations on finite strings carries over to
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infinite strings, [16]. More recently, Wilke made a breakthrough by
giving an algebraic characterization of the rational infinite strings via
the notion of “right binoids” (now known as “Wilke algebras”), [25].
This construct happens to be the natural extension of finite monoids
for infinite strings. Elaborating on this notion, Bedon [2] showed that
rational transfinite strings of countable length recognized by finite au-
tomata can also be recognized by finite algebras (the ω1-algebras).

In the present paper we draw the theory further by showing that
almost everything carries over to transfinite strings. The proof of most
elementary properties are mere paraphrase of those for finite strings,
so we state them here for self-containment but we leave the simple
verifications to the reader. For a few results completely new proof
techniques are required, like the equivalent of the “second factorization
theorem” (in Eilenberg’s terminology [14, p. 248]), cf. Thm. 32.
Finally, some properties no longer hold beyond the length ωω like the
uniformization problem, cf. Thm. 38 and §5.6.

Observe finally that our properties do not cover all those of [16]
since the concatenation of strings is only partially defined. In some
sense our general framework seems to be more natural. For example,
when dealing with infinite strings the property that the family of re-
lations recognized by automata is closed under concatenation needs
some intricate case analysis ([16, pp. 107–110]) while a purely formal
proof works for transfinite strings. Also, the notion of direct product
of rational subsets (the “recognizable relations”) is completely clarified
now with the ω1-algebras of Wilke.

2 Preliminaries

Here we present the basic facts on ordinals, transfinite strings and
finite automata for transfinite strings, extending thus the elementary
definitions usual for finite strings.

2.1 Ordinals

In this paper we shall deal with ordinals less than the first non-
denumerable ordinal ω1. We refer the interested reader to the standard
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textbooks, e.g., [24] and [23], for a thorough exposition of the material
on ordinals. We recall an ordinal is prime if it cannot be expressed as
the sum of two smaller ordinals; these ordinals are exactly the powers
of ω. The (unique) Cantor’s normal form of an ordinal 0 < α < ω1 is
the sum

α = ωλnan + ωλn−1an−1 + . . . + ωλ1a1 + ωλ0a0 (1)

where 0 ≤ n < ω, λn > . . . > λ1 > λ0, 0 ≤ ai < ω for all i ≤ n and
0 < an. The ordinal λn is the degree and the ordinal λ0 is the type of
α. The degree and the type of 0 are equal to 0.

A few elementary definitions on sequences indexed by ordinals will
be used in the sequel. We review them here.

Definition 1. Let α be a limit ordinal. An increasing sequence
(βη)η<λ is cofinal to α if βη is less than α for all η < λ and if for
all β < α there exists 0 ≤ η < λ such that β < βη < α.

We shall also make use of the following well-known fact: if α is a
countable ordinal then every sequence (βη)η<λ which is cofinal to α
contains an ω-subsequence (βηi)i<ω which is also cofinal to α.

Definition 2. A (strictly) increasing sequence (βη)η<λ is continuous
if for all limit ordinals η < λ, supε<η βε = βη or equivalently, βη is a
limit ordinal and the sequence (βε)ε<η is cofinal to βη.

By posing α = limη<λ βη if λ is a limit ordinal or α = βλ−1 if it is
a successor ordinal, the previous property is equivalent to saying that
the set of all ordinals less than α is precisely the union of all the semi-
open intervals [βη, βη+1[ for all 0 ≤ η + 1 < λ. E.g., with λ = ω + 1,
the sequence βi = i for all i < ω and βω = ω +1 is not continuous, nor
is the sequence βi = i for all i < ω and βω = ω × 2.

2.2 Transfinite strings

Given a finite alphabet A, a string is a mapping u from some α < ω1

into A. Equivalently, u is a sequence of elements of A indexed by an or-
dinal α. We denote uβ the element indexed by β < α in this sequence.
The ordinal α is the length of u, denoted by |u|. The collection of all
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strings is denoted by A<ω1 and we will call them improperly transfinite
though they might also be of finite length. The empty string, denoted
by 1, is the string of length 0 and is the unit of A<ω1 as a monoid.
By extension, the degree of a string u is the degree of its length. For
a ∈ A, |u|a denotes the length in the letter a of the string u, i.e., the
ordinal of the subsequence indexed by the set of positions β < α for
which uβ = a. The set of strings is partially ordered by the “prefix
relation” : u ≤ v if there exists w such that v = uw.

2.3 Continuous mappings

From now on and unless otherwise stated, the term “increasing” when
applied to strings, is to be understood relative to the prefix ordering.

The string v is the limit of the increasing sequence (uη)η<λ of
prefixes of v if for all prefixes w of v there exists an index η such that
w is a prefix of uη. E.g., limi→ω(ab)i = limi→ω(ab)ia = (ab)ω. Let
h : A<ω1 → B<ω1 be increasing with respect to the prefix ordering.
We say that h is continuous if it commutes with limits of strings, i.e.,
if for all limit ordinals λ and all string u = limη→λ uη ∈ A<ω1 , equality
h(u) = limη→λ h(uη) holds.

Any mapping h from A into B<ω1 can be extended in a unique
way as an increasing (relative to the prefix ordering) and continuous
(in the above sense) function of A<ω1 into B<ω1 . Thus, all morphisms
will be determined by the images of the letters. This can be proved
by transfinite induction by setting h(ua) = h(u)h(a) for all u ∈ A<ω1

and a ∈ A and h(u) = sup{h(v) | v is a prefix of u} if the length of
u is a limit ordinal. This latter string is indeed well determined, it is
the string of length α = sup{|h(v)| | v is a prefix of u} whose prefix of
length β < α is the prefix of length β of every string h(v) where v a
prefix of u and β ≤ |h(v)| < α.

Similarly, every mapping h of A into the direct product B<ω1
1 ×

B<ω1
2 can be extended to a mapping of A<ω1 into B<ω1

1 × B<ω1
2 by

posing h(u) = ((π1h)(u), (π2h)(u)).
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3 Finite automata on transfinite strings

There are two different ways of defining a finite automaton on transfi-
nite strings. Both are due to Büchi [9]. The first one was extensively
studied by Choueka and considers strings of length less than ωn+1

for a given n, see [13]. The second one deals with strings of arbi-
trary countable lengths and was investigated (and actually extended
to uncountable ordinals) by Wojciechowski [27]. Both formalisms are
equivalent when restricted to strings of length less than ωn+1 for some
n < ω, (cf. Theorem 22), so we shall use which one is more amenable
depending on the question under investigation.

3.1 Büchi automata on transfinite strings

Here we recall precisely the above mentioned definitions of finite au-
tomata for transfinite strings starting with what is nowadays known
as Büchi’s automaton. The main new point is about the definition
of limit transitions and relies on the notion of cofinal sequences, as
defined in paragraph 2.1.

Definition 3. Let Q be a finite set, let α be a limit ordinal and let
(qβ)β<α be a sequence of elements of Q. An element q ∈ Q is persistent
in the sequence if {β < α | q = qβ} is cofinal to α. In other words, for
some increasing sequence (βi)i<ω cofinal to α we have q = qβi

for all
i < ω.

In the more familiar context of Büchi automata on ω-words, the
states that are “infinitely repeated” in some infinite path are the per-
sistent ones.

Definition 4. A Büchi automaton is a quintupleA = (Q,A,Q−, Q+, E)
where Q is the (finite) set of states, A is the finite input alphabet,
Q− ⊆ Q is the set of initial states, Q+ ⊆ Q is the set of final states
and the set E of transitions is a subset of (Q×A×Q) ∪ (2Q ×Q).

If u is a string of length α, a run with label u is a sequence (qβ)β≤α of
elements in Q which satisfies the following inductive conditions (recall
uβ is the letter at position β in u, for all β < α):
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1. If β < α then qβ+1 satisfies (qβ , uβ, qβ+1) ∈ E.

2. If β ≤ α is a limit ordinal then (P, qβ) ∈ E where P ⊆ Q is the
set of persistent elements in the run (qγ)γ<β.

Observe that a run with label u has length |u|+ 1.
The run is successful if q0 ∈ Q− and qα ∈ Q+.
A subset of A<ω1 is Büchi recognizable if it is the set of labels of suc-
cessful runs of some Büchi automaton. We denote Büchi(A<ω1) the
family of subsets of A<ω1 which are recognizable by a Büchi automa-
ton.

A word of caution. The way we introduced the relation E is a slight
modification of Büchi’s original treatment of limit cases (for which the
set of persistent states itself is considered as the limit state). However,
this does not change the family of recognized subsets of A<ω1 as the
reader may easily verify.
Remark 5. The family of Büchi recognizable languages is easily seen
to be closed by union and intersection. Closure by complementation
is a difficult result (Büchi, 1965, [8], cf. also [9]).

The next result insures that given an automaton, the set of strings
that label some path visiting a specified subset of states is rational. It
will be used later in Theorem 32.

Lemma 6. Let A be a Büchi automaton, Q its set of states and V ⊆ Q
a fixed subset. For all p, q ∈ Q, the set Xp,V,q of strings that label
some run from p to q which visits exactly the states in V is Büchi
recognizable.

Proof. If A = (Q,A,Q−, Q+, E) then Xp,V,q is recognized by the au-
tomaton B = (Q×2Q, A, {(p, ∅)}, {(q, V )}, F ) where the transition set
F satisfies the following conditions

1. for all q1, q2 ∈ Q, W ⊆ Q, a ∈ A we have
((q1,W ), a, (q2,W ∪ {q2})) ∈ F if and only if (q1, a, q2) ∈ E

2. for all {q1, . . . , qk} ⊆ Q, W ⊆ Q, r ∈ Q we have
(S, (r, W ∪ {r})) ∈ F if and only if ({q1, . . . , qk}, r) ∈ E

where S = {(q1,W ), . . . , (qk,W )}.
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3.2 Transfinite pumping lemma

The classical pumping lemma admits a transfinite version. First, we
introduce some notation and mention a technical tool.

Notation 7. Let ρ = (qα)α≤|u| be a run of a Büchi automaton A. We
denote Visit(ρ � [β, γ[) and Persist(ρ � [β, γ[) the respective sets of
visited and persistent states of the subrun (qα)β≤α<γ .

Proposition 8. Let ρ = (qα)α≤µ be a run of a Büchi automaton
A = (Q,A,Q−, Q+, E) such that there are ζ, λ satisfying

1. λ is limit and ζ + λ ≤ µ and qζ = qζ+λ

2. Visit(ρ � [ζ, ζ + λ[) = Persist(ρ � [ζ, ζ + λ[)

Let σ = (qα)0≤α<ζ , τ = (qα)ζ≤α<ζ+λ, ν = (qα)ζ+λ≤α<µ, (so that
ρ = στυ and τ = ρ � [ζ, ζ + λ[). Then στ ξν is a run for all ξ < ω1.

Proof. We prove by induction on ξ ≥ 1 that
(*) τ ξ is a run
(**) Visit(τ ξ) = Persist(τ ξ) = Persist(τ).

Observe that if properties (*),(**) are true for ξ1, ξ2 then they are also
true for τ ξ

1 τ ξ
2 . Now, if ξ = ξ1 + ξ2 + . . . and properties (*),(**) are true

for the τ ξ
i ’s (i ∈ ω) then they are also true for τ ξ. Lastly, case ξ = 1

is condition 2 of the Proposition.

Lemma 9 (Transfinite pumping lemma).
1) If a Büchi automaton A with n states accepts some word u with
length ≥ ωn then there is a factorization u = xyz such that

- |y| = ωi for some i ≥ 1,
- xyξz is accepted by A for all ξ < ω1.

In particular, A accepts words of arbitrary length < ω1.
2) If for every n a Büchi automaton A accepts some word with length
≥ ωn then A accepts words of arbitrary length < ω1.
In particular if A accepts some word with length ≥ ωω then A accepts
words of arbitrary length < ω1.

Proof. Point 2 is a straightforward application of Point 1. We keep
notations of Def. 4. Observe that for every run σ on a word with
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limit length, there exists some step η after which all visited states are
persistent ones. Applying this fact to an accepting run ρ on input u,
we inductively define η0 < ωn, η1 < ωn−1 . . . ηn−1 < ω as follows:

• η0 is the least η < ωn such that all states visited during steps in
[η, ωn[ are persistent ones.

• η1 is the least η < ωn−1 such that all states visited during steps
in [η0 + η, η0 + ωn−1[ are persistent ones.

• . . .

• For i < n, ηi is the least η < ωn−i such that all states visited
during steps in [η0 +η1 + . . .+ηn−i−1 +η, η0 +η1 + . . .+ηn−i−1 +
ωn−i[ are persistent ones.

Let u = hbt (for “head‘”, “body” and “tail”) where |h| = η0 + η1 +
. . . + ηn−1 and |b| = ωn. By construction, for all 1 ≤ j ≤ n we have

Visit(ρ � [|h|, |h|+ ωj [) = Persist(ρ � [|h|, |h|+ ωj [).
hence also for all 0 ≤ k < j ≤ n

(∗) Visit(ρ � [|h|+ ωk, |h|+ ωj [) = Persist(ρ � [|h|+ ωk, |h|+ ωj [)

Consider now the sequence of states
q|h|, q|h|+ω, . . . , q|h|+ωn

Since there are n states, there must exist 0 ≤ k < j ≤ n such that
q|h|+ωk = q|h|+ωj . Equality (*) allows to conclude using Prop. 8.

Remark 10. 1) The above transfinite pumping lemma is optimal. The
following n states automaton A = (Q,A,Q−, Q+, E) recognizes the set
of words of length < ωn on alphabet A :

Q = {0, 1, . . . , n− 1} , Q− = {0} , Q+ = Q
E = {(i, a, 0, ) | a ∈ A, 1 ≤ i ≤ n− 1}

∪{({0, . . . , i}, i + 1) | 0 ≤ i ≤ n− 2}
2) The transfinite pumping lemma can be improved as follows: instead
of considering the number of states of A, one can consider the (smaller)
number of states which appear at limit transitions, i.e. states q such
that (X, q) ∈ E for some X ⊆ Q.

Definition 11. Büchi(A<α) = {X ∩A<α | X ∈ Büchi(A<ω1)}.
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As a corollary of Lemma 9 and Remarks 5,10, we get

Corollary 12.
If ωω ≤ α < ω1 then Büchi(A<ω1) ∩ P (A<α) =

⋃
n<ω Büchi(A<ωn+1

).
In other words, Büchi(A<α) = Büchi(A<ω1) ∩ P (A<α) if and only if
α < ωω.

3.3 Choueka automata on transfinite strings

Corollary 12 shows that if α ≥ ωω then Büchi(A<α) has no intrinsic
characterization in terms of Büchi automata.
As for α < ωω, there is a variant of Büchi automata which captures ex-
actly the family Büchi(A<α) : the so-called Choueka automata which
deal with strings having length less than ωn+1 for some n < ω. They
require a special notion of limit, known as “Choueka-continuity” in
the literature, see [13]. In case α < ωn+1 is a limit ordinal with type
k (such that 0 < k ≤ n) then α = β + ωk for some β and there is a
canonical sequence cofinal to α, namely (β + ωk−1m)m<ω which is the
one considered at limit steps for Choueka automata.

Given a set Q, we pose [Q]0 = Q, [Q]k = 2[Q]k−1 \ ∅ if k > 0 and
[Q]n0 =

⋃
0≤k≤n[Q]k.

The restriction to successor ordinals in the next definition is moti-
vated by the two following facts:
i) runs on inputs with length α have length α + 1,
ii) successor ordinals are exactly those ordinals which contain limits of
sequences of smaller ordinals.

Definition 13. A transfinite sequence s of length α + 1 < ωω is
Choueka-continuous over the set Q if for all β ≤ α of the form β =
γ + ωi+1 (i.e. i is the type of β) we have sβ = {e ∈ [Q]i | ∃∞k, e =
sγ+ωi.k}. In particular, s maps α + 1 into [Q]t−1

0 (and not into Q)
where t is the type of α.

Definition 14. A Choueka automaton is a quintupleA = (Q,A,E, Q−, Q+)
where Q is the (finite) set of states, A is the input alphabet, Q− ⊆ Q
is the set of initial states, Q+ ⊆ [Q]n0 is the set of final states and
E ⊆ [Q]n0 ×A×Q is the set of transitions.
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The notion of run with label u = (uβ)β<α as interpreted for Büchi’s
automata, extends naturally to Choueka’s automata. Indeed, it is a
Choueka-continuous sequence (qβ)β≤α ∈ [Q]n0 satisfying (qβ, uβ, qβ+1) ∈
E for all β < α. Observe that it is clear from Definitions 13 and 14
that qβ ∈ [Q]k if β is of type k.

A run is successful if its first state q0 is an initial state and its last
state qα is a final state. A subset of A<ωn+1

is Choueka recognizable if
it is the set of labels of successful runs of some Choueka automaton.

Remark 15. The family of Choueka recognizable languages is easily
seen to be closed by union and intersection. Closure by complementa-
tion is also true (Choueka, [13]).

3.4 Rational sets of transfinite strings

A fundamental result is that Kleene’s theorem can be extended to
transfinite strings for both notions of automata. To that purpose, one
has to consider two new operations on sets of strings.

Definition 16. 1) The ω-power of a set X, denoted Xω, is the set of
strings obtained by concatenating ω-sequences of strings in X.
2) The ω1-iteration of a set X is the set X<ω1 =

⋃
α<ω1

Xα, where Xα

is the set of strings obtained by concatenating α-sequences of strings
in X (in particular, X0 = {1}).
3) The n-trace-ω-power of a set X is n-trace(Xω) = Xω ∩A<ωn+1

.

Remark 17. 1) X<ω1 is the closure of X∪{1} under ω-power, i.e. it is
the smallest set Y which contains X∪{1} and is closed under ω-power:
X ∪{1} ⊆ Y = Y ω. It is also the closure of X ∪{1} under Kleene-star
and ω-power, i.e. the smallest set Y such that X∪{1} ⊆ Y = Y ∗ = Y ω.
In fact, since (X ∪ {1})ω ⊇ X∗, such a Y necessarily satisfies Y = Y 2

and an easy induction over ordinals less than ω1 (using equalities Y =
Y 2 and Y = Y ω for the respective successor and limit cases) shows
that Y = Y α for all α < ω1, hence Y = Y <ω1 .
2) Observe that there is no need for a similar closure operation relative
to the n-trace-ω-power. In fact, an easy induction over i shows that
the i-th iterate of n-trace-ω-power of X ∪{1} is (

⋃
α≤ωi Xα)∩A<ωn+1

.
All this iterates coincide for i ≥ n + 1, therefore the (n + 1)-th iterate
of n-trace-ω-power of X ∪ {1} is closed under n-trace-ω-power.
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Definition 18. 1) [Wojciechowski, 1985 [27]] Rat(A<ω1) denotes the
least family of subsets of A<ω1 that contains the empty set, the single-
ton sets consisting of a letter and is closed under set union, concate-
nation, Kleene-star, ω-power and ω1-iteration.
2) [Choueka, 1978 [13]] Rat(A<ωn+1

) denotes the least family of subsets
of A<ωn+1

that contains the empty set, the singleton sets consisting of
a letter and is closed under set union, concatenation, Kleene-star, and
the n-trace-ω-power.

The following can be proven with the same structural induction
technique as that for rational subsets of free monoids. Recall that a
rational substitution of C into A<ω1 is a mapping σ that assigns a
rational subset of A<ω1 to each c ∈ C. Given an ordinal α, one can
extend σ to A<α by setting σ((uβ)β<α) =

∏
β<α σ(uβ).

Proposition 19. If σ : C → Rat(A<ω1) is a rational substitution and
X ∈ Rat(C<ω1) then σ(X) =

⋃
{σ(x) | x ∈ X} is in Rat(A<ω1).

An analog property holds with ωn+1 in place of ω1.

3.5 Kleene type results

As for finite strings, there is an equivalence for subsets of transfinite
strings between recognizability via some type of finite automaton and
expressability via some type of operations. We state these results for
transfinite lengths less than ωn for some n < ω and for arbitrary
lengths less than ω1.

Theorem 20 (Choueka, 1974,[13], cf. also Bedon, 1996, [1]).
Rat(A<ωn+1

) is exactly the family of Choueka recognizable subsets of
A<ωn+1

.

Theorem 21 (Wojciechowski, 1985,[27]).
Rat(A<ω1) is exactly the family of Büchi recognizable subsets of A<ω1.

Recall (Remark 10) that A<ωn+1
(considered as a subset of A<ω1) is

Büchi recognizable. Now, as a corollary of the above theorems, we see
that Choueka recognizability is a special case of Büchi’s recognizability.
This is proven in [1] but it can more easily be seen by arguing on the
lengths of the strings.
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Theorem 22 ([13],[1]). Let X ⊆ A<ωn+1
. The following conditions

are equivalent:
1) X is Büchi recognizable
2) X is Choueka recognizable
3) X = Y ∩A<ωn+1

for some Büchi recognizable set Y ⊆ A<ω1

4 Rational relations on transfinite strings

4.1 Two-tape Büchi and Choueka automata

The idea of Büchi and Choueka automata described above extends to
two-tape automata.

Definition 23. A two-tape Büchi automaton on transfinite strings is
a construct A = (Q,A,B, Q−, Q+, E) where Q,Q−, Q+, A are as in
Definition 4, B is a finite alphabet and where E = EA ∪EB ∪E` with

EA ⊆ Q× (A× {1})×Q (2)
EB ⊆ Q× ({1} ×B)×Q (3)

E` ⊆ 2Q ×Q (4)

The elements of (2), (3) and (4), are respectively called the A,
B and limit transitions. The notions of run, label, successful run
are straightforward extensions of the corresponding notions in finite
automaton, the only difference being that labels are pairs of strings
rather than single strings. The relation in A<ω1 ×B<ω1 defined by the
two-tape Büchi automaton is the set of pairs (u, v) that are the labels
of some successful run and is said to be Büchi recognizable.

Definition 24. A two-tape Choueka automaton on transfinite strings
is a construct A = (Q,A,B, Q−, Q+, E) where Q,Q−, Q+, A are as
in Definition 14, B is a finite alphabet and where E ⊆ [Q]n0 × ((A ×
{1}) ∪ ({1} ×B))×Q.

The relation in A<ωn+1 ×B<ωn+1
defined by the two-tape Choueka

automaton is said to be Choueka recognizable.
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4.2 Rational relations

The operations needed for defining rational relations are those intro-
duced for subsets extended in the usual way to pairs of strings. For
instance Definition 16 obviously extends from strings to pairs of strings
which leads to the following extension of Definition 18.

Definition 25. 1) Rat(A<ω1 × B<ω1) denotes the least family of
subsets of A<ω1 × B<ω1 that contains the empty set, the singleton
sets {(a, 1)}, {(1, b)} for a ∈ A, b ∈ B and is closed under set union,
concatenation, Kleene-star, ω-power and ω1-iteration.
2) Rat(A<ωn+1×B<ωn+1

) denotes the least family of subsets of A<ω1×
B<ω1 that contains the empty set, the singleton sets {(a, 1)}, {(1, b)}
for a ∈ A, b ∈ B and is closed under set union, concatenation, Kleene-
star, and the n-trace of ω-power.

The closure under rational substitution seen in Proposition 19 ex-
tends easily to relations.

Proposition 26. 1) If σ : C → Rat(A<ω1) and τ : C → Rat(B<ω1)
are rational substitutions and X ∈ Rat(C<ω1) then (σ, τ)(X) =

⋃
x∈X σ(x)×

τ(x) is in Rat(A<ω1 ×B<ω1).
2) If σ : C → Rat(A<ωn+1

) and τ : C → Rat(B<ωn+1
) are rational sub-

stitutions and X ∈ Rat(C<ωp+1
) then (σ, τ)(X) =

⋃
x∈X σ(x) × τ(x)

is in Rat(A<ωnp+1 ×B<ωnp+1
).

4.3 The first factorization theorem

We recall that a morphism φ : A∗ → B∗ is alphabetic whenever φ(A) ⊆
B ∪ {1} holds and that it is strictly alphabetic whenever φ(A) ⊆ B
holds. These notions make sense when applied to morphisms from
A<ω1 into B<ω1 .

Proposition 26 admits a reciprocal which is given some normalized
forms in Proposition 27 below and Theorems 32,33. The first form we
consider is the transfinite extension of a result on finite strings first
observed by Nivat, 1968, [22], which is called the first factorization
theorem in Eilenberg [14] p. 240. Its proof is a paraphrase of the proof
for finite strings, cf., e.g., [6, Thm. III.4.1.] and consists in considering
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pairs (a, 1), (1, b) as letters of a new alphabet C and introducing the
projections from C onto A ∪ {1} and B ∪ {1}.

Proposition 27. The following conditions are equivalent
1) R ∈ Rat(A<ω1 ×B<ω1)
2) there exist a finite alphabet C, a rational subset K of C<ω1 and

two alphabetic morphisms πA : C → A ∪ {1}, πB : C → B ∪ {1} such
that R = {(πA(x), πB(x)) | x ∈ K}. Moreover, one can suppose

(∗) ∀c ∈ C(πA(c) or πB(c) is not empty)

An analog equivalence holds with ωn+1 in place of ω1.

As a corollary, we get the relational version of Theorem 22.

Theorem 28. Let R ⊆ A<ωn+1 × B<ωn+1
. The following conditions

are equivalent:
1) R is Büchi recognizable
2) R is Choueka recognizable
3) R = S∩(A<ωn+1×B<ωn+1

) for some Büchi recognizable relation
S.

Proof. 1) ⇒ 2). Let K, πA, πB be as in 2) of Proposition 27 with
condition (*). Clearly, |πA(x)|+ |πB(x)| ≥ |x| for all x ∈ C<ω1 . Since
R ⊆ A<ωn+1 × B<ωn+1

we see that K ⊆ C<ωn+1
. We conclude by

Theorem 22 and Proposition 27 applied to ωn+1.
2) ⇒ 3). If R is Choueka recognizable then by Proposition 27 with
condition (*) applied to ωn+1 and Theorem 22 there exists K = K ′ ∩
C<ωn+1

where K ′ is Büchi recognizable such that R = {(πA(x), πB(x)) |
x ∈ K}. Then R = S∩(A<ωn+1×B<ωn+1

) where S = {(πA(x), πB(x)) |
x ∈ K ′}.
3) ⇒ 1). Let S = {(πA(x), πB(x)) | x ∈ K} for some K ∈ Rat(C<ω1)
with condition (*). Then R = {(πA(x), πB(x)) | x ∈ K ∩C<ωn+1}.

Another corollary of the first factorization theorem is the closure
under composition property. The proof is also a paraphrase of the
same property for finite strings, [6, Thm III.4.4.]. We reproduce it
here for the sake of completeness.

14



Proposition 29 (Closure under composition).
If R ∈ Rat(A<ω1 × B<ω1) and S ∈ Rat(B<ω1 × C<ω1) then R ◦ S ∈
Rat(A<ω1 ×C<ω1). The same holds with A<ωn+1

, B<ωn+1
, C<ωn+1

for
all 0 ≤ n < ω.

Proof. The proof goes exactly as in the finite length case, see [6]. De-
note by πAB

A the projection of A∪B onto A and by πABC
AB the projection

of A ∪ B ∪ C onto A ∪ B. Let R = {(πAB
A (x), πAB

B (x)) | x ∈ K},
S = {(πBC

B (x), πBC
C (x)) | x ∈ L}, where K ⊆ (A ∪ B)<ω1 and

L ⊆ (B ∪ C)<ω1 are rational languages. Now, the composition R ◦ S
can be written R ◦ S = {(πABC

A (x), πABC
C (x)) | x ∈ M}, where

M = (πABC
AB )−1(K) ∩ (πABC

BC )−1(L). The inclusion from right to left
is straightforward. As for the left to right inclusion, observe that if
A,B, C are disjoint, u ∈ (A ∪ B)<ω1 and v ∈ (B ∪ C)<ω1 are such
that πAB

B (u) = πBC
B (v) then there exists w ∈ (A ∪ B ∪ C)<ω1 such

that πABC
AB (w) = u and πABC

BC (w) = v. Finally, observe that M is ra-
tional due to the commutation of π−1 with set union, concatenation,
Kleene-star, ω-power and ω1-iteration and second to the closure under
intersection of the family of rational sets of transfinite strings.

4.4 Rational Büchi transducers

Here we modify the notion of finite transducer in such a way as trans-
forming it into a Büchi automaton on A where each transition is
equipped with an output in Rat(B<ω1). In other words, as for fi-
nite and infinite strings, there is an alternative definition where the
third component of the transitions are rational subsets of B<ω1 .

Definition 30. A Büchi transducer on transfinite strings is a con-
struct T = (Q,A,B, Q−, E, F ) where Q,A,B, Q− are as in Definition
4, E is a finite subset of (Q×A×Rat(B<ω1)×Q) ∪ (2Q ×Q) and F
is a mapping from Q to Rat(B<ω1).
A run of T on a transfinite input string (aη)η<λ ∈ A<ω1 is a pair of
sequences ((qη)η≤λ, (Xη)η≤λ) where

1) q0 ∈ Q− and for all η < λ we have (qη, aη, Xη, qη+1) ∈ E
2) if η ≤ λ is limit then (P, qη) ∈ E where P is the set of persistent

states in (qζ)ζ<η.
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3) Xλ = F (qλ)
The output of the run is the concatenation product X = (

∏
η≤λ Xη)

Transducer T defines the relation R ⊆ A<ω1 × B<ω1 which asso-
ciates with every transfinite input string u the union set of all outputs
of runs on u.

4.5 Eilenberg’s second factorization theorem: the case
< ω1

The following technical result happens to be the crux for the transfinite
extension of Eilenberg’s second factorization theorem.

Lemma 31. Let Q be a finite set, let α and λ be limit ordinals and let
(qβ)β<α be a sequence of elements of Q. Let (βη)η<λ be an increasing
continuous (see 2.1) sequence of ordinals which is cofinal to α. Con-
sider the sequence (Qη)η<λ of subsets of Q where Qη = {qγ | βη ≤ γ <
βη+1}. Then the set of persistent elements in (qβ)β<α is the union of
the sets which are persistent elements in the sequence (Qη)η<λ.

Proof. Denote by {Q(1), . . . Q(k)} the collection of persistent elements
in the sequence (Qη)η<λ and set P = Q(1) ∪ . . . ∪Q(k).

1) Let q be some persistent element in the sequence (qβ)β<α, say q = qγi

for some sequence (γi)i<ω cofinal to α. Since (βη)η<λ is cofinal to α,
for every i < ω there exists η such that γi < βη. Since (βη)η<λ

is continuous, the least such η is necessarily a successor ordinal, we
denote it by ηi + 1. Thus, γi ∈ [βηi , βηi+1[. Observe that the sequence
(ηi)i<ω is necessarily cofinal to λ. In fact, if η < λ then η ≤ ηi for all
i < ω such that βη < γi. Since q = qγi we have q ∈ Qηi for all i. Since
Q is finite, there exists an infinite set I ⊆ ω such that all Qηi , i ∈ I,
are equal. Let Q′ be their common value. The sequence (ηi)i∈I being
cofinal to λ (as is (ηi)i∈ω) we see that Q′ is a persistent element in
the sequence (Qη)η<λ. Thus, with the above notations, Q′ is among
{Q(1), . . . Q(k)}. Since q ∈ Q′ we conclude that q ∈ P .

2) Conversely, let q ∈ Q(j), with 1 ≤ j ≤ k. Then Q(j) = Qηi for some
increasing sequence (ηi)i<ω cofinal to λ. Choose an arbitrary element
εi ∈ [βηi , βηi+1[ with qεi = q. Then the sequence (εi)i<ω is cofinal to α
and thus q is persistent in (qβ)β<α.
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The equivalence of properties 1 and 4 in the next theorem is a
second normalized form for a reciprocal of Proposition 26 introducing
strictly alphabetic morphisms, i.e. morphisms φ : C<ω1 → D<ω1 sat-
isfying φ(C) ⊆ D. It is the transfinite version of Eilenberg’s second
factorization theorem ([14], 1974, p. 248).

Theorem 32. Given a relation R ⊆ A<ω1×B<ω1, the following prop-
erties are equivalent

1) R is rational
2) R is defined by some 2-tape Büchi automaton
3) R is defined by some Büchi transducer
4) there exist finite alphabets C,D, a rational subset K ⊆ C<ω1D,

a strictly alphabetic morphism φ : C → A and a rational substitution
σ : (C ∪D) → Rat(B<ω1) such that R =

⋃
d∈D,xd∈K{φ(x)} × σ(xd)

Proof. With no loss of generality we can suppose that A and B are
disjoint.
1) ⇔ 2). As in the finite string case, there is a one-to-one correspon-
dence between 2-tape Büchi automata on alphabets A,B and one tape
Büchi automata working on alphabet (A× {1}) ∪ ({1} × B). The re-
lation associated to the 2-tape Büchi automaton being defined as in
condition 2 in Proposition 27. Thus, 1) ⇔ 2) is a mere reformulation
of that last proposition.
3) ⇒ 4). Given the Büchi transducer T = (Q,A,B, Q−, E, F ), let
C,D be disjoint finite sets of new symbols such that C is in one-
to-one correspondence with the set of quadruples (q, a, X, p) of E,
and D is in one-to-one correspondence with the set of pairs (q, X) ∈
Q × Rat(B<ω1) such that F (q) = X. Denote by [q, a, X, p] or [q, X]
whichever, the element of C,D in this correspondence. Define a strictly
alphabetic morphism φ : C → A and a rational substitution σ :
(C ∪D) → Rat(B<ω1) as follows: φ([q, a, X, p]) = a, σ([q, a, X, p]) =
σ([q, X]) = X. Transform T into an one-tape Büchi automaton A =
(Q ∪ {q+}, C ∪ D,Q−, {q+}, E′) by defining (q, [q, a, X, p], p) ∈ E′ if
and only if (q, a, X, p) ∈ E and (q, [q, X], q+) ∈ E′ if and only if
F (q) = X. Clearly, A recognizes a subset K of C<ω1D such that
R = {(φ(x), σ(xd)) | d ∈ D,xd ∈ K}
4) ⇒ 1). This is a direct consequence of Proposition 26.
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2) ⇒ 3). This is the last implication that remains to be proved.
The rest of this paragraph is devoted to its proof. Using condi-
tion 2 in Proposition 27, let R = {(πA(x), πB(x)) | x ∈ K} where
K ∈ Rat((A ∪ B)<ω1) is recognized by the (1-tape) automaton A =
(Q,A ∪B,Q−, Q+, E). We shall associate to A a Büchi transducer T
which, in a first approach, follows the same construction as for finite
strings.

Preliminary analysis
In a run of A, the set of transitions can be divided into those that
are labeled by letters in A and those that are labelled by letters in B.
Thus, by tracking the A-transitions, we may view a run ofA as starting
with a certain number (possibly zero) of B-transitions, followed by
one transition in A, followed by a sequence (possible empty) of B-
transitions, followed by one A-transitions, etc . . . . This sequence may
be followed by a last sequence of B-transitions.
This grouping process is indeed possible in the transfinite case.

Claim: Every transfinite string w over A ∪ B of length λ in the sub-
alphabet A (i.e. |w|A = λ) can be factored in a unique way as

w = (
∏
η<λ

vηaη)vλ (5)

with aη ∈ A and vη ∈ B<ω1 .
Indeed, let πA(w) = (aη)η<λ. For η < λ consider the shortest prefix
wη of w containing all occurrences aζ with ζ < η. Then w = wηz holds
for some transfinite string z and vη is exactly the longest prefix of z
not containing an occurrence of A.

Consider an A-run (qβ)β≤α on input w = (
∏

η<λ vηaη)vλ ∈ (A∪B)<ω1 .
where α = |w| and λ = |wA|. Let βη = |

∏
ζ<η vζaζ | =

∑
ζ<η(|vζ |+ 1),

so that qβη is the state reached after processing the η first occurrences
of A. A direct naive extension to the transfinite of the intuition used
for finite strings would define T so that

1. the A-run qβη

vη−→ qβη+|vη |
aη−→ qβη+1 is replaced by a single T -

transition qβη

aη ,Xη−→ qβη+1 where the output Xη is the rational set
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consisting of all strings v′ ∈ B<ω1 such that there is an A-run
qβη

v′−→ qβη+|vη |

2. the last part qβλ

vλ−→ qα of the A-run is replaced by a last T -
output Xλ = F (qηλ

) equal to the the rational set consisting of

all strings v′ ∈ B<ω1 such that there is an A-run qβλ

v′−→ qα

However, we also have to consider limit transitions which ask for a
memorization of the set of persistent states in the run. This leads to
the following modification in the above assertion 1:

3. the T -output Xη is reduced to the set of all strings v′ ∈ B<ω1

such that there is an A-run qβη

v′−→ qβη+|vη | and the two runs
from qβη to qβη+|vη | with labels vη and v′ visit exactly the same
set of states, namely Qη = {qβ | βη ≤ β < βη+1}. That Xη is
indeed rational is insured by Lemma 6.

Also, T -states will have two components: one for the current
A-state and the other to memorize the set Qη. Since that last
set is known at the end of the run on input vη, it will be stored
in the second component of the state (qβη+1 , Vη+1) reached by T
after processing letter aη. For limit η we shall put Vη = ∅.

Construction of the Büchi transducer
This leads to the following construction of T = (Q × 2Q, A, B,Q− ×
{∅}, E′, F ).
LetA′ be the automaton obtained fromA by deleting all A-transitions.
As in Lemma 6, for all q, r ∈ Q and V ⊆ Q we denote by Xq,V,r the
set of strings v in B<ω1 such that there is an A′-run from state q to
state r which visits exactly the states in V .
Initial or successor transitions
We set ((q, W ), a,X, (p, V )) ∈ E′ if and only if X =

⋃
r such that (r,a,p)∈E

Xq,V,r

.
Limit transitions
For all S = {(q1, V1), . . . (qk, Vk)} we set (S, (q, ∅)) ∈ E′ if (P, q) ∈ E
where P = V1 ∪ . . . ∪ Vk

Final transitions We set F ((q, V )) = X if and only if X is the
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family of labels of runs of A′ going from state q to some state in Q+.

Let us verify that R is exactly the relation associated to transducer T .
Suppose (u, v) ∈ R. Then there exists w ∈ (A ∪ B)<ω1 such that
(u, v) = (πA(w), πB(w)) and there exists an accepting A-run (qβ)β≤α

on input w with α = |w|. We keep the notations of the preliminary
analysis. and show that

1. (qβη)η≤λ is a run of T on input u = (aη)η<λ with outputs (Xη)η≤λ

2. v ∈
∏

η≤λ Xη.

The preliminary analysis and the very definition of T show that vη ∈
Xη for η < λ. Also, since the A-run on w is accepting, qα ∈ Q+ so
that Xλ 6= ∅ and vλ ∈ Xλ. This proves assertion 2 above.

As for assertion 1, the case of initial and successor steps is clear from
the preliminary analysis and the very definition of T .
Concerning limit transitions, first observe that µ is a limit ordinal if
and only if ηµ = |

∏
γ<µ vγaγ | is a limit ordinal. In particular, the

sequence (βη)η<λ is continuous. Recall that Vη+1 = Qη for all η and
Vη = ∅ for limit η. Suppose θ ≤ λ is limit. The family of persistent
elements in the sequence (Qη)η<θ is exactly that of persistent elements
in the sequence (Vη)η<θ augmented with the empty set (which appears
at limit steps) in case θ has type ≥ 2, i.e. is a limit of limit ordinals.
Thus, these families have the same union. Lemma 31 insures that
this union set is exactly the set of persistent elements of the sequence
(qβ)β<βθ

. The definitions of limit transitions for A and T now show
that (qβθ

, ∅) is a valid limit state of T for the run on u. This proves
assertion 1 above. Thus, (u, v) is in the relation associated to T .

Conversely, suppose (u, v) is in the relation associated to T and u =
(aη)η<λ and v =

∏
η≤λ vη where vη is in the output Xη of T relative

to the transition on letter aη if η < λ or in the very last output given
by the function F if η = λ. Similar arguments allow to construct
an accepting A-run on input w = (

∏
η<λ vηaη)vλ, which shows that

(u, v) ∈ R.
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4.6 Eilenberg’s second factorization theorem: the case
< ωn+1

Büchi two-tape automata and Büchi transducers have obvious Choueka
counterparts in which limit transitions are treated in the Choueka way.
In the notion of Choueka transducer there is no need to restrict the
output rational sets to Rat(B<ωn+1

), such outputs can be taken in
Rat(B<ω1).

Using Theorem 22 and Proposition 27, we now prove that Theorem
32 implies its Choueka version as a corollary.

Theorem 33.
1) Given a relation R ⊆ A<ωn+1 × B<ω1, the following properties are
equivalent

1) R is rational
2) R is defined by some Choueka transducer
3) there exist finite alphabets C,D, a rational subset K ⊆ C<ωn+1

D,
a strictly alphabetic morphism φ : C → A and a rational substitution
σ : (C ∪D) → Rat(B<ω1) such that R =

⋃
d∈D,xd∈K{(φ(x)} × σ(xd)

2) In case R ⊆ A<ωn+1 ×B<ωn+1
, the above properties are also equiv-

alent to
4) R is defined by some 2-tape Choueka automaton

Moreover, in that case, in condition 3) we can suppose σ to have range
in Rat(B<ωn+1

).

Proof. 1) Implications 2) ⇒ 3) ⇒ 1) go as the corresponding impli-
cations 2) ⇒ 4) ⇒ 1) in Theorem 32.
For implication 3) ⇒ 2), on input u ∈ A<ωn+1

, the wanted Choueka
transducer non deterministically guesses some string xd ∈ C<ωn+1

D,
outputs σ(xd) and checks whether xd ∈ K and u = φ(x) (which can
be done step by step since φ is strictly alphabetical).
For implication 1) ⇒ 3) suppose 1). Using the analog implication
in Theorem 32, let C,D, φ : C → A, σ : C ∪ D → Rat(B<ω1) and
K ∈ Rat(C<ω1D) be such that R =

⋃
d∈D,xd∈K{φ(x)} × σ(xd). Up

to a restriction of alphabet C, we can suppose that σ(xd) 6= ∅ for all
xd ∈ K. Since φ is strictly alphabetic and φ(xd) ∈ A<ωn+1

whenever
xd ∈ K, we see that K ⊆ C<ωn+1

. Now, using Theorem 22, we get
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the desired conclusion.
2) Obvious.

4.7 Recognizable relations

We recall that an ω1-Wilke algebra is a semigroup S equipped with an
additional unary operation x → xω, subject to the two axioms

1. for all x, y, x(yx)ω = (xy)ω holds

2. for all x, for all integers n < ω, (xn)ω = xω holds.

A subset K ⊆ A<ω1 is recognizable if there exists a morphism φ (rel-
ative to the structure of ω1-Wilke algebras) from A<ω1 onto a finite
ω1-Wilke algebra S and a subset T ⊆ S such that K = φ−1(T ).
The notion of recognizability extends to relations: R ⊆ A<ω1 × B<ω1

is recognizable if there exists a morphism φ in the category of ω1-Wilke
algebras from A<ω1 × B<ω1 onto a finite ω1-Wilke algebra S and a
subset T ⊆ S such that R = φ−1(T ).
It is clear again that the traditional properties of recognizable sets and
relations on finite strings extend to transfinite strings.

Proposition 34. 1) Recognizable relations on A<ω1 × B<ω1 form a
Boolean algebra.
2) If φ : A → B∗ is a monoid morphism, and if K ⊆ B<ω1 is recog-
nizable, then φ−1(K) is a recognizable subset of A<ω1.
3) K ⊆ A<ω1 is recognizable if and only if it is rational.
4) A rational relation is recognizable if and only if there exists an in-
teger p and rational sets X1, . . . , Xp ∈ Rat(A<ω1) and Y1, . . . , Yp ∈
Rat(B<ω1) such that R =

⋃
1≤i≤p Xi × Yi.

5 Uniformization

Uniformizing a rational relation in Rat(A<ω1 ×B<ω1) consists of find-
ing a function whose graph is a rational relation and whose domain
coincides with that of the given relation.
In the finite case, Eilenberg proved that this can be achieved as follows:
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• For relations recognizable by synchonous automata, just choose
for each u ∈ A∗ in the domain of the relation the minimal v ∈ B∗

that is associated with u (relative to the length-lexicographical
ordering relative to some prescribed order on alphabet B.

• The passage from synchronous to general rational relations uses
Eilenberg’s second factorization theorem.

However this does not carry over to infinite strings, let alone to trans-
finite strings. The reason is that the lexicographic order is no more
well-founded for infinite strings of any fixed length. As in [10], we
will use a “greedy ordering” on the runs on a given input in order to
“rationally” choose a second component associated with a given input.

5.1 The greedy ordering on Choueka-continuous sequences

Recall that runs on inputs of length α (α < ω1) are sequences in
([Q]t0)

α+1 (where t is the type of α) which are Choueka-continuous
over Q (cf. Definition 13) .

We fix the finite set Q and some finite total orderings <0, <1

, . . . , <n on Q and its successive power sets [Q]1, . . . , [Q]n.
The purpose of this subsection is to define a total ordering on the

set of all Choueka-continuous sequences of fixed length α + 1 < ωn+1

such that every set of runs associated with a given input possesses a
minimal element.

We now detail the inductive construction of an operation which as-
sociates to every ordinal α < ωn+1 a total ordering (which we shall call
”greedy”) ≺α+1

greedy on the set Choueka(Q,α + 1) of Choueka-continuous
sequences over Q of length α + 1. The definition is first given for
ordinals of the form ωi + 1 and uses an induction.

Initial case α+1 = 1. Choueka(Q,α+1) is just Q and we let ≺1
greedy

be <0 .

Inductive step: from 1 to ω + 1 and from ωi + 1 to ωi+1 + 1
(i > 0).
Let i ≥ 0. To any (ωi+1 + 1)-Choueka-continuous sequence ξ we asso-
ciate a sequence

φ(ξ) = (U , β−1, ξ � [0, β−1], β0, ξ � [β−1, β0], β1, ξ � [β0, β1], . . .)
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The first component is the last element of the sequence ξ, i.e. U =
ξ(ωi+1), and lies in the set [Q]i+1. When ξ varies, such elements can
be compared via <i+1 .

The second component β−1 is the greatest ordinal β ∈ {ωi.k |
k < ω} such that ξ(β) /∈ U (recall that U is the set of values infinitely
often repeated in the sequence (ξ(ωi), ξ(ωi.2), ξ(ωi.3), . . .), so that such
a greatest β does indeed exist).

Let U = {U0, . . . , Um−1} . For 0 ≤ j < m and 0 ≤ p < ω the
component βmp+j is the smallest ordinal β ∈ {ωi.k | k < ω} such that
βmp+j−1 < βmp+j and ξ(β) = Uj . Such a β does indeed exist since Uj

is infinitely often repeated in the sequence (ξ(ωi), ξ(ωi.2), ξ(ωi.3), . . .).
For −1 ≤ k < ω, letting p be such that βk+1 = βk + ωi.t, the

(1 + 2k)-th component ξ � [βk, βk+1] is in Choueka(Q,ωi.t + 1) if i > 0
or in Choueka(Q, t) (i.e. Qt) if i = 0. When ξ varies among strings
for which φ(ξ) has fixed components β−1, . . . , βk+1, such (1 + 2k)-th
components can be compared via the lexicographic t-power of ≺ωi+1

greedy

if i > 0 or of ≺1
greedy if i = 0.

The greedy ordering ≺ωi+1+1
greedy is defined from ≺ωi+1

greedy (in case i > 0)
or from ≺1

greedy, i.e. < (in case i = 0) as follows. To compare two
different (ωi+1 + 1)-Choueka-continuous sequences η, ξ, we consider
the sequences φ(ξ) and φ(η), look at the first component on which
they differ and compare ξ, η according to these components. Though
the (1 + 2k)-th component of φ(ξ) lies in a set depending on ξ, such
a comparison really makes sense. In fact, if η, ξ cannot be compared
via their first 2k components, then their 1 + 2k-th components lie in
the very same set Choueka(Q, γ + 1) (where γ is of the form ωi.t for
some t ≥ 0).

Clearly, ≺ωi+1+1
greedy is a total ordering on Choueka(Q,ωi+1 + 1).

The greedy ordering on Choueka(Q,α + 1).
Let α = ωi1 + ωi2 + . . . + ωim where ω > i1 ≥ i2 ≥ . . . ≥ im ≥ 0 and
0 ≤ m < ω. For 0 < j ≤ m set σj = ωi1 + ωi2 + . . . + ωij .

To each (α + 1)-sequence ξ we associate the m-sequence:
θ(ξ) = (ξ � [0, σ1], ξ � [σ1, σ2], . . . , ξ � [σm−1, σm])

of Choueka-continuous sequences of lengths ωi1 , ωi2 ,. . ., ωim .
We define the greedy ordering ≺α+1

greedy on Choueka(Q,α + 1) as fol-
lows. To compare two different (α +1)-Choueka-continuous sequences
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η, ξ, we consider the m-tuples θ(η) and θ(ξ) , we look at the first
component on which they differ, say it has rank j, and compare ξ, η

according to the greedy ordering ≺ωij +1
greedy on this component.

5.2 Two properties of the greedy ordering

We first prove that for every n < ω the union of the greedy orderings
≺α+1

greedy for α < ωn+1 (which is a partial ordering comparing strings
having the same length < ωn+1) is synchronous rational.

Lemma 35. There exists a formula Φ(η, ξ) of second order monadic
logic (in the language of order) which uniformly defines the relation

{(η, ξ) | ∃α < ωn+1(η, ξ ∈ Choueka(Q,α + 1) and η ≺α+1
greedy ξ}

in any structure (θ, <) where θ ≥ ωn+1 (Convention: as usual, strings
over an alphabet with m letters are interpreted as t-tuples of (bounded)
subsets of θ with t = dlog(m)e).
In particular, this relation is rational and even synchronous rational,
i.e. recognized by an automaton which reads its tapes in a synchronous
way.

Proof. 1) First, we express types of ordinals (cf. 2.1) in second order
monadic logic. Let Lim(α) ≡ ∀β < α ∃γ (β < γ < α) asserts that α
is a limit ordinal. Then

Type0(α) ≡ ¬Lim(α) Type≥1(α) ≡ Lim(α)
and more generally for n ≥ 1:

Type≥n(α) ≡ ∀β < α ∃γ (Type≥n−1(β) ∧ β < γ < α)
We may express the exact type by

Typen(α) ≡ Type≥n(α) ∧ ¬Type≥n+1(α)
If β < γ < ωn+1 then by relativizing in the above formulas all quanti-
fiers to the interval [β, γ[, we can express the type of this interval.
2) Thus, the relations

i ≤ n and γ = β + ωi

i ≤ n and ∃k < ω (γ = β + ωi.k)
i ≤ n and u = (ξ(ωi) , ξ(ωi.2) , ξ(ωi.3) , . . .)

i ≤ n and u = (ξ � [0ωi] , ξ � [ωiωi.2] , ξ � [ωi.kωi.(k + 1)] , . . .)
are also expressible.
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3) The prefix and lexicographic orderings on transfinite sequences on
some finite ordered alphabet are easy to express by second order for-
mulas.
If ≺ is an expressible ordering over strings in Choueka(Q,ωi + 1) then
so is the relation

β, γ ∈ {ωi.k | k < ω} and ξ � [β, γ] ≺[β,γ]-lex η � [β, γ]
where ≺[β,γ]-lex is the lexicographic extension of ≺ to strings indexed
in [β, γ].
Consequently, for i ≤ n, the greedy orderings ≺ωi+1

greedy are expressible.
4) In order to express the greedy ordering ≺α+1

greedy there remains to deal
with the decomposition sequences of ordinals α < ωn+1, namely

α = ωi1 + ωi2 + . . . + ωim

where ω > i1 ≥ i2 ≥ . . . ≥ im ≥ 0 and 0 ≤ m < ω.
For β < γ let’s say that [β, γ] is a block if it has order type ωi for some
i ≤ n and the type of β is at least i. Clearly, blocks of α are the pieces
of the decomposition sequence of α. Now, the relation

[β, γ] is a block of α and u = ξ � [β, γ]
is easy to express via types.

Let α < ωn+1. We consider the compact product topology on the
product set

∏
β≤α[Q]τ(β) (where τ(β) denotes the type of β, cf. §2.1).

Since this set contains Choueka(Q,α+1), it induces a topology on this
last set (Caution: the induced topology is not compact!).

Lemma 36. Every closed non empty subset of Choueka(Q,α + 1) has
a smallest element for the ≺α+1

greedy ordering.

Proof. The way ≺α+1
greedy is defined from the ≺ωi+1

greedy orderings makes it
clear that we can reduce to the case where α = 0 or α = ωi. The
first case is trivial. We argue by induction on i for the second case.
following the construction detailed in paragraph 5.1 of ≺ωi+1+1

greedy from
≺ωi+1

greedy in case i > 0 or from ≺1
greedy=< in case i = 0.

Let F be a non empty closed subset of Choueka(Q,ωi+1 + 1). We
want to minimize the sequence

φ(ξ) = (U , β−1, ξ � [0, β−1], β0, ξ � [β−1, β0], β1, ξ � [β0, β1], . . .)
where ξ varies in F .
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Let V be the smallest value of the first component U = ξ(ωi+1) of
φ(ξ) when ξ varies in F . Restrict F to the subset F ′ of strings ξ ∈ F
with first component V. Clearly, F ′ is still closed and non empty.

The following argument is a variation from our paper [10] p. 68
about uniformization. We inductively define a sequence of integers
(k1 , k2 , k3, . . .) and a sequence of strings (ζ1 , ζ2 , ζ3 , . . .) as
follows.

Let λ−1 be the smallest value of the second component β−1 of φ(ξ)
when ξ varies in F ′. We let k−1 be such that λ−1 = ωi.k−1 and we
define ζ1 as the smallest value of ξ � [0, ωi.k−1] (with respect to the
lexicographic k−1-power of ≺ωi+1

greedy) when ξ varies over sequences such
in F ′ such that β−1 = λ−1.

For t ≥ 0 let λt be the smallest value of the component βt of φ(ξ)
for ξ ∈ F ′ extending the concatenation of strings ζ1, . . ., ζt−1. We let
kt be such that λt = ωi.kt and we define ζt as the smallest value of
ξ � [ωi.kt−1, ω

i.kt] (with respect to the lexicographic (kt− kt−1)-power
of ≺ωi+1

greedy) for ξ ∈ F ′ extending the concatenation of strings ζ1, . . .,
ζt−1 and such that βt = λt.

Let ζ be the concatenation of the sequence of strings ζ1 , ζ2 , ζ3 , . . .
and of the element V. It is clear that ζ has length ωi+1 + 1 and that
ζ(ωi.k) ∈ V whenever k > k−1. Also, each element Uj ∈ V appears
infinitely often in the sequence (ζ(ωi), ζ(ωi.2, . . .) since it appears in
every string ζmp+j for p ≥ 0. This gives the Choueka-continuity con-
dition for level ωi+1. As for levels ω, . . . , ωi, the Choueka-continuity
conditions are inherited from the ζt’s. Thus, ζ ∈ Choueka(Q,ωi+1+1).
By very construction ζ is the limit of strings in F , hence is in F . Also,
by definition of the ≺ωi+1

greedy ordering, it is the smallest string in F .

5.3 Uniformization of relations with domain bounded
below ωω

We first state a simple lemma.

Lemma 37. The set of accepting runs of a Choueka automaton on an
input with length α < ωω is a closed subset of Choueka(Q,α + 1).

Proof. Suppose ζ ∈ Choueka(Q,α + 1) is the pointwise limit of runs
r0, r1,. . . on input u. Then for every α <| u | there exists t such that
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ζ(α) = rt(α) and ζ(α + 1) = rt(α + 1). Since rt is a run, the triple
(ζ(α), uα, ζ(α + 1)) is in the transition relation. Thus, ζ satisfies the
initial and successor conditions for runs. Also, there exists t such that
ζ(| u |) = rt(| u |). Since rt is a run, ζ(| u |) is a final state. Thus, ζ
satisfies the final condition for runs.
Finally, since ζ is Choueka-continuous, it also satisfies the limit con-
dition for runs. Thus, ζ is indeed an accepting run.

Theorem 38. Every rational transfinite relation R ⊆ A<ωn+1 ×B<ω1

can be uniformized by a rational relation.

Proof. Consider a Choueka transducer defining R. Without loss of
generality, one can suppose that for each transition (q, X, r) the out-
put X ∈ Rat(B<ω1) is uniquely determined by the state r. For each
such non empty X choose a witness string vX ∈ X (there are only
finitely many choices since the X’s involved in transitions are finitely
many). According to the previous lemma, given an input u ∈ Aα

(where necessarily α < ωn+1), the set of accepting runs on u is a
closed subset of Choueka(X, α + 1). Arguing in second order monadic
logic, Lemmas 37, 36, 35, allow to definably, hence rationally, asso-
ciate to each input u a uniquely determined run. Now, from the run
we rationally go to the transfinite sequence of ouput rational sets and
also to the final output set. From this sequence and set we rationally
get the transfinite sequence of witness strings and the final string, the
concatenation of which gives a unique v such that (u, v) ∈ R.

5.4 Uniformization of relations with range bounded be-
low ωω

Theorem 39. Every rational transfinite relation R ⊆ A<ω1 ×B<ωn+1

can be uniformized by a rational relation.

Proof.

5.5 Uniformization of relations with relationality degree
bounded below ωω

A close examination of the proof of Thm. 39 shows that the important
point is not that the range consists of bounded strings but that the
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factorizations (u, v) =
∏

α<θ(uα, 1)(1, vα) of the input associated to
the runs on input (u, v) are such that θ < ωn+1. I.e. the number of
alternations of the tape readings is bounded by ωn+1.
Formalizing this notion, we get a symmetric extension of Theorems
38, 39.

5.6 From ωω on

The following two technical properties are elementary properties which
can be found resp. in [24] and [11].

Lemma 40. Let 0 < k < ω. If αi < ωk for all i < ω then
∑
i<ω

αi ≤ ωk.

Lemma 41. For any two transfinite strings x, y, equality y = xy holds
if and only if xω is a prefix of y.

Given a limit ordinal λ < ωω we denote by Wλ the set of strings
w ∈ {0, 1}λ such that for all non trivial factorizations w = w1w2, the
prefix w1 contains finitely many occurrences of the symbol 1 and w2

contains at least one occurrence of 1. This is equivalent to saying that
the positions of the occurrences of 1 define an ω-sequence which is
cofinal with λ. Consider the relation

CofinalSeq = {(0λ, w) | λ is limit < ωω and w ∈ Wλ}

It is easy to see that CofinalSeq = Rel(A) ∩ ({0}<ωω × {0, 1}<ωω
)

where Rel(A) is the relation recognized by the following deterministic
synchronous 2-tape automaton (where the final state {1} takes into
account the case λ = µ + ω and w has a suffix 1ω).
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0 1

{0} {1} {0, 1}

0/0 0/1

0/0

0/1

0/1

0/0

Extending Def. 11 to relations (and observing that Thm. 21 goes
through for relations), let’s write Rat(A<α × B<β) in place of {R ∩
(A<α ×B<β) | R is Büchi recognizable}.

Proposition 42. The relation CofinalSeq, which is in Rat(A<ωω ×
B<ωω

), where A = B = {0, 1}, is not uniformizable.

Proof. Let R be a rational relation on the aphabet {0, 1} which, for
every i ∈ ω, accepts some (0ωi

, ui) ∈ CofinalSeq. The proof consists
in showing that for some integer i and some string v 6= ui both (0ωi

, ui)
and (0ωi

, v) belong to R. We assume the relation is recognized by
some Büchi automaton to which any run refers and we denote by π1

and π2 the projection of the labels of a run onto A<ωω
and B<ωω

respectively (the “first” and the “second” component). For all pairs
(x, y) ∈ A<ωω × B<ωω

let us denote by M(x, y) the Boolean Q × Q-
matrix whose (q, r)-entry is 1 if and only if there is a run labelled by
(x, y) which leads from state q to state r.

Some familiarity with run factorizations are necessary to under-
stand the technique used in the proof. Given a run ρ in an 2-automaton
and its label (ξ, η) it is not the case that each factorization of the label
is the label of a prefix of the run, which is a big departure from the 1-
automaton case. What can be guaranteed is the following which could
be called a “run factorization driven by an output factorization”. Let
α be an ordinal and let

∏
r<α ηr be a factorization of η. Then there

exists a (non necessarily unique) factorization of ρ into ρ =
∏

r<α ρr

such that π2(ρr) = ηr for all r < α.
Apply this observation to some (0ωi

, u) ∈ CofinalSeq. Since the
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length |u|1 is ω, the output label can be factored as u =
∏

r<ω 0ξr1.
Lemma 40 shows in particular (and this will be used below heavily)
that for some r < ω, ξr ≥ ωi−1 holds. The idea of the proof is to
substitute some factor ρ′r for the r-th factor ρr in the run driven by
the output factorization, in such a way as to keep the input label and
modify the output label (actually what we do is slightly different but
the basic idea is there). This method is akin to that used in the famous
“pumping lemma” but it is more elaborate in the sense that the factor
ρ that we plug in does not require considering a single run but rather
an infinite collection of runs.

Let us now be more technical. For all i < ω, fix a successful run ρi

labelled by (0ωi
, ui). We consider the following predicate

the image by π1 of some proper prefix of ρi equals 0ωi
(6)

(Observe, as an example, no run in the above synchronous automaton
recognizing CofinalSeq satifies the predicate).
Case 1: there exist infinitely many runs ρi satisfying predicate (6).
For every such run we choose an arbitrary factorization ρi = hibiti
(“head”, “body” and “tail”) such that π1(hi) = 0ωi

and π2(bi) = 0ωi−1

(the existence of such a bi is guaranteed by Lemma 40). Since Q is finite
there exist two integers k < j such that ρk and ρj satisfy predicate (6)
and M(label(bk)) = M(label(bj)) holds. The two runs hjbjtj and
hjbktj are successful and we claim that they have the same input labels
and two different output labels. Indeed, since |π1(bj)| = |π1(bk)| =
|π1(tj)| = |π1(tk)| = 0 holds, we clearly have |π1(hjbjtj)| = |π1(hjbktj)|
and therefore π1(hjbjtj) = π1(hjbktj). Concerning the output labels,
the condition π2(hjbjtj) = π2(hjbktj) would yield, after cancelling out
the common prefix π2(hjbk), equality 0ωj−1

π2(tj) = 0ωk−1
π2(tj), hence

π2(tj) = 0ωj−1
π2(tj). This implies by Lemma 41, that π2(tj) has a

prefix equal to 0ωj
, a contradiction to the fact that letter 1 occurs

cofinally in uj .
Case 2: for sufficiently large i, ρi does not satisfy predicate (6).
For all sufficiently large i, choose a fatorization ρi = hibiti such that
label(bi) = (0ξi , 0ωi−1

) for some ξi < ωi (this condition is guaranteed
by Lemma 40). There exist two integers k, j such that i < k < j and
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M(label(bk)) = M(label(bj)) holds. Then the two runs ρj = hjbjtj
and hjbktj are successful and we claim that they have the same in-
put labels and two different output labels. Indeed, |π1(ρj)| = ωj

and |π1(tj)| 6= 0 implies |π1(tj)| = ωj and |π1(hjbj)| < ωj , thus
|π1(hjbk)| < ωj and finally |π1(hjbktj)| = ωj proving the equality
of the two input labels (both equal to 0ωj

). Concerning the output la-
bels, the condition π2(hjbjtj) = π2(hjbktj) would yield, by cancelling
out the common prefix π2(hj)0ωk

equality π2(tj) = 0ωj−1
π2(tj). By

Lemma 41 this implies that π2(tj) has a prefix equal to 0ωj
, a contra-

diction to the fact that letter 1 occurs cofinally in uj .
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