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THE DECISION PROBLEM FOR SOME LOGICS
FOR FINITE WORDS ON INFINITE ALPHABETS

ABSTRACT. This paper is a follow-up of a previous paper where the log-
ical characterization of Eilenberg, Elgot, and Shepherdson of nary syn-
chronous relations was investigated in the case where the alphabet has
infinitely many letters. Here we show that modifying one of the predi-
cate leads to a completely different picture for infinite alphabets though it
does not change the expressive power for finite alphabets. Indeed, roughly
speaking, being able to express the fact that two words end with the same
symbol leads to an undecidable theory, already for the ¥ fragment. Fi-
nally, we show that the existential fragment is decidable.

1. INTRODUCTION

The purpose of this work is to investigate different theories of the free
monoid in the case where it has an infinite, denumerable number of gen-
erators.

The study of the theories of the free finitely generated monoid, i.e.,
words on a finite alphabet, dates back to the late sixties and has a wide
range of applications in computer science. Recently, infinite alphabets
have also been considered in several applications, e.g., in database theory
[1, 2] and model checking [6].

It is well-known (Quine, [14]) that adding concatenation leads to an
undecidable theory when the free monoid contains at least two genera-
tors, so this operation is not considered directly. Variants of elementary
predicates are considered which are related to the underlying partial or-
dering: “u is a prefix of v” (denoted by u <pref v), “u and v have the
same length” (denoted by EqLen(u,v)), and the last letter of a word: “u
ends with a specific letter a” (denoted by Last,(u)). This is in essence
the structure studied by Eilenberg, Elgot, and Shepherdson in [8], where
the authors characterize “a la Biichi” the definable relations in terms of
the so-called synchronous automata, and reprove the decidability of the
theory (a result first established by Shepherdson, [15]).

100
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Before presenting our contribution let us go through special features of
the free monoid generated by a denumerable infinite alphabet to be found
in the literature.

1. Vazhenin & Rozenblat [18] proved that, for an infinite alphabet, the
positive theory of concatenation is decidable. On the opposite, the
positive theory of concatenation over a finite alphabet is undecidable
(Quine, [14]). Even the ¥Y33-positive theory is undecidable (Durnev,
[7D)-

2. Let us add to finite automata registers able to memorize any let-
ter of the alphabet and let us allow comparison between the letter
currently read and the contents of the registers. In case of finite al-
phabets, such automata are equivalent to the usual ones. However,
for an infinite alphabet, this really matters: the universal problem

for such nondeterministic register automata is undecidable (Neven
& Schwentick & Vianu, [11, 12]).
3. Answering a question of [8], we proved in [5] that if ¥ is infinite then
the predicate EqLenEqLast = {(ua,va) | u,v € ¥*, |u| = |v|,a € T}
is not definable with EqLen, <pref and the Last,’s, a € X.
Also, if R is definable with EqLen, <pref and the Last,’s, then
(i) there exists a smallest finite £y C ¥ such that R is definable with
EqLen, <pref and the sole Last,’s where a € .
(if) if Zo # 0 then R is definable with EqLen, <pref and the sole
Last,’s where a € X, if and only if, R is invariant under all permu-
tations of ¥ which are the identity on .
(iii) R is definable with EqLen, <pref and [u[ = k mod ¢ for all
k < ¢ € N (and with no Last,) if and only if R is invariant under
all permutations of X.
All these results are false for finite alphabets X: EqLenEqlast is
definable with EqLen and the Last,’s and disproves (iii). Also, Ry, =
{zz | x € ¥\ To} disproves (ii) if ¥\ £y has at least two letters.
The purpose of this paper is to add some new results in that vein. First,
let us fix some notations.

Notation 1. Let ¥ be an infinite alphabet.

® &, <pref and Pred : ¥* — X*, respectively, denote the empty word,
the prefix ordering on ¥* and the map such that Pred(e) = € and
Pred(ay...a,) = ai...a,—1 (both £ and Pred are definable with

Spref)-
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e For k € Z, EqLeny, denotes the binary relation {(u,v) | |u| = |v|+k}
where |u| is the length of u. We also write EqLen in place of EqLeny.

e Fora € ¥, Last, denotes the unary relation ¥*a and EqLast denotes
the binary relation {(ua,va) | u,v € ¥*,a € £}, i.e., the set of pairs
of words which end with the same letter.

In [5], we considered the logic with predicates <pref, EqLen and the

Last,’s, a € ¥, and its extension with EqLenEqLast (cf. point 3 above), for
words in an infinite alphabet, and introduced the notions of synchronous

and “oblivious synchronous” automata which characterize them. As a
consequence, we derived the decidability of these logics.

Here we go one step further by considering the predicate EqLast. The
picture in that case is completely different since the theory is no longer
decidable, a big departure from the case of finite alphabets. More precisely
we are able to prove that the existential fragment is decidable while the
Y, fragment is undecidable.

Our main results are stated in the next two theorems. The first re-
sult establishes the undecidability of the theory. Section 2 is devoted to
the proof of Point 1. A strong version of Point 2 is given in Sec. 5 as
Theorem 15.

In contrast, remember that in order to get an undecidable theory in
case the alphabet is finite and has at least two letters, one has to consider
stronger languages obtained by adding the predicate “u is a suffix of v”
(cf. Biichi, [3]) or “u is a factor of v.”

Theorem 1. Let ¥ be an infinite alphabet.

1. The 3VV theory of the structure (¥*; <pref; &, Pred, Eqlast) is unde-
cidable.

2. The %, theory of
(3% Sprefa ¢,Pred, (EqLeng)rez, Eqlast, (Last,)eex)

is decidable.

Let us stress that this undecidability property is specific to infinite
alphabets. Indeed, for finite alphabets, EqLast is definable with the pred-
icates Last,’s, a € X, and the theory of <pref, EqLen and the Last,’s is
decidable, cf. [15, 8]. Also, Rabin’s celebrated result insures that, for finite
or infinite alphabets, the monadic second order theory of <pref and the
Last,’s is decidable.
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The second theorem is concerned with definability or undefinability
properties of certain predicates one from another. Its proof is given in
Sec. 3 (Theorems 5 and 6) and Sec. 4 (Theorem 11).

Theorem 2. Let ¥ be an infinite alphabet.
1. Concatenation is definable in the structure (£*; <pref,Eqlen, EqLast).

2. In (X% <pref,Eqlast, (Lastg,)qex), neither concatenation nor EqLen
are definable.

3. (X% <pret,Eqlen, Eqlast) is interpretable in (3*; <pref,Eqlast).

Observe that items 1 and 3 in Theorem 2 do no longer hold for finite
alphabets: they would violate the undecidability of the theory of the free
monoid with concatenation (Quine, [14]) and that of the monadic second
order theory of the free monoid with the successor functions u — ua and
EqLen (Vidal-Naquet, [19]). As for item 2, nondefinability of concatenation
also holds for any nonempty finite alphabet and nondefinability of EqLen
holds whenever ¥ has at least two letters.

2. THE X5 THEORY OF <pref,Pred,EqlLast IS UNDECIDABLE

2.1. Coding Post Correspondence Problem with Eqlast
Recall the Post Correspondence Problem (PCP) for words in {a,b}*:

e An instance m = {(u1,v1),..., (ug,vr)} of PCP is a finite subset of
pairs of words in {a,b}*.
e A nontrivial solution of the PCP for m is a nonempty sequence
(’il,... ,ir) S {1, ,k‘}* such that Wiy - - - Wi, = Vjy .. V4
As is well known, PCP is undecidable, even if we restrict it to m’s
for which k£ < 7 (Matiyasevich & Senizergues, [9, 10]). It also remains
undecidable if we restrict it to families 7 = {(u1,v1),..., (ug,vg)} such
that all u;’s and v;’s are nonempty.

r r "

To prove the stated undecidability result, we code the Post Correspon-
dence Problem with EqLast and <pref-

Theorem 3. Let ¥ be an infinite alphabet and let a,b € X. To any
instance m = {(u1,v1),...,(ur,vg)} of the PCP for pairs of nonempty
words in {a,b}*, one can recursively associate a closed IVV formula F, of
the language

L= {gpref, Pred, ¢, Last, , Last, , EqlLast}
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such that w has a nontrivial solution if and only if Fy is true in X*.

Proof. We start with an informal introduction of the encoding of a
solution of an instance of PCP. Suppose we are given the instance
(u1,v1) = (a,aba) and (u2,v2) = (baaab,a) which has the solution
w = a baaab a = aba a aba. Consider the coarsest factorization which
refines both factorizations w = a ba a ab a. A possible tentative consists
of introducing an sth marker v, and an sth marker ds, taken in ¥\ {a, b},
at the beginning of the sth occurrence of a factor u;, and v;_, respectively,
together with final markers:

Y161 ay2badsadzabysaysdy.

Since ¥ is infinite we can suppose all v’s and all §’s to be distinct. Also, we
can express the fact that the v’s and §’s are distinct, but there is no way
we can relate v; with §; for i« = 1,...4. This is achieved by substituting
v;a for each occurrence of 7; and ;b for each occurrence of §;, leading to
the following encoding:

(r1a)(m1b)a(y2a)ba(v2b)a(vsb)ab(vysa)a(ysa)(v4b).

Formally, consider a nontrivial solution S = wu;, ...u;, = v; ...v;, of
an instance of the PCP. Let w; ...w,, be the coarsest factorization of
S refining the previous two factorizations. For each w; there are three

possible cases:
— either it is a prefix of an occurrence u;, solely
— or it is a prefix an occurrence of v;, solely
— or it is a prefix of an occurrence u;, and of an occurrence of v;,.

Then set S’ = zjw1 - . . 2mWmYr+1a7Yr+10 where for 1 < 1 < m, we have
z; = 7,0 in the first case and z; = 7;,b in the second case and z; =
Vi, ai,b, in the last case.

It then suffices to observe that the family of such words S’ can be
expressed in the theory. Indeed, S’ encodes a solution of the PCP for 7 if
and only if it satisfies the following conditions where I' = ¥\ {a, b}:

(i) Start and end.

(i1) |5/ > 9
(i2) There exists v € T such that yayb is a prefix of S’.
(i3) There exists 4" € T such that v/av’b is a suffix of S’.
(ii) Markers. Every occurrence in S’ of a letter in T' is immediately
followed by an occurrence of a or b.
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(iii) Markers are distinct. No factor in I'a or I'b occurs twice in S’.
(iv) Inductive step of a backward decomposition of S’.
If v € T and zya and y~b are both prefixes of S’ then either z = ¢
and y = ~ya or there exists (u;,v;) € 7 and u}, v; and 4" € T such
that
o Y'au} is a suffix of x and v'bv} is a suffix of y
o ul € (FbU{e})u;1Ibu;z ... Thu; m, where u; = u;1u;0 ... Ui m,; and
the u; ;’s are # ¢,
o v, € v;1lav;s...Tav;n,(Ta U {e}) where v; = v;1v;2...0;,; and
the v; ;’s are # ¢.
Observe that m; < |u;| and n; < |v;| since the w; ;’s and v; ;’s are # €.
Thus, the lengths of u}, v} are bounded.

27 71
We now express conditions (i)—(iv) in the language L. For s > 2, let

Pred®) denote the sth iterate of Pred. First, observe that the predicates
Lastr(z) (which means z € £*T"), || > s and |z| = s are expressible in
L by the following quantifier-free formulas:
Lastr(x) = © # € A —Last,(z) A —Lasty(z),
|z| > s = Pred®™1(S") #¢,
|z| = s = Pred® "V (8’) # e APred®(S’) =e.
Condition (il). See above.

Conditions (12)—(i3). The predicate 3y € T z € X*ya~b is expressible
by the formula A(2) such that

Az) = { |z| > 4/\EqLast(Pred(l)(z)’Pred(3) (2))
z) = ALasty(z) A Last, (Pred® (z)) A Lastr (PredV)(2)).

Now, condition (i3) is the quantifier-free formula A\(S’) and condition (i2)
is the formula Vo ((z <pref S'Alz| =4) = A(z)).

Condition (ii). Consider the formula

Ve <pref S’ [Lastr(Pred!) (z)) = (Last,(z) V Lasty(z))],

Condition (iii). It can be expressed by the V? formula

(z <pref ¥ <pref S’ A Eqlast(z,y)
vV Vy A (Lastq(z) V Lasty(z)) = —Eqlast(Pred(z),Pred(y))

A Lastp(Pred(z))
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Condition (iv). Let wp, ... ,wy,00,...,0, € {a,b}*. The predicates

e Iyel' (zeXva N y € X*D)

© IV, Y YV Y ET
(x € Z0om1bby ... vpbbpya Ay € Trwoyiaws ... y,aw,7b)
are expressible in £ by quantifier-free formulas u(z, y) and v, " (z,y)
similar to the above A.
Condition (iv) can be expressed by the V? formula

Vo Wy [(z <pref S'AY <pref S’ Au(z,y) = (|z[=2Ayl =4A\y))

vV V \/ w(ay),

(ug,v;)Em (wo,... ,wq)ED(u;) (fo,... ,0p)ED(v;)

where D(u) is the finite family of tuples (ayp,. .. , aq) of nonempty words
such that ag ..., = u.

Finally, the desired formula F; is 35’ ®(S’) where ® is the conjunction
of all formulas associated to conditions (i) to (iv) above. Since the univer-

sal quantifiers of the diverse conjuncts can be factorized, we see that F
is of the form 3v2. O

2.2. Proof of point 1 of Theorem 1

Let F, = 35’ Va Vy ¥(S’,z,y) be as in Theorem 3. To eliminate the
constants a, b from ¥, we use condition (i3) above which insures that b
is the last letter of S’ and a is the last one of Pred®)(S’) and we express
the fact that a # b as a property of S’.

Let G(S’,z,y) be obtained from ¥(S’, z,y) by replacing every occur-
rence of the atomic formula Last,(z) (where z is z or y) by the formula
EqlLast(z,S’) and every occurrence of the atomic formula Last,(z) by
EqLast(z,Pred®(S’)). Clearly, F is equivalent to the following vV for-
mula which uses only <pref, Pred and Eqlast together with the sole
constant e:

38’ Vx Vy (~EqLast(S’,Pred®(S’)) A G(S',z,y)).
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3. DEFINABILITY OF CONCATENATION

In this section, we show that concatenation of words may be defined
with the three predicates Spref, EqLen, EqLast but that it is independent
of the two predicates <pref and EqLast.

3.1. Defining concatenation with <prefs EqLen, EqLast

We first show that the concatenation of two words whose letters are
pairwise different can be defined via the two predicates <pref and
EqLast. This will allow us to show the definability of the concatenation
of any two arbitrary words using the three predicates of our structure.

A word is injective if it does not contain two occurrences of the same
letter. Observe that, in the context of infinite alphabets, there are arbi-
trarily large injective words.

Recall that both £ and Pred are definable with <pref-

Proposition 4. Let ¥ be an infinite alphabet. The relation
R = {(u,v,w) | uwv is injective and w = uv}
is definable by a WV formula p(u,v,w) with <pref; Pred, ¢ and Eqlast.

Proof. Observe that (u,v,w) € R if and only if
(i) u, v and w are injective words and u,v have no letter in common,
(ii) Trivial case. If v is empty then w = u.

(iii) Initial step of the backward analysis. If v is not empty then v, w have
the same last letter.

(iv) Inductive step of the backward analysis. If z and y are prefixes of v
and w and |z| > 2 and z,y have the same last letter then |y| > 2
and Pred(x),Pred(y) also have the same last letter.

(v) Final step of the backward analysis. If x and y are prefixes of v and
w and |z| = 1 and z,y have the same last letter then Pred(y) = w.

In fact, (u,v,w) € R clearly implies all these conditions.

Conversely, suppose these conditions hold. Condition (ii) solves the case
where v is empty. So suppose v is nonempty. Conditions (iii), (iv) insure
that v is a suffix of w and condition (v) shows that the associated prefix
of w is u. Thus, (u,v,w) € R.

Finally, it is easy to see that each one of conditions (i)—(v) is express-
ible in the language (gpref, Pred,e,EqLast) with two universal quantifi-
cations.

O
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Theorem 5. Let ¥ be an infinite alphabet. Concatenation is definable
in the structure (X*; <pref,Eqlen, Eqlast).

Using the extra function Pred and the constant ¢ (which are definable
with <pref), concatenation can be defined by a 3*v* formula.

Proof. Observe that w = uwv if and only if v = ¢ and w = w or v # ¢ and
there exist &,n, ( such that

(i) &, 7 are injective words which have no letter in common.

(i) €] = ful, [n] = |v], [¢| = |w]| and &n = .

(iii) w is a prefix of w.

(iv) If o/, ¢’,v',w’ are nonempty prefixes of n,(,v,w and || = |v'| and
[¢'] = |w'| and n’,{’ have the same last letter then v/, w’ also have
the same last letter.

Using Proposition 4, this is clearly expressible with <pref, Pred, ¢,

EqLen, and EqLast by a 3°V* formula (the existential quantifications being
over &, n, ¢ and the universal ones over 7/, (', v/, w’). O

3.2. Nondefinability of concatenation with <pref and Eqlast

Let us denote by - the concatenation operation.

The definition of concatenation obtained in the previous paragraph uses
both predicates EqLen and EqLast. Of course, one cannot remove EqLast
since the theory of <pref: EqLen, (Last,)qex is decidable, cf. [15, §].

In order to show that we cannot remove EqLen, we use the following
simple property: if EqLen or - were definable in ¥* from <pref, Eqlast
and the Last,’s, the same would be true in any elementary extension of
this structure, in particular in any ultrapower. So, to prove the negative
result we are looking for, we construct an ultrapower of the structure

(=% gpref, Eqlen, Eqlast, -, (Last,)qen),

for which there is a bijection of the domain which does preserve the in-
terpretations of <pref, EqLast and the Last,’s but does not preserve
those of - nor EqLen. Let us recall that an ultrafilter &/ on N is a family
of subsets of N closed by intersection and superset and such that, for all
X C N, either X or its complement N\ X is in /. The ultrapower 4;; of
a structure A is obtained as follows:

— its domain is the set of equivalence classes of the equivalence ~;; on
AN such that f ~ g {i e N| f(i) = g(i)} €U,
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— the interpretation in 4y of function and relation symbols are ob-
tained as follows. First, lift the interpretations in A to AN in the
obvious componentwise way. Second, quotient by ~y,.

Lo$ theorem insures that, for any formula F(z1,...,z,), and any

fis-oo s fn € AV letting [f;] be the ~y class of f;, we have

Ay EF(fi . [fa) & (i eNJAEF(fi),...  fali)} €U.

The elementary embedding of A4 into A;; maps a € A to the class of the
constant, function N — A with value a. For more details on the method
of ultrapowers, we refer to standard textbooks, see, e.g., [4] or [13].

Theorem 6. Let ¥ be a finite or infinite alphabet with at least two
letters. Neither EqLen nor concatenation is definable in the structure

W= (X% <pref; Eqlast, (Lastgy)aex)-

Proof. Let A be the structure W enriched with the - operation and the
EqLen predicate. Consider a nonprincipal ultrafilter ¢/ on N and let

Ay = ((E*)N/ ~u =, Szf){ref , EqLen | EqLast" , (Lastg)aeg , _u>

be the Y-ultrapower of A with domain (X*)N/if where ~; is the equiva-
lence on (X*)N such that, for f,g: N — %*,

frug & {i| fi@)=g@)} €U.

We denote by [f] the ~; equivalence class of f : N — ¥*. Let ¢ : A — Ay
be the natural embedding such that «(u) is the ~y class of the constant
function with value w. Since ¢ is an elementary embedding, in order to
prove the theorem, it suffices to construct a bijection of (X*)N/U into itself

which preserves Szf;ref’ the Last!’s and EqLast¥ but does not preserve
u

“ nor EqLen“.

For u € £* and ¢ € X, let us denote by ¢~ 'u the word v such that
u = cv if u starts with ¢, else v = u. We fix some ¢ € ¥ and consider the
family F of f: N — ¥* such that [f] admits all t(c*) as prefixes:

feFevkeN ) Sgref [f] & VkeN{n|ck <pref f(n)} €U.
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We define @ : (3*)N — ()N as follows: for f € (2*)N,

cLf(i) if feF,

00={5" wrer

Intuitively, when there is a nonstandard initial block of letters ¢ in [f],
we remove the first letter of this block, else we do nothing. To prove that
® induces a bijection on A which respects =, <pref, Eqlast and the

Last,’s, we consider f,g: N — ¥* and prove that
(i) [f] = lg] if and only if [2(f)] = [®(g)],
(i) [] <Yy oz [o] if and only if [B(/)] <4, ¢ [#(g)]
(iii) EqLast™([f],[g]) if and only if EqLast™([®(f)],[®(g)]),
(iv) Last¥([f]) if and only if Last¥ ([®(f)]).
We argue by cases.

Case f ¢ F and g ¢ F. Trivial since then ®(f) = f and ®(g) = g.

Case f € F and g ¢ F. Since g ¢ F, there exists k such that {n | c*
Zpref g(n)} € U. Now

{n|c <pref f(n)} and {n|c**! <pref f(n)}

are both in /. Thus, {n | c* <pref clfn)y={n|c <pret ®(f)(n)} €
U. Tn particular, {n | (1) Zpres 9()} and {n | 8(/)(n) Zpret 9(n)}
are both in U. This proves [f] f;{ref [g] and [®(f)] Zf;ref [®(g)]- Hence

also [f] # [g] and [®(f)] # [®(g)]. Thus, (i) and (ii) hold.

Since {n | |f(n)| > 2} € U we see that {n | EqLast(f(n), ®(f)(n))} €
U. Thus, EqLast”([f],[®(f)]). Now, Eqlast is transitive, hence so is
EqLast". Since ®(g) = g we see that

EqLast”([f],[g]) & EqLast“([®(f)],lg])) « EqLast“([®(f)],[®(9)]),

which gives (iii).
Since A = Eqlast(z,y) = (Last,(z) < Last,(y)) we have

Ay |= Eqlasty(z,y) = (Last¥(z) < Last¥(y))

which proves assertion (iv) (let = be [f] and y be [®(f)]).
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Case f ¢ F and g € F. By symmetry, equivalences (i), (iii), and (iv)
are similar to the previous case. Let us prove (ii). As before, there exists
k such that the three sets

{n| c ﬁpref fn)}, {n| c Spref gn)}, {n| c* Spref ®(g)(n)}
are in U. Let X be their intersection (which is in ¢/). Then,
neX=(f(n) <pref e f(n) <pref ®(g)(n) < f(n) S<pref g(n)).

Since ®(f) = f, this proves that {n | f(n) <pref g(n)} € U if and only
if {n | (f)(n) <pref ®(9)(n)} € U, whence (ii).

Case f € F and g € F. The set
X={n]cc Spref f(n) Nee Spref g(n)}

isin U. For n € X, we have ¢c®(f)(n) = f(n) and ¢®(g)(n) = g(n). From
this, we easily deduce conditions (i) to (iv).

We now show that ® does not preserve EqLen. For instance, let f(n) =
"t and g(n) = b"*! where b is some letter different from c. Then, for
all n, we have |f(n)| = |g(n)| and |®(f)(n)| = |®(g)(n)| — 1, so that
EqLent([],[g]) but ~EqLent([&(f)], [3(g))).

Finally, observe that ® does not preserve concatenation. For instance,
let f(n) = b, g(n) = "+ and h(n) = bc™ ! where b is some letter different
from c. Then, for all n, we have h(n) = f(n)g(n) and ®(f)(n)®(g)(n) =
be # be™tt = ®(h)(n). Thus, we have [f] -/ [g] = [h] whereas

[@()] -u [®(g)] # [®(h)].

4. INTERPRETABILITY OF Eqlen WITH <prof AND Eqlast

The aim of this section is to prove a property which is weaker than
that of definability. It relies on the notion of interpretability which we
now recall, see, e.g., [16, §4.7].

A structure A = (A4; (S;)jer) is interpretable in a structure B if one can
define in B a subset D C B, an equivalence relation ~ on D and relations
(or functions) o;’s which are compatible with ~, in such a way that the
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quotient of (D; (¢;);es) by ~ be isomorphic to A. Though concatenation
is not definable with <pref and Eqlast, it is nevertheless interpretable.
A result which is interesting by itself and the proof of which illustrates
the definability power of EqLast with <pref. In Theorem 5, we proved
the definability of the concatenation by the predicates EqLen, <pref> and
EqLast. Here we show that EqLen is interpretable with the remaining two
predicates <pref and EqLast.

First, we have to develop some coding tricks in the vein of that used
in the proof of Theorem 1. The idea is the following. If the letters of a
word were indexed, then testing that two words are of equal length would
reduce to testing whether or not the last values of the indices are equal.
This is impossible since there is no total ordering defined in the infinite
alphabet, but we can use a weaker property: if we use pairwise different
letters as indices, then two words are of the same length if and only if
there exists a one-to-one mapping between the two sets of indices. We are
thus led to insert an arbitrary letter before each letter of a given word
which can be interpreted as indexing that letter, provided all these extra
letters are different from one another and from the letters of the word.

4.1. Injective words and the join operator
First, let us introduce some convenient tools.
Definition 7. 1. Ifj € {1,2}, we denote by 7;(x) the map ¥* — ¥* such

that m;(e) = € (recall that € denotes the empty word) and, for x € ¥*
and a € X,

mj(z) Iif |zal #j mod 2,
mj(za) = . .
mj(z)a Iif |za] =j mod 2.
Le., mj(z) is obtained by keeping only one letter out of two in x, starting
with the jth one. For instance, 71 (abedefg) = aceg, w2 (abedefg) = bdf.

2. The 1 operation on words is a restricted form of the traditional
shuffle and is defined as follows:

P1...pp 01 ...04=p101 ...ps0s where s = min(p, q).

So that 71 (p i o) (respectively, ma(p < o)) is the prefix of p (respectively,
of o) with length min(|p|, |o|).

3. Welet D = {&>au | & is injective and no letter of § occurs in u}.
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Proposition 8. Let ¥ be an infinite alphabet. The following relations
are all definable with <pref¢ and Eqlast:

xeD, zeD A &=m(x).

Proof. First, observe that z € D A ¢ = mi(x) if and only if
— either both £ and x are the empty word

— or the following conditions are satisfied
(i) € is injective and & # ¢ and |z| > 2,
(ii) € and Pred(z) have the same last letter,
(iii) the last letter of = does not occur in &,

)

(iv) if ¢ <pref & and 2’ <pref  holds and if ¢’ and 2’ have the same
last letter then

a) |¢'| =1 if and only if 2’| =1,

b) |&’'| > 2 if and only if |2/| > 3,

c) if |¢'| > 2 then Pred(¢’) and Pred® (z') have the same last letter,

d) the last letter of Pred(z’) does not occur in &.

All these conditions are expressible with <pref and EqLast.
Finally, z € D if and only if 3¢ (z € D A € = 71 (x)). O

— —~ o~

4.2. Expressing Eqlen on injective words

Proposition 9. Let ¥ be an infinite alphabet. The predicate
&,n are injective words and |£| = ||

is definable with <pref and EqLast.

Proof. First, we consider the case where ¢ and 7 have no letter in com-
mon, a condition which is expressible with <pref and EqLast.

In that case, the word £ < 7 is also injective and equality [£| = |n|
holds if and only if either both ¢ and 1 are the empty word or there exists
an injective z (which is to be £ < n) such that

i. || > 2 and EqLast(n, z) and EqLast(&,Pred(z)),

i If & <pret € and 0’ <pref n and 2’ <pres « and |z’| = 2 and

EqLast(n’,z’) and EqLast({’,Pred(z’)) then

(a) either [¢'| = |n'| =1 and |2'| = 2,
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(b) or |¢'],|n'| > 2 and |2’| > 4 and EqLast(Pred(n’),Pred® (2')) and
EqLast(Pred(¢’), Pred®) (z')).

These conditions are clearly expressible by a formula (£,n) using
<pref and EqlLast.

Let w(z,y) be the formula Vz' <pres VY’ <pref y —Eqlast(z’,y’)
which expresses that z,y have disjoint alphabet. In the case £ and 7 have
letters in common, use an auxiliary injective word € having no letter in
common with ¢ and n and observe that,

El=Inl < 30 (¥ 0) Ap(n,0) Aw(S,0) Aw®n,b)). 0

4.3. The basic equivalence on D

Proposition 8 insures that one can get & from & > u when |u| = |
using only <pref and EqLast. However, it is not possible to get u from
& > u. The following proposition tells the best we can do.

Proposition 10. Let ¥ be an infinite alphabet. The following equiva-
lence relation is definable with <pref and Eqlast:

x~y & z,y €D A ma(x) =m(y).

Proof. Observe that z ~ y if and only if there exist words £, i such that
(i) zeDAm(z)=Eandy € D A7 (y) =n,
(ii) &,n are injective and [£| = |n],
(iii) EqlLast(z,y),
(iV) If gl Spref fa 77/ Spref n, ' Spref T, y/ Spref ) and |1‘/|, |y/| > 2
and [¢'| = |n'| > 1 and EqLast({’, ') and EqLast(n’,y’) then
(a) either |¢'] = |n'| =1 and || = [y'| =2,
(b) or €| = |n'| > 2 and |z/| = |y/| > 4 and EqlLast(Pred(¢’),
Pred® (z)) and EqLast(Pred(n’),Pred® (y')).
Finally, we use Propositions 8 and 9 to express the above conditions.
O

4.4. The interpretation theorem

Theorem 11. Let ¥ be an infinite alphabet and let D and ~ be as
in Definition 7 and Proposition 10. The inverse images in D under m,
of relations <pref, EqLen, EqLast (respectively, Last, where a € ¥),
namely relations
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PREF ={(z,y) € D x D | m3(x) Spref m2(y)},

EQL  ={(z,y) € D x D | [m2(z)| = [m2(y)[},

EQLA ={(z,y) € D x D | EqLast(ma(z), m2(y))},
(respectively, LAST,={z € D | Last,(m2(z))})

are all definable with <pref and EqLast (resp. and Last,).
In particular, the structure

(X% <pref,Eqlen, Eqlast, (Last,)aex)
is isomorphic to the quotient under ~ of the structure
(D;PREF, EQL, EQLA, (LAST, )aex );
hence is interpretable in

(=" gpref, Eqlast, (Lastg)eex).

Proof. The definition of the equivalence ~ insures that the relations
PREF, EQL, EQLA, and LAST, are compatible with ~.

Let z,y € D and let £ = m;(z) and n = 71 (y). Then &7 are injective
and x = { < u and y = n v and &, u (respectively, n,v) have no letter
in common. We prove that

Eqlast(mz(x), m2(y)) < Eqlast(z,y),

)
Last,(m2(z)) < Last,(z),
)

Eqlen(ms (), m2(y)) < 3¢ I (m(z) = EAm(y) =n ALl = Inl),
T2(2) Spref m2(y) & IT Iy (T~ T ANY~YAT <pref ¥)
The assertions about EqLast and Last, are obvious since the last letter of
u is that of & b u. That about EqLen is easy since |¢| = |u| and |n| = |v].
Let us prove the assertion about <pref.
<. From T <pref § we get m3(Z) <pref m2(). Since ¥ ~ z and y ~ y,
we have 72(2) = m(z) and m2(y) = m2(y). Thus, m2(2) <pref m(y)-
=. Assertion m(z) <pref m2(y) means u <pref v. Let 6 be
any injective word with length equal to max(|¢],|n|). It suffices to set
T=0>uandy =0=uv. O

Using Theorems 5 and 11, we get the following corollary.
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Corollary 12. Let ¥ be an infinite alphabet.
1. One can interpret the structure (X*;=,-) in (£*; <pref,Eqlast).

2. Let A be a finite subalphabet of ¥. One can interpret the structure
(A*;=,-) in (X% <pref,Eqlast, (Lasts)aca)-

5. DECIDABILITY OF THE Y; THEORY OF
(=*; gpref, Eqlast, (Eqleny)iez, (Lasty)eexn)

The purpose of this paragraph is to show that the existential fragment
of our logic is decidable. This is achieved via the characterization of the
predicates in terms of synchronous multi-tape finite automata on infinite
alphabets as defined in our paper [5].

Let ¥y be some finite subalphabet of ¥. Recall that the ability of a
Yo-synchronous n-tape finite automata A on an infinite alphabet X is as
follows:

o A distinguishes the sole letters of ¥y. All the letters in ¥ \ Xy are
treated by A in the same way except that it can detect whether the
scanned letters on two of the n tapes are distinct or not.

e Thus, the kth transition on input (uq,...,u,) depends on the cur-
rent state of A and on the truth of the statements

u;lk] = a, wu;[k] =ujk], where 4,j=1,...,n and a € X,

where u[k] is the kth letter of w in case |u| > k and a special marker
not belonging to the alphabet ¥ otherwise.

The following result characterizes the relations recognized by such au-
tomata in terms of logic definability, [5].

Theorem 13. Let ¥ be an infinite alphabet. A relation R C (X*)™ is rec-
ognized by some ¥y-synchronous n-tape finite automaton if and only if it is
definable in the structure (¥*; <pref; EqLen, EqLenEqLast, (Lasty)aex, )-

In order to strengthen our decidability result for existential formulas,
we enrich the language as much as possible. A convenient tool is the
following straightforward application of Theorem 13.

Proposition 14. Let ¥ be an infinite alphabet. Let Syny, be the family
of synchronous relations, i.e., of Yo-synchronous relations for some finite
subalphabet ¥y of ¥. Let SynFuny, be the family of synchronous functions,
i.e., functions (¥*)"™ — ¥* with graphs in Syny.
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The family Syny, is closed under Boolean operations, projections and
cylindrifications and hence under substitutions of arguments by syn-
chronous functions. The family SynFuny, is closed under composition.

We can now state and prove our decidability result.

Theorem 15. Let X be an infinite alphabet. The existential theory of
the structure

(=% (f)feSynFunEa (R)ReSynZ ,EqLast)

is decidable.

In particular, since the function Pred and all relations <pref, EqLeny
and Last, are synchronous, this decidability result applies to the existen-
tial theory of ¥* with this function and these relations.

Proof. As usual, it suffices to decide the truth of formulas of the form
Jz1...32, (p1 A ... A pp) where the @;’s are atomic formulas or nega-

tions of atomic formulas. Proposition 14 allows us to regroup all literals
associated to relations in Syny. Thus, we are reduced to decide formulas

(*) Fz1...3zn (R(z1,... ,20) A /\ EqLast(z;, %) A /\ —EqLast(zi,z;))
(i,7)€B (i,5)eC

with B,C C{1,...,n} x{1,...,n} and R € Syng0 for some finite Xg.

Claim. LetI' =Yg U AgU...UA, where the A;’s are pairwise disjoint
subalphabets of £\ X, each containing n letters. Formula (x) is equivalent
to that obtained by restricting x1,... ,z, to T'*.

Proof of Claim. The < direction is trivial. Let us prove the = direction.
Suppose (z1,...%,) is a solution of (x). Consider the tuple (y1,...yn)
obtained as follows, where i,j =1,...,n and k € N,
° |yl = |l
o x,[k] €Yy = y,[k] = l‘l[k],
o zi[k] = z;[k] < wilk] = y;[k].

o If k # |z1],...,|z,| then the letters y1[k], ... ,yn[k] are in o U Ay,
e if k = |z;| and ¢ is minimal with this property, then the letters
yilk], ... ,ynlk] are in o U A,.

Let now E be an equivalence on AqU...UA, to be defined below such
that (a,b) € E and a € A; and b € A imply 7 # j. Let (z1,...2,) be
obtained from (yi,...y,) by identifying pairs of letters in E.
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Let A be a ¥p-synchronous n-tape finite automaton recognizing R.
Since A only distinguishes letters in ¥y and equalities/disequalities of
letters at the same position in the different components, the tuples
(z1,---,%n), (Y1,---yn), and (z1,...,2,) are simultaneously in or out-
side R. Let E correspond exactly to the equalities holding between the last
letters of x1,...,2,. Then (z1,...,2,) satisfies exactly the same EqLast
relations than (xy,...,z,) does. In particular, (21,...,2,) is a solution
of (*) which proves the Claim.

To conclude the proof of the theorem, recall that, for a finite alphabet
I', EqLast is recognizable by a I'-synchronous automaton. Thus, the above
Claim insures that () reduces to the emptiness problem for such automata
on alphabet I", which is known to be decidable. O
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