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Abstract

Given a direct product of monoids M = A∗ ×Nm where A is finite
and N is the additive monoid of nonnegative integers, the following
problem is recursively decidable: given two rational subsests of M ,
does there exist a recognizable subset which includes one of the subsets
and excludes the other.
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1 Introduction

The family of recognizable subsets of a finitely generated monoid M is in-
cluded in the family of the rational subsets. It thus makes sense to consider
the following separability problem: given two rational subsets X and Y of
M , decide whether or not there exists a recognizable subset T for which
X ⊆ T and Y ∩ T = ∅ holds. The purpose of this work is to answer
positively in the case of direct products of free, finitely generated monoids
A∗1 × A∗2 × . . . × A∗m+1 where all Ai’s, except maybe one, contain at most
one element. More formally, identifying the additive monoid of nonnegative
integers with the free monoid on a one letter alphabet, we establish the
following.

Theorem 1. Let A be a finite nonempty alphabet. Given two rational sub-
sets R and S of A∗ × Nm, it is decidable whether or not there exists a
recognizable subset T ⊆ A∗ × Nm such that X ⊆ T and Y ∩ T = ∅ hold.

Many decision problems concerning rational and recognizable subsets
of Nm have been investigated. For most of them, the solution consists of
taking advantage of the strong closure properties these two families enjoy.
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E.g., equality of two rational subsets reduces to determining whether or not
their symmetric difference is empty, and the symmetric difference happens to
be rational. In the present case, such general properties do not help and we
have to rely on a new, more algebraic approach. Our proof can be explained
relatively simply. First, we reduce the general case of rational subsets of
A∗ × Nm to that of rational subsets of N2m. We show that recognizable
separability of rational subsets of Nm is equivalent — modulo some technical
extra condition — to the disjointness of their images modulo some integer
q. Finally we show that if such an integer exists, it is bounded by some
effectively computable function of the two subsets.

Concerning the relevance of our result, we can argue that there exists a
common belief that most decision problems concerning rational subsets of a
direct product A∗1 × . . . × A∗m are undecidable if m ≥ 2 and at least two of
the Ai’s have at least 2 elements, but are decidable whenever all alphabets
Ai have at most one element, e.g., “are two rational subsets disjoint?”,
“are two rational subsets equal?”, “is a rational subset equal to the full
direct product?”, “is a rational subset recognizable?”, etc. . . , see Fischer
& Rosenberg, 1968 [5] and Ginsburg & Spanier, 1964 [6] respectively. The
intermediate case where the product is isomorphic to A∗ × Nm and A has
at least two elements, requires a special treatment, see [9], [8], [12].

The paper is organized as follows. Section 2 recalls basic definitions and
poses the problem of separability. Section 3 focuses on specific properties of
direct product of (free) monoids. In section 4 a simplification of the problem
is given; the general problem can be reduced to that where a unique rational
subset in Nm is given. Section 5 tackles the problem by introducing the
notion of ultimate behaviour of a subset and by proving the above theorem.

2 Preliminaries

For the sake of self-containment, we recall basic notions but we refer to
standard textbooks for a more detailed exposition, ([1, 2, 14]).

2.1 Rational and recognizable subsets of a monoid

The rational operations on subsets of a monoid M are the set theoretical
union, the product and the star where these last two operations are defined,
for X, Y ⊆ M , as XY = {xy : x ∈ X and y ∈ Y } and X∗ =

⋃
i≥1 Xi

(which is the submonoid generated by X). The family of rational subsets
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of a monoid M , denoted by Rat(M), is the smallest family containing all
finite subsets of M and closed under the rational operations.

The family of recognizable subsets of M , denoted by Rec(M), is the
family of subsets X for which there exists a morphism h of M into a finite
monoid F such that X = h−1(h(X)) holds. Equivalently, there exists a
subset F0 ⊆ F such that X = h−1(F0). Standard constructions show that
Rec(M) is a Boolean algebra. The following technical result is elementary.
It says that all recognizable subsets of a finite collection share a common
morphism. Its proof is left to the reader.

Lemma 2. Given finitely many recognizable subsets T1, . . . , Tn of a monoid
M , there exists a finite monoid H and a morphism h : M → H such that
Ti = h−1h(Ti) for i = 1, . . . , n.

2.2 Separable subsets of a monoid

The central notion of our work is the following.

Definition 3. Two rational subsets R and S of a monoid M are separable
if there exists a recognizable subset T ⊆ M such that R ⊆ T and S ∩ T = ∅.

The separability problem consists of asking whether or not two given
rational subsets of a monoid are separable. Our Theorem states that the
problem is recursively decidable for the monoids of the form A∗ ×Nm. The
following easy observation will be useful. It shows in particular that the
relation of being separable is symmetric.

Proposition 4. Two rational subsets R, S of M are separable if and only
if there exists a morphism h of M into a finite monoid such that h(R) and
h(S) are disjoint.

3 Direct products of free monoids

3.1 Rational subsets of Nm

We consider the direct product Nm of m copies of the set of non-negative
integers. An element u ∈ Nm is also called a vector and its i-th component
is denoted by u[i]. For i = 1, . . . ,m, the i-th canonical vector having all
entries equal to 0 except that in position i equal to 1, is denoted by ei.
The projection of Nm onto the submonoid generated by the vector ei is
denoted by πi. The sum of two elements u, v ∈ Nm is defined componentwise:
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(u + v)[i] = u[i] + v[i]. With this operation, Nm is the free commutative
monoid on m generators.

As the monoid Nm is commutative we use the additive notation. In
particular, the product of two subsets X,Y ⊆ Nm is called their sum: X +
Y = {x + y : x ∈ X, y ∈ Y }.

Special rational subsets play an important role. A subset X is linear if
it is of the form {a}+ B∗ = {a + t1b1 + . . . + tkbk : t1, . . . , tk ∈ N} where a
is an element of Nm and B = {b1, . . . , bk} is a finite subset of Nm. Actually,
we shall use the less correct but simpler notation a + B∗ by identifying the
vector with the singleton it represents. A subset is semilinear if it is a finite
union of linear subsets. Rational subsets of Nm have simple forms, [3, p.
175].

Proposition 5. A relation R ⊆ Nm is rational if and only if it is semilinear.

The family of rational relations form an effective Boolean algebra [6,
Cor.1 p.366]. This is crucial since our decision procedure uses extensively
such operations.

Proposition 6. Rat(Nm) is closed under complementation. Furthermore,
the union and the complement of two rational subsets can be effectively com-
puted.

3.2 Recognizability in direct products of monoids

When the monoid is a direct product M × N , the morphism defining a
recognizable subset as in paragraph 2.1, splits into two morphisms defined
on each component. This is made precise in the following Lemma where,
given two mappings f1 : X1 → Y1 and f2 : X2 → Y2, the mapping f1 × f2 :
X1 ×X2 → Y1 × Y2 is defined as (f1 × f2)(x1, x2) = (f1(x1), f2(x2)).

Lemma 7. Let M, N be monoids and T ∈ Rec(M ×N). Then there exist
two morphisms f : M → H and g : N → H into a finite monoid H such
that

T = (f × g)−1(f × g)(T )

Moreover, if M = N then we may choose f = g.

Proof. Let h : M ×N → H be a morphism into a finite monoid H such that
T = h−1(h(T )) holds. Define f : M → H and g : N → H by f(x) = h(x, 1)
and g(y) = h(1, y) and set K = {(a, b) ∈ H×H : ab ∈ h(T )}. Then we have
the sequence of equivalences

(x, y) ∈ T ⇔ h(x, y) = h(x, 1)h(1, y) ∈ h(T ) ⇔ (f(x), g(y)) ∈ K
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Thus, T = (f × g)−1(K), which yields T = (f × g)−1(f × g)(T ).
Suppose now that M = N . Let H ′ = H × H and f ′ : M → H ′ be the
morphism such that f ′(x) = (h(x, 1), h(1, x)). Then

(x, y) ∈ T ⇔ h(x, y) = h(x, 1)h(1, y) ∈ h(T ) ⇔ (f ′(x), f ′(y)) ∈ K ′

where K ′ = {((a, b), (c, d)) ∈ H ′×H ′ : ad ∈ h(T )}. Thus, as above, we have
T = (f ′ × f ′)−1(K ′), which yields T = (f ′ × f ′)−1(f ′ × f ′)(T ).

With the above Lemma, Proposition 4 can be refined for direct products
as follows.

Proposition 8. Two subsets R,S of M × M are separable if and only if
there exists a morphism h : M → H into a finite monoid H such that
(h× h)(R) and (h× h)(S) are disjoint.

Concerning the monoid Nm, its recognizable subsets can be described
very precisely, [1].

Proposition 9. A subset of Nm is recognizable if and only if it is a finite
union of subsets of the form

{(a1 + t1b1, . . . , am + tmbm) : t1, . . . , tm ∈ N}

where the ai’s and the bi’s are nonnegative integers.

4 Simplifying the input

We reduce the input of the problem to a unique data: separability of two
rational subsets over A∗ × Nm is equivalent to that of a rational subset of
N2m with the fixed rational subset

∆(m) = {(x1, ..., xm, x1, ..., xm) ∈ N2m : (x1, ..., xm) ∈ Nm} (1)

4.1 Separability: from A∗ × Nm to N2m

Given R, S ⊆ A∗ × Nm we set R−1 = {(x, u) ∈ Nm × A∗ : (u, x) ∈ A∗ × Nm

and R−1 ◦ S = {(x, y) : ∃u ∈ A∗ ((x, u) ∈ R−1 and (u, y) ∈ S)}. Because
rational subsets which are binary relations are closed under composition
whenever the common component is a free monoid, [4, §8.1], [2, Thm.IX.4.1.]
or [14, Thm.IV.1.5.], the subset R−1 ◦ S is rational if R and S are.
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Theorem 10. Two rational subsets R, S ⊆ A∗ × Nm are separable if and
only if R−1 ◦ S (which is rational) and ∆(m) are.

Proof. The condition is necessary. We make constant use of Proposition 4.
Indeed, let f : A∗×Nm → F be a morphism into a finite monoid F such that
f(R)∩f(S) = ∅. Define g : Nm×Nm → F×F by g(v, w) = (f(1, v), f(1, w))
for all (v, w) ∈ Nm × Nm. We claim that g(R−1 ◦ S) ∩ g(∆) = ∅. By way
of contradiction, assume there exist (u, v) ∈ R and (u,w) ∈ S such that the
element (v, w) of R−1◦S satisfies g(v, w) ∈ g(∆). Then f(1, v) = f(1, w) and
therefore f(u, v) = f(u, 1)f(1, v) = f(u, 1)f(1, w) = f(u,w) contradicting
f(R) ∩ f(S) = ∅.
The condition is sufficient. Indeed, as observed above, the subset R−1 ◦S is
rational. Now, assume R−1 ◦ S is separable from ∆(m). Using Proposition
8, let h : Nm → H be a morphism into a finite monoid such that,

h(u) 6= h(v) for all (u, v) ∈ R−1 ◦ S (2)

For each α ∈ H let Xα = π1

(
(A∗ × h−1(α)) ∩R

) ⊆ A∗ where π1 is the
projection onto the first component. This set Xα is rational: A∗×h−1(α) is
recognizable (the direct product of two recognizable subset is a recognizable
subset of the direct product, e.g., [1, Thm III. 1. 5]), its intersection with
R is rational (in a finitely generated monoid, the intersection of a rational
and a recognizable subsets is a rational subset, e.g., [1, Proposition III.
2. 6]) and the image of the result via π1 is again rational (the image of
a rational subset in a morphism is rational, e.g., [1, Corollary III. 2. 3]).
Kleene’s fundamental Theorem asserts equality Rat(A∗) = Rec(A∗). Now,
by Lemma 2 there exists a morphism f : A∗ → F into a finite monoid
F which recognizes all Xα simultaneously, i.e. for which Xα = f−1f(Xα)
holds for all α ∈ H. We claim that (f × h)(R) ∩ (f × h)(S) = ∅. If
this is not the case, there exist (x1, u1) ∈ R and (x2, u2) ∈ S such that
f(x1) = f(x2) and h(u1) = h(u2) holds. In particular, x1 ∈ Xh(u1) and
x2 ∈ f−1f(x1) ⊆ f−1f(Xh(u1)) = Xh(u1). Thus, there exists u′1 such that
(x2, u

′
1) ∈ R and h(u1) = h(u′1). Then we have (u′1, u2) ∈ R−1 ◦ S and

h(u′1) = h(u2), a contradiction to (2).

5 The proof

It is easy to reduce the problem of separating two arbitrary rational subsets
of the free commutative monoids to that of separating two linear subsets.
We start with this latter problem.
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5.1 Modular images and ultimate behavior

The difficulty that we have to overcome is of the same nature as that when
studying finitely generated submonoids of the nonnegative integers: the sub-
monoid ultimately exhibits a regularity (i.e., coincides with the subgroup
generated in Z) but there is an initial “mess” which is hard, if interesting
at all, to describe. It just happens that the ultimate behaviour of a recog-
nizable subset containing a given rational subset and which is a potential
candidate for the separation can be described with some precision.

For q ∈ N\{0},we denote by ϕq : Nm → {0, . . . , q−1}m the map defined
by ϕq(x) = (y[1], . . . , y[m]) with y[i] = x[i] mod q for i = 1, . . . m. For any
subset R ⊆ Nm, we denote by R|q the subset of vectors in R, all components
of which are greater than or equal to q.

Lemma 11. Suppose T ⊆ Nm is recognizable and T|n is infinite for all n.
Then there exists q such that T|q =

(
ϕq(T|q) + qe∗1 + qe∗2 + . . . qe∗m

)
|q.

Proof. By Proposition 9 we have T =
⋃

j=1,...,p Tj where Tj =
∏

i=1,...,m(aj,i+
b∗j,i). Let J ⊆ {1, . . . , p} be the subset of indices j for which all bj,i’s,
i = 1, . . . , m, are strictly positive. The hypothesis on T insures that J is
non empty.
Define ` as an integer which is greater than all aj,i’s, j = 1, . . . , p and

i = 1, . . . ,m. We obtain T|` =
(⋃

j∈J Tj

)
|`
.

Let q ≥ ` be an integer which is a multiple of all bj,i’s, j ∈ J , i = 1, . . . , m.
Clearly, Tj = Tj + qe∗1 + . . . + qe∗m for any j ∈ J . Whence

T|q = T|q + qe∗1 + . . . + qe∗m ⊇ (
ϕq(T|q) + qe∗1 + . . . + qe∗m

)
|q

Since the inclusion T|q ⊆ ϕq(T|q) + qe∗1 + . . . + qe∗m is trivial, the proof of
equality T|q =

(
ϕq(T|q) + qe∗1 + qe∗2 + . . . qe∗m

)
|q is complete.

Proposition 12. Let a ∈ Nm be a vector and let B be a finite subset of Nm.
Suppose that the projections of the linear subset a + B∗ on each component
are infinite. Then, (a + B∗)|q is infinite and ϕq(a + B∗) = ϕq((a + B∗)|q)
for all q > 0.

Proof. Because of the condition on B, for all i = 1, . . . , m there exists a
vector bi ∈ B for which the condition bi[i] 6= 0 holds. In particular, b =
b1 + . . . + bm has all components greater than 0. If u ∈ a + B∗ then u + qb
still belongs to a + B∗ and has all components greater than q, hence is in
(a + B∗)|q. Finally, observe that ϕq(u + qb) = ϕq(u).
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5.2 Separating two linear subsets

The purpose of this paragraph is to solve the specific case of two linear
subsets.

Lemma 13. Let R = a + B∗ and S = c + D∗ be linear subsets included in
Nm.
1. Suppose R and S have infinite projections on each component. Then R
and S are separable if and only if there exists an integer q such that ϕq(R)
and ϕq(S) are disjoint.
2. More generally let I be the set of indices i for which R has finite projection
on the i-th component. Let π′I : Nm → Nm−|I| be the projection which erases
all components in I and let U be the recognizable set {x ∈ Nm : x[i] = a[i], i ∈
I}. Then R and S are separable if and only if π′I(R∩U) and π′I(S ∩U) are
separable subsets in Nm−|I|.

Proof. If ϕq(R) and ϕq(S) are disjoint then ϕ−1
q ϕq(R) is recognizable and

separates R and S. Conversely, assume T is recognizable and separates
R and S. Proposition 12 and inclusion R ⊆ T insure that T satisfies the
hypothesis in Lemma 11. Thus, for some integer q we have

T|q =
(
ϕq(T|q) + qe∗1 + . . . + qe∗m

)
|q (3)

We prove that ϕq(R) ∩ ϕq(S) = ∅. Assume by contradiction that u ∈ S is
such that ϕq(u) ∈ ϕq(R). As in the proof of Proposition 12, the hypothesis
on S yields some vector d ∈ D∗ has all components greater than 0. Consider
the vector u + qd, which still belongs to S and has all components greater
than q. Proposition 12 insures that ϕq(R) = ϕq(R|q). Since R ⊆ T , we get
ϕq(R|q) ⊆ ϕq(T|q). Thus, ϕq(u + qd) = ϕq(u) ∈ ϕq(T|q), so that we have
u+qd ∈ ϕq(T|q)+qe∗1+. . .+qe∗m, hence u+qd ∈ (

ϕq(T|q) + qe∗1 + . . . + qe∗m
)
|q.

Equality (3) yields u + qd ∈ T|q. Thus, u + qd belongs to S and T , a
contradiction. This proves assertion 1. The proof of assertion 2 is routine
verification.

The effectiveness of the previous property relies on the existence of the
Smith normal form of integer matrices, cf. [11, Thm 3.8]. Basically, it
guarantees that the integer q, if it exists, can be effectively computed.

We recall the definition of the Smith normal form briefly. Let A be an
m × n integer matrix, m ≥ n of rank p. There exists a unimodular (i.e.,
an integer matrix with determinant equal to ±1) m × m-matrix U and a
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unimodular n× n-matrix V such that

A′ = UAV =




a1 0 . . . 0 . . . 0
0 a2 . . . 0 . . . 0
0 0 . . . 0 . . . 0
0 0 . . . ap . . . 0
0 0 . . . 0 . . . 0
...

...
...

... . . . 0
0 0 . . . 0 . . . 0




(4)

holds, where aj divides aj+1 for j = 1, . . . , p− 1.

Lemma 14. Let A be an m × n integer matrix m ≥ n of rank p and let
Ax = b be a linear system of equations. Set b′ = Ub = (b′j)1≤i≤m where U is
the unimodular matrix leading to the Smith normal form (4).
1. The system has a solution in the finite ring Z/qZ if and only if

{
b′j is divisible by gcd(aj , q) for all j ∈ {1, . . . , p}
b′j is divisible by q for all j ∈ {p + 1, . . . ,m} (5)

2. There exists q such that the system has no solution in Z/qZ if and only
if aj does not divide b′j for some j ≤ p or b′j 6= 0 for some j ≥ p + 1.

Proof. 1. V is invertible in Z, hence also in Z/qZ. Thus, the system Ax = b
has a solution in Z/qZ if and only if so does the system A′y = b′ with
y = V−1x. Assertion 1 follows from the fact that the system can be writtten
as {

aj yj ≡ b′j mod q for j = 1, ..., p

0 yj ≡ b′j mod q for j = p + 1, ..., m

Whence (5). Concerning assertion 2, the condition is necessary since if
b′j 6= 0 holds for some j ≥ p + 1 then any q greater than b′j will do. The
condition is clearly sufficient.

Theorem 15. Given two linear subsets a + B∗ and c + D∗ of Nm, it is
decidable in polynomial time whether or not there exists q such that ϕq(a +
B∗) and ϕq(c + D∗) are disjoint.

Proof. Let B = {b1, ..., bk} and D = {d1, ..., dl} and n = k + l. Consider
the matrix A ∈ Zm×n with columns b1, ..., bk,−d1, ...,−dl and the column
matrix b = a−c. By introducing n variables x1, ..., xk, y1, ..., yl, the condition
ϕq(a + B∗) ∩ ϕq(c + D∗) = ∅ is reduced to the non existence in Z/qZ of
solutions of the system Ax = b. We conclude with assertion 2 of Lemma 14.
The complexity claim is a direct consequence of [15].
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5.3 Proof of Theorem 1

We have all the ingredients to prove our result. The following remark is more
or less trivial and its verification is left to the reader. Let R =

⋃
j=1,...,r Rj

and S =
⋃

k=1,...,s Sk be finite unions of linear subsets of Nm. Then R and
S are separable if and only if Rj and Sk are separable for all pairs (j, k).

Given two rational subsets R and S of A∗ ×Nm defined indifferently by
rational expressions or automata, we proceed as follows. We construct an
automaton recognizing R−1 ◦ S ⊆ N2m. Then we convert it into a finite
union V1 ∪ ... ∪ Vp of linear subsets of N2m. At this point we are reduced to
checking whether each Vj is separable from ∆(m) as defined in equality (1).
If Vj has infinite projections on all components then assertion 1 of Theorem
15 applies. Otherwise we consider the projection as in assertion 2 of Lemma
13 before applying Theorem 15. 2
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