
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 358, 2008 Ç.S. Grigorie�, Ch. Cho�rutTHE DECISION PROBLEM FOR SOME LOGICSFOR FINITE WORDS ON INFINITE ALPHABETSAbstrat. This paper is a follow-up of a previous paper where the log-ial haraterization of Eilenberg, Elgot, and Shepherdson of nary syn-hronous relations was investigated in the ase where the alphabet hasin�nitely many letters. Here we show that modifying one of the predi-ate leads to a ompletely di�erent piture for in�nite alphabets though itdoes not hange the expressive power for �nite alphabets. Indeed, roughlyspeaking, being able to express the fat that two words end with the samesymbol leads to an undeidable theory, already for the �2 fragment. Fi-nally, we show that the existential fragment is deidable.1. IntrodutionThe purpose of this work is to investigate di�erent theories of the freemonoid in the ase where it has an in�nite, denumerable number of gen-erators.The study of the theories of the free �nitely generated monoid, i.e.,words on a �nite alphabet, dates bak to the late sixties and has a widerange of appliations in omputer siene. Reently, in�nite alphabetshave also been onsidered in several appliations, e.g., in database theory[1, 2℄ and model heking [6℄.It is well-known (Quine, [14℄) that adding onatenation leads to anundeidable theory when the free monoid ontains at least two genera-tors, so this operation is not onsidered diretly. Variants of elementaryprediates are onsidered whih are related to the underlying partial or-dering: \u is a pre�x of v" (denoted by u ≤pref v), \u and v have thesame length" (denoted by EqLen(u; v)), and the last letter of a word: \uends with a spei� letter a" (denoted by Lasta(u)). This is in essenethe struture studied by Eilenberg, Elgot, and Shepherdson in [8℄, wherethe authors haraterize \�a la B�uhi" the de�nable relations in terms ofthe so-alled synhronous automata, and reprove the deidability of thetheory (a result �rst established by Shepherdson, [15℄).100



THE DECISION PROBLEM FOR SOME LOGICS 101Before presenting our ontribution let us go through speial features ofthe free monoid generated by a denumerable in�nite alphabet to be foundin the literature.1. Vazhenin & Rozenblat [18℄ proved that, for an in�nite alphabet, thepositive theory of onatenation is deidable. On the opposite, thepositive theory of onatenation over a �nite alphabet is undeidable(Quine, [14℄). Even the ∀∃3-positive theory is undeidable (Durnev,[7℄).2. Let us add to �nite automata registers able to memorize any let-ter of the alphabet and let us allow omparison between the letterurrently read and the ontents of the registers. In ase of �nite al-phabets, suh automata are equivalent to the usual ones. However,for an in�nite alphabet, this really matters: the universal problemfor suh nondeterministi register automata is undeidable (Neven& Shwentik & Vianu, [11, 12℄).3. Answering a question of [8℄, we proved in [5℄ that if � is in�nite thenthe prediate EqLenEqLast = {(ua; va) | u; v ∈ �∗; |u| = |v|; a ∈ �}is not de�nable with EqLen, ≤pref and the Lasta's, a ∈ �.Also, if R is de�nable with EqLen, ≤pref and the Lasta's, then(i) there exists a smallest �nite �0 ⊂ � suh that R is de�nable withEqLen, ≤pref and the sole Lasta's where a ∈ �0.(ii) if �0 6= ∅ then R is de�nable with EqLen, ≤pref and the soleLasta's where a ∈ �0, if and only if, R is invariant under all permu-tations of � whih are the identity on �0.(iii) R is de�nable with EqLen, ≤pref and |u| ≡ k mod ` for allk < ` ∈ N (and with no Lasta) if and only if R is invariant underall permutations of �.All these results are false for �nite alphabets �: EqLenEqLast isde�nable with EqLen and the Lasta's and disproves (iii). Also,R�0 =
{xx | x ∈ � \ �0} disproves (ii) if � \ �0 has at least two letters.The purpose of this paper is to add some new results in that vein. First,let us �x some notations.Notation 1. Let � be an in�nite alphabet.

• ", ≤pref and Pred : �∗ → �∗, respetively, denote the empty word,the pre�x ordering on �∗ and the map suh that Pred(") = " andPred(a1 : : : an) = a1 : : : an−1 (both " and Pred are de�nable with
≤pref).
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• For k ∈ Z, EqLenk denotes the binary relation {(u; v) | |u| = |v|+k}where |u| is the length of u. We also write EqLen in plae of EqLen0.
• For a ∈ �, Lasta denotes the unary relation �∗a and EqLast denotesthe binary relation {(ua; va) | u; v ∈ �∗; a ∈ �}, i.e., the set of pairsof words whih end with the same letter.In [5℄, we onsidered the logi with prediates ≤pref, EqLen and theLasta's, a ∈ �, and its extension with EqLenEqLast (f. point 3 above), forwords in an in�nite alphabet, and introdued the notions of synhronousand \oblivious synhronous" automata whih haraterize them. As aonsequene, we derived the deidability of these logis.Here we go one step further by onsidering the prediate EqLast. Thepiture in that ase is ompletely di�erent sine the theory is no longerdeidable, a big departure from the ase of �nite alphabets. More preiselywe are able to prove that the existential fragment is deidable while the�2 fragment is undeidable.Our main results are stated in the next two theorems. The �rst re-sult establishes the undeidability of the theory. Setion 2 is devoted tothe proof of Point 1. A strong version of Point 2 is given in Se. 5 asTheorem 15.In ontrast, remember that in order to get an undeidable theory inase the alphabet is �nite and has at least two letters, one has to onsiderstronger languages obtained by adding the prediate \u is a suÆx of v"(f. B�uhi, [3℄) or \u is a fator of v."Theorem 1. Let � be an in�nite alphabet.1. The ∃∀∀ theory of the struture 〈�∗;≤pref; "; Pred; EqLast〉 is unde-idable.2. The �1 theory of

〈�∗;≤pref; "; Pred; (EqLenk)k∈Z; EqLast; (Lasta)a∈�〉is deidable.Let us stress that this undeidability property is spei� to in�nitealphabets. Indeed, for �nite alphabets, EqLast is de�nable with the pred-iates Lasta's, a ∈ �, and the theory of ≤pref, EqLen and the Lasta's isdeidable, f. [15, 8℄. Also, Rabin's elebrated result insures that, for �niteor in�nite alphabets, the monadi seond order theory of ≤pref and theLasta's is deidable.



THE DECISION PROBLEM FOR SOME LOGICS 103The seond theorem is onerned with de�nability or unde�nabilityproperties of ertain prediates one from another. Its proof is given inSe. 3 (Theorems 5 and 6) and Se. 4 (Theorem 11).Theorem 2. Let � be an in�nite alphabet.1.Conatenation is de�nable in the struture 〈�∗;≤pref; EqLen; EqLast〉.2. In 〈�∗;≤pref; EqLast; (Lasta)a∈�〉, neither onatenation nor EqLenare de�nable.3. 〈�∗;≤pref; EqLen; EqLast〉 is interpretable in 〈�∗;≤pref; EqLast〉.Observe that items 1 and 3 in Theorem 2 do no longer hold for �nitealphabets: they would violate the undeidability of the theory of the freemonoid with onatenation (Quine, [14℄) and that of the monadi seondorder theory of the free monoid with the suessor funtions u 7→ ua andEqLen (Vidal-Naquet, [19℄). As for item 2, nonde�nability of onatenationalso holds for any nonempty �nite alphabet and nonde�nability of EqLenholds whenever � has at least two letters.2. The �2 theory of ≤pref; Pred; EqLast is undeidable2.1. Coding Post Correspondene Problem with EqLastReall the Post Correspondene Problem (PCP) for words in {a; b}∗:
• An instane � = {(u1; v1); : : : ; (uk; vk)} of PCP is a �nite subset ofpairs of words in {a; b}∗.
• A nontrivial solution of the PCP for � is a nonempty sequene(i1; : : : ; ir) ∈ {1; : : : ; k}∗ suh that ui1 : : : uir = vi1 : : : vir .As is well known, PCP is undeidable, even if we restrit it to �'sfor whih k ≤ 7 (Matiyasevih & Senizergues, [9, 10℄). It also remainsundeidable if we restrit it to families � = {(u1; v1); : : : ; (uk; vk)} suhthat all ui's and vi's are nonempty.To prove the stated undeidability result, we ode the Post Correspon-dene Problem with EqLast and ≤pref.Theorem 3. Let � be an in�nite alphabet and let a; b ∈ �. To anyinstane � = {(u1; v1); : : : ; (uk; vk)} of the PCP for pairs of nonemptywords in {a; b}∗, one an reursively assoiate a losed ∃∀∀ formula F� ofthe language

L = {≤pref; Pred ; " ; Lasta ; Lastb ; EqLast}



104 S. GRIGORIEFF, CH. CHOFFRUTsuh that � has a nontrivial solution if and only if F� is true in �∗.Proof. We start with an informal introdution of the enoding of asolution of an instane of PCP. Suppose we are given the instane(u1; v1) = (a; aba) and (u2; v2) = (baaab; a) whih has the solutionw = a baaab a = aba a aba. Consider the oarsest fatorization whihre�nes both fatorizations w = a ba a ab a. A possible tentative onsistsof introduing an sth marker s and an sth marker Æs, taken in �\ {a; b},at the beginning of the sth ourrene of a fator uis and vis , respetively,together with �nal markers:1Æ1a2baÆ2aÆ3ab3a4Æ4:Sine � is in�nite we an suppose all 's and all Æ's to be distint. Also, wean express the fat that the 's and Æ's are distint, but there is no waywe an relate i with Æi for i = 1; : : : 4. This is ahieved by substitutingia for eah ourrene of i and ib for eah ourrene of Æi, leading tothe following enoding:(1a)(1b)a(2a)ba(2b)a(3b)ab(3a)a(4a)(4b):Formally, onsider a nontrivial solution S = ui1 : : : uir = vi1 : : : vir ofan instane of the PCP. Let w1 : : : wm be the oarsest fatorization ofS re�ning the previous two fatorizations. For eah wi there are threepossible ases:{ either it is a pre�x of an ourrene uis solely{ or it is a pre�x an ourrene of vi` solely{ or it is a pre�x of an ourrene uis and of an ourrene of vi` .Then set S′ = z1w1 : : : zmwmr+1ar+1b where for 1 ≤ i ≤ m, we havezi = isa in the �rst ase and zi = i`b in the seond ase and zi =isai`b, in the last ase.It then suÆes to observe that the family of suh words S′ an beexpressed in the theory. Indeed, S′ enodes a solution of the PCP for � ifand only if it satis�es the following onditions where � = � \ {a; b}:(i) Start and end.(i1) |S′| ≥ 9(i2) There exists  ∈ � suh that ab is a pre�x of S′.(i3) There exists ′ ∈ � suh that ′a′b is a suÆx of S′.(ii) Markers. Every ourrene in S′ of a letter in � is immediatelyfollowed by an ourrene of a or b.



THE DECISION PROBLEM FOR SOME LOGICS 105(iii) Markers are distint. No fator in �a or �b ours twie in S′.(iv) Indutive step of a bakward deomposition of S′.If  ∈ � and xa and yb are both pre�xes of S′ then either x = "and y = a or there exists (ui; vi) ∈ � and u′i, v′i and ′ ∈ � suhthat
• ′au′i is a suÆx of x and ′bv′i is a suÆx of y
• u′i ∈ (�b∪ {"})ui;1�bui;2 : : :�bui;mi where ui = ui;1ui;2 : : : ui;mi andthe ui;j 's are 6= ",
• v′i ∈ vi;1�avi;2 : : :�avi;ni(�a ∪ {"}) where vi = vi;1vi;2 : : : vi;ni andthe vi;j 's are 6= ".Observe that mi ≤ |ui| and ni ≤ |vi| sine the ui;j 's and vi;j 's are 6= ".Thus, the lengths of u′i; v′i are bounded.We now express onditions (i){(iv) in the language L. For s ≥ 2, letPred(s) denote the sth iterate of Pred. First, observe that the prediatesLast�(x) (whih means x ∈ �∗�), |x| ≥ s and |x| = s are expressible in

L by the following quanti�er-free formulas:Last�(x) ≡ x 6= " ∧ ¬Lasta(x) ∧ ¬Lastb(x);
|x| ≥ s ≡ Pred(s−1)(S′) 6= ";
|x| = s ≡ Pred(s−1)(S′) 6= " ∧ Pred(s)(S′) = ":Condition (i1). See above.Conditions (i2){(i3). The prediate ∃ ∈ � z ∈ �∗ab is expressibleby the formula �(z) suh that�(z) ≡

{
|z| ≥ 4 ∧ EqLast(Pred(1)(z); Pred(3)(z))
∧Lastb(z) ∧ Lasta(Pred(2)(z)) ∧ Last�(Pred(1)(z)):Now, ondition (i3) is the quanti�er-free formula �(S′) and ondition (i2)is the formula ∀x ((x ≤pref S′ ∧ |x| = 4) ⇒ �(x)).Condition (ii). Consider the formula

∀x ≤pref S′ [Last�(Pred(1)(x)) ⇒ (Lasta(x) ∨ Lastb(x))℄;Condition (iii). It an be expressed by the ∀2 formula
∀x ∀y 










(x <pref y ≤pref S′ ∧ EqLast(x; y)
∧ (Lasta(x) ∨ Lastb(x))
∧ Last�(Pred(x)) 

 ⇒ ¬EqLast(Pred(x); Pred(y)) :



106 S. GRIGORIEFF, CH. CHOFFRUTCondition (iv). Let !0; : : : ; !q; �0; : : : ; �p ∈ {a; b}∗. The prediates
• ∃ ∈ � (x ∈ �∗a ∧ y ∈ �∗b)
• ∃1; : : : ; p; ′1; : : : ; ′q ;  ∈ �(x ∈ �∗�01b�1 : : : pb�pa ∧ y ∈ �∗!0′1a!1 : : : ′qa!qb)are expressible in L by quanti�er-free formulas �(x; y) and �!0;::: ;!q�0;::: ;�p (x; y)similar to the above �.Condition (iv) an be expressed by the ∀2 formula

∀x ∀y [(x ≤pref S′ ∧ y ≤pref S′ ∧�(x; y) ⇒ (|x| = 2∧ |y| = 4∧ �(y))
∨

∨(ui;vi)∈� ∨(!0;::: ;!q)∈D(ui) ∨(�0;::: ;�p)∈D(vi) �!0;::: ;!q�0;::: ;�p (x; y);where D(u) is the �nite family of tuples (�0; : : : ; �q) of nonempty wordssuh that �0 : : : �q = u.Finally, the desired formula F� is ∃S′ �(S′) where � is the onjuntionof all formulas assoiated to onditions (i) to (iv) above. Sine the univer-sal quanti�ers of the diverse onjunts an be fatorized, we see that F�is of the form ∃∀2. �2.2. Proof of point 1 of Theorem 1Let F� = ∃S′ ∀x ∀y 	(S′; x; y) be as in Theorem 3. To eliminate theonstants a, b from 	, we use ondition (i3) above whih insures that bis the last letter of S′ and a is the last one of Pred(2)(S′) and we expressthe fat that a 6= b as a property of S′.Let G(S′; x; y) be obtained from 	(S′; x; y) by replaing every our-rene of the atomi formula Lastb(z) (where z is x or y) by the formulaEqLast(z; S′) and every ourrene of the atomi formula Lasta(z) byEqLast(z; Pred(2)(S′)). Clearly, F� is equivalent to the following ∃∀∀ for-mula whih uses only ≤pref, Pred and EqLast together with the soleonstant ":
∃S′ ∀x ∀y (¬EqLast(S′; Pred(2)(S′)) ∧ G(S′; x; y)):



THE DECISION PROBLEM FOR SOME LOGICS 1073. Definability of onatenationIn this setion, we show that onatenation of words may be de�nedwith the three prediates ≤pref, EqLen, EqLast but that it is independentof the two prediates ≤pref and EqLast.3.1. De�ning onatenation with ≤pref, EqLen, EqLastWe �rst show that the onatenation of two words whose letters arepairwise di�erent an be de�ned via the two prediates ≤pref andEqLast. This will allow us to show the de�nability of the onatenationof any two arbitrary words using the three prediates of our struture.A word is injetive if it does not ontain two ourrenes of the sameletter. Observe that, in the ontext of in�nite alphabets, there are arbi-trarily large injetive words.Reall that both " and Pred are de�nable with ≤pref.Proposition 4. Let � be an in�nite alphabet. The relationR = {(u; v; w) | uv is injetive and w = uv}is de�nable by a ∀∀ formula �(u; v; w) with ≤pref, Pred, " and EqLast.Proof. Observe that (u; v; w) ∈ R if and only if(i) u, v and w are injetive words and u; v have no letter in ommon,(ii) Trivial ase. If v is empty then w = u.(iii) Initial step of the bakward analysis. If v is not empty then v; w havethe same last letter.(iv) Indutive step of the bakward analysis. If x and y are pre�xes of vand w and |x| ≥ 2 and x; y have the same last letter then |y| ≥ 2and Pred(x); Pred(y) also have the same last letter.(v) Final step of the bakward analysis. If x and y are pre�xes of v andw and |x| = 1 and x; y have the same last letter then Pred(y) = u.In fat, (u; v; w) ∈ R learly implies all these onditions.Conversely, suppose these onditions hold. Condition (ii) solves the asewhere v is empty. So suppose v is nonempty. Conditions (iii), (iv) insurethat v is a suÆx of w and ondition (v) shows that the assoiated pre�xof w is u. Thus, (u; v; w) ∈ R.Finally, it is easy to see that eah one of onditions (i){(v) is express-ible in the language (≤pref; Pred; "; EqLast) with two universal quanti�-ations.
�



108 S. GRIGORIEFF, CH. CHOFFRUTTheorem 5. Let � be an in�nite alphabet. Conatenation is de�nablein the struture 〈�∗;≤pref; EqLen; EqLast〉.Using the extra funtion Pred and the onstant " (whih are de�nablewith ≤pref), onatenation an be de�ned by a ∃3∀4 formula.Proof. Observe that w = uv if and only if v = " and w = u or v 6= " andthere exist �; �; � suh that(i) �; � are injetive words whih have no letter in ommon.(ii) |�| = |u|, |�| = |v|, |�| = |w| and �� = �.(iii) u is a pre�x of w.(iv) If �′; � ′; v′; w′ are nonempty pre�xes of �; �; v; w and |�′| = |v′| and
|� ′| = |w′| and �′; � ′ have the same last letter then v′; w′ also havethe same last letter.Using Proposition 4, this is learly expressible with ≤pref, Pred, ",EqLen, and EqLast by a ∃3∀4 formula (the existential quanti�ations beingover �, �, � and the universal ones over �′, � ′, v′, w′). �3.2. Nonde�nability of onatenation with ≤pref and EqLastLet us denote by · the onatenation operation.The de�nition of onatenation obtained in the previous paragraph usesboth prediates EqLen and EqLast. Of ourse, one annot remove EqLastsine the theory of ≤pref, EqLen, (Lasta)a∈� is deidable, f. [15, 8℄.In order to show that we annot remove EqLen, we use the followingsimple property: if EqLen or · were de�nable in �∗ from ≤pref, EqLastand the Lasta's, the same would be true in any elementary extension ofthis struture, in partiular in any ultrapower. So, to prove the negativeresult we are looking for, we onstrut an ultrapower of the struture

〈�∗;≤pref; EqLen; EqLast; ·; (Lasta)a∈�〉;for whih there is a bijetion of the domain whih does preserve the in-terpretations of ≤pref, EqLast and the Lasta's but does not preservethose of · nor EqLen. Let us reall that an ultra�lter U on N is a familyof subsets of N losed by intersetion and superset and suh that, for allX ⊆ N, either X or its omplement N \X is in U . The ultrapower AU ofa struture A is obtained as follows:{ its domain is the set of equivalene lasses of the equivalene ∼U on
AN suh that f ∼U g ⇔ {i ∈ N | f(i) = g(i)} ∈ U ,



THE DECISION PROBLEM FOR SOME LOGICS 109{ the interpretation in AU of funtion and relation symbols are ob-tained as follows. First, lift the interpretations in A to AN in theobvious omponentwise way. Seond, quotient by ∼U . Lo�s theorem insures that, for any formula F (x1; : : : ; xn), and anyf1; : : : ; fn ∈ AN, letting [fi℄ be the ∼U lass of fi, we have
AU |= F ([f1℄; : : : ; [fn℄) ⇔ {i ∈ N | A |= F (f1(i); : : : ; fn(i))} ∈ U :The elementary embedding of A into AU maps a ∈ A to the lass of theonstant funtion N → A with value a. For more details on the methodof ultrapowers, we refer to standard textbooks, see, e.g., [4℄ or [13℄.Theorem 6. Let � be a �nite or in�nite alphabet with at least twoletters. Neither EqLen nor onatenation is de�nable in the struture

W = 〈�∗;≤pref; EqLast; (Lasta)a∈�〉:Proof. Let A be the struture W enrihed with the · operation and theEqLen prediate. Consider a nonprinipal ultra�lter U on N and let
AU = 〈(�∗)N= ∼U ; = ; ≤Upref ; EqLenU ; EqLastU ; (LastUa )a∈� ; ·U 〉be the U-ultrapower of A with domain (�∗)N=U where ∼U is the equiva-lene on (�∗)N suh that, for f; g : N → �∗,f ∼U g ⇔ {i | f(i) = g(i)} ∈ U :We denote by [f ℄ the ∼U equivalene lass of f : N → �∗. Let � : A → AUbe the natural embedding suh that �(u) is the ∼U lass of the onstantfuntion with value u. Sine � is an elementary embedding, in order toprove the theorem, it suÆes to onstrut a bijetion of (�∗)N=U into itselfwhih preserves ≤Upref, the LastUa 's and EqLastU but does not preserve
·U nor EqLenU .For u ∈ �∗ and  ∈ �, let us denote by −1u the word v suh thatu = v if u starts with , else v = u. We �x some  ∈ � and onsider thefamily F of f : N → �∗ suh that [f ℄ admits all �(k) as pre�xes:f ∈ F ⇔ ∀k ∈ N �(k) ≤Upref [f ℄ ⇔ ∀k ∈ N {n | k ≤pref f(n)} ∈ U :



110 S. GRIGORIEFF, CH. CHOFFRUTWe de�ne � : (�∗)N → (�∗)N as follows: for f ∈ (�∗)N,�(f)(i) = { −1f(i) if f ∈ F ;f(i) if f =∈ F :Intuitively, when there is a nonstandard initial blok of letters  in [f ℄U ,we remove the �rst letter of this blok, else we do nothing. To prove that� indues a bijetion on A whih respets =, ≤pref, EqLast and theLasta's, we onsider f; g : N → �∗ and prove that(i) [f ℄ = [g℄ if and only if [�(f)℄ = [�(g)℄,(ii) [f ℄ ≤Upref [g℄ if and only if [�(f)℄ ≤Upref [�(g)℄,(iii) EqLastU([f ℄; [g℄) if and only if EqLastU ([�(f)℄; [�(g)℄),(iv) LastUa ([f ℄) if and only if LastUa ([�(f)℄).We argue by ases.Case f =∈ F and g =∈ F . Trivial sine then �(f) = f and �(g) = g.Case f ∈ F and g =∈ F . Sine g =∈ F , there exists k suh that {n | k
6≤pref g(n)} ∈ U . Now

{n | k ≤pref f(n)} and {n | k+1 ≤pref f(n)}are both in U . Thus, {n | k ≤pref −1f(n)} = {n | k ≤pref �(f)(n)} ∈

U . In partiular, {n | f(n) 6≤pref g(n)} and {n | �(f)(n) 6≤pref g(n)}are both in U . This proves [f ℄ 6≤Upref [g℄ and [�(f)℄ 6≤Upref [�(g)℄. Henealso [f ℄ 6= [g℄ and [�(f)℄ 6= [�(g)℄. Thus, (i) and (ii) hold.Sine {n | |f(n)| ≥ 2} ∈ U we see that {n | EqLast(f(n);�(f)(n))} ∈
U . Thus, EqLastU ([f ℄; [�(f)℄). Now, EqLast is transitive, hene so isEqLastU . Sine �(g) = g we see thatEqLastU ([f ℄; [g℄) ⇔ EqLastU ([�(f)℄; [g℄) ⇔ EqLastU([�(f)℄; [�(g)℄);whih gives (iii).Sine A |= EqLast(x; y) ⇒ (Lasta(x) ⇔ Lasta(y)) we have

AU |= EqLastU(x; y) ⇒ (LastUa (x) ⇔ LastUa (y))whih proves assertion (iv) (let x be [f ℄ and y be [�(f)℄).



THE DECISION PROBLEM FOR SOME LOGICS 111Case f =∈ F and g ∈ F . By symmetry, equivalenes (i), (iii), and (iv)are similar to the previous ase. Let us prove (ii). As before, there existsk suh that the three sets
{n | k 6≤pref f(n)}; {n | k ≤pref g(n)}; {n | k ≤pref �(g)(n)}are in U . Let X be their intersetion (whih is in U). Then,n ∈ X⇒(f(n) ≤pref k−1⇔f(n) ≤pref �(g)(n)⇔f(n) ≤pref g(n)):Sine �(f) = f , this proves that {n | f(n) ≤pref g(n)} ∈ U if and onlyif {n | �(f)(n) ≤pref �(g)(n)} ∈ U , whene (ii).Case f ∈ F and g ∈ F . The setX = {n |  ≤pref f(n) ∧  ≤pref g(n)}is in U . For n ∈ X , we have �(f)(n) = f(n) and �(g)(n) = g(n). Fromthis, we easily dedue onditions (i) to (iv).We now show that � does not preserve EqLen. For instane, let f(n) =n+1 and g(n) = bn+1 where b is some letter di�erent from . Then, forall n, we have |f(n)| = |g(n)| and |�(f)(n)| = |�(g)(n)| − 1, so thatEqLenU ([f ℄; [g℄) but ¬EqLenU([�(f)℄; [�(g)℄).Finally, observe that � does not preserve onatenation. For instane,let f(n) = b, g(n) = n+1 and h(n) = bn+1 where b is some letter di�erentfrom . Then, for all n, we have h(n) = f(n)g(n) and �(f)(n)�(g)(n) =bn 6= bn+1 = �(h)(n). Thus, we have [f ℄ ·U [g℄ = [h℄ whereas[�(f)℄ ·U [�(g)℄ 6= [�(h)℄:

�4. Interpretability of EqLen with ≤pref and EqLastThe aim of this setion is to prove a property whih is weaker thanthat of de�nability. It relies on the notion of interpretability whih wenow reall, see, e.g., [16, §4.7℄.A struture A = 〈A; (Sj)j∈J 〉 is interpretable in a struture B if one ande�ne in B a subset D ⊆ B, an equivalene relation ∼ on D and relations(or funtions) �j 's whih are ompatible with ∼, in suh a way that the



112 S. GRIGORIEFF, CH. CHOFFRUTquotient of 〈D; (�j)j∈J 〉 by ∼ be isomorphi to A. Though onatenationis not de�nable with ≤pref and EqLast, it is nevertheless interpretable.A result whih is interesting by itself and the proof of whih illustratesthe de�nability power of EqLast with ≤pref. In Theorem 5, we provedthe de�nability of the onatenation by the prediates EqLen, ≤pref, andEqLast. Here we show that EqLen is interpretable with the remaining twoprediates ≤pref and EqLast.First, we have to develop some oding triks in the vein of that usedin the proof of Theorem 1. The idea is the following. If the letters of aword were indexed, then testing that two words are of equal length wouldredue to testing whether or not the last values of the indies are equal.This is impossible sine there is no total ordering de�ned in the in�nitealphabet, but we an use a weaker property: if we use pairwise di�erentletters as indies, then two words are of the same length if and only ifthere exists a one-to-one mapping between the two sets of indies. We arethus led to insert an arbitrary letter before eah letter of a given wordwhih an be interpreted as indexing that letter, provided all these extraletters are di�erent from one another and from the letters of the word.4.1. Injetive words and the join operatorFirst, let us introdue some onvenient tools.De�nition 7. 1. If j ∈ {1; 2}, we denote by �j(x) the map �∗ → �∗ suhthat �j(") = " (reall that " denotes the empty word) and, for x ∈ �∗and a ∈ �, �j(xa) = { �j(x) if |xa| 6≡ j mod 2;�j(x)a if |xa| ≡ j mod 2:I.e., �j(x) is obtained by keeping only one letter out of two in x, startingwith the jth one. For instane, �1(abdefg) = aeg, �2(abdefg) = bdf .2. The ./ operation on words is a restrited form of the traditionalshu�e and is de�ned as follows:�1 : : : �p ./ �1 : : : �q = �1�1 : : : �s�s where s = min(p; q):So that �1(� ./ �) (respetively, �2(� ./ �)) is the pre�x of � (respetively,of �) with length min(|�|; |�|).3. We let D = {� ./ u | � is injetive and no letter of � ours in u}.



THE DECISION PROBLEM FOR SOME LOGICS 113Proposition 8. Let � be an in�nite alphabet. The following relationsare all de�nable with ≤pref and EqLast:x ∈ D; x ∈ D ∧ � = �1(x):Proof. First, observe that x ∈ D ∧ � = �1(x) if and only if{ either both � and x are the empty word{ or the following onditions are satis�ed(i) � is injetive and � 6= " and |x| ≥ 2,(ii) � and Pred(x) have the same last letter,(iii) the last letter of x does not our in �,(iv) if �′ ≤pref � and x′ ≤pref x holds and if �′ and x′ have the samelast letter then(a) |�′| = 1 if and only if |x′| = 1,(b) |�′| ≥ 2 if and only if |x′| ≥ 3,() if |�′| ≥ 2 then Pred(�′) and Pred(2)(x′) have the same last letter,(d) the last letter of Pred(x′) does not our in �.All these onditions are expressible with ≤pref and EqLast.Finally, x ∈ D if and only if ∃� (x ∈ D ∧ � = �1(x)). �4.2. Expressing EqLen on injetive wordsProposition 9. Let � be an in�nite alphabet. The prediate�; � are injetive words and |�| = |�|is de�nable with ≤pref and EqLast.Proof. First, we onsider the ase where � and � have no letter in om-mon, a ondition whih is expressible with ≤pref and EqLast.In that ase, the word � ./ � is also injetive and equality |�| = |�|holds if and only if either both � and � are the empty word or there existsan injetive x (whih is to be � ./ �) suh thati. |x| ≥ 2 and EqLast(�; x) and EqLast(�; Pred(x)),ii. If �′ ≤pref � and �′ ≤pref � and x′ ≤pref x and |x′| ≥ 2 andEqLast(�′; x′) and EqLast(�′; Pred(x′)) then(a) either |�′| = |�′| = 1 and |x′| = 2,



114 S. GRIGORIEFF, CH. CHOFFRUT(b) or |�′|; |�′| ≥ 2 and |x′| ≥ 4 and EqLast(Pred(�′); Pred(2)(x′)) andEqLast(Pred(�′); Pred(3)(x′)).These onditions are learly expressible by a formula  (�; �) using
≤pref and EqLast.Let !(x; y) be the formula ∀x′ ≤pref x ∀y′ ≤pref y ¬EqLast(x′; y′)whih expresses that x; y have disjoint alphabet. In the ase � and � haveletters in ommon, use an auxiliary injetive word � having no letter inommon with � and � and observe that,

|�| = |�| ⇔ ∃� ( (�; �) ∧  (�; �) ∧ !(�; �) ∧ !(�; �)): �4.3. The basi equivalene on DProposition 8 insures that one an get � from � ./ u when |u| = |�|using only ≤pref and EqLast. However, it is not possible to get u from� ./ u. The following proposition tells the best we an do.Proposition 10. Let � be an in�nite alphabet. The following equiva-lene relation is de�nable with ≤pref and EqLast:x ∼ y ⇔ x; y ∈ D ∧ �2(x) = �2(y):Proof. Observe that x ∼ y if and only if there exist words �, � suh that(i) x ∈ D ∧ �1(x) = � and y ∈ D ∧ �1(y) = �,(ii) �; � are injetive and |�| = |�|,(iii) EqLast(x; y),(iv) If �′ ≤pref �, �′ ≤pref �, x′ ≤pref x, y′ ≤pref y and |x′|; |y′| ≥ 2and |�′| = |�′| ≥ 1 and EqLast(�′; x′) and EqLast(�′; y′) then(a) either |�′| = |�′| = 1 and |x′| = |y′| = 2,(b) or |�′| = |�′| ≥ 2 and |x′| = |y′| ≥ 4 and EqLast(Pred(�′),Pred(2)(x′)) and EqLast(Pred(�′); Pred(2)(y′)).Finally, we use Propositions 8 and 9 to express the above onditions.
�4.4. The interpretation theoremTheorem 11. Let � be an in�nite alphabet and let D and ∼ be asin De�nition 7 and Proposition 10. The inverse images in D under �2of relations ≤pref, EqLen, EqLast (respetively, Lasta where a ∈ �),namely relations



THE DECISION PROBLEM FOR SOME LOGICS 115PREF ={(x; y) ∈ D ×D | �2(x) ≤pref �2(y)};EQL ={(x; y) ∈ D ×D | |�2(x)| = |�2(y)|};EQLA ={(x; y) ∈ D ×D | EqLast(�2(x); �2(y))};(respetively, LASTa={x ∈ D | Lasta(�2(x))})are all de�nable with ≤pref and EqLast (resp. and Lasta).In partiular, the struture
〈�∗;≤pref; EqLen; EqLast; (Lasta)a∈�〉is isomorphi to the quotient under ∼ of the struture

〈D; PREF; EQL; EQLA; (LASTa)a∈�〉;hene is interpretable in
〈�∗;≤pref; EqLast; (Lasta)a∈�〉:Proof. The de�nition of the equivalene ∼ insures that the relationsPREF, EQL, EQLA, and LASTa are ompatible with ∼.Let x; y ∈ D and let � = �1(x) and � = �1(y). Then �; � are injetiveand x = � ./ u and y = � ./ v and �; u (respetively, �; v) have no letterin ommon. We prove thatEqLast(�2(x); �2(y)) ⇔ EqLast(x; y);Lasta(�2(x)) ⇔ Lasta(x);EqLen(�2(x); �2(y)) ⇔ ∃� ∃� (�1(x) = � ∧ �1(y) = � ∧ |�| = |�|);�2(x) ≤pref �2(y) ⇔ ∃x̃ ∃ỹ (x̃ ∼ x ∧ ỹ ∼ y ∧ x̃ ≤pref ỹ):The assertions about EqLast and Lasta are obvious sine the last letter ofu is that of � ./ u. That about EqLen is easy sine |�| = |u| and |�| = |v|.Let us prove the assertion about ≤pref.

⇐. From x̃ ≤pref ỹ we get �2(x̃) ≤pref �2(x̃). Sine x̃ ∼ x and ỹ ∼ y,we have �2(x̃) = �2(x) and �2(ỹ) = �2(y). Thus, �2(x) ≤pref �2(y).
⇒. Assertion �2(x) ≤pref �2(y) means u ≤pref v. Let � beany injetive word with length equal to max(|�|; |�|). It suÆes to setx̃ = � ./ u and ỹ = � ./ v. �Using Theorems 5 and 11, we get the following orollary.



116 S. GRIGORIEFF, CH. CHOFFRUTCorollary 12. Let � be an in�nite alphabet.1. One an interpret the struture 〈�∗; =; ·〉 in 〈�∗;≤pref; EqLast〉.2. Let A be a �nite subalphabet of �. One an interpret the struture
〈A∗; =; ·〉 in 〈�∗;≤pref; EqLast; (Lasta)a∈A〉.5. Deidability of the �1 theory of

〈�∗; ≤pref, EqLast, (EqLenk)k∈Z, (Lasta)a∈�〉The purpose of this paragraph is to show that the existential fragmentof our logi is deidable. This is ahieved via the haraterization of theprediates in terms of synhronous multi-tape �nite automata on in�nitealphabets as de�ned in our paper [5℄.Let �0 be some �nite subalphabet of �. Reall that the ability of a�0-synhronous n-tape �nite automata A on an in�nite alphabet � is asfollows:
• A distinguishes the sole letters of �0. All the letters in � \ �0 aretreated by A in the same way exept that it an detet whether thesanned letters on two of the n tapes are distint or not.
• Thus, the kth transition on input (u1; : : : ; un) depends on the ur-rent state of A and on the truth of the statementsui[k℄ = a; ui[k℄ = uj [k℄; where i; j = 1; : : : ; n and a ∈ �0;where u[k℄ is the kth letter of u in ase |u| ≥ k and a speial markernot belonging to the alphabet � otherwise.The following result haraterizes the relations reognized by suh au-tomata in terms of logi de�nability, [5℄.Theorem 13. Let � be an in�nite alphabet. A relation R ⊆ (�∗)n is re-ognized by some �0-synhronous n-tape �nite automaton if and only if it isde�nable in the struture 〈�∗;≤pref, EqLen, EqLenEqLast, (Lasta)a∈�0〉.In order to strengthen our deidability result for existential formulas,we enrih the language as muh as possible. A onvenient tool is thefollowing straightforward appliation of Theorem 13.Proposition 14. Let � be an in�nite alphabet. Let Syn� be the familyof synhronous relations, i.e., of �0-synhronous relations for some �nitesubalphabet �0 of �. Let SynFun� be the family of synhronous funtions,i.e., funtions (�∗)n → �∗ with graphs in Syn�.



THE DECISION PROBLEM FOR SOME LOGICS 117The family Syn� is losed under Boolean operations, projetions andylindri�ations and hene under substitutions of arguments by syn-hronous funtions. The family SynFun� is losed under omposition.We an now state and prove our deidability result.Theorem 15. Let � be an in�nite alphabet. The existential theory ofthe struture
〈�∗; (f)f∈SynFun� ; (R)R∈Syn� ; EqLast〉is deidable.In partiular, sine the funtion Pred and all relations ≤pref, EqLenkand Lasta are synhronous, this deidability result applies to the existen-tial theory of �∗ with this funtion and these relations.Proof. As usual, it suÆes to deide the truth of formulas of the form

∃x1 : : :∃xn ('1 ∧ : : : ∧ 'p) where the 'i's are atomi formulas or nega-tions of atomi formulas. Proposition 14 allows us to regroup all literalsassoiated to relations in Syn�. Thus, we are redued to deide formulas(∗) ∃x1 : : :∃xn (R(x1; : : : ; xn) ∧ ∧(i;j)∈B EqLast(xi; xj) ∧ ∧(i;j)∈C ¬EqLast(xi; xj))with B;C ⊆ {1; : : : ; n} × {1; : : : ; n} and R ∈ Syn�0� for some �nite �0.Claim. Let � = �0 ∪ �0 ∪ : : : ∪ �n where the �i's are pairwise disjointsubalphabets of �\�0, eah ontaining n letters. Formula (∗) is equivalentto that obtained by restriting x1; : : : ; xn to �∗.Proof of Claim. The ⇐ diretion is trivial. Let us prove the ⇒ diretion.Suppose (x1; : : : xn) is a solution of (∗). Consider the tuple (y1; : : : yn)obtained as follows, where i; j = 1; : : : ; n and k ∈ N,
• |yi| = |xi|,
• xi[k℄ ∈ �0 ⇒ yi[k℄ = xi[k℄,
• xi[k℄ = xj [k℄ ⇔ yi[k℄ = yj [k℄.
• If k 6= |x1|; : : : ; |xn| then the letters y1[k℄; : : : ; yn[k℄ are in �0 ∪ �0,
• if k = |xi| and i is minimal with this property, then the lettersy1[k℄; : : : ; yn[k℄ are in �0 ∪ �i.Let now E be an equivalene on �1∪ : : :∪�n to be de�ned below suhthat (a; b) ∈ E and a ∈ �i and b ∈ �j imply i 6= j. Let (z1; : : : zn) beobtained from (y1; : : : yn) by identifying pairs of letters in E.
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