
Ramdom Reals and Possibly Infinite Computations.
Part I: Randomness in ∅′

Verónica Becher
Departamento de Computación, Universidad de Buenos Aires, Argentina

vbecher@dc.uba.ar

Serge Grigorieff
LIAFA, Université Paris 7 & CNRS, 2 Pl. Jussieu 75251 Paris Cedex France

seg@liafa.jussieu.fr

Contents

1 Randomness in the spirit of Rice’s theorem for computabil-
ity 2
1.1 A problem about randomness and finite computations 3
1.2 A problem about randomness and possibly infinite computa-

tions . 4
1.3 Main theorems . 5
1.4 Applications of the main theorems on ∅′-randomness 7
1.5 Higher order randomness and possibly infinite computations . 8

2 From 2ω to 2≤ω topological spaces 8
2.1 Prefix-free sets . 8
2.2 Arithmetical and Borel hierarchies on 2ω 9
2.3 Topology and Arithmetical Hierarchy for the 2≤ω space . . . 9

3 Computably enumerable random reals 11
3.1 Computably enumerable reals 11
3.2 Random reals . 12
3.3 Combining random reals . 12

4 Different maps associated to the same Turing machine 13
4.1 Monotone Turing machines 13
4.2 Maps representing machine behavior 14
4.3 Maps with prefix-free domain 15
4.4 Universal machines and simulation by prefix adjunction . . . 17

5 Semicomputable Wadge semireductions 18
5.1 Semicomputability and lower semicontinuity 18

1

5.2 Wadge semireducibility . 19
5.3 Wadge hardness . 19
5.4 Getting semicomputable Wadge hardness: proof of Thm.1.16 20

6 Proofs of randomness theorems and their corollaries 22
6.1 Proof pattern of Thm.1.1, 1.9, 1.10, 1.11 22
6.2 Proof of Chaitin’s Thm.1.1 23
6.3 Proof of Thm.1.9 (plain randomness) 23
6.4 Proof of 1st main theorem: Thm.1.10 (randomness in ∅′) . . . 23

6.4.1 Harmless overshoot reducibility 23
6.4.2 Simulation in the limit and harmless overshoot 24
6.4.3 Proof of Thm.1.10 . 24
6.4.4 Proof of Thm.1.10 randomness in ∅′ 26

6.5 Proof of 2d main theorem: Thm.1.11 (randomness in ∅′) . . . 26

7 Proof of corollaries 27
7.1 Finite unions of prefix-free sets: the bounded chain condition 27
7.2 Syntactical complexity of U−1

./ (O) and U−1∞ (O) 28
7.3 Proof of Corollaries 1.17, 1.19, 1.20 and Prop.1.12 30

8 Acknowledgements 30

Abstract

Using possibly infinite computations on universal monotone Turing
machines, we prove Martin-Löf randomness in ∅′ of the probability that
the output be in some set O ⊆ 2≤ω under complexity assumptions
about O.

1 Randomness in the spirit of Rice’s theorem for
computability

Let 2∗ be the set of all finite strings in the binary alphabet 2 = {0, 1}.
Let 2ω be the set of all infinite binary sequences. For X ⊆ 2ω the Lebesgue
set-theoretic measure of X is denoted by µ(X). For a particular string
s ∈ 2∗, µ(s2ω) = 2−|s|. If X ⊆ 2∗ is a prefix-free set then µ(X2ω) =∑

s∈X 2−|s| ≤ 1.
As usual (cf.[25] p.451), ∅(n) denotes the n-th jump of ∅, which is a Σ0

n

complete set of integers.

2

1.1 A problem about randomness and finite computations

Randomness will mean Martin-Löf randomness (relative to possible oracles),
which is equivalent to the definition of randomness given by the theory
prefix-free program-size complexity. In this theory one considers Turing
machines with prefix-free domains and a particular notion of universality:
U is universal by “prefix adjunction” if for every Turing machine M with
prefix-free domain, there is a word e such that,

∀p ∈ 2∗ (M(p) halts ⇔ (U(ep) halts and M(p) = U(ep)))

All along the paper, U denotes a machine universal by prefix adjunction. As
pointed by Chaitin ([11], p.109), his randomness results do rely on the fact
that U is universal by prefix-adjunction.
Chaitin [9, 11] introduces, for every subset O of 2∗, the real

ΩU [O] = µ(U−1(O)2ω) =
∑

p∈U−1(O)

2−|p|

which is the probability that, on an infinite input, U halts in finite time
(reading only finitely many symbols) and produces an output in O.
Chaitin’s celebrated result [9], 1975, states that Ω = ΩU [2∗] is a random
real. Chaitin also proves randomness in the case O is Σ0

1 ([11], 1987, stated
without proof in last assertion of Note p.141). A proof is given in §6.2 below.

Theorem 1.1 (Chaitin, 1987). If O is a non empty recursively enumer-
able subset of 2∗ then ΩU [O] is a random real.

A somewhat surprising corollary of the randomness of Ω is the following.

Corollary 1.2. There exists a recursive prefix-free set X ⊂ 2∗ such that
µ(X2ω) is a random real.

Proof. Observe that Ω = µ(domain(U)2ω) where domain(U) is recursively
enumerable. Conclude using Prop.2.2.

In the spirit of Rice’s theorem for computability, a naive conjecture would
state that Ω[O] is random for every non empty subset O of 2∗. However,
this has been recently disproved by Joe Miller [22] for some ∆0

2 sets O.

Theorem 1.3 (Miller, 2004). There exists a non empty ∆0
2 set O ⊂ 2∗

such that ΩU [O] is not random. Moreover, such an ΩU [O] can even be a
rational number.

3

The case where O is Π0
1 is still open. This leaves out the following general

problem.

Problem 1.4 (Finite computations). Find conditions on O ⊆ 2∗ in
order that ΩU [O] be random (resp. random in ∅(n)).

1.2 A problem about randomness and possibly infinite com-
putations

Investigations on prefix program-size complexity with possibly infinite com-
putations with a monotone Turing machine U universal by prefix adjunction
(cf. Def.4.1) have been initiated by Chaitin [10] and Solovay [32] and con-
tinued in [2, 1]. Since the output may be a finite string or a recursive infinite
sequence, the output space is 2≤ω = 2∗∪2ω. As for the input space, we can
consider either self-delimited finite inputs or infinite inputs (cf. Def.4.7).
This leads to maps

U./ : 2∗ → 2≤ω , U∞ : 2ω → 2≤ω

Of course, the range of U./ is included in 2∗ ∪Rec(2ω) where Rec(2ω) is the
set of recursive infinite sequences.
Using such machines, one can consider, for every O ⊆ 2≤ω, the sets

U−1
./ (O) = U−1

./ (O ∩ (2∗ ∪Rec(2ω))) , U−1
∞ (O)

The real µ(U−1∞ (O)) (resp. µ(U−1
./ (O)2ω) =

∑
p∈U−1

./ (O) 2−|p|) is the proba-
bility that, on an infinite input, the machine produces an output in O (resp.
and reads only a finite prefix of the input).
Randomness results using U./ have been obtained by Becher, Daicz, Chaitin
in [2], 2001, and Becher & Chaitin in [1], 2002.

Theorem 1.5 (Becher, Daicz & Chaitin, 2001). The probability that
the computation reads finitely many symbols of an infinite input and produces
a finite output, i.e. µ(U−1

./ (2∗)2ω), is random in ∅′.
Identifying the word 10n1 with the integer n, we associate to any infinite

word α the set θ(α) of n’s such that 10n1 is a factor of α. Let COF be the
set of infinite words such that θ(α) is cofinite.

Theorem 1.6 (Becher & Chaitin, 2002). The probability that the com-
putation reads finitely many symbols of an infinite input and produces (via
θ) a cofinite set of integers, i.e. µ(U−1

./ (COF)2ω), is random in ∅′′.

4

As pointed to us by the referee, a simple application of a classical result,
due to Sacks, gives a non randomness result for some µ(U−1∞ (O))’s.

Proposition 1.7. Let O be a countable family of non recursive elements of
2ω. Then µ(U−1∞ (O)) = 0 (hence is not random).

Proof. Observe that β = U∞(α) is recursive in α. By Sacks’s result (cf. [26]
p.272 or [27] p.154), µ{α : β is recursive in α} = 0 if β is non recursive.

Let’s state the analog of Problem 1.4 for possibly infinite computations,
i.e. halting or non-halting computations.

Problem 1.8. 1. (Possibly infinite computations on self-delimited finite
inputs) Find conditions on O ⊆ 2∗∪Rec(2ω) in order that µ(U−1

./ (O)2ω) be
random (resp. random in ∅(n)).
2. (Possibly infinite computations on infinite inputs) Find conditions on
O ⊆ 2≤ω in order that µ(U−1∞ (O)) be random (resp. random in ∅(n)).

1.3 Main theorems

In this paper we present three theorems which give positive answers to Prob-
lem 1.8 for large classes of sets. They rely on diverse notions and tools that
are recalled and/or developed in §2–5. The proofs are postponed to §6 (cf.
6.3–6.5). They share the same pattern which is that of the proof of an ab-
stract theorem presented in §6.1. Applications of these theorems are stated
in §1.4 and proved in §7.
The first theorem (Thm.1.9) deals with the map U∞ and plain randomness
(as opposed to randomness in ∅′). The two last theorems, the main ones,
deal with the respective maps U./ and U∞ and randomness in ∅′.
Theorem 1.9. Let O = Y 2≤ω for some r.e. set Y ⊆ 2∗. If O 6= ∅ and
O 6= 2≤ω then the real µ(U−1∞ (O)) is random.

Theorem 1.10 (1st main theorem). Suppose O ⊆ 2≤ω contains a finite
string or an infinite recursive sequence. If U−1

./ (O) is Σ0
2 definable in 2∗

then the real µ(U−1
./ (O)2ω) is random in ∅′.

The key condition in the second main theorem is a hardness condition
relative to what we call semicomputable Wadge semireduction. This is an
appropriate variant of classical Wadge reduction based on the topological
properties of the maps associated to Turing machines performing possibly
infinite computations (cf. §5 and the forthcoming paper [4]). As studied

5

in [5], these maps – which we call semicomputable maps – are not continu-
ous but merely lower semicontinuous. Based on the effectivization of lower
semicontinuous maps, we introduce semicomputable Wadge semireductions
of sets in 2ω to sets in 2≤ω.

Theorem 1.11 (2nd main theorem). Let O ⊆ 2≤ω satisfy the following
conditions:

- O is semicomputably Wadge hard for Σ0
2 subsets of 2ω (cf. Def.5.5),

- U−1∞ (O) ⊆ 2ω is Σ0
2 definable in 2ω.

Then µ(U−1∞ (O)) and µ(U−1∞ (2≤ω \ O)) are random in ∅′.
The following simple remarks and proposition stress the role of some of

the hypothesis and delimitate the scope of the above theorems. Randomness
in Thm.1.9 cannot be improved to randomness in ∅′, cf. the following easy
result (proved in §7.3).

Proposition 1.12. Suppose O ⊆ 2≤ω is of the form O = X ∪ Y 2≤ω where
X,Y ⊆ 2∗ are Σ0

1 and X is the union of finitely many prefix-free sets. Then
µ(U−1∞ (O)) is not random in ∅′.
Remark 1.13 (About Thm.1.10). 1. If O ⊆ 2≤ω contains no finite string nor
any infinite recursive sequence then U−1

./ (O) = ∅.
2. We suppose that U−1

./ (O) is Σ0
2 in 2∗ to insure that µ(U−1

./ (O)2ω) is left
c.e. in ∅′, which is a key point in the proof of randomness.
3. Nothing can be stated about µ(U−1

./ (2≤ω\O)2ω), contrary to what is done
in Thm.1.11. The reason is that µ(U−1∞ (2≤ω)) = 1 but µ(U−1

./ (2≤ω)2ω) 6= 1
since it is, in fact, random in ∅′ as we shall see in Corollary 1.17. The
stumbling block is that, up to now, there is no known general technique to
deal with differences of random reals.

Remark 1.14 (About Thm.1.11). 1. We suppose that U−1∞ (O) is Σ0
2 definable

in 2ω to insure that µ(U−1∞ (O)) is left c.e. in ∅′, which is again a key point
in the proof of randomness.
2. The hypothesis O ∩ (2∗ ∪ Rec(2ω)) 6= ∅ in Thm.1.10 is much weaker
than that of Σ0

2-hardness in Thm.1.11 and is not sufficient for Thm.1.11, cf.
Prop.1.12 above.

Thm.1.16 below (proved in §5.4.) gives quite simple topological condi-
tions (cf. Def.1.15) on a given set O ⊆ 2≤ω which are sufficient to prove the
key semicomputable Wadge Σ0

2-hardness condition in Thm.1.11.

Definition 1.15. 1. O ⊆ 2≤ω satisfies condition (∗) if there exists a recur-
sive increasing chain of words (with respect to the prefix ordering) in O, the

6

limit of which is not in O.
2. O ⊆ 2≤ω satisfies condition (∗∗) if there exists u ∈ 2∗ such that O is
effectively dense for u2∗ in 2≤ω and effectively codense for u2∗ in 2ω, i.e.
if there exist total computable maps F : 2∗ → O and G : 2∗ → 2ω \ O such
that, for all v ∈ 2∗, uv is a prefix of F (v) and G(v).

Theorem 1.16. If O satisfies (∗) or O is Σ0
2 in 2≤ω and satisfies (∗∗) then

O is semicomputably Wadge hard for Σ0
2 subsets of 2ω.

1.4 Applications of the main theorems on ∅′-randomness

The main theorems dealing with ∅′-randomness have diverse applications,
the proofs of which are given in §7. First, an application of Thm.1.10.

Corollary 1.17. Let O = X ∪ Y 2≤ω for some Σ0
2 sets X, Y ⊆ 2∗ such that

X ∪ Y 6= ∅. Then µ(U−1
./ (O)2ω) is random in ∅′.

In particular, letting O = 2≤ω, we see that the probability µ(U−1
./ (2≤ω)2ω) =

µ(domain(U./)2ω) that an infinite word contains some self-delimited prefix
is random in ∅′.
Remark 1.18. The set of self-delimited inputs in the prefix-free domain of
a universal machine relative to halting computations is a recursively enu-
merable set (cf. the proof of Cor.1.2). However, the set U−1

./ (2≤ω) of self-
delimited inputs relative to infinite computations of a universal prefix-free
machine is merely Σ0

1 ∧Π0
1, cf. Prop.4.9. In fact, this set cannot be not r.e.

since then its associated measure would be left c.e., hence recursive in in ∅′,
which is not the case since it is random in ∅′.

Thm.1.11 and Thm.1.16 have the following corollary which answers a
question raised by An.A. Muchnik [24]).

Corollary 1.19. 1. Let O = X ∪ Y 2≤ω for some Σ0
2 sets X,Y ⊆ 2∗. Sup-

pose O satisfies one of the two conditions (∗) or (∗∗) described in Def.1.15.
Then µ(U−1∞ (O)) and µ(U−1∞ (2≤ω \ O)) are random in ∅′.
In particular, letting O = 2∗, the probability µ(U−1∞ (2ω)) (resp. µ(U−1∞ (2∗)))
that the output is infinite (resp. finite) is random in ∅′.

A direct corollary of Thm.1.11 dealing with Π0
2 sets, but not contained

in Cor.1.19, is as follows.

Corollary 1.20. Let O = X ∪Y 2≤ω∪Z where X,Y ⊆ 2∗ are Σ0
1 subsets of

2∗ and X is the union of finitely many prefix-free sets and Z is a Π0
2 subset

of 2ω. Suppose Y 2ω ∪ Z is semicomputably Wadge hard for Π0
2 subsets of

7

2ω. Then µ(U−1∞ (O)) and µ(U−1∞ (2≤ω \ O)) are random in ∅′.
In particular, letting Z = 2ω \ 2∗0ω and X = Y = ∅, the probability
µ(U−1∞ (2ω \2∗0ω)) that the output contains infinitely many 1’s is random in
∅′.

1.5 Higher order randomness and possibly infinite computa-
tions

The main theorems on randomness in ∅′ proved in this paper suggest that
adding a hardness condition on O relative to semicomputable Wadge semire-
duction leads to randomness in the successive jumps. Such extensions of
Thm.1.10 and Thm.1.11 obtained by replacing all Σ0

2 assumptions by their
Σ0

n analogs are considered in a forthcoming paper [3].

2 From 2ω to 2≤ω topological spaces

We consider on 2ω the usual compact Cantor topology generated by the
countable family of basic open sets s2ω where s varies over 2∗. If X ⊆ 2∗

then X2ω denotes the open subset of 2ω whose elements have an initial
segment in X. If α ∈ 2ω we denote by α¹n the prefix of α of length n. For
a ∈ 2∗, |a| denotes the length of a. The empty string is denoted by λ. If
a ∈ 2∗, a¹n is the prefix of a with length min(n, |a|). We assume the prefix
ordering ¹ in 2∗, and we write a ¹ b if a is a prefix of b, and a ≺ b if a is a
proper prefix of b.

2.1 Prefix-free sets

X ⊆ 2∗ is prefix-free if and only if no proper extension of an element of
X belongs to X. We denote by min(X) the prefix-free set consisting of all
minimal elements of X with respect to the prefix ordering ¹. A prefix-free
set X ⊂ 2∗ is maximal iff for any a 6∈ X, X ∪ {a} is not prefix-free. For
example, the sets {λ} and {0n1 : n ≥ 0} are both maximal prefix-free.
If X ⊂ 2∗ is prefix-free and every sequence α ∈ 2ω has an initial segment in
X then X is maximal and

∑
a∈X 2−|a| = 1. The converse is not true: 1∗0

is maximal prefix-free and
∑

a∈{1}∗0 2−|a| = 1 but 1∗0 contains no prefix of
the sequence 1ω. In fact, a simple application of König’s Lemma proves that
finiteness is required.

Proposition 2.1. Let X ⊆ 2∗. Then X2ω = 2ω, if and only if X contains
a finite maximal prefix-free set. In particular, if X is prefix-free then X2ω =
2ω if and only if X is finite and maximal prefix-free.

8

Proof. The ⇐ direction is easy. For the ⇒ direction, suppose X ⊆ 2∗

contains no finite maximal prefix-free and define inductively α ∈ 2ω such
that for all n ∈ N the set X(n) = {p ∈ 2∗ : (α ¹n)p ∈ X} contains no finite
maximal prefix-free set. Equality X2ω = 2ω insures α ∈ X2ω, hence there
is an n such that α¹n ∈ X. Whence, λ ∈ X(n) and the singleton set {λ} is
a finite maximal prefix-free subset of X(n). A contradiction.

Proposition 2.2. If X ⊆ 2∗ is r.e. then there exists a recursive prefix-free
set Y ⊂ 2∗ such that X2ω = Y 2ω. Moreover, one can recursively go from
an r.e. code for X to r.e. codes for Y and 2∗ \ Y .

Note. In general, min(X) is not r.e., hence cannot be the wanted Y .

Proof. Let f be a partial recursive function with domain X. Let Xt be the
set of strings with length ≤ t on which f is defined and converges in at most
t computation steps. Set Y =

⋃
t∈N Yt where

Yt = {u ∈ 2∗ : |u| = t+max
v∈Xt

|v| ∧ ∃v ∈ Xt v ¹ u ∧ ∀i < t ∀w ∈ Xi ¬(w ¹ u)}

An easy induction shows that Xt2ω = (
⋃

i≤t Yi)2ω for all t, whence X2ω =
Y 2ω. Also, the Yt’s are finite and prefix-free and their elements are pairwise
incomparable, so that Y is also prefix-free.
Moreover, Y is recursive since a string of length k is in Y if and only if it is
in Yt for some t ≤ k.
Finally, the passage from X to Y and 2∗ \ Y is clearly effective.

2.2 Arithmetical and Borel hierarchies on 2ω

We shall use the classical representation of effective open subsets of the
Cantor space.

Proposition 2.3. The three following conditions are equivalent.
- X is a Σ0

1 subset of the Cantor space 2ω,
- X = X2ω for some recursively enumerable X ⊆ 2∗,
- X = Y 2ω for some prefix-free recursive Y ⊆ 2∗.

Moreover, one can recursively go from X to Y in the above equivalences.

2.3 Topology and Arithmetical Hierarchy for the 2≤ω space

We extend to 2≤ω the prefix partial order on 2∗. For ξ, η ∈ 2≤ω, ξ ¹ η if
and only if ξ, η ∈ 2∗ and ξ ¹ η or ξ ∈ 2∗, η ∈ 2ω and η ¹ |ξ| = ξ.

9

We consider on 2≤ω the compact zero dimensional metrizable topology gen-
erated by the basic open sets {s} and s2≤ω = {ξ ∈ 2≤ω : s ¹ ξ}, where s
varies over 2∗ (Boasson & Nivat, [6], Tom Head [16, 17], Becher& Grigorieff
[5]). The induced topology on the subspace 2∗ is the discrete topology and
that on the subspace 2ω is the compact Cantor topology. As a subset of
2≤ω, 2∗ is open and dense, hence not closed. So that 2ω is closed and not
open.
As for the Cantor space, the Arithmetical Hierarchy can be extended to
subsets of the topological space 2≤ω by effectivization of the finite levels of
the Borel hierarchy. Let’s mention the representation of open and Fσ (resp.
Σ0

1 and Σ0
2) subsets of 2≤ω which will be used in §5.3, 7.2.

Proposition 2.4. Let X ⊂ 2≤ω.
1. The three following conditions are equivalent.
i. X is open (resp. Σ0

1) in 2≤ω,
ii. X = X ∪ Y 2≤ω for some X,Y ⊆ 2∗ (resp. r.e. X, Y),
iii. X = Z ∪ T2≤ω for some Z, T ⊆ 2∗ (resp. r.e. Z and recursive T), such
that T is prefix-free.
Moreover, one can recursively go from X,Y to Z, T in the above equiva-
lences.
2. X is clopen (i.e. closed and open) in 2≤ω if and only if it is of the form
X = X ∪ Y 2≤ω where X, Y ⊆ 2∗ are finite.

Proposition 2.5. If X ⊆ N×2∗ and i ∈ N then Xi = {u ∈ 2∗ : (i, u) ∈ X}.
For X ⊆ 2≤ω, the three following conditions are equivalent.
i. X is Σ0

2 in 2≤ω,
ii. X =

⋃
i∈N 2≤ω \ (Xi ∪ Yi2≤ω) where X,Y ⊆ N× 2∗ are r.e.

iii. X =
⋃

i∈N 2≤ω \ (Zi ∪ Ti2≤ω) where Z, T ⊆ N× 2∗, Z is r.e. and T is
recursive prefix-free.
Moreover, one can recursively go from X,Y to Z, T in the above equiva-
lences.

The relation between the arithmetical hierarchies relative to 2∗, 2ω and
2≤ω is as follows.

Proposition 2.6 ([5]). 1. Let n ≥ 2 and X ⊆ 2≤ω. Then

X is Σ0
n(2≤ω) ⇔ X ∩ 2∗ is Σ0

n(2∗) ∧ X ∩ 2ω is Σ0
n(2ω)

X is Π0
n(2≤ω) ⇔ X ∩ 2∗ is Π0

n(2∗) ∧ X ∩ 2ω is Π0
n(2ω)

2. For n = 1 we only have

X ⊆ 2∗ ⇒ (X is Σ0
1(2

∗) ⇔ X is Σ0
1(2

≤ω))
X ⊆ 2ω ⇒ (X is Π0

1(2
ω) ⇔ X is Π0

1(2
≤ω))

10

Remark 2.7. For counterexamples to Point 1 with n = 1, consider X = 2∗

and X = 2ω.

The following straightforward corollary of Prop.2.6 is used in application
of the randomness theorems of this paper.

Proposition 2.8. Let n ≥ 2 and X, Y ⊆ 2∗ be Σ0
n (resp. Π0

n). Then
X ∪ Y 2≤ω is an open Σ0

n (resp. Π0
n) subset of 2≤ω.

Remark 2.9. As already noticed, the above proposition fails for Π0
1 : 2∗ is

Π0
1 in 2∗ but it is not closed in 2≤ω, hence not Π0

1 in 2≤ω.

3 Computably enumerable random reals

3.1 Computably enumerable reals

Infinite binary sequences can be identified with real numbers in [0, 1], when
the sequence is taken as the binary expansion of a real number. Hence, every
real in [0, 1] has a corresponding sequence in 2ω. This sequence is unique
except for dyadic rational numbers of the form k2−i, for natural numbers
i, k, for which there are two of them. Since they form a set of measure 0,
this fact does not affect the considerations over probabilities that we make
in this work.
A real x is computable if its fractional part x − bxc has recursive binary
expansion.

Definition 3.1 (Soare, 1965 [30]). A real is left (resp. right) computably
enumerable (in short c.e.) if and only if its left (resp. right) Dedekind cut
is r.e. The definition extends in an obvious way to sequences of reals.

Much information about c.e. reals can be found in Downey’s lectures
[12] or Downey & Hirschfeldt’s book [13]. We shall use the following result,
due to Calude & Hertlind & Khoussainov & Wang, 1998 [8], and Downey &
Laforte [15], 2002.

Proposition 3.2 ([8],[15]). The following conditions on a real a ∈ [0, 1]
are equivalent.

i. a is left c.e.
ii. There exists an r.e. prefix-free set X such that a = µ(X2ω).
iii. There exists a recursive prefix-free set X such that a = µ(X2ω).

Moreover, the passage between these conditions is effective.

The following result is one of the tools we shall use to prove all theorems
about randomness.

11

Proposition 3.3. 1. If (ai)i∈N is recursive in ∅(n) then supi∈N ai and
infi∈N ai are respectively left and right c.e. in ∅(n), hence recursive in ∅(n+1).
2i. If X ⊆ 2ω is Σ0

n (resp. Π0
n, resp. ∆0

n) then µ(X) is left ∅(n−1)-c.e. (resp.
right ∅(n−1)-c.e., resp. ∅(n−1)-computable).
2ii. If i 7→ Xi is a Σ0

n (resp. Π0
n) sequence of subsets of 2ω then supi∈N µ(Xi)

(resp. infi∈N µ(Xi)) is left (resp. right) c.e. in ∅(n−1).

Proof. 1. Straightforward.
2i-ii. Initial case n = 1 : Direct application of Prop.2.3 and Prop.3.2.
Induction step. Suppose that the property is true for n and let X be Σ0

n+1.
Then X =

⋃
i∈NXi for some Π0

n increasing sequence (Xi)i. The induction
hypothesis insures that the sequence (µ(Xi))i is right c.e. in ∅(n−1) hence
recursive in ∅(n). Thus, µ(X) = supi µ(Xi) is left c.e. in ∅(n). Idem with
sequences of Π0

n+1 sets.

3.2 Random reals

We assume the notion of randomness (and randomness in an oracle) for ele-
ments of 2ω as introduced by Martin-Löf, [21] 1966, and Schnorr’s character-
ization using the prefix-free program-size complexity function H introduced
by Chaitin, [9] 1975. Cf. textbooks [20, 13, 11, 7].
Randomness for real numbers x is defined via the corresponding binary se-
quences of their fractional parts (i.e. x − bxc). The definition is given for
the alphabet {0, 1}, but it can be shown to be invariant under any alphabet.
That is, the property of being random is inherent to the number and it is
independent of the system in which it is represented.
The existence of random reals can be established by a measure-theoretic ar-
gument. As stated in §1.1, explicit random reals have been found by Chaitin,
cf. Thm.1.1.

3.3 Combining random reals

Recall Solovay’s reducibility and its classical relation to prefix-free program-
size complexity function H and randomness (cf. [13, 12, 14]).

Definition 3.4 (Solovay, [31] 1975). Let a, b ∈ [0, 1] be c.e. reals. Let’s
denote by lc(x) = {q ∈ Q : q < x} the Dedekind left cut of x. We say that
a is Solovay reducible to b if there exists some constant c and some partial
computable function f : lc(b) → lc(a) with domain lc(b) such that, for all
q ∈ lc(b),

c(b− q) > a− f(q)

12

Theorem 3.5 (Solovay, [31] 1975). Let a, b ∈ [0, 1] be c.e. reals associated
to α, β ∈ 2ω. If a is Solovay reducible to b then there exists some constant
d such that, for all n, H(α¹n) ≤ H(β ¹n) + d. In particular, if a is random
then so is b.

As an easy corollary, we get the following result on which we shall rely
for the proof of the main theorems (cf. §6).

Proposition 3.6. If a, b are both left (resp. right) c.e. and a is random
then a + b is random.

Proof. We prove that a is Solovay reducible to a+ b. Dividing a, b by some
power of 2, we reduce to the case a + b < 1. Clearly, a + b is left c.e.
Let q < a + b. Since a, b are c.e., we can recursively enumerate the left
Dedekind cuts of a, b and find q0, q1 in these cuts such that q0 + q1 ≥ q.
Then a + b > q0 + q1 ≥ q, hence a + b − q > a + b − (q0 + q1) > a − q0.
Letting c = 1 and f(q) = q0, we see that a is Solovay reducible to a + b.
Considering 1− a, 1− b, the right c.e. case reduces to the left c.e. one.

Corollary 3.7. Let n ≥ 1. If X = X1 ∪ X2 ⊆ 2ω where X1,X2 are disjoint
and Σ0

n(2ω) (resp. Π0
n(2ω)) and µ(X1) is random in ∅(n−1) then µ(X) is

random in ∅(n−1).

Proof. Apply Prop.3.3 and Prop.3.6 relativized to oracle ∅(n−1).

4 Different maps associated to the same Turing
machine

4.1 Monotone Turing machines

In the case of halting computations different architectures of Turing ma-
chines are irrelevant in terms of computability. Turing machines, under
any architecture whatsoever, compute exactly all partial recursive functions.
However, architectural decisions on the moving abilities of the output head
and the possibility of overwriting the output do affect the class of functions
that become computable via possibly infinite computations.
In this paper we consider solely monotone Turing machines. This was in-
deed Turing’s original assumption [33], insuring that in the limit of time
the output of a non halting computation always converges, either to a finite
or an infinite sequence. This concept was also considered by Levin [19],
Schnorr [28, 29], see [20] p.276.

13

Definition 4.1. A Turing machine is monotone if its output tape is one-
way and write-only (hence no erasing nor overwriting is possible).
Thus, the sequence of symbols written on the output tape increases mono-
tonically with respect to the prefix ordering as the number of computation
steps grows.

Remark 4.2. A sequence β ∈ 2ω is the output of some monotone Turing
machine with input α ∈ 2ω if and only if β is recursive in α.

All the material in this paper goes through mutatis mutandis when or-
acles are added to monotone Turing machines.

4.2 Maps representing machine behavior

A possibly infinite computation on a Turing machine is either a halting or
a non halting computation. The output may be finite or infinite, and the
input actually read by the machine may also be finite or infinite. This leads
to consider 2∗ or 2ω as the set of inputs, and 2≤ω as the set of outputs.
Hence to represent the machine behavior as maps 2∗ → 2≤ω or 2ω → 2≤ω.
Whereas there is a unique notion of computability for maps with values in
2ω, when values in 2≤ω are allowed there are two notions: computability
and semicomputability [5].

Definition 4.3. Let S be among the sets 2∗, 2ω and 2≤ω and let F : S →
2≤ω be a total map.
1. F is semicomputable if it is the input/output behaviour of some monotone
Turing machine with inputs in S and possibly infinite computations.
2. F is computable if it is the output/output behaviour of some Turing
machine with inputs in S and possibly infinite computations which halts in
case the output is finite.

Remark 4.4. 1. It is clear that total computable maps 2∗ → 2∗ are ex-
actly the recursive ones. However, as concerns semicomputability, infinite
computations really add. For instance, consider F : 2∗ → {λ, 0} such that
F (0n) = λ (the empty word) and F (0n1s) is 0 if ϕn(n) ↓, else undefined,
where ϕ : N2 → N is a universal partial recursive function
2. The “semi” character comes from the fact that for α ∈ 2ω, if F (α) is
a finite string with length < n then the computation can nevertheless go
on forever: though the output is completely written at some finite time, we
never know that there is no more output to expect. Thus, to decide whether
F (α) has length greater than n, we have to compute F (α) up to the moment
(if there is any) the output has length > n. This is not a decision algorithm

14

but merely a semi-decision one. Moreover, the decision of whether F (α) is
finite is a Σ0

2 problem.

Semicomputable maps have a very simple characterization as limits of
monotone maps 2∗ → 2∗ (cf. [5] for more developments).

Proposition 4.5. A map F : 2ω → 2≤ω is semicomputable if and only if
there exists a total recursive monotone increasing map f : 2∗ → 2∗ such that
F (α) = limt→∞ f(α¹ t).

Proof. ⇐ is straightforward. As for ⇒, let M semicompute F . Observe
that on input uα, the current output of M at step |u| does not depend on
α because the input head has read ≤ |u| symbols. This allows us to define
a total recursive f as follows: f(u) is the current output of M on input u
at step |u|. Clearly, f is monotone increasing and F = lim f .

4.3 Maps with prefix-free domain

For purposes in the theory of program-size complexity Chaitin [9] introduced
the notion of self-delimiting inputs for halting computations on Turing ma-
chines. Instead of the usual assumption on Turing machines that the input
tape contains a finite string followed by a blank symbol marking the end of
the input, one now assumes no blanks, nor any other external way of input
delimitation. An input must contain in itself the information to know where
it ends, so the machine can realize when to finish reading the input tape;
this is what self-delimiting means. Formally, an input p is self-delimiting for
M if during its computation M reads p entirely and makes no attempt to
move beyond the last symbol of p.
In order to properly deal with the case of an empty input, we suppose that
the input tape contains a first dummy cell which receives no symbol and
which is scanned by the head when the computation starts.
The following result characterizes these computations.

Theorem 4.6 (Chaitin, [9] Thm 2.1). A partial recursive function has
prefix-free domain if and only if it is the input/output behavior of some
Turing machine on halting computations on its self-delimiting inputs.

Chaitin [10] also developed the notion of self-delimiting inputs for pos-
sibly infinite computations. As the sole condition for these computations,
he requires the input p to be finite and self-delimiting: p has to be entirely
read and the head of the input tape should make no attempt to read be-
yond the last symbol of p. These computations determine maps 2∗ → 2≤ω

15

with prefix-free domains which we shall call self-delimiting semicomputable
maps.
We will refer to the following different maps associated to the same Turing
machine M .

Definition 4.7. Let M be a monotone Turing machine.
1. (Chaitin [9]) M : 2∗ → 2∗ is the partial recursive map associated to
halting computations of M on the set of its self-delimited inputs. The domain
of M is a prefix-free set.
2. M./ : 2∗ → 2≤ω is the self-delimiting semicomputable map associated to
possibly infinite computations of M on the set of its self-delimited inputs.
The domain of M./ is a prefix-free set.
When defined, M./(p) ∈ 2≤ω is the limit in 2≤ω of the monotone increasing
sequence of current outputs at successive steps.
3. M∞ : 2ω → 2≤ω is the total semicomputable map (cf. Def.4.3) for
possibly infinite computations of M provided with inputs in 2ω. If α has no
prefix in domain(M./) then the computation reads α entirely, else it reads
only this prefix α¹ i and M∞ is constant on (α¹ i)2ω.

The domains of M and M./ can be described in terms of computations on
infinite words. This is the contents of the following straightforward propo-
sition.

Proposition 4.8. Let M be a monotone Turing machine. Then

domain(M) = {p : for some infinite input α Â p, M∞ halts
and reads exactly the finite prefix p of its input}

= {p : for all infinite input α Â p, M∞ halts
and reads exactly the finite prefix p of its input}

domain(M./) = {p : for some infinite input α Â p,
M∞ reads exactly the finite prefix p of its input}

= {p : for all infinite input α Â p,
M∞ reads exactly the finite prefix p of its input}

The next proposition gives the syntactical complexity of the domains of
M and M./.

Proposition 4.9. Let M be a monotone Turing machine. Then
- domain(M) is Σ0

1(2
∗).

- domain(M./) is (Σ0
1 ∧Π0

1)(2
∗) and this bound can not be improved.

16

Proof. Observe that the definition of domain(M./) involves the conjunction
of an existential condition with a universal one, namely:

- at some computation step the input has been entirely read,
- the head of the input tape never moves beyond the end of the input.

To see that this complexity bound is sharp consider the Busy Beaver function
bb : N→ N where bb(n) is the maximum number of 0’s that can be produced
by some Turing machine with no input having n states and which halts. It
is easy to devise a monotone Turing machine M such that domain(M./) =
{0n1p : |p| = bb(n)}. To conclude, recall that bb is not recursive but recursive
in ∅′.

4.4 Universal machines and simulation by prefix adjunction

Assume an effective enumeration of all tables of instructions of monotone
machines. This determines an effective enumeration k 7→ Mk.

Definition 4.10. 1. The universal monotone Turing machine U is defined
as follows:
- U reads the input looking for a prefix of the form 0k1 for some k ∈ N,
- if it finds some, U simulates Mk on the remaining part of the input.
2. We denote by UA the machine with oracle A which is similarly obtained.

The above universal machine has very fine simulation abilities.

Proposition 4.11 (Simulation by prefix adjunction). 1. By prefix
adjunction to the input, U simulates any Turing machine for finite compu-
tations as well as for infinite ones: for all k ∈ N, p, q ∈ 2∗, α ∈ 2ω, ξ ∈ 2≤ω,
i. p ∈ domain(Mk) (i.e. Mk halts on p and p is self-delimited for Mk) and
Mk(p) = q if and only if 0k1p ∈ domain(U) and U(0k1p) = q.
ii. p ∈ domain((Mk)./) (i.e. p is self-delimited for Mk) and (Mk)./(p) = ξ
if and only if 0k1p ∈ domain(U./) and U./(0k1p) = ξ.
iii. (Mk)∞(α) = ξ if and only if U./(0k1α) = ξ.
2. Let f be a total recursive function. By prefix adjunction to the input, U
simulates Mf(k): there exists η ∈ 2∗ such that for all k, p, q, α, ξ, the above
equivalences and equalities hold with η0k1 in place of 0k1.

Proof. 1. Trivial from the definition of U .
2. Set η = 0`1 where M` is the Turing machine which behaves as follows:
- it reads the input looking for a prefix of the form 0k1 for some k ∈ N,
- if such a prefix exists then it computes f(k),
- it then simulates machine Mf(k) on the part of the input not yet read.

17

5 Semicomputable Wadge semireductions

5.1 Semicomputability and lower semicontinuity

As is well known, computable maps 2ω → 2ω are continuous for the usual
Cantor topology. Indeed, for maps 2ω → 2ω, computability is the effec-
tivization of continuity. However, as we developed in another paper [5], for
maps into 2≤ω the topological counterparts of computability and semicom-
putability are respectively continuity and lower semicontinuity. This last
notion is the analog of the classical notion of lower semicontinuity for real
valued functions, but for functions with values in 2≤ω with respect to the
prefix ordering on this space.

Definition 5.1. Let S be 2ω or 2≤ω. A map F : S → 2≤ω is lower semi-
continuous at ξ ∈ S if, for all n ∈ N, there exists a neighborhood V of ξ such
that F (η)¹n º F (ξ)¹n for all η ∈ V.

The following easy proposition (cf. [5]) shows that lower semicontinuity
differs from continuity only at points with finite image.

Proposition 5.2. Let F : S → 2≤ω and ξ ∈ S.
1. If F (ξ) ∈ 2ω then F is lower semicontinuous at ξ if and only if F is
continuous at ξ.
2. If F (ξ) ∈ 2∗ then F is continuous (resp. lower semicontinuous) at ξ if
and only if there exists a neighborhood V of ξ such that F (η) = F (ξ) (resp.
F (η) º F (ξ)) for all η ∈ V.

Proof. 1. If F (ξ) ∈ 2ω (or merely |F (ξ)| ≥ n) then the condition F (η) ¹
n º F (ξ) ¹ n exactly means F (η) ¹ n = F (ξ) ¹ n, which is the condition for
continuity.
2. Recall that finite strings are isolated points in the 2≤ω space. ⇐ is trivial.
As for ⇒, let n = |F (ξ)|.

The following proposition is easy.

Proposition 5.3. Every semicomputable map F : S → 2≤ω (cf. Def.4.3)
is lower semicontinuous.

Remark 5.4. Semicomputable maps 2ω → 2≤ω are not continuous in general.
For instance, let erase(α) be obtained by erasing all zeros in α. Then erase :
2ω → 2≤ω is semicomputable and discontinuous at all points α ∈ 2∗0ω.

18

5.2 Wadge semireducibility

The classical Wadge hierarchy (cf. textbooks: Moschovakis [23], Kechris
[18]) provides a refinement of the Borel hierarchy based on the simple topo-
logical notion of inverse image by a continuous function. The notion of
Wadge reduction has best properties with zero-dimensional Polish spaces,
in particular with the compact spaces 2ω and 2≤ω. Effectivizing continuous
maps by the computable ones (cf. Def.4.3), one can also consider computable
Wadge reductions.
Associated to lower semicontinuous maps into 2≤ω we introduce the notion
of Wadge semireduction and its effectivization by the semicomputable maps,
which is the kind of effectivization yielded by possibly infinite computations
on monotone Turing machines, cf. the forthcoming paper [4].

Definition 5.5. Let S, T be 2ω or 2≤ω, X ⊆ S, Y ⊆ T .
1. (Wadge, 1972 [34, 35]) X is Wadge reducible to Y (denoted X ¹W Y) if
there exists a continuous map F : S → T such that X = F−1(Y).
2. In case T = 2≤ω, Wadge semireducibility ¹sW is defined similarly with
lower semicontinuous maps.
3. Computable Wadge reducibility ¹eff

W and semicomputable Wadge semire-
ducibility ¹s−eff

sW are similarly defined with computable and semicomputable
maps.
4. Let C be a class of subsets of S. Relative to any one of the above re-
ducibilities, Y is C-hard if every set X ∈ C is reducible to Y.

The following proposition is straightforward.

Proposition 5.6. Relative to any one of the above reducibilities, if X is
reducible to Y then the complement of X is reducible to that of Y.
If X is hard for a class C then the complement of X is hard for the class of
complements of sets in C.

5.3 Wadge hardness

Let’s denote by Σ0
n(2ω) and Π0

n(2ω) the finite levels of the Borel hierarchy
on 2ω. As a well known consequence of the hierarchy theorem, if a subset
of 2ω is Wadge hard for the class Σ0

n(2ω) (resp. Π0
n(2ω)) then it cannot be

in Π0
n(2ω) (resp. Σ0

n(2ω)). One of the key results in Wadge’s theory is that
the converse is also true.

Theorem 5.7 (Wadge [34, 35], cf.[23] or [18]). Let n ≥ 1 and X ⊆ 2ω.
X is ¹W Σ0

n(2ω)-hard ⇔ X is ¹W Σ0
n(2ω)-hard ⇔ X /∈ Π0

n(2ω)
X is ¹W Π0

n(2ω)-hard ⇔ X is ¹W Π0
n(2ω)-hard ⇔ X /∈ Σ0

n(2ω)

19

A naive expectation is that the same result is true for hardness with re-
spect to computable Wadge reducibility and the effective Σ0

n or Π0
n classes of

2ω subsets. But this is false. Only the ⇒ implication of the last equivalence
remains true (which is the straightforward direction).
The quite classical result of Point 1 of the next proposition leads to a some-
what surprising result (Point 3) concerning hardness relative to semicom-
putable semireductions from 2ω to 2≤ω (cf.[4] for more developments).

Proposition 5.8. 1. 2∗0ω is a Σ0
2 subset of 2ω which is ¹eff

W -hard for
Σ0

2(2
ω), hence ¹W -hard for Σ0

2(2
ω).

2. If O ⊆ 2≤ω and 2∗0ω ¹s−eff
sW O then O is ¹s−eff

sW -hard for Σ0
2 subsets of

2ω, hence ¹sW -hard for Σ0
2(2

ω).
3. 2∗ is a Σ0

1 subset of 2≤ω which is ¹s−eff
sW -hard for Σ0

2 subsets of 2ω, hence
¹sW -hard for Σ0

2(2
ω).

4. 2ω is a Π0
1 subset of 2≤ω which is ¹s−eff

sW -hard for Π0
2 subsets of 2ω, hence

¹sW -hard for Π0
2(2

ω).

Proof. 1. Let X ⊆ 2ω be Σ0
2. Using the classical representation of Π0

2 sub-
sets of 2ω via the quantifier ∃∞ (cf. Rogers [26] Thm. XVIII p.328), there
exists some recursive relation R ⊆ 2∗ such that

α ∈ X ⇔ {i : R(α¹ i)} is finite
Set G(α)(n) = 1 if R(α ¹n) holds. Then G : 2ω → 2ω is a computable map
such that G−1(2∗0ω) = X .
2. Suppose 2∗0ω = G−1(O) where G : 2ω → 2≤ω is semicomputable. If
F : 2ω → 2ω and X = F−1(2∗0ω) then X = (G ◦ F)−1(O). Finally, observe
that if F is computable then G ◦ F : 2ω → 2≤ω is semicomputable.
3. Observe that 2∗0ω = erase−1(2∗) where erase : 2ω → 2≤ω is the semi-
computable function which erases all 0’s.
4. Straightforward from Point 3.

5.4 Getting semicomputable Wadge hardness: proof of Thm.1.16

We now prove that conditions (∗) and (∗∗) on a subset of 2≤ω introduced
in Def.1.15 imply ¹s−eff

sW -hardness for the class of Σ0
2 subsets of 2ω.

Due to Prop.5.8, it is sufficient to prove that 2∗0ω ¹s−eff
sW O.

Case of condition (∗). Assume O ⊆ 2≤ω satisfies (∗). Let (si)i∈N be a
recursive increasing chain of words in O with respect to the prefix ordering
with limit not in O. Let g : 2∗ → 2∗ be such that g(u) = si where i is the
number of 1’s in u. Clearly, g is total recursive and monotone increasing
with respect to the prefix ordering. Set G(α) = limi→∞ g(α ¹ i). Then

20

G : 2ω → 2≤ω is semicomputable and

α ∈ 2∗0ω ⇒ G(α) = si ∈ O where i is the number of 1’s in α

α /∈ 2∗0ω ⇒ G(α) = lim
i→∞

si /∈ O

Thus, 2∗0ω = G−1(O) and 2∗0ω ¹s−eff
sW O.

Case of condition (∗∗). Assume now O ⊆ 2≤ω is Σ0
2(2

≤ω) and satisfies
condition (∗∗) and let u ∈ 2∗ and F : 2∗ → O and G : 2∗ → 2ω \ O be
total computable maps such that, for all v ∈ 2∗, uv is a prefix of F (v) and
G(v). Since O is Σ0

2(2
≤ω), Prop.2.6 insures that 2ω \ O is Π0

2(2
ω). Use the

classical representation of Π0
2 subsets of 2ω via the quantifier ∃∞ (cf. Rogers

[26] Thm. XVIII p.328) to get a recursive relation R ⊆ 2∗ such that

α ∈ 2ω \ O ⇔ ∃∞n R(α¹n)

Observe that, for every v ∈ u2∗, since G(v) ∈ 2ω \ O, there are infinitely
many prefixes of G(v) in R. Let ϕ : 2∗ × N → 2∗ be such that ϕ(v) is
the least prefix of G(v) which is in R and has length ≥ |v|. Since G is
computable, ϕ is total recursive.
Recall that λ denotes the empty word and, for ξ ∈ 2≤ω, ξ ¹ i is defined as the
prefix of ξ with length min(i, length(ξ)). We define ` : 2∗ → 2∗ as follows:
for i ≥ 1, v ∈ 2∗,

`(λ) = λ `(v1) = ϕ(`(v))
`(0i) = F (λ)¹ i `(v10i) = F (`(v1))¹ i

Let L : 2ω → 2≤ω be the map induced by ` : L(α) = limi→∞ `(α ¹ i).
Clearly, L is semicomputable. If α = v0ω where v = λ or v ∈ 2∗1 then
L(α) = F (`(v)) ∈ O. If α contains infinitely many 1’s then L(α) has
infinitely many prefixes in R, hence is not in O. Thus, L−1(O) = 2∗0ω so
that 2∗0ω ¹s−eff

sW O.
This finishes the proof of Thm.1.16.

Remark 5.9. Conditions (∗) and (∗∗) are independent. In fact, any boolean
combination of these conditions is true for some set O as shown by the
following examples.
(∗) ∧ (∗∗). Let O = 2∗.
(∗)∧¬(∗∗). O = ((00)∗(11)∗)∗ fails the density condition. Another example
is O = 2≤ω \{α}, for a recursive α ∈ 2ω, which fails the codensity condition.
¬(∗) ∧ (∗∗). Let O = 2∗0ω, which fails (∗) because it contains no finite
strings.
¬(∗) ∧ ¬(∗∗). Let O ⊂ 2∗ be any finite set or u2≤ω, for some u ∈ 2∗.

21

6 Proofs of randomness theorems and their corol-
laries

As said in §1, we shall use a monotone machine universal by prefix ad-
junction such as that of Def.4.10 and the associated partial recursive map
U : 2∗ → 2∗, self-delimiting semicomputable map U./ : 2∗ → 2≤ω and total
semicomputable map U∞ : 2ω → 2≤ω (Def. 4.7). We shall also admit ∅(n)

as oracle and consider the map U∅(n)
: 2∗ → 2∗ which is partial recursive in

∅(n) and universal by prefix adjunction.

6.1 Proof pattern of Thm.1.1, 1.9, 1.10, 1.11

Proofs of these theorems all have the same pattern which we now describe
as the proof of a general abstract result.

Theorem 6.1. Let V : S → T be either U : 2∗ → 2∗ or U./ : 2∗ → 2≤ω or
U∞ : 2ω → 2≤ω and let O ⊆ T and n ∈ N. For X ⊆ S, we let C(X) = X in
case S = 2ω and C(X) = X2ω in case S = 2∗.
If V −1(O) is Σ0

n+1(S) and there exists a partial self-delimiting (in case S =
2∗) or total (in case S = 2ω) semicomputable map F : S → T such that
C(F−1(O)) = C(domain(U∅(n))) then µ(C(V −1(O))) is random in ∅(n).

Proof. Using the assumption of universality by prefix adjunction of V , there
exists σ ∈ 2∗ such that F (ξ) = V (σξ) for all ξ ∈ S (and domain(F) = {ξ ∈
S : σξ ∈ domain(V)} in case S = 2∗). In particular, V −1(O) ∩ σS =
σF−1(O). Hence, we get the partition of sets

V −1(O) = (V −1(O) ∩ σS) ∪ (V −1(O)) \ σS)
= (σF−1(O)) ∪ (V −1(O)) \ σS)

C(V −1(O)) = σC(F−1(O)) ∪ C((V −1(O)) \ σS)
C(V −1(O)) = σC(domain(U∅(n))) ∪ C((V −1(O)) \ σS)

and that of the associated measures

µ(C(V −1(O))) = 2−|σ|µ(C(domain(U∅(n)))) + µ(C(V −1(O) \ σS))

= 2−|σ|Ω∅
(n)

+ µ(C(V −1(O) \ σS))

The Σ0
n+1(S) character of V −1(O) insures that of V −1(O) \ σS. Which,

in turn, insures the Σ0
n+1(2

ω) character of C(V −1(O) \ σS), hence that its
measure is left c.e. in ∅(n). Since domain(U∅(n)

) is Σ0
n+1, the real 2−|σ|Ω∅(n)

22

is also left c.e. in ∅(n). Chaitin’s Thm.1.1 relativized to oracle ∅(n) insures
that µ(C(domain(U∅(n)

))) = Ω∅(n)
is random in ∅(n), hence also its product

by the dyadic rational 2−|σ|. Finally, Cor.3.7 insures that µ(C(V −1(O))) is
random in ∅(n).

6.2 Proof of Chaitin’s Thm.1.1

We apply Thm.6.1 with n = 0 and U : 2∗ → 2∗ as V : S → T . Since
O 6= ∅, we can consider some fixed a ∈ O. We let F : 2∗ → 2∗ be the partial
self-delimiting semicomputable map defined on domain(U) which, on this
domain, is constant with value a. Clearly, F−1(O) = domain(U). Also,
since O is Σ0

1(2
∗) so is V −1(O). Thus, the conditions of Thm.6.1 hold, so

that µ(C(V −1(O))) = Ω[O] is random.

6.3 Proof of Thm.1.9 (plain randomness)

We shall use Thm.7.4 which does not rely on results of this §. Let O = Y 2≤ω

where Y ⊆ 2∗ is Σ0
1 and O 6= 2≤ω, ∅, i.e. λ /∈ Y and Y 6= ∅. We apply

Thm.6.1 with n = 0 and U∞ : 2ω → 2≤ω as V : S → T . Let u be any word
in Y . Necessarily, u 6= λ. We let F : 2ω → 2≤ω be the total semicomputable
map such that F (α) = λ if U does not halt on any finite prefix of α and
F (α) = u otherwise. Clearly, F−1(O) = domain(U)2ω. Also, since Y is
Σ0

1(2
∗), Thm.7.4 (line 1a of Table 1) insures that V −1(O) = U−1∞ (Y 2≤ω)

is Σ0
1(2

ω). Thus, the conditions of Thm.6.1 hold, so that µ(V −1(O)) =
µ(U−1∞ (O)) is random.

6.4 Proof of 1st main theorem: Thm.1.10 (randomness in ∅′)
6.4.1 Harmless overshoot reducibility

We introduce a convenient tool related to “harmless overshoot” (cf. §6.4.2).

Definition 6.2. Let X,Y ⊆ 2∗ be prefix-free. We say that X is “harmless
overshoot” reducible to Y , written X ¹HOS Y , if the following conditions
hold:

i. Y ⊆ X2∗, i.e. any word y ∈ Y extends some word in x ∈ X,
ii. X2ω = Y 2ω.

Harmless overshoot reducibility can also be expressed as follows.

Proposition 6.3. X ¹HOS Y if and only if

Y =
⋃

x∈X

xSx

23

where, for each x ∈ X, Sx ⊂ 2∗ is finite maximal prefix-free.

Proof. ⇒. For each x ∈ X, let Sx be the set of u’s such that xu ∈ Y . Since
Y is prefix-free so are the Sx’s. From condition i of Def.6.2 we know that
every y ∈ Y has a prefix in x ∈ X, hence y ∈ xSx. Thus, Y =

⋃
x∈X xSx

and Y 2ω =
⋃

x∈X xSx2ω. Using condition ii, we get X2ω =
⋃

x∈X x(Sx2ω),
whence, for each x ∈ X, x2ω = xSx2ω, i.e. 2ω = Sx2ω. Finally, Prop.2.1
insures that Sx is finite maximal prefix-free.
⇐. Clearly, Y ⊆ X2∗ and Y 2ω =

⋃
x∈X x(Sx2ω). Now, Prop.2.1 yields

Sx2ω = 2ω, whence Y 2ω = X2ω.

6.4.2 Simulation in the limit and harmless overshoot

Chaitin, [10]) 1976, introduces the simulation in the limit technique that
tells how to perform a simulation of a computation relative to an oracle, via
an infinite computation in a machine that lacks the oracle. The technique
requires that the oracle be recursively enumerable. The simulated compu-
tation is run in increasing number of steps, using a fake oracle: at step t
a question to the oracle is answered “no” unless the question is found to
be true in at most t steps. As the number of steps t goes to infinity any
finite number of questions will eventually be answered correctly by the fake
oracle.
We apply this technique to simulate a computation on U∅′ as concerns the
input and work tapes, but not that of the output tape. Now, in spite of
the fact that, in the limit, the fake oracle realizes its mistakes and provides
the correct answers, the simulation may already have read beyond the in-
put. This happens because the domain of the function being simulated, that
is domain(U∅′), is not recursively enumerable, so the simulation may not
know where the input actually ends until it gets the correct oracle answers.
In the meantime, extra symbols from the input tape may have been read.
However, since we are just interested in discovering, in the limit, whether a
computation on U∅′ actually halts, the actual value of those extra bits turns
out to be irrelevant. Chaitin [10] called this feature harmless overshoot.

6.4.3 Proof of Thm.1.10

We now apply simulation in the limit and harmless overshoot to construct
the partial self-delimiting semicomputable map F : 2∗ → 2≤ω needed to use
Thm.6.1.

24

Lemma 6.4. Suppose O ⊆ 2≤ω contains some finite string or some infi-
nite recursive sequence. Then there exists a partial self-delimiting semicom-
putable map F : 2∗ → 2≤ω such that

i. domain(U∅′) ¹HOS domain(F)
ii. F is constant on its domain and has value in O.

Proof. Following Prop.4.8, we shall relate a partial self-delimiting semicom-
putable map M./ : 2∗ → 2≤ω (resp. M : 2∗ → 2∗) to the restriction of
M∞ to the set of α such that the computation of M∞ on input α reads only
finitely many symbols of α (resp. and halts).
1. Let ξ be some fixed finite string or infinite sequence in O. We define
F : 2∗ → 2≤ω as the M./ map associated to a Turing machine M with infi-
nite inputs and possibly infinite computations which performs the simulation
in the limit of U∅′ as described below:

quota := 1 (number of steps of U∅′ to be simulated)
If ξ is a finite string then outputs ξ.
do forever

1. If ξ is an infinite sequence then output the quota-th symbol of ξ.

2. Simulate U∅′ (on the given infinite input) for at most quota com-
putation steps. For each question to the oracle of whether U(q)
halts, simulate U(q) and take as an answer whether it halts in at
most quota steps.

3. If U∅′ did not halt, or if an oracle answer was found to be mistaken
(i.e., it changed from its previous value, from “no” to “yes”), or
more questions were asked, then move the input head.

4. Else do not move it.

5. quota := quota + 1

end do

Thus, for each value of quota, M does two kinds of simulation.
First, it simulates steps 0,1,2,. . . of the computation of U∅′ (on the given
infinite input), up to quota or some halting step of the simulation of U∅′ .
Second, M simulates steps 0,1,2,. . . of the computation of U for every input
for which a question to the oracle was raised, up to quota or some halting
step of U on this input.
2. Clearly, the output is always ξ, hence always in O. It remains to prove
the stated ¹HOS reducibility.
3. Suppose M reads only a finite part q of its input α ∈ 2ω. Then

25

there exists a finite prefix p of q such that the simulation of U∅′ on in-
put p halts and the fake oracle used for that simulation is never found
mistaken in the remaining infinite part of the computation (where the input
head does not move). Thus, p is indeed in domain(U∅′). Which proves
domain(M./) ⊆ domain(U∅′)2∗.
4. Suppose p ∈ domain(U∅′). Then U∅′ on input p halts in finitely many
steps, say N steps, at which it can perform only finitely many oracle ques-
tions. Let us call Q the set of programs that are consulted to the oracle.
Every q ∈ Q such that U(q) ↓, halts in some finite number of steps. Let T
be the maximum number of steps required by the halting programs of Q.
For values of quota less than T , the simulation of some oracle questions may
be wrong, but for every value of quota ≥ T , they will necessarily be correct.
Let α be any sequence in 2ω and consider the computation of M on input
pα. Whatever be α, the amount of bits read by the computation of M
on input pα will never exceed max(T,N) (harmless overshoot) and will, of
course, be at least |p|. Let Sp be the set of d ∈ 2∗ such that on some input
pα, M reads exactly the prefix pd of α. Since every α ∈ 2ω extends some
d ∈ sp, Prop.2.1 insures that Sp is finite maximal prefix-free. Together with
the inclusion proved in 3, this proves

domain(M./) =
⋃

p∈domain(U∅′)

pSp

Using Prop.6.3, we get domain(U∅′) ¹HOS domain(M./).

6.4.4 Proof of Thm.1.10 randomness in ∅′

Lemma 6.4 gives a partial self-delimited semicomputable map F : 2∗ →
2≤ω such that domain(U∅′)2ω = domain(F)2ω and domain(F) = F−1(O).
Prop.4.9 insures that domain(F), hence also F−1(O) is Σ0

2. Thus, letting
V : S → T be U./ : 2∗ → 2≤ω and n = 1, the conditions of Thm.6.1 hold,
yielding the conclusion of Thm.1.10.

6.5 Proof of 2d main theorem: Thm.1.11 (randomness in ∅′)
Let V : S → T be U∞ : 2ω → 2≤ω and n = 1. Since domain(U∅′) is
Σ0

2(2
∗), we see that domain(U∅′)2ω is Σ0

2(2
ω). Using the hypothesis that

O is semicomputable Wadge hard for Σ0
2 subsets of 2ω, there exists a total

semicomputable map F : 2ω → 2≤ω such that F−1(O) = domain(U∅′)2ω.
Thus, the conditions of Thm.6.1 hold, yielding the conclusion of Thm.1.11.

26

7 Proof of corollaries

In order to apply the main theorems, we have to bound the syntactical
complexity of U−1

./ (O) and U−1∞ (O).

7.1 Finite unions of prefix-free sets: the bounded chain con-
dition

The following notion leads to low syntactical complexity for some interesting
classes of subsets of 2≤ω.

Definition 7.1. A set X ⊆ 2∗ satisfies the k-bounded chain condition, in
short X is k-bdd-chain, if every monotone strictly increasing chain in X
(with respect to the prefix ordering) has at most k elements.
X satisfies the bounded chain condition, in short X is bdd-chain, if it satis-
fies the k-bounded chain condition for some k.

Proposition 7.2.
1. A set X ⊆ 2∗ satisfies the k-bounded chain condition if and only if it is
the union of at most k many prefix-free sets.
2. If X is recursive then these prefix-free sets can be taken recursive.
3. If X is r.e. then these prefix-free sets can be taken r.e. (in other words,
if an r.e. set is the union of k prefix-free sets then it is the union of k r.e.
prefix-free sets).

Proof. All ⇐ implications are trivial. Let’s prove the ⇒ ones.
1. Define inductively subsets Xi ⊆ X as follows: X0 = min(X), Xi+1 =
min({u ∈ X : ∃v ∈ Xi v ≺ u}). It is easy to check that if X is k-bdd-chain
and then X = X0 ∪ . . . Xk−1.
2. In case X is recursive, so are the Xi’s.
3. For the case X is r.e., the construction needs to be modified. Arguing by
induction, it suffices to partition any k-bdd-chain set X (with k ≥ 2), into
two r.e. sets Y and Z such that Y is prefix-free and Z is k − 1-bdd-chain.
Suppose X = range(θ) where θ : N→ N is total recursive. We construct Y
and Z by stages: Y =

⋃
t∈N Yt and Z =

⋃
t∈N Zt where

- Y0 ⊆ Y1 ⊆ Y2 ⊆ . . . and Z0 ⊆ Z1 ⊆ Z2 ⊆ . . .,
- Yt is finite prefix-free,
- Zt is finite k − 1-bdd-chain,
- Yt ∩ Zt = ∅.
- Y0 = {θ(0)} and Z0 = ∅
- Yt+1 ∪ Zt+1 = Yt ∪ Zt ∪ {θ(t + 1)}

27

The inductive construction puts θ(t + 1) in Yt+1 if Yt ∪ {θ(t + 1)} is still
prefix-free. Else, θ(t + 1) is put in Zt+1.
It is clear that Y and Z are r.e. and that Yt is always prefix-free. Let’s
prove by induction on t that Zt satisfies the k− 1-bounded chain condition.
The case t = 0 is trivial. Suppose v1 ≺ ... ≺ vk were a chain of elements in
Zt+1. Let vk = θ(s) with s ≤ t. The fact that, at stage s+1, the element vk

has been put in Zs+1 and not in Ys+1, means that there exists u ∈ Ys such
that u and vk are prefix comparable.
If vk ≺ u then v1, ..., vk, u is a k + 1 chain in X, a contradiction.
If u ≺ vk then u can be inserted inside the chain v1, ..., vk to make a k + 1
chain v1, ..., vi−1, u, vi, ..., u. Again, a contradiction.
This proves that Z satisfies the k − 1-chain condition.

7.2 Syntactical complexity of U−1
./ (O) and U−1

∞ (O)

For given sets O ⊆ 2≤ω we study the complexity of the sets U−1
./ (O) ⊆ 2∗

and U−1∞ (O) ⊆ 2ω. As expected, they are always at least as complex as O
in their respective spaces.

Remark 7.3. Clearly, U−1
./ (O)2ω ⊆ U−1∞ (O). In fact, U−1

./ (O)2ω is the subset
of sequences α ∈ U−1∞ (O) such that U reads only a finite part of α during
its possibly infinite computation.

Theorem 7.4. Table 1 summarizes the syntactical complexity of U−1
./ (O)

and U−1∞ (O) for O in some particular classes. For each complexity (up to
the second level) it also gives the simplest and hardest possible O’s.

Note 7.5. The optimal character of the results in Table 1 can be shown using
Wadge hard sets for semicomputable reductions, cf. [3].

Proof. Let out : 2∗×N→ 2∗ be the total recursive map such that out(p, t) is
the current output at computation step t of the universal machine U on input
p, no matter if U has halted or overread p (the problem of self-delimitation
of p is to be considered separately). Observe that out is monotone increasing
in its second argument with respect to the prefix ordering. Also, in case of
an infinite input α, at step t at most t symbols have been read, so that the
current output is exactly out(α¹ t, t).
Recall that domain(U./) ⊆ 2∗ has complexity Σ0

1 ∧Π0
1 (cf. Prop.4.9).

We now consider the different cases from Table 1 and express U−1
./ (O) and

U−1∞ (O) by formulas having the stated syntactical complexities.

Table line 1a. Suppose Y ⊆ 2∗ is Σ0
1. Then,

28

Table 1
O X, Y ⊆ 2∗ U−1

./ (O) U−1∞ (O)
1a Y 2≤ω Y Σ0

1 , Σ0
1 ∧Π0

1 Σ0
1

1b X X Σ0
1 prefix-free Σ0

1 ∧Π0
1 Σ0

1 ∧Π0
1

2a {u, uv} u, v ∈ 2∗, v 6= λ bool(Σ0
1) bool(Σ0

1)
2b X ∪ Y 2≤ω X, Y Σ0

1 and X bdd-chain bool(Σ0
1) bool(Σ0

1)
3a X X Σ0

1 Σ0
2 Σ0

2

3b X X Π0
1 Σ0

2 Σ0
2

3c Y 2≤ω Y Π0
1 Σ0

2 Σ0
2

3d X ∪ Y 2≤ω X, Y Σ0
2 Σ0

2 Σ0
2

4a 2≤ω \ (X ∪ Y 2≤ω) X, Y Σ0
1 Π0

2 Π0
2

4b 2≤ω \ (X ∪ Y 2≤ω) X, Y Σ0
2 Π0

2 Π0
2

4c O ⊆ 2ω is Π0
2(2

ω) Π0
2 Π0

2

4d X ∪ Y 2≤ω ∪ Z X, Y Σ0
1, X bdd-chain Π0

2 Π0
2

and Z ⊆ 2ω is Π0
2

5a O is Σ0
2(2

≤ω) bool(Σ0
2) bool(Σ0

2)
5b O is Π0

2(2
≤ω) bool(Σ0

2) bool(Σ0
2)

(for the definition of bdd-chain see Def.7.1)

p ∈ U./
−1(Y 2≤ω) ⇔ p ∈ domain(U./) ∧ ∃y ∈ Y ∃t y ¹ out(p, t)

α ∈ U∞−1(Y 2≤ω) ⇔ ∃y ∈ Y ∃t y ¹ out(α¹ t, t)

Table line 1b. Suppose X ⊆ 2∗ is Σ0
1 prefix-free. Then

p ∈ U./
−1(X) ⇔ ∃t out(p, t) ∈ X ∧ ∀t ∀x ∈ X ¬(x ≺ out(p, t))

α ∈ U∞−1(X) ⇔ ∃t out(α¹ t, t) ∈ X ∧ ∀t ∀x ∈ X ¬(x ≺ out(α¹ t, t))

Table line 2a–b. It clearly suffices to prove 2b. Using Prop.7.2, we have
X = X1∪ . . . Xk for some k, where the Xi’s are r.e. prefix-free. Apply Table
lines 1a, 1b to the Xi’s and Y 2≤ω.

Table line 3a–d. It clearly suffices to prove 3d. Suppose O = X ∪ Y 2≤ω

where X, Y ⊆ 2∗ are Σ0
2. Then

p ∈ U−1
./ (O) ⇔ p ∈ domain(U./)

∧ (U./(p) is in X or extends an element of Y)
⇔ p ∈ domain(U./)

∧ [∃y ∃t (y ∈ Y ∧ y ¹ out(p, t))
∨ ∃t (out(p, t) ∈ X ∧ ∀t′ > t out(p, t) = out(p, t′))]

α ∈ U−1∞ (O) can be expressed similarly: forget the first condition about the
domain and replace p by α¹ t.

29

Table lines 4a, 4b. Direct corollaries of Table line 3d.

Table line 4c. Suppose O ⊆ 2ω is defined as follows:
α ∈ O ⇔ ∀i ∃j ≥ i R(i, j, α¹j)

where R is recursive. Then

p ∈ U−1
./ (O) ⇔ p ∈ domain(U./)

∧ ∀i ∃j ≥ i ∃t ∃u (out(p, t) = u ∧ |u| = j ∧R(i, j, u))
α ∈ U−1

∞ (O) ⇔ ∀i ∃j ≥ i ∃t ∃u (out(α¹ t, t) = u ∧ |u| = j ∧R(i, j, u))

Table line 4d. Apply Table lines 2b, 4c to X ∪ Y 2≤ω and Z.

Table line 5a. Using Prop.2.5, let O =
⋃

i∈N 2≤ω \ (Xi ∪ Yi2≤ω) where
X,Y ⊆ N× 2∗ are r.e. Then,

p ∈ U−1
./ (O) ⇔ p ∈ domain(U./)

∧(U./(p) is finite in O or infinite in O)
⇔ p ∈ domain(U./) ∧

{[∃i∃t∀t′ > t(out(p, t) = out(p, t′) ∧ out(p, t) 6∈ Xi ∪ Yi2∗)]
∨[(∀t∃t′ > t out(p, t) ≺ out(p, t′))

∧ ∃i∀y∀t(y ∈ Yi ⇒ ¬(y ¹ out(p, t)))]}

α ∈ U−1∞ (O) can be expressed similarly: forget the first condition about the
domain and replace p by α¹ t.

7.3 Proof of Corollaries 1.17, 1.19, 1.20 and Prop.1.12

Corollary 1.17 : use line 3d of Table 1 (Thm.7.4) and Thm.1.10. Corollaries
1.19, 1.20 : use lines 3d, 4d of Table 1 and Thm.1.11. For the particular
case Z = 2ω \ 2∗0ω stated in Cor.1.20, use Prop.5.8. Prop.1.12 : line 2b of
Table 1 insures that U−1∞ (O) is ∆0

2 and Prop.3.3 insures that µ(U−1∞ (O)) is
computable in ∅′, hence not random in ∅′.

8 Acknowledgements

The authors thank Max Dickmann for stimulating discussions and an anony-
mous referee for judicious advice, pointing some incorrections and bringing
to their attention the contents of Prop.1.7.

30

References

[1] V. Becher and G. Chaitin. Another example of higher order random-
ness. Fund. Inform., 51(4):325–338, 2002.

[2] V. Becher, G. Chaitin, and S. Daicz. A highly random number. In C.S.
Calude, M.J. Dineen, and S. Sburlan, editors, Proceedings of the Third
Discrete Mathematics and Theoretical Computer Science Conference
(DMTCS’01), pages 55–68. Springer-Verlag, 2001.

[3] V. Becher and S. Grigorieff. Random reals and possibly infinite com-
putations. part II: Higher order randomness. In preparation.

[4] V. Becher and S. Grigorieff. Wadge semireducibility with lower semi-
continuous maps into 2≤ω. In preparation.

[5] V. Becher and S. Grigorieff. Recursion and topology on 2≤ω for possibly
infinite computations. Theoret. Comput. Sci., 322:85–136, 2004.

[6] L. Boasson and M. Nivat. Adherences of languages. J. Comput. System
Sci., 20:285–309, 1980.

[7] C. Calude. Information and randomness. Springer, 1994.

[8] C.S. Calude, P.H. Hertling, and B. Khoussainov Y. Wang. Recursively
enumerable reals and Chaitin Ω numbers. In STACS 98 (Paris, 1998),
number 1373 in Lecture Notes in Computer Science, pages 596–606.
Springer-Verlag, 1998.

[9] G. Chaitin. A theory of program size formally identical to information
theory. J. ACM, 22:329–340, 1975. Available on Chaitin’s home page.

[10] G. Chaitin. Algorithmic entropy of sets. Computers and Math. with
Applic., 2:233–245, 1976. Available on Chaitin’s home page.

[11] G. Chaitin. Algorithmic Information Theory. Cambridge University
Press, 1st edition, 1987.

[12] R. Downey. Some computability-theoretical aspects of reals and ran-
domness. 2000. Notes from lectures given at the University Notre Dame.
Available at MSCS, University of Wellington, NZ.

[13] R. Downey and D. Hirschfeldt. Algorithmic randomness and complexity.
Springer, 2005. To appear. Preliminary version, November 30th 2004,
available on Downey’s home page.

31

[14] R. Downey, D. Hirschfeldt, and A. Nies. Randomness, computability
and density. SIAM J. on Computing., 31:1169–1183, 2002. Extended
abstract in Proc. STACS 2001, LNCS 2010.

[15] R. Downey and G.L. Laforte. Presentations of computably enumerable
reals. Theoretical Computer Science, 284(2):539–555, 2002.

[16] T. Head. The adherences of languages as topological spaces. In M. Nivat
and D. Perrin, editors, Automata and infinite words, volume 192 of
Lecture Notes in Computer Science, pages 147–163, 1985.

[17] T. Head. The topological structure of adherence of regular languages.
RAIRO, Theoretical Informatics and Applications, 20:31–41, 1986.

[18] A.S. Kechris. Classical descriptive set theory. Springer, 1995.

[19] L. Levin. On the notion of random sequence. Soviet Math. Dokl.,
14(5):1413–1416, 1973.

[20] M. Li and P. Vitanyi. An introduction to Kolmogorov complexity and
its applications. Springer, 1997 (2d edition).

[21] P. Martin-Löf. The definition of random sequences. Information and
Control, 9:602–619, 1966.

[22] J. Miller. Personal communication.

[23] Y.N. Moschovakis. Descriptive set theory. North Holland, 1980.

[24] An.A. Muchnik. Personal communication.

[25] P. Odifreddi. Classical Recursion Theory, volume 125. North-Holland,
1989.

[26] H. Rogers. Theory of recursive functions and effective computability.
McGraw-Hill, 1967.

[27] G.E. Sacks. Degrees of unsolvability. Annals of mathematical studies.
Princeton University Press, 1966.

[28] C.P. Schnorr. Process complexity and effective random tests. J. Com-
put. System Sci., 7:376–388, 1973.

[29] C.P. Schnorr. A survey of the theory of random sequences. In R. E.
Buttsand J. Hintikka, editor, Basic Problems in Methodology and Lin-
guistics, pages 193–210. D. Reidel, 1977.

32

[30] R. Soare. Recursion theory and dedekind cuts. Trans. Amer. Math.
Soc., 140:271–294, 1969.

[31] R.M. Solovay. Draft of a paper (or a series of papers) on Chaitin’s work.
1975. Unpublished manuscript, IBM Research Center, NY.

[32] R.M. Solovay. On random R.E. sets. In A.I. Arruda, N.C.A. da Costa,
and R. Chuaqui, editors, Non-classical Logics, Model theory and Com-
putability, pages 283–307. North-Holland, 1977.

[33] A. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical So-
ciety, 2nd series, 42:230–265, 1936. Correction, Ibid, 43:544–546, 1937.

[34] W.W. Wadge. Degrees of complexity of subsets of the baire space.
Notices Amer. Math. Soc., pages A–714, 1972.

[35] W.W. Wadge. Degrees of complexity of subsets of the Baire space. PhD
thesis, University of Berkeley, 1984.

33

