UPDATE to Random Reals à la Chaitin with or without prefix-freeness

July 16, 2008

Theorems 2.4 and 2.7 assume the hypothesis

A is partial many-one Σ_n^0 complete

This hypothesis is, in fact, equivalent to

n = 1 and A is nonemptyor $n \ge 2$ and A is many-one Σ_n^0 complete

The proof of this equivalence is an easy consequence of Proposition 2.2 and the following facts from Mohrherr's paper [1]:

1. Let $(\varphi_x)_{x \in \mathbb{N}}$ be a standard enumeration of partial computable functions $\mathbb{N} \to \mathbb{N}$.

- If $A \subseteq \mathbb{N}$, let $A^{pm} = \{(x, y) \mid \varphi_x(y) \in A\}$.

- B is a pm-cylinder if it is recursively isomorphic to some A^{pm} .
- A set is dual-pm if A and $\mathbb{N} \setminus A$ are both pm-cylinders.
- The set Ø" is dual-pm (cf. Mohrherr's paper, page 832, §3 line 5, where Ø" is denoted by K').
 Relativizing, this is also valid with Ø^(p), for p ≥ 2.
- 3. If A is dual-pm and is partial many-one equivalent to B then A and B are recursively isomorphic (cf. Mohrherr's paper, page 833, Proposition 5).

Observe that $\emptyset^{(p)}$ is many-one Σ_{p+1}^0 complete. Thus, if *B* is partial manyone Σ_{p+1}^0 complete $(p+1 \ge 2)$ then it is recursively isomorphic to $\emptyset^{(p)}$ hence many-one Σ_{p+1}^0 complete.

References

 J-L. Mohrherr. Kleene index sets and functional *m*-degrees. J. Symbolic Logic, 48(3):829–840, 1983.