
A remaining issue
after Turing’s work : formalize

the notion of algorithm

Serge Grigorieff
LIAFA, CNRS & Université Denis Diderot-Paris 7

Colloquium Polaris, Lille, 31 mai 2012

(Année du centenaire de Turing)

1 / 67

Two questions by Turing
in his celebrated paper (1936)

1) What is an algorithm?

2) What is computable?

The successful answer to the second question
long overshadowed the first question.

2 / 67

Turing’s First Question:

What is computable?

The scope of the question is in the title
of his momentous paper, 1936

On computable numbers, with an application
to the Entscheidungsproblem

(numbers = real numbers)

From the start,
Turing considers computability
over finite and infinite objects

3 / 67

Turing’s First Question: What is computable?

“Although the subject of this paper
is ostensibly the computable [real] numbers,
it is almost equally easy to define and investigate
computable functions of an integral variable
or a real or computable variable.
[. . .] The fundamental problems involved are,
however, the same in each case,. . . ”

Turing, 1936, page 1, line 3-7

On this point, Turing was wrong
Computability over finite and over infinite objects
are NOT equally easy: For sequences of reals and
functions over reals, computability is representation
dependent (Mostowski, 1957). (cf. Computable Analysis)

4 / 67

Turing’s First Question: What is computable?

“Let us suppose that we are supplied with
some unspecified means
of solving number theoretic problems;
a kind of oracle as it were. [. . .]
With the help of the oracle we could form a new
kind of machine (call them o-machine),[. . .]”

Turing’s Thesis, 1938, page 18
“Systems of logic based on ordinals”

Turing 1938 introduces
Computability with an oracle
Computability as a relative notion

5 / 67

What has become of Turing 1st question?

Computability on N
Herbrand-Gödel
Turing, Church,
Kleene,
. . . a cornucopia of computation models

Computability on R
Turing,
Grzegorczyk, Lacombe,

Shannon’s General Purpose Analogic Computer
Shannon takes a completely different approach:

(cf. Olivier Bournez and Daniel Graça’s papers)

6 / 67

Turing’s Second Question:

What is an algorithm?
Turing’s concern for the question
The real question at issue is
“What are the possible processes which can be
carried out in computing a [real] number?”

Turing, 1936 (page 20)

Donald Knuth’s concern for the same question
The notion of an algorithm
is basic to all of computer programming,
so we should begin with a careful analysis of this
concept.

(The Art of Computer Programming,
vol. 1, p.1, §1.1 “Algorithms”)

7 / 67

Let be naive for a while. . .
Non formal definitions
of algorithms

8 / 67

What dictionaries tell about algorithms?

Antoine Furetière , Dictionnaire universel (1690)

algorisme. s.m. est un mot arabe dont plusieurs
Auteurs se sont servis, & sur tout les Espagnols,
pour signifier la science des nombres.

9 / 67

Dictionnaire de L’Académie française

Le mot algorithme ne figure pas dans
la 1ère édition (1694),
ni la 5ème (1798),
ni la 6ème (1835),
ni la 8ème (1935)

Figure dans la 4ème Édition (1762)
et la 9ème Édition (tome 1, 1994)

10 / 67

Dictionnaire de L’Académie française
4ème Éd. (1762)
ALGORITHME. s.m. Terme didactique. L’art de calculer.

L’Algorithme des entiers. L’Algorithme des fractions.

9ème Édition (tome 1, 1994)
ALGORITHME. n. m. XIIIe siècle, augorisme. Altération, sous
l’influence du grec arithmos, � nombre �, d’algorisme, qui, par
l’espagnol, remonte à l’arabe Al-Khuwarizmi, surnom d’un
mathématicien.

MATH. Méthode de calcul qui indique la démarche à suivre pour

résoudre une série de problèmes équivalents en appliquant dans un

ordre précis une suite finie de règles. L’algorithme de la

multiplication de nombres à plusieurs chiffres.

11 / 67

Littré, Dictionnaire de la langue française, 1872
algorithme. al-go-ri-tm’/ s.m. 1. En termes d’algèbre, procédé de
calcul.
2. Genre particulier de notations. Algorithme différentiel.
Hist. Cette senefiance est apelée algorisme de le quele nous usons
de tels figures: 9, 8, 7, 6, 5, 4, 3, 2, 1... Quatre parties sont
d’angorisme, assembler, abatre, dividier, multeplier. Comput, XIIIe
s. , manuscrit de la Bibliothèque Nationale.
Arismetique est science de gecter et compter par le nombre de
angorisme et autre nombre commun. Eustache Deschamps, XVe s.
, Art de faire chansons.

Avecques eulx [les Vénitiens] leur duc serenissime, Qu’on peut

juger un chiffre [zéro] en algorisme Jean Marot, XVIe s. , in

Oeuvres de Clément Marot

12 / 67

Le Robert, Dict. alphabétique et analogique de la
langue française
algorithme n.m. (du bas latin algorismus; arabe al-khowarezmi).

Ensemble de symboles, de procédés de calcul. Algorithme d’Euclide

James & James, Mathematics dictionary, 3rd ed.
1968
al’go-rithm, n. Some special process of solving a certain type of

problem, particularly a method that continually repeats some basic

process. Division algorithm. Euclid’s algorithm (...)

13 / 67

How some mathematicians define
algorithms?

Marvin Minsky, Finite and infinite machines,
1967 (p.105)

The idea of an algorithm or effective procedure
arises whenever we are presented with a set of
instructions about how to behave. This happens
when, in the course of working on a problem, we
discover that a certain procedure, if properly carried
out, will end up giving us the answer. Once we make
such a discovery, the task of finding the solution is
reduced from a matter of intellectual discovery to a
mere matter of effort; of carrying out the discovered
procedure – obeying the specified instructions.

14 / 67

Donald E. Knuth,
The art of computer programming, 1968

Knuth puts a temptative “axiomatic approach”
where it has to be, at the start: volume 1, p.4

The modern meaning for algorithm is quite similar
to that of recipe, process,method, technique,
procedure, routine, except that the word
”algorithm” connotes something just a little
different. Besides merely being a finite set of rules
which gives a sequence of operations for solving a
specific type of problem,
an algoritm has five important features:

15 / 67

1) Finiteness. An algorithm must always terminate after a finite
number of steps (...)
2) Definiteness. Each step of an algorithm must be precisely
defined; the actions to be carried out must be rigorously and
unambiguously specified for each case (...)
3) Input. An algorithm has zero or more inputs, i.e. quantities
which are given to it initially before the algorithm begins. These
inputs are taken from specified sets of objects (...)
4) Output. An algorithm has zero or more outputs, i.e. quantities
which have a specified relation to the inputs (...).

5) Effectiveness. An algorithm is generally expected to be effective.

This means that all operations to be performed in the algorithm

must be sufficiently basic that they can in principle be done exactly

and in a finite length of time by a man using pencil and paper (...)

16 / 67

But how does one tell, given what appears to be a set of
instructions, that we really have been told exactly what to do ?
How can we be sure that we can hencefoth effectively act, in
accord with the ”rules”, without ever having to make any further
choice or innovation of our own ?(...)
The position we will take is this : If the procedure can be carried
out by some very simple machine, so that there can be no question
of or need for “innovation or intelligence”, then we can be sure
that the specification is complete and that we have an “effective
procedure”.

We expect no quarrel with this.

17 / 67

Towards

formal definitions of algorithms

After Turing & al.’s work,

What is still missing?

18 / 67

Two aspects of algorithms
Denotational = What does it do?

= Input/Output behaviour

Operational = How does it do?
= step by step behaviour + environment

Many computation models
≡ particular classes of algorithms

Most proved to denotationally coincide

1936, Church thesis:

They capture ALL computable functions
= they are denotationally complete

19 / 67

Denotationally, OK. . . But Operationally?

Each one of these models
captures ALL computable functions

but is there any model
capturing ALL algorithms?
(≡ operationally complete)

• Until 1984, NONE proved to be so

• 1984, Gurevich’s Abstract State Machines

• 2010, Lambda-calculus proved
operationally complete (Marie Ferbus & SG)

20 / 67

Resource complexity = operational feature
Complexity theory proves operational gaps
in some computation models

Example: Palindrome recognition

• Quadratic time required with

1-tape Turing machines (Hennie, 1966)

• O(n2/ log(n)) time required with

multidimensional 1-tape Turing machines

(Biedl & al., 2003)

• Linear time with two 1-dimensional tapes
21 / 67

Let us insist:
The theory of computable functions

IS NOT
a genuine theory of algorithms

Many textbooks intitled
“Theory of algorithms” FAKE TITLE!
they are not about a genuine theory of algorithms:

- they explicit algorithms for some problems

- or develop the theory of computable functions. . .
(which is, by the way, the theory of

partial computable functions)

22 / 67

Preliminary cautious question:
Can there be a notion of algorithm?

WANT to catch ALL algorithms!

PROBLEM: there are

“sequential” algorithms,
parallel algorithms,
interactive algorithms,
distributed algorithms,
analog algorithms,
quantum algorithms,
. . .

An expanding notion!
a positive general solution seems desperate

23 / 67

Algorithms may have
unspecified actions!!!

Does it contradict the idea of algorithm? No

• Unspecified choice ≡ non determinism

“To start, pick any vertex in the graph. . . ”

• Unspecified management of recursive calls

Fibonacci: F0 = F1 = 1 , Fn+2 = Fn+1 + Fn

(bad implementation ⇒ repeated computations
⇒ Fibonaccian computation time)

Formalize algorithms =⇒
formalize wild unspecified stuff!!!

24 / 67

Let be less demanding:

WANTED:

A computation model catching ALL algorithms

• evolving in discrete sequential time

• with parallelism reduced to

vector assignment of type 0 objects

• totally specified or “tame” unspecified part

(in particular, tell how recursive calls (if any)
are managed)

In particular, we want to catch
ALL (non parallel) MACHINE MODELS

25 / 67

Capture ALL such algorithms?

Kolmogorov tried ca 1953:

Kolmogorov-Uspensky Machines

Schönhage tried ca 1970:

Storage Modification Machines

They failed but were rather close. . .

26 / 67

Abstract State Machines
aka Evolving algebras

Gurevich’s formalization
of the notion of algorithm

27 / 67

Gurevich Abstract State Machines, 1984

Gurevich’s Sequential Thesis
Every algorithm

• evolving in discrete sequential time

• with parallelism reduced to

vector assignment of type 0 objects

• with tame or no non determinism

is matched step-by-step

by an Abstract State Machine

ASMs are operationally complete
28 / 67

Gurevich’s Sequential Thesis

similar to Church-Turing Thesis
No formal proof is possible

But the Thesis has been successfully tested

with all existing computation models s.t.

• evolution in discrete sequential time

• strictly bounded parallelism

• tame or no non determinism

29 / 67

ASMs match step-by-step ALL sequential
algorithms
What does mean ”match step-by-step”?

Match = Simulation

Lockstep simulation: 1 step simulated by ≤ k ones
(k is fixed)

Strict lockstep simulation: 1 step simulated by
exactly k ones (k is fixed)

Fact. Abstract State Machines match by
strict lockstep simulation with k = 1

(The other known operationally complete
model, Λ-calculus matches by strict lockstep)

30 / 67

What is an Abstract State Machine?

The ASM concept is built from

Gurevich’s fine analysis
of what is an algorithm

Takes features from Knuth’s informal analysis

plus some more subtle ones

31 / 67

What is an Abstract State Machine?
• MULTIDOMAIN
Finitely many sorts M1, . . . ,Mn

Contain the objects involved in the algorithm
(Example: vector spaces involve 2 sorts: scalars + vectors)

• STATIC PRIMITIVES
A first order structure on (M1, . . . ,Mn)

Equality on some sorts
Finitely many functions Mi1 × . . .×Mi` → Mk

(predicates viewed as Boolean valued (sort BOOL) functions)

• DYNAMIC VOCABULARY
Finite vocabulary of functions typed with the Mi ’s

• ASM PROGRAM 32 / 67

ASM: static multisort algebra
An algorithm relies on some
“primitive” operations (possibly quite complex)

This “oracle” framework = static multisort algebra

The NOTION OF ALGORITHM is

intrinsically ORACULAR
Though there is an absolute notion of computability
algorithms are intrinsically oracular!

This is one of Gurevich’s crucial ideas

Premiss of this idea in Turing oracular computability

33 / 67

No ABSOLUTE
notion of algorithm?

“Absolute algorithms”

= “Effective algorithms”

= algorithms with
computable oracles
(as their static part)

34 / 67

ASM: Why such a static part?

An algorithm decomposes its global input/output
action into a succession of atomic steps.

Example. A single transition of a Turing machine
involves the following atomic steps:

1) read the scanned cell,
2) overwrite the scanned cell,
3) move the head,
4) change state.

These atomic steps are for free in the TM
BUT when programming a TM in any language,
these are not for free: they require lines of code

35 / 67

ASM: static multisort algebra
An algorithm relies on some
“primitive” operations (possibly quite complex)

ALGORITHMS INTRINSICALLY ORACULAR

This “oracle” framework = static multisort algebra

• Euclid’s algorithm for the gcd relies on
• the x = 0 test on N
• the remainder in Euclidean division on N

Static part = algebra (N; 0, mod)

• Turing machine The tape is the sort Z

Move head = static operations

{
x 7→ x + 1
x 7→ x − 1

(there are other operations: cf. next slides) 36 / 67

ASM: dynamic vocabulary

An algorithm
modifies an environment

The dynamic vocabulary allows to
name this dynamic environment

Finitely many
• objects in the sorts
• functions over the sorts typed with the sorts

37 / 67

Abstract State Machines: ASM PROGRAM

The algorithms we consider

manipulate their environment
(named by the dynamic vocabulary)

in a very gentle way:

for some k , at each step,

• they bring at most k modifications
to the current environment

• to do so, they query at most k values of
the current environment

38 / 67

Abstract State Machines: ASM PROGRAM
The ASM program is built with:

• Conditional: IF u=v THEN instruction ELSE instr.

• Vector assignment:

f1(~s1) := t1

...
f`(~s`) := t`

f1, . . . , f` are dynamic functions
u, v , ~si ’s, ti ’s: terms with static and dynamic funct.
The fi ’s can occur in the terms ~sj ’s, tj ’s BUT

assignment such that (NEW fi)(OLD ~si) = OLD ti

NO LOOP INSTRUCTION

SOLE (META) LOOP = repeated execution
of the program

= ASM computation 39 / 67

Run an ASM ≡ a functional

One step of a run of an ASM amounts to the
update of the dynamic objects:

(f1, . . . , f`) 7−→ (f ′1 , . . . , f
′
`)

Ψ : T1 × . . .× T` −→ T1 × . . .× T`

• Ti space of all functions fi : (
∏

j∈Ji
Mj) −→ Mm

Ji finite, M1, . . . ,Mn sorts

• f ′i coincides with f except on at most k points

• f ′i (~x) depends on at most k values of the fj ’s

40 / 67

Gurevich’s Sequential Thesis

Gurevich’s Sequential Thesis
Every algorithm

• evolving in discrete sequential time

• with parallelism reduced to

vector assignment of type 0 objects

• with tame or no non determinism

is matched step-by-step

by an Abstract State Machine

ASMs are operationally complete
41 / 67

What about a 2d order Sequential Thesis?

Could the class of ASMs matching the
algorithms of any given sequential
computation model be of a remarkably
“simple” form?

Proved true by Gurevich & al.
for Schönhage Storage Modification
Machines: they correspond to unary ASMs

Can we have this in full generality?

42 / 67

What about a 2d order Sequential Thesis?

Possible for computation models
closed under constant speed-up

(SG & Pierre Valarcher, 2010)

One can view closure under constant speed-up as
removing contingencies of the computation model
while preserving the core paradigms

43 / 67

Constant speed-up and Time Unit

Any choice of a time unit is usually quite arguable

Turing machine: 1 transition = 1 step
but 1 transition can also can be viewed as 6 steps:

1) read the scanned cell,
2) decide how to overwrite its contents,
3) overwrite the scanned cell,
4) decide how to move the head,
5) move the head,
6) change state.

No genuine time unit Up to a constant time unit

44 / 67

A 2d order Sequential Thesis

Computation models (closed on constant speed-up)

are obtained by fixing

the three first constituents of ASMs:

• the data structures,

• the static framework,

• the dynamic vocabulary

No constraint on the ASM program
except for type constraint in the construction of terms.

(SG & Pierre Valarcher, 2010)

No possible formal proof Successfully tested

on “all” possible computation models
45 / 67

Turing machines with constant speed-up

Contingencies of Turing machines

The head moves by one cell Why not two, three?
scans one cell Why not a window?

Constant speed-up removes these contingencies

Core paradigm of Turing machines

• Local work and local move

• Number of tapes and/or heads
(this is some elementary parallelism)

46 / 67

Turing machines as a class of ASMs
Theorem. “Finite windows” TMs with one
bi-infinite tape are literally identical to the ASMs s.t.
Static multialgebra

〈(Z; Succ,Pred), (Σ; a)a∈Σ, (Q; q)q∈Q , (S ; s)s∈S〉
where Q,Σ are infinite sets,
S = {Go, HaltAccept, HaltReject}

Dynamic π:Z σ:Q η:S ω:Z→ Σ
vocabulary position state status contents

Initial [[π]], [[σ]], [[η]] defined, [[ω]] total (= input)

Program: No condition (but typing constraints)
NB: an ASM program will involve finitely many

states q’s and symbols σ’s
47 / 67

Turing machines / ASMs: sketch of proof

Litteral identity: static multialgebra

Tape+moves ≡ algebra (Z; Succ,Pred)
Alphabet ≡ algebra (Σ; a)a∈Σ

States, Statuses ≡ algebras (Q; q)q∈Q , (S ; s)s∈S

Litteral identity: dynamic vocabulary
Current state, status, position, contents, window
≡ [[σ]], [[η]], [[π]], [[ω]], [[ω]]�{[[π]]− k , . . . , [[π]] + k}
Litteral identity: functional Degenerated

ASM program definable+Typing ⇒ functional ≡
Trans. function

Σ2k+1 × Q → Σ2k+1 × Q × S × {−`, . . . , `}
OLD window, σ NEW window, σ, η, move

48 / 67

CARE: benign component ⇒ big effect
Add the 0 constant to the static multialgebra

〈(Z; 0, Succ,Pred), (Σ; a)a∈Σ, (Q; q)q∈Q , (S ; s)s∈S〉

Then any integer can be “named” by some term

Such ASMs characterize “reset” Turing machines

s.t.
• the head “knows” if it is on cell i
• the head can also jump to cell i

(−` ≤ i ≤ `)

δ : Σ2k+1 × Q × ({−`, . . . , `} ∪ {outside})
−→ Σ2k+1 × Q × S × {−`, . . . , `} × {α, β}

δ(. . .) = (. . . , i , α) means NEW [[π]] = i
δ(. . .) = (. . . , i , β) means NEW [[π]] = OLD [[π]] + i

49 / 67

RAMs with constant speed-up

Contingencies of Random Access Machines

• Only one register can be accessed at each step,
• no iterated indirect access in a single step
• particular set of instructions for RAM programs

Constant speed-up removes these contingencies

Core paradigms of Random Access Machines

• Registers containing arbitrarily large integers
• Indirect access
• Set of operations on register contents

50 / 67

RAMs as a class of ASMs

Theorem. “Finitely iterative transition” RAMs
are literally identical to the ASMs such that

Static multialgebra (Q, S idem Turing machines)

〈(N, 0, 1,+);Naddress, (Q; q)q∈Q , (S ; s)s∈S), cast〉

- Naddress is a copy of N with no structure,
- cast : N→ Naddress is identity as cast function

Dynamic σ:Q η:S ω:Naddress → N
vocabulary state status contents

Initial [[σ]], [[η]] defined, [[ω]] total (= input)

Program: No condition (but typing constraints)

51 / 67

RAMs / ASMs: sketch of proof
Litteral identity: static multialgebra

States, Statuses ≡ algebras (Q; q)q∈Q , (S , s)s∈S

Registers ≡ Naddress

Contents+operations ≡ algebra (N, 0, 1,+)
Indirect access ≡ cast : N→ Naddress

Litteral identity: dynamic vocabulary
Current state, status, reg. contents ≡ [[σ]], [[η]], [[ω]]

Litteral identity: functional Degenerated

Quantifier-free definable+Typing ⇒ functional
Q × Nk(1+`) → Q × S × Nk(1+`) ≡

OLD NEW Trans. funct.
σ, η and accessed registers contents
k first registers + ` iterations of indirect access

52 / 67

It works for

I Automata

I Stack automata

I Schönhage machines
(with an extended typing: CORRELATION)

I ...

53 / 67

CORRELATION

DO NOT identify

α = (α, β):X → Y × Z (CORRELATED functions)

and (= simultaneous functions)

(α:X → Y , β:X → Z)

CORRELATION IS A CONSTRAINT
• When firing (α, β):X → Y × Z

α and β are fired on the same arguments

• There are less possible terms

54 / 67

Schönhage machines:
contingencies versus core ideas

SMM = Turing but the tape is a dynamic
oriented graph with bounded out-degree

(intuition: arcs = pointers. Few pointers out of a
node but arbitrarily many can point to it)

Contingencies of Schönhage SMMs

• One modification per step of the graph of pointers
Why not 2, 3,. . . ?

• Particular set of instructions for SMM programs

Core paradigm of Schönhage SMMs

• graph of pointers + local action
55 / 67

Schönhage machines as a class of ASMs
Theorem. SMMs are literally identical to ASMs s.t.
Static multialgebra (Q, S idem Turing machines)

〈X ,Pfin(X), new : Pfin(X)→ X × Pfin(X),
(Σ∗; Last,Pred, a)a∈Σ, (Q; q)q∈Q , (S , s)s∈S)〉

X infinite set of nodes Σ input/output alphabet
CORRELATED new(A) = (a,A∪{a}) with a /∈ A
Dynamic σ:Q, η:S ω:Σ∗ U :Pfin(X) ν:X
vocab. unread used nodes center

pointers fi : X → X partial function
Initial [[σ]], [[η]], [[ν]], [[ω]] defined ([[ω]] = input)

[[U]] = dom([[fi]]) = {[[ν]]} [[fi]]([[ν]]) = [[ν]]

Program: No condition (but typing constraints)
56 / 67

Schönhage machines / ASMs:
sketch of proof

Litteral identity: static multialgebra

Nodes, States, Statuses ≡ N, (Q; q)q∈Q , (S , s)s∈S

Input set, read, move ≡ (Σ∗; Last,Pred, a)a∈Σ

Litteral identity: dynamic vocabulary
Current state, status, pointers, center node, input

≡ [[σ]], [[η]], ([[fi]])i=1,...,k , [[ν]], [[ω]]

Litteral identity: functional Degenerated

Quantifier-free definable+Typing ⇒ functional ≡
Q × N{1,...,k}≤` × Σ ∪ {ε} −→ Trans. funct.

Q × S × N{1,...,k}≤` × Σ ∪ {ε} × {1, . . . , k}≤`
OLD state, pointers around center node, input letter
NEW [[σ]], [[η]], pointers, c. node, output, path move 57 / 67

Characterizing
the dynamic of algorithms

58 / 67

From an ASM functional to NN → N
• Ti = (

∏
j∈Ji

Mj) −→ Mm ≡ NN or N
• The ASM functional space

(evolution of dynamic functions)

• T1 × . . .× T` −→ T1 × . . .× T`∣∣∣∣∣∣∣∣∣∣∣

≡ (NN)`
′ × N`′′ → (NN)`

′ × N`′′

≡ NN → NN

≡ (NN)× N→ N
≡ NN∪{>} → N
≡ NN → N

Is there a topological characterization
of ASM functionals? 59 / 67

k-bounded continuity

Let Φ : NN → N be continuous

Then every f ∈ NN is in some clopen

[u] = {g ∈ NN | g extends u}
• u : X → N where X is finite
• Φ is constant on the clopen set [u]

k-continuity =

∣∣∣∣ THE SIZE OF X
IS BOUNDED by k

60 / 67

Example where the size of X is 3-bounded

Φ : NN → N Φ(f) = f (α(f (0), f (1)))

To compute Φ(f) we only need 3 values of f ,
namely those at 0, 1, α(f (0), f (1))

Any f ∈ NN is in some

[u] = {g ∈ NN | g extends u}
• u : X → N where X has ≤ 3 elements
• Φ is constant on the clopen set [u]

The sets [{(0, x), (1, y), (α(x , y), z)}], x , y , z ∈ N
partition NN in clopen sets on which Φ is constant
We show This is the sole kind of example

61 / 67

Variations around continuity of Φ : NN → N
[u] = {f ∈ NN | f extends u} u : X → N

(1k) k-continuous functional ∃ (Φ, k)-covering

NN =
⋃

i∈N[ui] where

{
|dom(ui)| ≤ k
Φ constant on [ui]

(2k) unambiguous k-continuous functional
≡ (1k) + the [ui]’s are pairwise disjoint

Does this help to compute Φ ? A priori, NO

(3k) Non deterministic k-query functional
Exists non det. algo. with oracle ω : N→ N
querying ≤ k values of f to compute Φ(f)

(3k)⇔ (1k) straightforward (2k)⇒ (1k) trivial
62 / 67

Variations around continuity of Φ : NN → N
[u] = {f ∈ NN | f extends u} u : X → N

(3k) Non deterministic k-query functional
Exists non det. algo. with oracle ω : N→ N
querying k values of f to compute Φ(f)

(4k) Deterministic k-query functional
≡ (3k) with a deterministic algorithm

(5k) k-(term query) functional
≡ (4k) where the k queries are done via terms

Φ(f) = α(f (a1), . . . , f (am),

f (β1(~f (a)), . . . , βn(~f (a))), . . .)

(means Φ comes from some Abstract State Machine)

(5k)⇒ (4k)⇒ (3k) trivial
63 / 67

Main results

(1k) k-continuous functional Φ : NN → N

NN =
⋃

i∈N[ui] where

{
|dom(ui)| ≤ k
Φ constant on [ui]

(5k) k-(term query) functional
≡ (4k) where the k queries are done via terms

Φ(f) = α(f (a1), . . . , f (am),

f (β1(~f (a)), . . . , βn(~f (a))), . . .)

α, β1, . . . , βn, . . . fixed oracles

Theorem (SG & Pierre Valarcher, 2012).

• (1k)⇒ (5k2) k2 is optimal

• (1effective
k)⇒ (5effective

2k2)
)

64 / 67

Topological interpretation

k-continuity looks like uniform continuity

Bounded Uniformity on NN

Base of entourages: the
⋃

i∈N [ui]× [ui]
all unambiguous k-coverings (ui)i∈N, all k

(≡ all deterministic term-query k-coverings)

• The associated topology on NN is the Baire one
• The Bounded Uniformity is transitive,

refines the uniformity of the usual Baire distance
• and does not come from a metric

Theorem. Φ : NN → N is k-continuous for some k
⇐⇒ Φ is uniformly continuous

(wrt bounded uniformity on NN, discrete one on N)
65 / 67

Application: the dynamic of algorithms
Assuming Gurevich Sequential Thesis

Functionals Ψ : (f1, . . . , f`) 7−→ (f ′1 , . . . , f
′
`) giving

the evolution of the environment of algorithms
• evolving in discrete sequential time
• with parallelism reduced to

vector assignment of type 0 objects
• telling how recursive calls (if any) are managed

≡
Functionals Ψ such that, for some k ,

(1) Ψ is k-continuous (2) f ′i coincides with fi

except on a set Xi (~f) of at most k points

(3) ~f 7−→ Xi (~f) is k-continuous
66 / 67

Thank you for your attention

67 / 67

