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Abstract

We consider computable functionals mapping the Baire space into
the set of integers. By continuity, the value of the functional on a given
function depends only on a “critical” finite part of this function. Care:
there is in general no way to compute this critical finite part without
querying the function on an arbitrarily larger finite part! Nevertheless,
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things are different in case there is a uniform bound on the size of the
domain of this critical finite part. We prove that, modulo a quadratic
blow-up of the bound, one can compute the value of the functional by
an algorithm which queries the input function on a uniformly bounded
finite part. Up to a constant factor, this quadratic blow-up is opti-
mal. We also characterize such functionals in topological terms using
uniformities.

As an application of these results, we get a topological characteriza-
tion of the dynamics of algorithms as modeled by Gurevich’s Abstract
State Machines.

1 Introduction

1.1 A combinatorico-topological problem. . .

Consider the discrete topology on N and the usual Baire topology on NN

generated by the basis of clopen sets
[u] = {f ∈ NN | f extends u}

where u varies over partial functions N→ N with finite domains. As is well-
known, a functional Φ : NN → N is continuous if and only if NN is covered
by the clopen sets [ui]’s associated to some family π = (ui)i∈N such that Φ
is constant on each [ui]. The property we are interested in is:

(*) There is a uniform bound on the size of the Dom(ui)’s.

Let us consider an example.

Example 1.1. 1. Let Φ(f) = f(α(f(0), f(1))) where α : N2 → N is some
fixed function. To compute Φ(f) we only need 3 values of f , namely those
at 0, 1 and α(f(0), f(1)). For x, y, z in N, let ux,y,z be the partial function
N → N with domain {0, 1, α(x, y)} such that ux,y,z(0) = x, ux,y,z(1) = y
and, in case α(x, y) 6= 0, 1, ux,y,z(α(x, y)) = z. The [ux,y,z]’s, x, y, z in N,
constitute a partition of NN in clopen sets on which Φ is constant. Moreover,
the ux,y,z’s are functions with two or three elements in their domains.

In this example we see that what is used, i.e. the u of condition (*),
coincides with what is queried about f during the computation. Though
this coincidence may seem to be an ovbious necessity, it is not the case. A
priori, the computation may query f on a very large set and use only a much
smaller part of it (an example is given in §2.3). Indeed, condition (*) does
not give any means to go from f to some u having a size ≤ k domain such
that f ∈ [u]. Even with a computable enumeration of the ui’s, the natural
way to find a convenient [ui] in which lies the argument f is a loop which
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successively queries f on Dom(u0), Dom(u1), . . . , until ui is found. But this
loop queries f on an unbounded set of points!

What we prove (cf. Theorems 2.10 and 3.3):

1. Example 1.1 is paradigmatic: functionals definable in that way are the
sole functionals satisfying property (*).

2. If (*) is true with bound k (for the size of the Dom(ui)’s) then one can
define Φ à la Example 1.1 so that Φ(f) is obtained by querying the
values of the argument f on at most k2 points.

3. In Point (2), the quadratic blow-up k2 is optimal.

4. If Φ is computable and (*) is true with bound k for a computably
enumerable π then one can define Φ à la Example 1.1 with computable
auxiliary fixed functions (like the α in Example 1.1) so that Φ(f) is
obtained by querying the values of f on at most 2k2 points.

5. Condition (*) is topological: it is uniform continuity with respect to a
transitive uniformity on the Baire space which gives the Baire topology
but strictly refines the uniformity of the usual Baire metric.

Thus, we prove a kind of fixed point process, modulo a quadratic blow-
up: one can go from f to a convenient restriction u of f to a size ≤ k2

domain by querying f on the sole points of Dom(u).

1.2 . . . also relevant to the question: what is an algorithm?

Though the problem can be seen as relevant to the theory of continuous
functionals and to type 2 computability, we came to it via the question of
modelling the notion of algorithm.

The question What is an algorithm? has not been answered by the
solution given to the question What is a computable function?. It long
remained a pending question up to the solution brought by Yuri Gurevich
with Abstract State Machines (ASM). In §4.1, 4.2 we recall the successive
trials to answer the question and what is the notion of ASM.

For this introduction, let us just say that we consider the dynamics of
an algorithm as a functional from a fixed product of function spaces into
itself. What are these function spaces? They model the environment: each
environment parameter (item, unbounded array of items. . . ) is viewed as
a function (arity 0 is allowed) over finitely many countable sorts. Thus,
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letting the Mi’s be the involved fixed sorts, the dynamics of an algorithm is
a functional Ψ : T → T where

T =

i=q∏
i=1

(
∏
j∈Ji

Mj)→M`i


is a space in general homeomorphic to the usual Baire space NN. Now,
following Gurevich’s analysis [11], the algorithms we consider manipulate
their environment in quite a gentle way: for some fixed k, the transition
step leads from ~f to Ψ(~f) obeying the following rules: for some k

(1)k (Bounded effect.) ~f and Ψ(~f) differ only on at most k points.

(2)k (Bounded cause.) These ≤ k points and the values of Ψ(~f) on them
depend only on the values of ~f on at most k points.

(3)k (Bounded query.) The computation of Ψ(~f) queries f on at most k
points.

Applying our results on functionals satisfying condition (*) (cf. §1.1), we
prove the following results (cf. Theorems 4.2, 4.4):

1. A computable functional is the transition functional of an algorithm if
and only if it satisfies properties (1)k, (2)k for some k.

2. If Ψ is computable and satisfies (1)k and (2)k then one can compute
the value of Ψ(~g) by querying ~g on at most O(k2) points. In other
words, (3)O(k2) is true.

3. A computable functional is the transition functional of an algorithm if
and only if it satisfies property (1)k and a topological condition in the
vein of (5) of § 1.1.

2 Functionals using bounded information

In §2.1, 2.2, we present some notions of covering of the Baire space by
clopen sets to which are associated notions of modulus of continuity for
total functionals NN → N. Our main theorems relate these notions, cf. §2.3,
2.4, 2.5. A topological interpretation is given in §3 and applications to a
characterization of algorithms is the subject of §4.
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2.1 Deterministic coverings of the Baire space

Notation 2.1. Let k ∈ N. 1. We denote by FN→N
<ω (resp. FN→N

≤k ) the fam-
ily of partial functions u : N → N with finite domains (resp. with domains
having at most k elements).
2. If u ∈ FN→N

<ω , we let [u] be the set of total functions N→ N which extend
u.
3. We denote by P<ω(N) (resp. P≤k(N)) the family of finite (resp. cardi-
nality ≤ k) subsets of N.

First, we introduce some very simple notions.

Definition 2.2. Let π be a a subfamily of FN→N
<ω and k ∈ N.

1. We say that π is a covering if NN =
⋃
u∈π[u]. A covering π is unambigu-

ous if the [u]’s, u ∈ π, are pairwise disjoint, hence form a partition of NN.
2. A covering π is k-bounded if Dom(u) has at most k elements for every
u ∈ π. It is bounded if it is k-bounded for some k.

Remark 2.3. There is only one 0-covering: it is the singleton family consist-
ing of the empty domain function. For any fixed a ∈ N, the family N{a} of
all functions {a} → N is an unambiguous 1-covering. Every unambiguous
1-covering is of that form or is the 0-covering. For k ≥ 2 there are non trivial
k-coverings, cf. Example 1.1

As we already noticed, even with a computable enumeration of the ui’s,
property (*) in §1.1 gives no obvious way to compute Φ with a bounded
number of queries. This is why we strengthen the notion of unambiguous
bounded covering to that of deterministic one. This last notion is, in fact,
the core of our study. It is based on the following simple result.

Proposition-Definition 2.4. Let X : NN → P<ω(N) be a total functional
satisfying the following condition.

(†) There exists an algorithm – using a function Ω : N→ N as an oracle –
which, on input f ∈ NN, computes X (f) and, during its computation,
queries f exactly on the points of X (f).

Then the family π = {f �X (f) | f ∈ NN} is an unambiguous covering which
is computable in oracle Ω. Such coverings are called deterministic.

Proof. It is obvious that π is a covering. Let us show it is unambiguous.
Suppose f is in [g �X (g)]. The run of the algorithm on f queries f succes-
sively on a1, . . . , am such that X (f) = {a1, . . . , am}. Similarly, the run on g
queries g successively on b1, . . . , bp such that X (g) = {b1, . . . , bp}.
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The first query a1 to f is independent of any value of f hence it is the
same as the first query b1 to g. Thus, a1 = b1. Since f ∈ [g �X (g)], we have
f(a1) = g(a1). The second query a2 to f depends only on the value of f on
a1 hence it is the same as the second query b2 to g. Thus, a2 = b2. And
so on. . . Thus, the computations on f and g are exactly the same, hence
X (f) = X (g) and f �X (f) = g �X (g). This proves that u = f �X (f) is the
unique u ∈ π such that f ∈ [u].

Finally, for every u ∈ FN→N
<ω , let 0⊕u be the total function N→ N which

extends u and takes value 0 on N\Dom(u). Observe that a partial function u
is in π if and only if the algorithm applied to 0⊕u computes exactly Dom(u).
This shows that π is computable (in oracle Ω).

Remark 2.5. Though this notion is independent of ASM theory, nevertheless,
it is interesting to illustrate it with ASMs having a unique dynamic symbol
(cf. §4.2). Consider the terms occurring in the ASM program. In order
to compute the next state, we have to evaluate them in the current state.
To do so, one considers the forest of subterms and proceeds via a bottom-
up evaluation of more and more complex subterms. The functional X just
gives the values of all these subterms. Of course, X queries its argument f
exactly on the values it outputs. In general ASMs, the functional X would
be more complex and would take as arguments the current interpretations
of all dynamic symbols.

The notion of deterministic k-bounded covering can also be defined with
no functional at all.

Proposition 2.6. Let π be a covering. The following conditions are equiv-
alent.

1. π is deterministic k-bounded,

2. There exists a total function α : FN→N
<k × N → N such that π = {u |

Dom(u) = {ai(u) | i < k}} where ai(u)’s is defined inductively: ai(u) =
α(u�{aj(u) | j < i}, i).

Proof. (2)⇒ (1) is trivial (let Ω be α). As for (1)⇒ (2), let α(u, i) be the
i-th point on which the algorithm queries its argument when the answer to
any query on a is given by u(a) if a ∈ Dom(u) and is a otherwise. Due to
equality Dom(u) = {ai(u) | i < k}, case a /∈ Dom(u) is vacuous.

Remark 2.7. Observe that, in (1)⇒ (2), α is computable in an enumeration
of π. In (2) ⇒ (1), an enumeration of π can be taken computable in α. In
particular, if π is computably enumerable then α can be taken computable
and conversely.
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2.2 Main theorem: refinements of continuity

First, we reformulate continuity of functionals in terms of how much infor-
mation is used to compute their values. The core of our problem is to replace
“finite” by “at most k”.

Definition 2.8. Let Φ : NN → N be a total functional.
1. A modulus of continuity for Φ is any covering π such that Φ is constant
on [u] for every u ∈ π.
2. Let P be any combination of the following properties: k-bounded, bounded,
unambiguous, deterministic, computably enumerable, computable. We say
that Φ uses finite (resp. P) information if Φ has a (resp. P) modulus of
continuity.

Care! To say that Φ uses k-bounded information does not mean that the
computation of Φ(f) queries only k values of f . It is merely an assumption
about the existence of a particular modulus of continuity of Φ. A priori, it
does not help the computation: though we know that the sole restriction
of f to k critical points does matter, we have no clue to get these points.
The natural way is to enumerate this k-bounded modulus of continuity for
Φ, say (ui)i∈N, and look for the first i such that f extends ui. We know it
does exists since π is a covering. Then to get Φ(f) we can replace f by the
extension of ui which is 0 outside the domain of ui and compute Φ on this
function. But this process queries f on all Dom(uj)’s for j ≤ i. Which is a
finite set but a priori arbitrary large. In contrast, a deterministic k-bounded
modulus of continuity allows to compute Φ(f) with at most k queries to f .

Finite information is a mere reformulation of continuity.

Proposition 2.9. Let Φ : NN → N be a total functional. The following
conditions are equivalent.

1. Φ is continuous,

2. Φ uses finite information,

3. Φ uses unambiguous finite information,

4. Φ uses deterministic finite information.

Moreover, these equivalences hold effectively: just add “computable” in all
points .
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Proof. Since (4)⇒ (3)⇒ (2)⇔ (1) are trival, it suffices to prove (2)⇒ (4).
Let (ui)i∈N be an enumeration of a modulus of continuity for Φ. Let π̃ be the
family of partial functions v : N → N such that, for some i, v has domain⋃
j≤i Dom(uj) and v � Dom(uj) = uj if and only if j = i. It is easy to see

that π̃ is a modulus of continuity for Φ. We claim that it is a deterministic
covering. Indeed, consider X : NN → P<ω(N) such that X (f) is computed
as follows: query f on the elements in Dom(ui) for i = 0, 1, . . . until the
least i such that f extends ui is found and then output

⋃
j≤i Dom(uj). This

computation queries f exactly on the set it outputs. To conclude, observe
that π̃ is the range of X .

Our main theorem shows that, modulo a quadratic blow-up, Proposi-
tion 2.9 extends with “at most k” in place of “finite”.

Theorem 2.10. Let Φ : NN → N be a total functional which uses k-bounded
information. Then
1. Φ uses unambiguous k2-bounded information.
2. The k 7→ k2 blow-up in Point 1 is optimal.
3. Φ uses deterministic k2-bounded information.
4. Point 3 has an effective version: if Φ is computable and has a modulus
of continuity which is k-bounded and computably enumerable then it has one
which is (2k2 − k)-bounded, computable and deterministic.

The proof of this theorem is given in §2.3 for Point 2, in §2.4 for Point
3 (which subsumes Point 1) and in §2.5 for Point 4. Let us cite simple
corollaries of the above theorem.

Corollary 2.11. The following conditions are equivalent:

1. Φ uses bounded information,

2. Φ uses unambiguous bounded information,

3. Φ uses deterministic bounded information,

A less trivial corollary is as follows.

Corollary 2.12. Let us say that a covering π′ refines a covering π if, for
every u ∈ π, the clopen [u] is a union

⋃
v∈X [v] for some subset X of π′.

Every unambiguous k-bounded (resp. computably enumerable) covering can
be refined to a deterministic k2-bounded (resp. (2k2−k)-bounded computable)
covering.
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Proof. Let (ui)i∈N be an enumeration of an unambiguous k-bounded cov-
ering π. Define Φ : NN → N such that Φ takes value i on the clopen [ui].
This definition makes sense because π is unambiguous. Obviously, π is a
modulus of continuity for Φ. Since it is k-bounded, by Theorem 2.10 we can
find a deterministic k2-bounded modulus of continuity π′ for Φ. Since π′ is
a modulus of continuity for Φ, the set Φ−1(i) is a union

⋃
v∈X [v] for some

subset X of π′. To conclude, observe that Φ−1(i) = [ui] by definition.

A last result along these lines.

Proposition 2.13. Let Φ : NN → N be total computable and MΦ = {u ∈
FN→N
<ω | Φ is constant on [u]}.

1. MΦ is the largest modulus of continuity of Φ. It is Π0
1 and, in gen-

eral, not computable, though Φ has a computable modulus of continuity (cf.
Proposition 2.9).
2. If Φ has a k-bounded modulus of continuity then the largest one is
MΦ ∩ FN→N

≤k It is Π0
1 and, in general, not computable.

Proof. Let 0 ⊕ v be the total function N → N which extends v and takes
value 0 outside Dom(v). Observe that u is not inMΦ if and only if u admits
two finite extensions v, w such that Φ(0⊕v) 6= Φ(0⊕w) and the computation
of Φ on 0⊕ v (resp. 0⊕ w) queries only Dom(v) (resp. Dom(w)).

For an example for whichMΦ andMΦ ∩FN→N
≤1 are not computable, let

ϕ : N → N be computable with non computable range and let Φ(f) be 0 if
ϕ(z) 6= f(0) for all z ≤ f(1) else 1. Clearly, Φ is computable and N{0,1} is a
computable 2-bounded modulus of continuity for Φ. Let uy be the function
with domain {0} such that uy(0) = y. Then uy ∈MΦ if and only if y is not
in the range of ϕ.

Remark 2.14. We do not know if there exists some computable Φ admitting
a bounded modulus of continuity but no computable bounded modulus.

2.3 Proof of Theorem 2.10: The quadratic blow-up is opti-
mal

Fix some k ≥ 2. Let Φ : NN → N be defined as follows:

Φ(f) =

{
0 if ∃i < k ∀j < k f(ik + j) = 0
1 otherwise

Fact 2.15. There exists a k-bounded modulus of continuity for Φ and an
unambiguous k2-bounded one but no unambiguous (k2 − 1)-bounded one.
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Proof. Since Φ(f) depends only on the values of f(x) for x < k2, it is
trivial that N[0,...,k2[ constitutes an unambiguous k2-bounded modulus of
continuity for Φ. Let us get a k-bounded modulus. For i = 0, . . . , k − 1, let
vi be the constant function on domain [ik, (i + 1)k[ with value 0. For ~j =
(j0, . . . , jk−1) ∈ [0, k[k and ~m = (m0, . . . ,mk−1) ∈ (N\{0})k, let w~j,~m be the
partial function with domain {ik+ ji | i < k} such that w~j,~m(ik+ ji) = mi.

It is easy to check that Φ−1(0) is the union of the [vi]’s whereas Φ−1(1) is
the union of the [w~j,~m]’s. Thus, the vi’s together with the w~j,~m’s constitute
a k-bounded modulus of continuity for Φ.

By way of contradiction, suppose that π is an unambiguous (k2 − 1)-
bounded modulus of continuity for Φ. Since Φ(f) depends only on (x 7→
min(f(x), 1)) � [0, k2[, the idea of the proof is to go from π to a “finitary”
family of partial functions [0, k2[→ {0, 1} having domains with exactly k2−1
points and then use a counting argument to get a contradiction.

For u ∈ π, let [[u ]] be the set of total functions [0, k2[→ {0, 1} compatible
with x 7→ min(u(x), 1). Problem: [u] ∩ [v] = ∅ does not imply [[u ]] ∩ [[ v ]] = ∅.
This is why we consider
π′ = {u ∈ π | u(x) = 0 for all x ≥ k2 in Dom(u)

and u(x) ≤ 1 for all x < k2 in Dom(u)} .
Clearly, the [[u ]]’s, u ∈ π′, are pairwise disjoint (as are the [u]’s since π is
unambiguous) and constitute a partition of {0, 1}[0,k2[. For ε = 0, 1, let
Fε = {f � [0, k2[ | f ∈ Φ−1(ε)}. Since Φ−1(ε) is a union of some [u]’s, u ∈ π′,
we see that Fε is a union of some [[u ]], u ∈ π′.

Since π is (k2 − 1)-bounded, for each u ∈ π′, we can choose S ⊂ [0, k2[
with k2− 1 points such that Dom(u)∩ [0, k2[⊆ S. Replace u by all its {0, 1}-
valued extensions to S. In this way, we get a family π′′ such that F0 and F1

are disjoint unions of some [[ v ]]’s with v ∈ π′′. To conclude, let us do some
counting. A total function α : [0, k2[→ {0, 1} is in F1 if and only if, for every
i = 0, . . . , k − 1, α � [ik, (i + 1)k[ is not the constant function with value 0.
Thus, the cardinality of F1 is (2k − 1)k and that of F0 is 2k

2 − (2k − 1)k.
Observe that these numbers are odd. However, each [[ v ]], for v ∈ π′′, contains
exactly 2 elements because there is only one point in [0, k2[\Dom(v). Thus,
as a disjoint union of some [[ v ]]’s with v ∈ π′′, both F0, F1 contain an even
number of elements. Contradiction!

2.4 Proof of Theorem 2.10: deterministic bounded modulus

First, two simple results, the second being the key for an inductive proof.

Proposition 2.16. If u, v ∈ FN→N
<ω (cf. Notation 2.1) agree on Dom(u) ∩
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Dom(v) (in particular, if v extends u or if they have disjoint domains) and
Φ : NN → N is constant on [u] and on [v] then Φ takes the same value on
[u] and [v].

Proof. Consider f ∈ NN which extends both u and v.

Proposition 2.17. Let Φ : NN → N be a total functional. Suppose π is
a k-bounded modulus of continuity for Φ. If Φ is not constant then there
exists a subset S of N with at most 2k− 1 elements which meets the domain
of every u ∈ π.

Proof. Let f, g ∈ NN be such that Φ(f) 6= Φ(g) and let u, v ∈ π be such that
f ∈ [u] and g ∈ [v]. Set S = Dom(u) ∪ Dom(v). Applying Proposition 2.16,
we see that Dom(u) and Dom(v) are not disjoint so that S has at most 2k− 1
elements. Also, if w ∈ π then the value of Φ on [w] is different from at least
one of those on [u] and [v] hence Dom(w) meets S.

A convenient notation.

Notation 2.18. If ϕ,ψ : A→ B are partial functions, we let ϕ⊕ψ : A→ B
be the partial function such that

• Dom(ϕ⊕ ψ) = Dom(ϕ) ∪ Dom(ψ),

• ϕ⊕ ψ extends ψ,

• (ϕ⊕ ψ)(x) is equal to ϕ(x) if x ∈ Dom(ϕ) \ Dom(ψ).

(Intuition: the one who is right is the last one who spoke.)

We can now come to the wanted proof.

Proof of point 3 in Theorem 2.10.
We argue by induction on k. The case Φ is constant is trivial. In particular,
this solves the initial case k = 0 of the induction.

Suppose k ≥ 1 and Φ is not constant and there exists a k-bounded
modulus of continuity π for Φ. Let S be as in Proposition 2.17 and let
s : N→ N have domain S. Let

π
(s)
S = {u�(Dom(u) \ S) | u ∈ π and u is compatible with s}.

Let us see that π
(s)
S is a covering. If f ∈ NN then f⊕s is in [u] for some u ∈ π

which is compatible with s. Hence (f⊕s)⊕(f �S) = f is in [u�(Dom(u)\S)].

Proposition 2.17 insures that all functions in π
(s)
S have domains with

≤ k − 1 elements. Thus, π
(s)
S is (k − 1)-bounded.

11



Let Φ(s) : NN → N be such that Φ(s)(f) = Φ(f ⊕ s) for all f ∈ NN.

Observe that π
(s)
S is a modulus of continuity for Φ(s). Indeed, if u compatible

with s and f, g are in [u�(Dom(u) \ S)] then f ⊕ s and g ⊕ s both extend u.
Since u ∈ π we have Φ(f ⊕ s) = Φ(g ⊕ s), i.e. Φ(s)(f) = Φ(s)(g).

Applying the induction hypothesis, there exists a deterministic (k− 1)2-
bounded modulus of continuity πs for Φ(s). Then the family π′ = {u ⊕ s |
s ∈ NS and u ∈ πs and u is compatible with s} is a covering: if f � S = s
and f ∈ [u] with u ∈ πs then u is compatible with s and f ∈ [u⊕ s]. Since
(k−1)2 +(2k−1) = k2, π′ is k2-bounded. Let us see that π′ is a modulus of
continuity for Φ. If f, g ∈ [u⊕s] with u ∈ πs and u is compatible with s then
f, g ∈ [u] and f, g extend s hence Φ(s)(f) = Φ(s)(g), i.e. Φ(f⊕s) = Φ(g⊕s).
Since f ⊕s = f and g⊕s = g, we get Φ(f) = Φ(g). Finally, we show that π′

is deterministic. Since πs is deterministic, it is given as in Proposition 2.6
by some α(s) : FN→N

<ω ×N→ N. Define α as follows: α(v, 0),. . . ,α(v, 2k − 2)
enumerate S and α(v, 2k − 1 + i) = α(v�S)(v, i). Then the covering given by
α is exactly π′. Hence π′ is deterministic. �

Remark 2.19. The above proof considers as known whether Φ is constant or
not. Of course, this is an undecidable question. Since the inductive proof
goes from Φ to all the Φ(s)’s, this undecidable question has to be answered
infinitely many times. Thus, the above proof is hopelessly non effective.

2.5 Proof of Theorem 2.10: computable deterministic mod-
ulus

The next Definition introduces a bounded version of the loop mentioned in
§1.1 to get the least ui such that f is in the clopen [ui]. Instead of querying
f on the sequence of all Dom(ui)’s until getting i such that f extends ui, we
query f on a conveniently extracted short subsequence.

Definition 2.20. Given ` ∈ N and an enumeration (ui)i∈N of NN of a
covering π, we define a functional Iπ,` : NN → N<ω such that, for any
f ∈ NN, Iπ,`(f) is the strictly increasing sequence of integers (i0, . . . , im),
with m ≤ `, defined by the following clauses.

1. i0 = 0.

2. Suppose ip is defined. Then ip+1 is defined if and only if p < ` and f
does not extend any ui for i ≤ ip.

3. If defined, ip+1 is the least j > ip such that uj is compatible with
f �
⋃
q≤p Dom(uiq) and Dom(uj) 6⊆

⋃
q≤p Dom(uiq).
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We also let Vπ,` : NN → FN→N
<ω be such that Vπ,`(f) = f �

⋃
p≤m Dom(uip)

where Iπ,`(f) = (i0, . . . , im).

Fact 2.21. 1. There exists an algorithm which uses the enumeration of π
as an oracle and which computes functionals Iπ,` and Vπ,` in such a way
that, on input f , it queries the sole values of f on the domain of Vπ,`.
2. The range of the functional Vπ,` is a deterministic covering which is
computable in oracle the enumeration of π. In particular, if π is computably
enumerable then the range of the functional Vπ,` is a computable determin-
istic covering.

Proof. Point 1: consider the algorithm given by Definition 2.20. Points 2:
apply Proposition-Definition 2.4.

Fact 2.22. Let Φ : NN → N be a total computable functional. If Φ admits a
computably enumerable k-bounded modulus of continuity then it also admits
a computable deterministic (2k2 − k)-bounded modulus of continuity.

Proof. Suppose π is a computably enumerable k-bounded modulus of con-
tinuity for Φ and (ui)i∈N is a computable enumeration of π. Let π̃(`) be
the range of Vπ,`. We first show that, for ` ≥ 2k − 1, π̃(`) is a modulus of
continuity for Φ. Let v = Vπ,2k−1(f) where f ∈ NN. We have to show that
Φ is constant on the clopen [v]. Let Iπ,`(f) = (i0, . . . , im), so that v is the
restriction of f to

⋃
p≤m Dom(uip).

In case v extends some uj , it is clear that Φ is constant on [v] (recall π
is a modulus of continuity for Φ).

Suppose now that v does not extend any uj . Then the construction of
the ip’s halts because m = `. By way of contradiction, suppose Φ is not
constant on [v]. Let g, h ∈ [v] be such that Φ(g) 6= Φ(h). Since π is a
modulus of continuity for Φ, there exists ξ, η ∈ N such that g ∈ [uξ] and
h ∈ [uη]. For each p = 0, . . . ,m, uξ and uη cannot be both compatible with
uip else (by Proposition 2.16) Φ would take the same value on [uξ] and [uip ]
and the same value on [uη] and [uip ]. Hence Φ would take the same value
on [uξ] and [uη], hence also on g ∈ [uξ] and on h ∈ [uη]), a contradiction.

Thus, there exists ap ∈ Dom(uip) ∩ (Dom(uξ) ∪ Dom(uη)) such that uip(ap)
is different from uξ(ap) or from uη(ap). Now, condition (3) in Definition 2.20
insures that, for q ≥ 1, uiq �

⋃
r<q Dom(uir) is compatible with f hence with v

(since f extends v = Vπ,2k−1(f)) hence with g and h (since their restriction to⋃
r<q Dom(uir) is that of v) hence with uξ and uη (since they are restrictions

of g and h). Thus, aq is in Dom(uip)\ (
⋃
r<p Dom(uir)). In particular, aq 6= ar

for all r < q. This proves that the ap’s, p = 0, . . . ,m are pairwise distinct.
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Since the ap’s are in Dom(uξ)∪Dom(uη) and we have already seen that m = `,
we get

(†) Dom(uξ) ∪ Dom(uη) has at least `+ 1 elements.

Now, since Φ(g) 6= Φ(h) and g ∈ [uξ] and h ∈ [uη], uξ and uη cannot be
compatible. In particular, the intersection Dom(uξ) ∩ Dom(uη) is not empty.
Since π is k-bounded, Dom(uξ) and Dom(uη) have at most k elements. Thus,
Dom(uξ)∪Dom(uη) has at most 2k−1 elements. Using (†), we get `+1 ≤ 2k−1,
which contradicts the assumed inequality ` ≥ 2k − 1.

Let us majorize the cardinality of the domain of v ∈ π̃(`). Since Dom(v)
is the union of the Dom(uip)’s, p = 0, . . . , `, and each Dom(uip) has at most k
elements (again, π is k-bounded), Dom(v) contains at most k(`+1) elements.
Letting ` = 2k − 1, this gives a 2k2 upper bound.

Thus, π̃(2k−1) is a 2k2-bounded modulus of continuity for Φ. Point 2 of
Fact 2.21 insures that π̃(`) is computable. By Point 1 of Fact 2.21, there is
an algorithm which, on input f ∈ NN, computes v = Vπ,2k−1(f) querying f
solely on Dom(v). Thus, π̃(2k−1) is a computable deterministic 2k2-bounded
modulus of continuity for Φ.

Let us improve the bound 2k2 to 2k2−k. To get the 2k2 bound, for every
p ≤ 2k−1, we majorized by k the cardinal of Dom(uip)\(

⋃
r<p Dom(uir)). Let

t be maximum such that Dom(uit) \ (
⋃
r<t Dom(uir)) has k elements. Then

Dom(uit) is disjoint from all the Dom(uir)’s for r < t, hence Φ takes the same
value on all the [uiq ]’s for q ≤ t. This value is different from the value of Φ
on [uξ] or on [uη]. Let it be on [uξ]. Then all aq’s, for q ≤ t, can be taken
in Dom(uξ). Since the aq’s are pairwise distinct and Dom(uξ) has at most k
elements, we get t + 1 ≤ k. Now, for p > t, Dom(uip) \ (

⋃
r<p Dom(uir)) has

at most k − 1 elements. Thus, the cardinal of Dom(v) =
⋃
q≤2k−1 Dom(uiq) is

bounded by (t+ 1)k+ (2k− 1− t)(k− 1) = t+ 2k2− 2k+ 1 ≤ 2k2− k since
t+ 1 ≤ k.

3 Topology and bounded information

This section relies on a simple idea: k-bounded modulus of continuity looks
like uniform continuity. Indeed, it is uniform continuity for an appropiate
uniformity on the Baire space. Observe that this cannot be uniform conti-
nuity with respect to the usual metric on NN: for instance, in Example 1.1,
one has to know f on some arbitrarily large point (namely α(f(0), f(1))) to
get the value of Φ(f).
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3.1 The deterministic bounded information uniformity

For the notion of uniformity on a space and the related classical results, we
refer to classical textbooks (Bourbaki or Kelley’s [4, 13]) and to the short
review in the Appendix.

Proposition-Definition 3.1. To any unambiguous bounded covering π of
NN, associate

Uπ = {(f, g) ∈ NN × NN | f, g extend a same
partial function u in π}

=
⋃
u∈π[u]× [u] (cf. Notation 2.1)

1. The family Bunamb of all such Uπ’s is the basis of a transitive uniformity
on NN.
2. The family Bdet of all such Uπ’s, when π varies over deterministic bounded
coverings is a basis of the same uniformity.
This uniformity is called the deterministic bounded information uniformity.

Proof. Straightforward consequences of classical result (cf. Proposition .7
in the Appendix to the paper) and of Corollary 2.12 supra.

Proposition 3.2. 1. The deterministic bounded information uniformity on
NN

1. generates the Baire topology on NN,

2. is a transitive uniformity,

3. is a proper refinement of the uniformity of the usual Baire metric.

4. admits no countable basis hence is not metrizable.

Proof. 1. By definition (cf. Proposition .3), a basis of the topology associ-
ated to a uniformity is obtained by taking sections U |f = {g | (f, g) ∈ U}
where U varies in a basis of the uniformity and f varies in NN. In our case,
the basis consists of the Uπ’s, π varying among unambiguous bounded cov-
erings. Now, if f ∈ [u] and u ∈ π then Uπ|f = [u] which is a clopen in
the basis of the Baire topology. To conclude, observe that every clopen [u]
is so obtained because any partial function u : N → N with finite domain
belongs to some unambiguous bounded covering π, for instance the covering
consisting of all functions with domain Dom(u).
2. We show Uπ ◦ Uπ = Uπ. Suppose (f, g) and (g, h) are both in Uπ =⋃
u∈π[u × [u]. Since π is unambiguous there is a unique u ∈ π such that
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g ∈ [u]. Thus, (f, g) and (g, h) are both in [u]× [u] hence so is (f, h) which
is therefore in Uπ.
3. Recall the usual Baire distance: d(f, g) is 0 if f = g and 2−min{n|f(n)6=g(n)}

otherwise. The basic entourages are the En = {(f, g) | d(f, g) < 2−n}’s.
Observe that En = Uπn where πn is the unambiguous n-bounded cover-
ing N{0,...,n−1} (all functions with domain {0, . . . , n − 1}). Finally, the set
π = {(0, 0)}∪{{(0, x), (x, y)} | x, y ∈ N, x 6= 0} is a deterministic 2-bounded
covering which contains no En.
4. Let (πn)n∈N be a sequence of deterministic bounded coverings. Let
πn be kn-bounded. By Proposition 2.6, there exist total functions αn :
FN→N
<kn

× N → N such that πn = {u | Dom(u) = {an,i(u) | i < kn}} with
an,i(u) = αn(u�{an,j(u) | j < i}, i). The set of u’s in πn with range included
in {0, . . . , n} is finite and non empty. Let θ(n) be the maximum element in
some Dom(u) for such u’s. Then π = {{(0, n), (θ(n) + 1, y)} | n, y ∈ N} is a
deterministic 2-bounded covering such that Uπ contains no Uπn .

The deterministic bounded information uniformity is the pertinent topo-
logical tool to characterize functionals using bounded information.

Recall that the discrete uniformity on N is that for which the diagonal
{(x, x) | x ∈ N} is an entourage and it is associated to the distance d(x, y) =
0 if x = y and 1 otherwise.

Theorem-Definition 3.3. Endow N with the discrete uniformity and NN

with the deterministic bounded information uniformity. For a total func-
tional Φ : NN → N the following conditions are equivalent:

1. Φ has a bounded modulus of continuity,

2. Φ is uniformly continuous.

We say that Φ is effectively uniformly continuous in case it has a computably
enumerable bounded modulus of continuity (hence also a computable one by
Corollaries 2.11, 2.12).

Proof. Since we consider the discrete uniformity on the range set N, Φ
is uniformly continuous if and only if the inverse image of the diagonal
(Φ,Φ)−1({(x, x) | x ∈ N}) is an entourage of our uniformity on NN, i.e. con-
tains an entourage Uπ where π is a deterministic bounded covering. This
means that, for all f, g ∈ BA, if (f, g) ∈ Uπ then Φ(f) = Φ(g). Now,
(f, g) ∈ Uπ exactly means f, g ∈ [u] for some u ∈ π. In other words, π is a
deterministic bounded modulus of continuity for Φ.
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3.2 Curryfication and linear uniform continuity

In view of applications to the dynamics of algorithms, we look at functionals
between function spaces.

First, a preliminary notion.

Definition 3.4. The unambiguous (resp. deterministic) degree of an en-
tourage E is defined as the least ` such that E contains some Uπ with π an
unambiguous (resp. deterministic) `-bounded covering.

Due the quadratic blow-up when we go to deterministic coverings (cf.
Corollary 2.12), we have to distinguish two cases in the above Definition.
However, this will have no serious incidence, cf. Theorem-Definition 3.7.

Proposition 3.5. If the unambiguous degrees of entourages E1 and E2 are
k1 and k2 then that of their intersection is at most k1 + k2. Idem with
deterministic degrees.

Proof. If the covering πε, ε = 1, 2 is kε-bounded then
π1 ⊕ π2 = {u1 ⊕ u2 | u1 ∈ π1, u2 ∈ π2, u1, u2 compatible}

(cf. Notation 2.18) is a (k1 +k2)-bounded covering such that Uπ1⊕π2 ⊆ Uπ1∩
Uπ2 . Finally, it is easy to check that this ⊕ operation preserves unambiguity
and determinim.

As we shall use Curryfication, to distinguish sources from targets, we
argue with function spaces BA and DC .

Definition 3.6 (Curryfication). 1. Let Ψ : BA → DC be a total func-
tional. We denote by ∂Ψ the total functional ∂Ψ : (BA×C)→ D such that
(∂Ψ)(f, c) = Ψ(f)(c) for all f ∈ BA and c ∈ C.
2. Let > be an element outside A,B,C,D. We identify C with {>} → C and
BA×C with BA×C{>}, and ∂Ψ with a total functional ∂Ψ : BA×C{>} → D.

As is well-known, Ψ : BA → DC is continous (with respect to the Baire
topology) if and only if so is its Curryfication ∂Ψ : BA × C{>} → D.

Surprising as it may be, it turns out that this is no more true with
uniform continuity. A strengthening of uniform continuity is necessary.

Theorem-Definition 3.7. Endow BA and DC with the deterministic bounded
information uniformities. Let Ψ : BA → DC be a total functional. The fol-
lowing conditions are equivalent.

1. ∂Ψ : BA × C{>} → D is uniformly continuous,
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2. There exists some fixed k such that the inverse image (Ψ,Ψ)−1(E) of
an entourage E of unambiguous degree ` is an entourage of unambigu-
ous degree at most k`

3. Idem as (2) with deterministic degrees.

Also, the above equivalences effectivize with effective uniform continuity for
∂Ψ (cf. Theorem-Definition 3.3) and entourages associated to computably
enumerable coverings.

When these conditions hold (resp. in the effective version), we say that
Ψ : BA → DC is (resp. effectively) linearly uniformly continuous.

Proof. (1) ⇒ (2). Suppose ∂Ψ is uniformly continuous and let τ be an
unambiguous k-bounded ∂Ψ-covering of BA × C{>}. Lifting k to k + 1, we
can suppose that every u ∈ τ is defined on >. Let π be a be an unambiguous
`-covering of DC . For each v = {(c1, d1), . . . , (cp, dp)} ∈ π with p ≤ `, let
π′v be the family of all u1 ⊕ . . . ⊕ up : A → B such that u1, . . . , up are
pairwise compatible and ui⊕ (>, ci) ∈ τ and the value of ∂Ψ on [ui⊕ (>, ci)]
is di for all i = 1, . . . , p. Set π′ =

⋃
v∈π π

′
v. Since each v ∈ π has a size

≤ ` domain and each ui ⊕ (>, ci) ∈ τ has a size k domain, we see that
each function in π′ has a size ≤ k` domain. Let f ∈ BA. There exists a
unique v = ((c1, d1), . . . , (c`, dp)) ∈ π such that Ψ(f) ∈ [v]. Observe that
di = Ψ(f)(ci) for all i. For each i = 1, . . . , p there exists a unique ui such
that ui⊕(>, ci) ∈ τ and f⊕(>, ci) ∈ [ui⊕(>, ci)]. Since f ∈ [ui] for all i, we
see that u1⊕. . .⊕up is in π′v hence in π′. Thus, f ∈ [u1⊕. . .⊕up]. This proves
that π′ is an unambiguous k`-covering of BA. Finally Ψ(g) ∈ [v] for every
g ∈ [u1 ⊕ . . . ⊕ up]. Thus, (Ψ,Ψ)(Uπ′) ⊆ Uπ and Ψ is (` 7→ k`)-uniformly
continuous hence linearly uniformly continuous.

(2) ⇒ (1). Suppose (2) holds with the constant k. For c ∈ C, let πc
be the unambiguous 1-bounded covering of all partial functions C → D
with domain {c}. Condition (1) insures that there exists a unambiguous
k-bounded covering π′c of BA such that, for all u ∈ π′c, f 7→ Ψ(f)(c) is
constant on [u] . Then ∂Ψ is constant on [u ⊕ (>, c)]. The family τ of all
u⊕ (>, c), where c ∈ C and u ∈ π′c, is then an unambiguous (k+1)-bounded
∂Ψ-covering. By Theorem-Definition 3.3, ∂Ψ is uniformly continuous.

(1)⇒ (3) and (3)⇒ (1) are analogous.
Effectivization of this proof is routine.

We shall need the above notions extended to finite products of func-
tion spaces in the source. Things are the same, only the notations become
heavier.
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Proposition 3.8. Let I be a finite set and the Ai’s, Bi’s be countable dis-
crete spaces. Let T =

∏
i∈I Bi

Ai and Ψ : T → DC be a total functional.
Theorem-Definition 3.7 extends as expected: replace BA by T and the con-
dition on ∂Ψ by the conjunction of the same conditions for the ∂(projj ◦Ψ)’s.

4 Characterizing the dynamics of algorithms

We apply our results about functionals using bounded information to the
theory of algorithms. More precisely, we characterize their dynamics: the
way the environment evolves.

First, we recall the problem and the ASM solution.

4.1 Capturing the notion of algorithm

Since a long time there has been a huge amount of work around algorithms.
However, up to the emergence of ASM ca 1984, there was no mathematical
answer to the question “what is an algorithm?”.

One can look at algorithms in two ways:

• (Denotational) What do they do? What is their input/output be-
haviour?

• (Operational) How do they work? What is their step by step be-
haviour? How does the environment evolve?

Church’s Thesis asserts that the classical mathematical formalization of
computability fully captures the denotational side of algorithms. However,
Church’s Thesis does not say anything about the operational side. Indeed,
the numerous computation models which have been proved to denotation-
ally coincide are far apart from one another as concerns operationality. For
instance, palindrome recognition can be done in linear time with a two-tape
Turing machine whereas it requires quadratic time with a one-tape Turing
machine (cf. Hennie, 1966 [12], see also [1]). Thus, one-tape and two-tape
Turing machines constitute computation models which are denotationally
equivalent (both are Turing complete: they capture all computable func-
tions) but not operationally equivalent.

This leads to a natural question: among the numerous Turing complete
computation models is there one which captures all possible algorithms? i.e.
is operationally complete?

Kolmogorov-Uspensky Machines, ca 1958 [14], can be viewed as the first
trial to answer the question. As pointed by Yuri Gurevich [10], though they
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do not state it explicitely, there is a thesis underlying their paper, namely
“every computation, performing only one restricted local action at a time,
can be viewed as (not only being simulated by, but actually being) the
computation of an appropriate KU machine (in the more general form)”.
Schönhage’s Storage Modification Machines, ca 1970 [15], is an extension
of KU machines which can be seen as the second trial towards a model
capturing all algorithms. As is now known, cf. Gurevich, 1997 [6], both KU
and SSM trials fail but are rather close to a solution. . .

As it is, the question is about an intuitive notion with an excessively
wide range: algorithms may be non deterministic, more or less parallel,
distributed,. . . Let us be less ambitious and consider algorithms with the
following features:

1. They are deterministic transition systems which run in discrete time
and manipulate items in countable data structures.

2. In a single transition they can perform only a uniformly bounded
read/write action.

3. They tell how recursive calls (if any) are managed.

Condition (2) allows for vector assignments of items or cells in arrays of
items. But it excludes any global assignment of a (variable length) array and
any parallelism such as that in cellular automata. We added condition (3)
to cut short the discussion about the nature of recursive calls.

The first convincing model to capture all such algorithms is that of Ab-
stract State Machines [11] from which we extracted conditions (1) and (2)
supra, cf. also [11, 5].

4.2 Abstract State Machines

A key point in the ASM solution is to realize that the notion of algorithm is
not an absolute notion but, on the contrary, it is intrinsically oracular. No
algorithm works from scratch: it uses primitive operations “given for free”,
somehow “atomic”. Whatever elementary they may seem, it is just fair to
explicit them. For instance, a Turing machine reads a cell, moves its head
and changes state: how these operations are performed is ignored, we take
them as given. However, if we want to write a program in some programming
language to simulate a Turing machine, we see that all these operations
are not for free, they need pieces of code! In other algorithms, primitive
operations may be non trivial ones. For instance, Euclid’s algorithm for the
gcd takes as primitive the zero test and the remainder in Euclidean division
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on N. For Strassen’s algorithm to multiply matrices, scalar multiplication
is considered as primitive!

A (deterministic) ASM is a construct as follows.

• A multisort logical functional structure (i.e. an algebra) M = (M1, . . . ,Mn; f1, . . . , fp)
on a so-called static functional vocabulary (f1, . . . , fp). This static vo-
cabulary is typed: types are of the form Mj or Mj1 × . . .×Mjq →Mr.
The interpretations fi’s respect the types of the fi’s.

• A so-called dynamic functional vocabulary (g1, . . . , gq) which is simi-
larly typed.

• A program consisting of assignments gi(t1, . . . , t`) := u (where gi is a
dynamic symbol and the tj’s and u are ground terms built with both
vocabularies), conditionals and finite sets of such instructions.

Thus, an ASM M is a transition system in which a state is the logical
structure obtained by expanding M with an interpretation of the dynamic
vocabulary. A run of M is a sequence of states obtained from the first one
(the “initial” state) by iterated applications of the ASM program. There is
no loop in ASM programs: the run is the sole (meta) loop!

The base sets of the structure and the interpretations of the static sym-
bols are fixed. They represent the background of the algorithm. In particu-
lar, the static functions are tools given for free. For instance, the tape of a
Turing machine and the moves of the head become the sort Z (all integers)
with the successor and predecessor functions. As for Euclid’s algorithm, its
static background is the algebra (N; 0,mod).

There is no constraint on static functions in ASMs: they may even be
non computable.

The interpretations of the dynamic symbols vary from state to state.
They represent the foreground of the algorithm: in programming, this is the
dynamic environment.

Finally, what Church’s Thesis asserts about the denotational level can
be lifted to the operational level:

ASM Thesis [11]: Every computation obeying conditions (1), (2), (3) of
§4.1 can be viewed as (not only being simulated by, but actually being) the
computation of an appropriate ASM.

Exactly as with Church’s Thesis, the ASM Thesis has been extensively
positively checked with all possible computation models, cf. the ASM web
page [16]. It also holds in a “second-order” form: all usual computation
models correspond to classes of ASMs associated to a fixed background
with no constraint on ASM programs, cf. [8, 9].
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The ASM Thesis implies Church’s thesis, cf. [5]. It is also a tool to prove
algorithmic completeness of computation models: it suffices to match any
ASM run. For instance, lambda calculus, suitably augmented with constants
(to represent elements of the sorts and static functions) and reductions of
lambda free ground terms, is so proved to be algorithmically complete [7].

4.3 Algorithms viewed as functionals

Following the ASM analysis but forgetting ASM programs, an algorithm
appears as a static background plus a functional Ψ mapping the interpreta-
tions of the dynamic symbols in some state into the interpretations in the
next state (obtained by application of the ASM program).

We shall now consider two restrictions to algorithms which we add to
conditions (1), (2), (3) from §4.1.

(4) The interpretations of the dynamic symbols are total functions.

(5) The algorithm never gets stucked so that the associated functional Ψ
is total.

In general, algorithms do not obey these conditions. They manipulate par-
tial functions and sometimes they get stucked. Indeed, ASMs do not assume
conditions (4), (5).

However, the method developed in this paper applies only to those total
algorithms. Assuming conditions (4), (5), the functional Ψ associated to
the algorithm – which we call the dynamics of the algorithm – is a total
functional of the form

(�) Ψ : T → T with T =

i=q∏
i=1

Bi
Ai

where q is the cardinal of the dynamic vocabulary, theAi’s are finite products
of the Mj ’s, the Bi’s are among the Mj ’s, the Mj ’s are sorts and Ai → Bi
is the type of the i-th dynamic symbol. Moreover, as mentioned in the
Introduction §1.2, following [11], the algorithms we consider manipulate
their environment in quite a gentle way: for some fixed k, the transition
step leads from ~f to Ψ(~f) obeying the following rules: for some k

(1)k Bounded effect. ~f and Ψ(~f) differ on at most k points.

(2)k Bounded cause. These ≤ k points and the values of Ψ(~f) on them
depend on the values of ~k on at most k points.
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(3)k Bounded query. The computation of Ψ(~f) has queried f on at most k
points.

Remark 4.1. What is the bound k in an ASM? It is the number of occur-
rences of dynamic symbols in the terms of the ASM program. Cf. also
Remark 2.5.

Applying our results on functionals with bounded modulus of continuity, we
obtain the following results.

Theorem 4.2 (Characterization of ASM total functionals). Let T and Ψ :
T → T be a total functional as in (�). Endow T with the deterministic
bounded information uniformity and FT→T≤k with the discrete uniformity.
The following conditions are equivalent

1. Ψ satisfies rules (1)k, (2)k for some k,

2. Ψ is the transition functional of an ASM (with possibly non computable
static background) which, moreover, satisfies rule (3)O(k2).

3. Ψ is of the form Ψ = Id⊕ψ (cf. Notation 2.18) where, ψ : T → FT→T≤k
is a total functional which is uniformly continuous (with a bound O(k2)
for the modulus of continuity).

Remark 4.3. The k and O(k2) parameters may seem to contradict the fact
that Ψ is the step by step behaviour of an algorithmic procedure (with pos-
sible non computable background). However, recall that a bounded degree
of parallelism is allowed as long as the associated work is bounded. These
parameters are, in fact, relevant to the close analysis of the step by step of
algorithms done in [2].

Theorem 4.4 (Characterization of the dynamics of algorithms). Keep the
notations of Theorem 4.2. The following conditions are equivalent

(1)’ Ψ is the dynamics of an algorithm (among those satisfying conditions
(1), (2), (3) of §4.1),

(2)’ Ψ is the transition functional of a computable ASM,

(3)’ Ψ is of the form Ψ = Id ⊕ ψ (cf. Notation 2.18) where, ψ : T →
FT→T≤k is a total computable functional which is effectively uniformly
continuous.
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Proof. Proof of Theorem 4.2. (1) ⇒ (2). The form Ψ = Id ⊕ ψ is a
restatement of (1)k. Rule (2)k insures that ∂Ψ uses k-bounded information,
hence, by Point 3 of Theorem 2.10, we see that (3)O(k2) holds, i.e. ∂Ψ uses

deterministic O(k2)-bounded information. Adding FT→T<ω to the sorts (or
coding this sort together with its basic operations inside the given sorts
constituting T ) and the function α from Proposition 2.6 associated to the
deterministic bounded modulus of continuity of ∂Ψ, we get an ASM with Ψ
as transition functional.
(2)⇒ (3)⇒ (1) is straightforward.
Proof of Theorem 4.4. (1)′ ⇒ (2)′. This is the ASM Thesis. (2)′ ⇒ (3)′.
Straightforward since an ASM functional is ruled by an ASM program hence
has a computable bounded modulus of continuity (cf. Remark 4.1). (3)′ ⇒
(1)′. Straightforward.

5 Conclusion and Perspectives

We have shown that the notion of functional using bounded information
is rooted in that of algorithm and allows for a mathematical formalization
using advanced topological tools.

However, we have treated the case of algorithms manipulating completely
defined parameters (basically, total functions N→ N). And we also supposed
the algorithm never gets stucked so that its transition functional is total.
Of course, these assumptions do not exhaust the reality of algorithms. An
extension of our work using an adequate Scott domain in place of the Baire
space is a perspective future work.

Finally, parallel algorithms (the ASM theory being done in [3]) seem well
suited to an analogous characterization: just drop rule (1)k and consider
computable effectively linearly uniformly continuous functionals.

[Uniformity and topology in a nutshell] Cf. Bourbaki or Kelley’s classical
textbooks [4, 13].

Definition .1. A uniformity U on a space S is a family of subsets of S×S
(called entourages) such that

1. Every entourage U ∈ U contains the diagonal ∆ = {(x, x) | x ∈ S}.

2. U is a filter: every superset of an entourage is an entourage and the
intersection of finitely many entourages is an entourage.

3. If U is in U then so is Usym = {(y, x) | (x, y ∈ U}.
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4. For every entourage U there exists an entourage V such that V ◦ V ⊆
U where V ◦ W = {(x, z) | (∃y ((x, y) ∈ V and (y, z) ∈ W )}. In
particular, since V contains the diagonal, V = V ◦∆ ⊆ V ◦ V ⊆ U .

U is transitive in case condition (4) can be strengthened to

(4’) For every entourage U there exists an entourage V such that V ◦V = U .
One can then suppose V is symmetric.

A basis B of U is a family of entourages such that every entourage contains
an entourage in B

Example .2. 1. Suppose d : S×S → [0,+∞] is a metric on S. For any r > 0
let Ur = {(x, y) ∈ S × S | d(x, y) ≤ r}. Then the family of supersets of the
Ur’s is a uniformity Ud on S (and the Ur’s constitute a basis of Ud).
2. If d is an ultrametric, i.e. d(x, z) ≤ max(d(x, y), d(y, z)) for all x, y, z ∈ S,
then Ur ◦ Ur = Ur and therefore Ud is a transitive uniformity.
3. The finest uniformity is the discrete one: it which contains the diagonal
(hence all its supersets).

To every uniformity is associated a topology.

Proposition .3. Suppose U is a uniformity on S. For every x ∈ S let
NU (x) be the family of sets of the form {y ∈ T | (x, y) ∈ U} for some
entourage U ∈ U . Let TU be the family of sets X ⊆ T such that X ∈ NU (x)
for every x ∈ X. Then TU is the family of open sets of a topology on X and
NU (x) is the family of neighborhoods of x in the topology TU .

In the same way that topology is the right framework to deal with con-
tinuity, the notion of uniformity is the right one to deal with uniform con-
tinuity.

Definition .4. Suppose U and V are uniformities on the respective spaces
S and T . A map F : S → T is uniformly continuous with respect to U and
V if (F ×F )−1(V ) ∈ U for every V ∈ V, i.e. the inverse image by F ×F of
an entourage of V is an entourage of U . In other words, for every entourage
V ∈ V there exists an entourage U ∈ U such that if x, y are U -close (i.e.
(x, y) ∈ U) then F (x), F (y) are V -close.

This definition extends the usual one with metric spaces.

Proposition .5. If (S, dS) and (T, dT ) are metric spaces then a map F :
S → T is uniformly continuous with respect to the uniformities UdS and
UdT (cf. Example .2 supra) if and only if F is uniformly continuous in the
sense of metric spaces: for every ε > 0 there exists η > 0 such that, for all
x, y ∈ S, if dS(x, y) ≤ η then dT (F (x), F (y)) ≤ ε.
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As expected, uniform continuity implies continuity.

Proposition .6. If F : S → T is uniformly continuous with respect to U
and V then F is continuous with respect to the associated topologies TU and
TV .

Transitive uniformities can be characterized via partitions.

Proposition .7. To any partition σ = (Sα)α∈A of a space S we associate
the set Vσ =

⋃
α∈A Sα×Sα. Let U be a uniformity on S and Σ be the family

of all partitions σ such that Uσ ∈ U . The uniformity U is transitive if and
only if {Vσ | σ ∈ Σ} is a basis of U .

Proof. Suppose V ⊆ S×S contains the diagonal and is symmetric. Observe
that V satisfies V ◦ V = V if and only V is an equivalence relation on S if
and only if V = Uσ for some partition σ (namely the partition constituted
by equivalence classes of V ).

Finally, a property of transitive uniformities.

Proposition .8. Suppose U is a transitive uniformity on S. A basis of the
topology associated to U is the family of all pieces Sα of all partitions σ of
S such that Uσ is in U .

Proof. Easy consequence of Proposition .3.
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