
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 358, 2008 Ç.S. Grigorie�, Ch. Cho�rutTHE DECISION PROBLEM FOR SOME LOGICSFOR FINITE WORDS ON INFINITE ALPHABETSAbstra
t. This paper is a follow-up of a previous paper where the log-i
al 
hara
terization of Eilenberg, Elgot, and Shepherdson of nary syn-
hronous relations was investigated in the 
ase where the alphabet hasin�nitely many letters. Here we show that modifying one of the predi-
ate leads to a 
ompletely di�erent pi
ture for in�nite alphabets though itdoes not 
hange the expressive power for �nite alphabets. Indeed, roughlyspeaking, being able to express the fa
t that two words end with the samesymbol leads to an unde
idable theory, already for the �2 fragment. Fi-nally, we show that the existential fragment is de
idable.1. Introdu
tionThe purpose of this work is to investigate di�erent theories of the freemonoid in the 
ase where it has an in�nite, denumerable number of gen-erators.The study of the theories of the free �nitely generated monoid, i.e.,words on a �nite alphabet, dates ba
k to the late sixties and has a widerange of appli
ations in 
omputer s
ien
e. Re
ently, in�nite alphabetshave also been 
onsidered in several appli
ations, e.g., in database theory[1, 2℄ and model 
he
king [6℄.It is well-known (Quine, [14℄) that adding 
on
atenation leads to anunde
idable theory when the free monoid 
ontains at least two genera-tors, so this operation is not 
onsidered dire
tly. Variants of elementarypredi
ates are 
onsidered whi
h are related to the underlying partial or-dering: \u is a pre�x of v" (denoted by u ≤pref v), \u and v have thesame length" (denoted by EqLen(u; v)), and the last letter of a word: \uends with a spe
i�
 letter a" (denoted by Lasta(u)). This is in essen
ethe stru
ture studied by Eilenberg, Elgot, and Shepherdson in [8℄, wherethe authors 
hara
terize \�a la B�u
hi" the de�nable relations in terms ofthe so-
alled syn
hronous automata, and reprove the de
idability of thetheory (a result �rst established by Shepherdson, [15℄).100



THE DECISION PROBLEM FOR SOME LOGICS 101Before presenting our 
ontribution let us go through spe
ial features ofthe free monoid generated by a denumerable in�nite alphabet to be foundin the literature.1. Vazhenin & Rozenblat [18℄ proved that, for an in�nite alphabet, thepositive theory of 
on
atenation is de
idable. On the opposite, thepositive theory of 
on
atenation over a �nite alphabet is unde
idable(Quine, [14℄). Even the ∀∃3-positive theory is unde
idable (Durnev,[7℄).2. Let us add to �nite automata registers able to memorize any let-ter of the alphabet and let us allow 
omparison between the letter
urrently read and the 
ontents of the registers. In 
ase of �nite al-phabets, su
h automata are equivalent to the usual ones. However,for an in�nite alphabet, this really matters: the universal problemfor su
h nondeterministi
 register automata is unde
idable (Neven& S
hwenti
k & Vianu, [11, 12℄).3. Answering a question of [8℄, we proved in [5℄ that if � is in�nite thenthe predi
ate EqLenEqLast = {(ua; va) | u; v ∈ �∗; |u| = |v|; a ∈ �}is not de�nable with EqLen, ≤pref and the Lasta's, a ∈ �.Also, if R is de�nable with EqLen, ≤pref and the Lasta's, then(i) there exists a smallest �nite �0 ⊂ � su
h that R is de�nable withEqLen, ≤pref and the sole Lasta's where a ∈ �0.(ii) if �0 6= ∅ then R is de�nable with EqLen, ≤pref and the soleLasta's where a ∈ �0, if and only if, R is invariant under all permu-tations of � whi
h are the identity on �0.(iii) R is de�nable with EqLen, ≤pref and |u| ≡ k mod ` for allk < ` ∈ N (and with no Lasta) if and only if R is invariant underall permutations of �.All these results are false for �nite alphabets �: EqLenEqLast isde�nable with EqLen and the Lasta's and disproves (iii). Also,R�0 =
{xx | x ∈ � \ �0} disproves (ii) if � \ �0 has at least two letters.The purpose of this paper is to add some new results in that vein. First,let us �x some notations.Notation 1. Let � be an in�nite alphabet.

• ", ≤pref and Pred : �∗ → �∗, respe
tively, denote the empty word,the pre�x ordering on �∗ and the map su
h that Pred(") = " andPred(a1 : : : an) = a1 : : : an−1 (both " and Pred are de�nable with
≤pref).
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• For k ∈ Z, EqLenk denotes the binary relation {(u; v) | |u| = |v|+k}where |u| is the length of u. We also write EqLen in pla
e of EqLen0.
• For a ∈ �, Lasta denotes the unary relation �∗a and EqLast denotesthe binary relation {(ua; va) | u; v ∈ �∗; a ∈ �}, i.e., the set of pairsof words whi
h end with the same letter.In [5℄, we 
onsidered the logi
 with predi
ates ≤pref, EqLen and theLasta's, a ∈ �, and its extension with EqLenEqLast (
f. point 3 above), forwords in an in�nite alphabet, and introdu
ed the notions of syn
hronousand \oblivious syn
hronous" automata whi
h 
hara
terize them. As a
onsequen
e, we derived the de
idability of these logi
s.Here we go one step further by 
onsidering the predi
ate EqLast. Thepi
ture in that 
ase is 
ompletely di�erent sin
e the theory is no longerde
idable, a big departure from the 
ase of �nite alphabets. More pre
iselywe are able to prove that the existential fragment is de
idable while the�2 fragment is unde
idable.Our main results are stated in the next two theorems. The �rst re-sult establishes the unde
idability of the theory. Se
tion 2 is devoted tothe proof of Point 1. A strong version of Point 2 is given in Se
. 5 asTheorem 15.In 
ontrast, remember that in order to get an unde
idable theory in
ase the alphabet is �nite and has at least two letters, one has to 
onsiderstronger languages obtained by adding the predi
ate \u is a suÆx of v"(
f. B�u
hi, [3℄) or \u is a fa
tor of v."Theorem 1. Let � be an in�nite alphabet.1. The ∃∀∀ theory of the stru
ture 〈�∗;≤pref; "; Pred; EqLast〉 is unde-
idable.2. The �1 theory of

〈�∗;≤pref; "; Pred; (EqLenk)k∈Z; EqLast; (Lasta)a∈�〉is de
idable.Let us stress that this unde
idability property is spe
i�
 to in�nitealphabets. Indeed, for �nite alphabets, EqLast is de�nable with the pred-i
ates Lasta's, a ∈ �, and the theory of ≤pref, EqLen and the Lasta's isde
idable, 
f. [15, 8℄. Also, Rabin's 
elebrated result insures that, for �niteor in�nite alphabets, the monadi
 se
ond order theory of ≤pref and theLasta's is de
idable.
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ond theorem is 
on
erned with de�nability or unde�nabilityproperties of 
ertain predi
ates one from another. Its proof is given inSe
. 3 (Theorems 5 and 6) and Se
. 4 (Theorem 11).Theorem 2. Let � be an in�nite alphabet.1.Con
atenation is de�nable in the stru
ture 〈�∗;≤pref; EqLen; EqLast〉.2. In 〈�∗;≤pref; EqLast; (Lasta)a∈�〉, neither 
on
atenation nor EqLenare de�nable.3. 〈�∗;≤pref; EqLen; EqLast〉 is interpretable in 〈�∗;≤pref; EqLast〉.Observe that items 1 and 3 in Theorem 2 do no longer hold for �nitealphabets: they would violate the unde
idability of the theory of the freemonoid with 
on
atenation (Quine, [14℄) and that of the monadi
 se
ondorder theory of the free monoid with the su

essor fun
tions u 7→ ua andEqLen (Vidal-Naquet, [19℄). As for item 2, nonde�nability of 
on
atenationalso holds for any nonempty �nite alphabet and nonde�nability of EqLenholds whenever � has at least two letters.2. The �2 theory of ≤pref; Pred; EqLast is unde
idable2.1. Coding Post Corresponden
e Problem with EqLastRe
all the Post Corresponden
e Problem (PCP) for words in {a; b}∗:
• An instan
e � = {(u1; v1); : : : ; (uk; vk)} of PCP is a �nite subset ofpairs of words in {a; b}∗.
• A nontrivial solution of the PCP for � is a nonempty sequen
e(i1; : : : ; ir) ∈ {1; : : : ; k}∗ su
h that ui1 : : : uir = vi1 : : : vir .As is well known, PCP is unde
idable, even if we restri
t it to �'sfor whi
h k ≤ 7 (Matiyasevi
h & Senizergues, [9, 10℄). It also remainsunde
idable if we restri
t it to families � = {(u1; v1); : : : ; (uk; vk)} su
hthat all ui's and vi's are nonempty.To prove the stated unde
idability result, we 
ode the Post Correspon-den
e Problem with EqLast and ≤pref.Theorem 3. Let � be an in�nite alphabet and let a; b ∈ �. To anyinstan
e � = {(u1; v1); : : : ; (uk; vk)} of the PCP for pairs of nonemptywords in {a; b}∗, one 
an re
ursively asso
iate a 
losed ∃∀∀ formula F� ofthe language

L = {≤pref; Pred ; " ; Lasta ; Lastb ; EqLast}
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h that � has a nontrivial solution if and only if F� is true in �∗.Proof. We start with an informal introdu
tion of the en
oding of asolution of an instan
e of PCP. Suppose we are given the instan
e(u1; v1) = (a; aba) and (u2; v2) = (baaab; a) whi
h has the solutionw = a baaab a = aba a aba. Consider the 
oarsest fa
torization whi
hre�nes both fa
torizations w = a ba a ab a. A possible tentative 
onsistsof introdu
ing an sth marker 
s and an sth marker Æs, taken in �\ {a; b},at the beginning of the sth o

urren
e of a fa
tor uis and vis , respe
tively,together with �nal markers:
1Æ1a
2baÆ2aÆ3ab
3a
4Æ4:Sin
e � is in�nite we 
an suppose all 
's and all Æ's to be distin
t. Also, we
an express the fa
t that the 
's and Æ's are distin
t, but there is no waywe 
an relate 
i with Æi for i = 1; : : : 4. This is a
hieved by substituting
ia for ea
h o

urren
e of 
i and 
ib for ea
h o

urren
e of Æi, leading tothe following en
oding:(
1a)(
1b)a(
2a)ba(
2b)a(
3b)ab(
3a)a(
4a)(
4b):Formally, 
onsider a nontrivial solution S = ui1 : : : uir = vi1 : : : vir ofan instan
e of the PCP. Let w1 : : : wm be the 
oarsest fa
torization ofS re�ning the previous two fa
torizations. For ea
h wi there are threepossible 
ases:{ either it is a pre�x of an o

urren
e uis solely{ or it is a pre�x an o

urren
e of vi` solely{ or it is a pre�x of an o

urren
e uis and of an o

urren
e of vi` .Then set S′ = z1w1 : : : zmwm
r+1a
r+1b where for 1 ≤ i ≤ m, we havezi = 
isa in the �rst 
ase and zi = 
i`b in the se
ond 
ase and zi =
isa
i`b, in the last 
ase.It then suÆ
es to observe that the family of su
h words S′ 
an beexpressed in the theory. Indeed, S′ en
odes a solution of the PCP for � ifand only if it satis�es the following 
onditions where � = � \ {a; b}:(i) Start and end.(i1) |S′| ≥ 9(i2) There exists 
 ∈ � su
h that 
a
b is a pre�x of S′.(i3) There exists 
′ ∈ � su
h that 
′a
′b is a suÆx of S′.(ii) Markers. Every o

urren
e in S′ of a letter in � is immediatelyfollowed by an o

urren
e of a or b.
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t. No fa
tor in �a or �b o

urs twi
e in S′.(iv) Indu
tive step of a ba
kward de
omposition of S′.If 
 ∈ � and x
a and y
b are both pre�xes of S′ then either x = "and y = 
a or there exists (ui; vi) ∈ � and u′i, v′i and 
′ ∈ � su
hthat
• 
′au′i is a suÆx of x and 
′bv′i is a suÆx of y
• u′i ∈ (�b∪ {"})ui;1�bui;2 : : :�bui;mi where ui = ui;1ui;2 : : : ui;mi andthe ui;j 's are 6= ",
• v′i ∈ vi;1�avi;2 : : :�avi;ni(�a ∪ {"}) where vi = vi;1vi;2 : : : vi;ni andthe vi;j 's are 6= ".Observe that mi ≤ |ui| and ni ≤ |vi| sin
e the ui;j 's and vi;j 's are 6= ".Thus, the lengths of u′i; v′i are bounded.We now express 
onditions (i){(iv) in the language L. For s ≥ 2, letPred(s) denote the sth iterate of Pred. First, observe that the predi
atesLast�(x) (whi
h means x ∈ �∗�), |x| ≥ s and |x| = s are expressible in

L by the following quanti�er-free formulas:Last�(x) ≡ x 6= " ∧ ¬Lasta(x) ∧ ¬Lastb(x);
|x| ≥ s ≡ Pred(s−1)(S′) 6= ";
|x| = s ≡ Pred(s−1)(S′) 6= " ∧ Pred(s)(S′) = ":Condition (i1). See above.Conditions (i2){(i3). The predi
ate ∃
 ∈ � z ∈ �∗
a
b is expressibleby the formula �(z) su
h that�(z) ≡

{
|z| ≥ 4 ∧ EqLast(Pred(1)(z); Pred(3)(z))
∧Lastb(z) ∧ Lasta(Pred(2)(z)) ∧ Last�(Pred(1)(z)):Now, 
ondition (i3) is the quanti�er-free formula �(S′) and 
ondition (i2)is the formula ∀x ((x ≤pref S′ ∧ |x| = 4) ⇒ �(x)).Condition (ii). Consider the formula

∀x ≤pref S′ [Last�(Pred(1)(x)) ⇒ (Lasta(x) ∨ Lastb(x))℄;Condition (iii). It 
an be expressed by the ∀2 formula
∀x ∀y 










(x <pref y ≤pref S′ ∧ EqLast(x; y)
∧ (Lasta(x) ∨ Lastb(x))
∧ Last�(Pred(x)) 

 ⇒ ¬EqLast(Pred(x); Pred(y)) :



106 S. GRIGORIEFF, CH. CHOFFRUTCondition (iv). Let !0; : : : ; !q; �0; : : : ; �p ∈ {a; b}∗. The predi
ates
• ∃
 ∈ � (x ∈ �∗
a ∧ y ∈ �∗
b)
• ∃
1; : : : ; 
p; 
′1; : : : ; 
′q ; 
 ∈ �(x ∈ �∗�0
1b�1 : : : 
pb�p
a ∧ y ∈ �∗!0
′1a!1 : : : 
′qa!q
b)are expressible in L by quanti�er-free formulas �(x; y) and �!0;::: ;!q�0;::: ;�p (x; y)similar to the above �.Condition (iv) 
an be expressed by the ∀2 formula

∀x ∀y [(x ≤pref S′ ∧ y ≤pref S′ ∧�(x; y) ⇒ (|x| = 2∧ |y| = 4∧ �(y))
∨

∨(ui;vi)∈� ∨(!0;::: ;!q)∈D(ui) ∨(�0;::: ;�p)∈D(vi) �!0;::: ;!q�0;::: ;�p (x; y);where D(u) is the �nite family of tuples (�0; : : : ; �q) of nonempty wordssu
h that �0 : : : �q = u.Finally, the desired formula F� is ∃S′ �(S′) where � is the 
onjun
tionof all formulas asso
iated to 
onditions (i) to (iv) above. Sin
e the univer-sal quanti�ers of the diverse 
onjun
ts 
an be fa
torized, we see that F�is of the form ∃∀2. �2.2. Proof of point 1 of Theorem 1Let F� = ∃S′ ∀x ∀y 	(S′; x; y) be as in Theorem 3. To eliminate the
onstants a, b from 	, we use 
ondition (i3) above whi
h insures that bis the last letter of S′ and a is the last one of Pred(2)(S′) and we expressthe fa
t that a 6= b as a property of S′.Let G(S′; x; y) be obtained from 	(S′; x; y) by repla
ing every o

ur-ren
e of the atomi
 formula Lastb(z) (where z is x or y) by the formulaEqLast(z; S′) and every o

urren
e of the atomi
 formula Lasta(z) byEqLast(z; Pred(2)(S′)). Clearly, F� is equivalent to the following ∃∀∀ for-mula whi
h uses only ≤pref, Pred and EqLast together with the sole
onstant ":
∃S′ ∀x ∀y (¬EqLast(S′; Pred(2)(S′)) ∧ G(S′; x; y)):
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on
atenationIn this se
tion, we show that 
on
atenation of words may be de�nedwith the three predi
ates ≤pref, EqLen, EqLast but that it is independentof the two predi
ates ≤pref and EqLast.3.1. De�ning 
on
atenation with ≤pref, EqLen, EqLastWe �rst show that the 
on
atenation of two words whose letters arepairwise di�erent 
an be de�ned via the two predi
ates ≤pref andEqLast. This will allow us to show the de�nability of the 
on
atenationof any two arbitrary words using the three predi
ates of our stru
ture.A word is inje
tive if it does not 
ontain two o

urren
es of the sameletter. Observe that, in the 
ontext of in�nite alphabets, there are arbi-trarily large inje
tive words.Re
all that both " and Pred are de�nable with ≤pref.Proposition 4. Let � be an in�nite alphabet. The relationR = {(u; v; w) | uv is inje
tive and w = uv}is de�nable by a ∀∀ formula �(u; v; w) with ≤pref, Pred, " and EqLast.Proof. Observe that (u; v; w) ∈ R if and only if(i) u, v and w are inje
tive words and u; v have no letter in 
ommon,(ii) Trivial 
ase. If v is empty then w = u.(iii) Initial step of the ba
kward analysis. If v is not empty then v; w havethe same last letter.(iv) Indu
tive step of the ba
kward analysis. If x and y are pre�xes of vand w and |x| ≥ 2 and x; y have the same last letter then |y| ≥ 2and Pred(x); Pred(y) also have the same last letter.(v) Final step of the ba
kward analysis. If x and y are pre�xes of v andw and |x| = 1 and x; y have the same last letter then Pred(y) = u.In fa
t, (u; v; w) ∈ R 
learly implies all these 
onditions.Conversely, suppose these 
onditions hold. Condition (ii) solves the 
asewhere v is empty. So suppose v is nonempty. Conditions (iii), (iv) insurethat v is a suÆx of w and 
ondition (v) shows that the asso
iated pre�xof w is u. Thus, (u; v; w) ∈ R.Finally, it is easy to see that ea
h one of 
onditions (i){(v) is express-ible in the language (≤pref; Pred; "; EqLast) with two universal quanti�-
ations.
�



108 S. GRIGORIEFF, CH. CHOFFRUTTheorem 5. Let � be an in�nite alphabet. Con
atenation is de�nablein the stru
ture 〈�∗;≤pref; EqLen; EqLast〉.Using the extra fun
tion Pred and the 
onstant " (whi
h are de�nablewith ≤pref), 
on
atenation 
an be de�ned by a ∃3∀4 formula.Proof. Observe that w = uv if and only if v = " and w = u or v 6= " andthere exist �; �; � su
h that(i) �; � are inje
tive words whi
h have no letter in 
ommon.(ii) |�| = |u|, |�| = |v|, |�| = |w| and �� = �.(iii) u is a pre�x of w.(iv) If �′; � ′; v′; w′ are nonempty pre�xes of �; �; v; w and |�′| = |v′| and
|� ′| = |w′| and �′; � ′ have the same last letter then v′; w′ also havethe same last letter.Using Proposition 4, this is 
learly expressible with ≤pref, Pred, ",EqLen, and EqLast by a ∃3∀4 formula (the existential quanti�
ations beingover �, �, � and the universal ones over �′, � ′, v′, w′). �3.2. Nonde�nability of 
on
atenation with ≤pref and EqLastLet us denote by · the 
on
atenation operation.The de�nition of 
on
atenation obtained in the previous paragraph usesboth predi
ates EqLen and EqLast. Of 
ourse, one 
annot remove EqLastsin
e the theory of ≤pref, EqLen, (Lasta)a∈� is de
idable, 
f. [15, 8℄.In order to show that we 
annot remove EqLen, we use the followingsimple property: if EqLen or · were de�nable in �∗ from ≤pref, EqLastand the Lasta's, the same would be true in any elementary extension ofthis stru
ture, in parti
ular in any ultrapower. So, to prove the negativeresult we are looking for, we 
onstru
t an ultrapower of the stru
ture

〈�∗;≤pref; EqLen; EqLast; ·; (Lasta)a∈�〉;for whi
h there is a bije
tion of the domain whi
h does preserve the in-terpretations of ≤pref, EqLast and the Lasta's but does not preservethose of · nor EqLen. Let us re
all that an ultra�lter U on N is a familyof subsets of N 
losed by interse
tion and superset and su
h that, for allX ⊆ N, either X or its 
omplement N \X is in U . The ultrapower AU ofa stru
ture A is obtained as follows:{ its domain is the set of equivalen
e 
lasses of the equivalen
e ∼U on
AN su
h that f ∼U g ⇔ {i ∈ N | f(i) = g(i)} ∈ U ,
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tion and relation symbols are ob-tained as follows. First, lift the interpretations in A to AN in theobvious 
omponentwise way. Se
ond, quotient by ∼U . Lo�s theorem insures that, for any formula F (x1; : : : ; xn), and anyf1; : : : ; fn ∈ AN, letting [fi℄ be the ∼U 
lass of fi, we have
AU |= F ([f1℄; : : : ; [fn℄) ⇔ {i ∈ N | A |= F (f1(i); : : : ; fn(i))} ∈ U :The elementary embedding of A into AU maps a ∈ A to the 
lass of the
onstant fun
tion N → A with value a. For more details on the methodof ultrapowers, we refer to standard textbooks, see, e.g., [4℄ or [13℄.Theorem 6. Let � be a �nite or in�nite alphabet with at least twoletters. Neither EqLen nor 
on
atenation is de�nable in the stru
ture

W = 〈�∗;≤pref; EqLast; (Lasta)a∈�〉:Proof. Let A be the stru
ture W enri
hed with the · operation and theEqLen predi
ate. Consider a nonprin
ipal ultra�lter U on N and let
AU = 〈(�∗)N= ∼U ; = ; ≤Upref ; EqLenU ; EqLastU ; (LastUa )a∈� ; ·U 〉be the U-ultrapower of A with domain (�∗)N=U where ∼U is the equiva-len
e on (�∗)N su
h that, for f; g : N → �∗,f ∼U g ⇔ {i | f(i) = g(i)} ∈ U :We denote by [f ℄ the ∼U equivalen
e 
lass of f : N → �∗. Let � : A → AUbe the natural embedding su
h that �(u) is the ∼U 
lass of the 
onstantfun
tion with value u. Sin
e � is an elementary embedding, in order toprove the theorem, it suÆ
es to 
onstru
t a bije
tion of (�∗)N=U into itselfwhi
h preserves ≤Upref, the LastUa 's and EqLastU but does not preserve
·U nor EqLenU .For u ∈ �∗ and 
 ∈ �, let us denote by 
−1u the word v su
h thatu = 
v if u starts with 
, else v = u. We �x some 
 ∈ � and 
onsider thefamily F of f : N → �∗ su
h that [f ℄ admits all �(
k) as pre�xes:f ∈ F ⇔ ∀k ∈ N �(
k) ≤Upref [f ℄ ⇔ ∀k ∈ N {n | 
k ≤pref f(n)} ∈ U :



110 S. GRIGORIEFF, CH. CHOFFRUTWe de�ne � : (�∗)N → (�∗)N as follows: for f ∈ (�∗)N,�(f)(i) = { 
−1f(i) if f ∈ F ;f(i) if f =∈ F :Intuitively, when there is a nonstandard initial blo
k of letters 
 in [f ℄U ,we remove the �rst letter of this blo
k, else we do nothing. To prove that� indu
es a bije
tion on A whi
h respe
ts =, ≤pref, EqLast and theLasta's, we 
onsider f; g : N → �∗ and prove that(i) [f ℄ = [g℄ if and only if [�(f)℄ = [�(g)℄,(ii) [f ℄ ≤Upref [g℄ if and only if [�(f)℄ ≤Upref [�(g)℄,(iii) EqLastU([f ℄; [g℄) if and only if EqLastU ([�(f)℄; [�(g)℄),(iv) LastUa ([f ℄) if and only if LastUa ([�(f)℄).We argue by 
ases.Case f =∈ F and g =∈ F . Trivial sin
e then �(f) = f and �(g) = g.Case f ∈ F and g =∈ F . Sin
e g =∈ F , there exists k su
h that {n | 
k
6≤pref g(n)} ∈ U . Now

{n | 
k ≤pref f(n)} and {n | 
k+1 ≤pref f(n)}are both in U . Thus, {n | 
k ≤pref 
−1f(n)} = {n | 
k ≤pref �(f)(n)} ∈

U . In parti
ular, {n | f(n) 6≤pref g(n)} and {n | �(f)(n) 6≤pref g(n)}are both in U . This proves [f ℄ 6≤Upref [g℄ and [�(f)℄ 6≤Upref [�(g)℄. Hen
ealso [f ℄ 6= [g℄ and [�(f)℄ 6= [�(g)℄. Thus, (i) and (ii) hold.Sin
e {n | |f(n)| ≥ 2} ∈ U we see that {n | EqLast(f(n);�(f)(n))} ∈
U . Thus, EqLastU ([f ℄; [�(f)℄). Now, EqLast is transitive, hen
e so isEqLastU . Sin
e �(g) = g we see thatEqLastU ([f ℄; [g℄) ⇔ EqLastU ([�(f)℄; [g℄) ⇔ EqLastU([�(f)℄; [�(g)℄);whi
h gives (iii).Sin
e A |= EqLast(x; y) ⇒ (Lasta(x) ⇔ Lasta(y)) we have

AU |= EqLastU(x; y) ⇒ (LastUa (x) ⇔ LastUa (y))whi
h proves assertion (iv) (let x be [f ℄ and y be [�(f)℄).



THE DECISION PROBLEM FOR SOME LOGICS 111Case f =∈ F and g ∈ F . By symmetry, equivalen
es (i), (iii), and (iv)are similar to the previous 
ase. Let us prove (ii). As before, there existsk su
h that the three sets
{n | 
k 6≤pref f(n)}; {n | 
k ≤pref g(n)}; {n | 
k ≤pref �(g)(n)}are in U . Let X be their interse
tion (whi
h is in U). Then,n ∈ X⇒(f(n) ≤pref 
k−1⇔f(n) ≤pref �(g)(n)⇔f(n) ≤pref g(n)):Sin
e �(f) = f , this proves that {n | f(n) ≤pref g(n)} ∈ U if and onlyif {n | �(f)(n) ≤pref �(g)(n)} ∈ U , when
e (ii).Case f ∈ F and g ∈ F . The setX = {n | 

 ≤pref f(n) ∧ 

 ≤pref g(n)}is in U . For n ∈ X , we have 
�(f)(n) = f(n) and 
�(g)(n) = g(n). Fromthis, we easily dedu
e 
onditions (i) to (iv).We now show that � does not preserve EqLen. For instan
e, let f(n) =
n+1 and g(n) = bn+1 where b is some letter di�erent from 
. Then, forall n, we have |f(n)| = |g(n)| and |�(f)(n)| = |�(g)(n)| − 1, so thatEqLenU ([f ℄; [g℄) but ¬EqLenU([�(f)℄; [�(g)℄).Finally, observe that � does not preserve 
on
atenation. For instan
e,let f(n) = b, g(n) = 
n+1 and h(n) = b
n+1 where b is some letter di�erentfrom 
. Then, for all n, we have h(n) = f(n)g(n) and �(f)(n)�(g)(n) =b
n 6= b
n+1 = �(h)(n). Thus, we have [f ℄ ·U [g℄ = [h℄ whereas[�(f)℄ ·U [�(g)℄ 6= [�(h)℄:

�4. Interpretability of EqLen with ≤pref and EqLastThe aim of this se
tion is to prove a property whi
h is weaker thanthat of de�nability. It relies on the notion of interpretability whi
h wenow re
all, see, e.g., [16, §4.7℄.A stru
ture A = 〈A; (Sj)j∈J 〉 is interpretable in a stru
ture B if one 
ande�ne in B a subset D ⊆ B, an equivalen
e relation ∼ on D and relations(or fun
tions) �j 's whi
h are 
ompatible with ∼, in su
h a way that the



112 S. GRIGORIEFF, CH. CHOFFRUTquotient of 〈D; (�j)j∈J 〉 by ∼ be isomorphi
 to A. Though 
on
atenationis not de�nable with ≤pref and EqLast, it is nevertheless interpretable.A result whi
h is interesting by itself and the proof of whi
h illustratesthe de�nability power of EqLast with ≤pref. In Theorem 5, we provedthe de�nability of the 
on
atenation by the predi
ates EqLen, ≤pref, andEqLast. Here we show that EqLen is interpretable with the remaining twopredi
ates ≤pref and EqLast.First, we have to develop some 
oding tri
ks in the vein of that usedin the proof of Theorem 1. The idea is the following. If the letters of aword were indexed, then testing that two words are of equal length wouldredu
e to testing whether or not the last values of the indi
es are equal.This is impossible sin
e there is no total ordering de�ned in the in�nitealphabet, but we 
an use a weaker property: if we use pairwise di�erentletters as indi
es, then two words are of the same length if and only ifthere exists a one-to-one mapping between the two sets of indi
es. We arethus led to insert an arbitrary letter before ea
h letter of a given wordwhi
h 
an be interpreted as indexing that letter, provided all these extraletters are di�erent from one another and from the letters of the word.4.1. Inje
tive words and the join operatorFirst, let us introdu
e some 
onvenient tools.De�nition 7. 1. If j ∈ {1; 2}, we denote by �j(x) the map �∗ → �∗ su
hthat �j(") = " (re
all that " denotes the empty word) and, for x ∈ �∗and a ∈ �, �j(xa) = { �j(x) if |xa| 6≡ j mod 2;�j(x)a if |xa| ≡ j mod 2:I.e., �j(x) is obtained by keeping only one letter out of two in x, startingwith the jth one. For instan
e, �1(ab
defg) = a
eg, �2(ab
defg) = bdf .2. The ./ operation on words is a restri
ted form of the traditionalshu�e and is de�ned as follows:�1 : : : �p ./ �1 : : : �q = �1�1 : : : �s�s where s = min(p; q):So that �1(� ./ �) (respe
tively, �2(� ./ �)) is the pre�x of � (respe
tively,of �) with length min(|�|; |�|).3. We let D = {� ./ u | � is inje
tive and no letter of � o

urs in u}.



THE DECISION PROBLEM FOR SOME LOGICS 113Proposition 8. Let � be an in�nite alphabet. The following relationsare all de�nable with ≤pref and EqLast:x ∈ D; x ∈ D ∧ � = �1(x):Proof. First, observe that x ∈ D ∧ � = �1(x) if and only if{ either both � and x are the empty word{ or the following 
onditions are satis�ed(i) � is inje
tive and � 6= " and |x| ≥ 2,(ii) � and Pred(x) have the same last letter,(iii) the last letter of x does not o

ur in �,(iv) if �′ ≤pref � and x′ ≤pref x holds and if �′ and x′ have the samelast letter then(a) |�′| = 1 if and only if |x′| = 1,(b) |�′| ≥ 2 if and only if |x′| ≥ 3,(
) if |�′| ≥ 2 then Pred(�′) and Pred(2)(x′) have the same last letter,(d) the last letter of Pred(x′) does not o

ur in �.All these 
onditions are expressible with ≤pref and EqLast.Finally, x ∈ D if and only if ∃� (x ∈ D ∧ � = �1(x)). �4.2. Expressing EqLen on inje
tive wordsProposition 9. Let � be an in�nite alphabet. The predi
ate�; � are inje
tive words and |�| = |�|is de�nable with ≤pref and EqLast.Proof. First, we 
onsider the 
ase where � and � have no letter in 
om-mon, a 
ondition whi
h is expressible with ≤pref and EqLast.In that 
ase, the word � ./ � is also inje
tive and equality |�| = |�|holds if and only if either both � and � are the empty word or there existsan inje
tive x (whi
h is to be � ./ �) su
h thati. |x| ≥ 2 and EqLast(�; x) and EqLast(�; Pred(x)),ii. If �′ ≤pref � and �′ ≤pref � and x′ ≤pref x and |x′| ≥ 2 andEqLast(�′; x′) and EqLast(�′; Pred(x′)) then(a) either |�′| = |�′| = 1 and |x′| = 2,



114 S. GRIGORIEFF, CH. CHOFFRUT(b) or |�′|; |�′| ≥ 2 and |x′| ≥ 4 and EqLast(Pred(�′); Pred(2)(x′)) andEqLast(Pred(�′); Pred(3)(x′)).These 
onditions are 
learly expressible by a formula  (�; �) using
≤pref and EqLast.Let !(x; y) be the formula ∀x′ ≤pref x ∀y′ ≤pref y ¬EqLast(x′; y′)whi
h expresses that x; y have disjoint alphabet. In the 
ase � and � haveletters in 
ommon, use an auxiliary inje
tive word � having no letter in
ommon with � and � and observe that,

|�| = |�| ⇔ ∃� ( (�; �) ∧  (�; �) ∧ !(�; �) ∧ !(�; �)): �4.3. The basi
 equivalen
e on DProposition 8 insures that one 
an get � from � ./ u when |u| = |�|using only ≤pref and EqLast. However, it is not possible to get u from� ./ u. The following proposition tells the best we 
an do.Proposition 10. Let � be an in�nite alphabet. The following equiva-len
e relation is de�nable with ≤pref and EqLast:x ∼ y ⇔ x; y ∈ D ∧ �2(x) = �2(y):Proof. Observe that x ∼ y if and only if there exist words �, � su
h that(i) x ∈ D ∧ �1(x) = � and y ∈ D ∧ �1(y) = �,(ii) �; � are inje
tive and |�| = |�|,(iii) EqLast(x; y),(iv) If �′ ≤pref �, �′ ≤pref �, x′ ≤pref x, y′ ≤pref y and |x′|; |y′| ≥ 2and |�′| = |�′| ≥ 1 and EqLast(�′; x′) and EqLast(�′; y′) then(a) either |�′| = |�′| = 1 and |x′| = |y′| = 2,(b) or |�′| = |�′| ≥ 2 and |x′| = |y′| ≥ 4 and EqLast(Pred(�′),Pred(2)(x′)) and EqLast(Pred(�′); Pred(2)(y′)).Finally, we use Propositions 8 and 9 to express the above 
onditions.
�4.4. The interpretation theoremTheorem 11. Let � be an in�nite alphabet and let D and ∼ be asin De�nition 7 and Proposition 10. The inverse images in D under �2of relations ≤pref, EqLen, EqLast (respe
tively, Lasta where a ∈ �),namely relations



THE DECISION PROBLEM FOR SOME LOGICS 115PREF ={(x; y) ∈ D ×D | �2(x) ≤pref �2(y)};EQL ={(x; y) ∈ D ×D | |�2(x)| = |�2(y)|};EQLA ={(x; y) ∈ D ×D | EqLast(�2(x); �2(y))};(respe
tively, LASTa={x ∈ D | Lasta(�2(x))})are all de�nable with ≤pref and EqLast (resp. and Lasta).In parti
ular, the stru
ture
〈�∗;≤pref; EqLen; EqLast; (Lasta)a∈�〉is isomorphi
 to the quotient under ∼ of the stru
ture

〈D; PREF; EQL; EQLA; (LASTa)a∈�〉;hen
e is interpretable in
〈�∗;≤pref; EqLast; (Lasta)a∈�〉:Proof. The de�nition of the equivalen
e ∼ insures that the relationsPREF, EQL, EQLA, and LASTa are 
ompatible with ∼.Let x; y ∈ D and let � = �1(x) and � = �1(y). Then �; � are inje
tiveand x = � ./ u and y = � ./ v and �; u (respe
tively, �; v) have no letterin 
ommon. We prove thatEqLast(�2(x); �2(y)) ⇔ EqLast(x; y);Lasta(�2(x)) ⇔ Lasta(x);EqLen(�2(x); �2(y)) ⇔ ∃� ∃� (�1(x) = � ∧ �1(y) = � ∧ |�| = |�|);�2(x) ≤pref �2(y) ⇔ ∃x̃ ∃ỹ (x̃ ∼ x ∧ ỹ ∼ y ∧ x̃ ≤pref ỹ):The assertions about EqLast and Lasta are obvious sin
e the last letter ofu is that of � ./ u. That about EqLen is easy sin
e |�| = |u| and |�| = |v|.Let us prove the assertion about ≤pref.

⇐. From x̃ ≤pref ỹ we get �2(x̃) ≤pref �2(x̃). Sin
e x̃ ∼ x and ỹ ∼ y,we have �2(x̃) = �2(x) and �2(ỹ) = �2(y). Thus, �2(x) ≤pref �2(y).
⇒. Assertion �2(x) ≤pref �2(y) means u ≤pref v. Let � beany inje
tive word with length equal to max(|�|; |�|). It suÆ
es to setx̃ = � ./ u and ỹ = � ./ v. �Using Theorems 5 and 11, we get the following 
orollary.



116 S. GRIGORIEFF, CH. CHOFFRUTCorollary 12. Let � be an in�nite alphabet.1. One 
an interpret the stru
ture 〈�∗; =; ·〉 in 〈�∗;≤pref; EqLast〉.2. Let A be a �nite subalphabet of �. One 
an interpret the stru
ture
〈A∗; =; ·〉 in 〈�∗;≤pref; EqLast; (Lasta)a∈A〉.5. De
idability of the �1 theory of

〈�∗; ≤pref, EqLast, (EqLenk)k∈Z, (Lasta)a∈�〉The purpose of this paragraph is to show that the existential fragmentof our logi
 is de
idable. This is a
hieved via the 
hara
terization of thepredi
ates in terms of syn
hronous multi-tape �nite automata on in�nitealphabets as de�ned in our paper [5℄.Let �0 be some �nite subalphabet of �. Re
all that the ability of a�0-syn
hronous n-tape �nite automata A on an in�nite alphabet � is asfollows:
• A distinguishes the sole letters of �0. All the letters in � \ �0 aretreated by A in the same way ex
ept that it 
an dete
t whether thes
anned letters on two of the n tapes are distin
t or not.
• Thus, the kth transition on input (u1; : : : ; un) depends on the 
ur-rent state of A and on the truth of the statementsui[k℄ = a; ui[k℄ = uj [k℄; where i; j = 1; : : : ; n and a ∈ �0;where u[k℄ is the kth letter of u in 
ase |u| ≥ k and a spe
ial markernot belonging to the alphabet � otherwise.The following result 
hara
terizes the relations re
ognized by su
h au-tomata in terms of logi
 de�nability, [5℄.Theorem 13. Let � be an in�nite alphabet. A relation R ⊆ (�∗)n is re
-ognized by some �0-syn
hronous n-tape �nite automaton if and only if it isde�nable in the stru
ture 〈�∗;≤pref, EqLen, EqLenEqLast, (Lasta)a∈�0〉.In order to strengthen our de
idability result for existential formulas,we enri
h the language as mu
h as possible. A 
onvenient tool is thefollowing straightforward appli
ation of Theorem 13.Proposition 14. Let � be an in�nite alphabet. Let Syn� be the familyof syn
hronous relations, i.e., of �0-syn
hronous relations for some �nitesubalphabet �0 of �. Let SynFun� be the family of syn
hronous fun
tions,i.e., fun
tions (�∗)n → �∗ with graphs in Syn�.



THE DECISION PROBLEM FOR SOME LOGICS 117The family Syn� is 
losed under Boolean operations, proje
tions and
ylindri�
ations and hen
e under substitutions of arguments by syn-
hronous fun
tions. The family SynFun� is 
losed under 
omposition.We 
an now state and prove our de
idability result.Theorem 15. Let � be an in�nite alphabet. The existential theory ofthe stru
ture
〈�∗; (f)f∈SynFun� ; (R)R∈Syn� ; EqLast〉is de
idable.In parti
ular, sin
e the fun
tion Pred and all relations ≤pref, EqLenkand Lasta are syn
hronous, this de
idability result applies to the existen-tial theory of �∗ with this fun
tion and these relations.Proof. As usual, it suÆ
es to de
ide the truth of formulas of the form

∃x1 : : :∃xn ('1 ∧ : : : ∧ 'p) where the 'i's are atomi
 formulas or nega-tions of atomi
 formulas. Proposition 14 allows us to regroup all literalsasso
iated to relations in Syn�. Thus, we are redu
ed to de
ide formulas(∗) ∃x1 : : :∃xn (R(x1; : : : ; xn) ∧ ∧(i;j)∈B EqLast(xi; xj) ∧ ∧(i;j)∈C ¬EqLast(xi; xj))with B;C ⊆ {1; : : : ; n} × {1; : : : ; n} and R ∈ Syn�0� for some �nite �0.Claim. Let � = �0 ∪ �0 ∪ : : : ∪ �n where the �i's are pairwise disjointsubalphabets of �\�0, ea
h 
ontaining n letters. Formula (∗) is equivalentto that obtained by restri
ting x1; : : : ; xn to �∗.Proof of Claim. The ⇐ dire
tion is trivial. Let us prove the ⇒ dire
tion.Suppose (x1; : : : xn) is a solution of (∗). Consider the tuple (y1; : : : yn)obtained as follows, where i; j = 1; : : : ; n and k ∈ N,
• |yi| = |xi|,
• xi[k℄ ∈ �0 ⇒ yi[k℄ = xi[k℄,
• xi[k℄ = xj [k℄ ⇔ yi[k℄ = yj [k℄.
• If k 6= |x1|; : : : ; |xn| then the letters y1[k℄; : : : ; yn[k℄ are in �0 ∪ �0,
• if k = |xi| and i is minimal with this property, then the lettersy1[k℄; : : : ; yn[k℄ are in �0 ∪ �i.Let now E be an equivalen
e on �1∪ : : :∪�n to be de�ned below su
hthat (a; b) ∈ E and a ∈ �i and b ∈ �j imply i 6= j. Let (z1; : : : zn) beobtained from (y1; : : : yn) by identifying pairs of letters in E.



118 S. GRIGORIEFF, CH. CHOFFRUTLet A be a �0-syn
hronous n-tape �nite automaton re
ognizing R.Sin
e A only distinguishes letters in �0 and equalities/disequalities ofletters at the same position in the di�erent 
omponents, the tuples(x1; : : : ; xn), (y1; : : : yn), and (z1; : : : ; zn) are simultaneously in or out-side R. Let E 
orrespond exa
tly to the equalities holding between the lastletters of x1; : : : ; xn. Then (z1; : : : ; zn) satis�es exa
tly the same EqLastrelations than (x1; : : : ; xn) does. In parti
ular, (z1; : : : ; zn) is a solutionof (∗) whi
h proves the Claim.To 
on
lude the proof of the theorem, re
all that, for a �nite alphabet�, EqLast is re
ognizable by a �-syn
hronous automaton. Thus, the aboveClaim insures that (∗) redu
es to the emptiness problem for su
h automataon alphabet �, whi
h is known to be de
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