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Abstract

We consider the family of rational relations on words, i.e., relations
recognized by multitape automata, which have rational trace on any finite
intersection of rational relations. We prove that this family consists of
finite unions of relations which are of two types: stars of tuples possibly
with an extra prefix and suffix and relations with all but one singleton set
components.
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1 Introduction

We are concerned with the family of k-ary relations on words which are recog-
nized by k-tape automata as defined in the model of Rabin-Scott [9] and later
of Elgot and Mezei [4] now known as rational relations. A big departure from
the single tape case is the fact that this family is not closed under complement
and intersection. There exist subfamilies of binary relations which are Boolean
algebras, in increasing order the recognizable relations, [4], the regular prefix
relations in the terminology of [1], also known as special relations in [6] and the
synchronous relations, [2]. However, the diagonal {(u, u) | u ∈ A∗} fails to have
a rational intersection with all rational relations though it is very low in the
hierarchy: it is not recognizable but it is special and therefore synchronous.

Characterizing the rational relations whose intersection with an arbitrary
relation is rational seems out of reach in the current state of the theory. However,
we are able to characterize the hereditary counterpart, namely the rational
relations, all rational subrelations of which have a rational intersection with an
arbitrary rational relation. In that case we say that the relation has the HI (for
hereditary intersection) property.

The characterization is an elaboration of the idea that there are only two
reasons to enjoy the property above, namely to be degenerate, i.e., all compo-
nents are singleton sets but one which is an arbitrary rational language or to be
an encoding of a direct product of unary free monoids. The precise statement
(using Definitions 3.1, 4.2) is in Theorem 5.6.

The paper is organized as follows. The preliminaries recall all the basic
definitions on direct products of free monoids, the main closure properties of
the families of rational and recognizable relations and a minimal survival kit
of combinatorics of words. All these definitions allow us to state the problem
precisely. Section 3 and 4 respectively introduce two families of relations which
enjoy the property under investigation. Section 5 is devoted to the converse and
thus to prove the main result.

2 Preliminaries

The free monoid generated by the set A, called the alphabet, is denoted by
A∗. Its elements are words and the neutral element, denoted 1 is the empty
word. On a direct product of k free monoids A∗1 × · · · × A∗k, the operation is
the componentwise concatenation. Its neutral element is also denoted 1. In the
sequel, all alphabets are finite.

In all our statements, unless otherwise stated, the symbol M denotes a prod-
uct A∗1 × · · · ×A∗k of k ≥ 1 free monoids.

The results of the literature that we use hold most of the time for more
general monoids, but we did not bother to optimize the statements. The subsets
of a direct product of k ≥ 2 free monoids is usually called a relation. The term
language is reserved for the free monoid, i.e., when k = 1.
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Since we are dealing with direct products of free monoids, we use a graphical
convention about tuples of words in order to distinguish between the components
of the tuples and the elements of a sequence of tuples. We write u for a k-
tuple (u1, . . . , uk) and u1, . . . ,um for a sequence of tuples of words where ui =
(ui,1, . . . , ui,k).

2.1 Rational and recognizable subsets

The definitions of this section are standard. We recall them for the purpose of
selfcontainment. The reader who wishes to deepen his familiarity with these
concepts is referred to the numerous textbooks on the topic, in particular
Sakarovitch [10].

Definition 2.1. The family Rat(M) of rational subsets of the monoid M is the
least family of relations containing the finite relations and closed under

(i) set union,

(ii) set concatenation (also simply called product): if R,S ⊆M their concate-
nation RS is the set {xy | x ∈ R, y ∈ S},

(iii) and Kleene star : if R ⊆ M , its Kleene star R∗ is the submonoid of M
generated by R, i.e. R∗ =

⋃
i≥0R

(i) where R(0) = {1} and R(i+1) =

R R(i).

Whenever k = 1 (M is a free monoid) or all alphabets are unary (M is
isomorphic to Nk) Rat(M) is a Boolean algebra. The motivation of the present
study is the observation that except for these two cases, Rat(M) is not closed
under complement and intersection. The classical example is as follows: consider
R1, R2 ⊆ {a, b}∗ × {c}∗ where R1 = (a, c)∗(b, 1)∗ and R2 = (a, 1)∗(b, c)∗. Then
their intersection is the relation {anbn, cn) | n ≥ 0} ⊆ {a, b}∗ × {c}∗. It is
therefore natural to inquire about the family of rational relations R for which
R ∩ S is rational for all rational relations S. A similar question could be asked
about context-free languages of a free monoid: which context-free languages
have a context-free intersection with all context-free languages? These two
questions are tightly connected and we doubt that they could be answered easily
in the next future. Intuitively, the difficulty stems from the fact that it is not
easy to tailor a rational relation which extracts by intersection a subset of R
with some specific properties. We overcome this issue by choosing an arbitrary
subset of R in the first place.

More precisely, we say that a rational relation R has the hereditary intersec-
tion property, abbreviated HI, whenever the following holds

(HI)
for all rational relations S ⊆ R, for all rational relations T , the inter-
section S ∩ T is rational.

In this paper we characterize these rational relations.

We now recall the second family of relations of importance.

Definition 2.2. The family Rec(M) of recognizable subsets of the monoid M
consists of all subsets X ⊆M for which there exists a morphism ϕ from M onto
a finite monoid F such that X = ϕ−1ϕ(X) holds.
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The following property, due to Elgot & Mezei [4], characterizes the recog-
nizable relations of the direct product of free monoids.

Proposition 2.3. A relation included in the direct product A∗1 × · · · × A∗k is
recognizable if and only if it is a finite union of products X1 × · · · ×Xk where
Xi ∈ Rec(A∗i ) for i = 1, . . . , k.

How do these two families compare? When k > 1, Rec(M) is properly
included in Rat(M). They coincide when k = 1, which is Kleene’s Theorem.
Besides the obvious closure properties of Rat(M) stemming from the definition,
there are a few general closure properties. Let us recall some that we use in this
paper. Particularly useful is a weak intersection property which is item 2. The
proposition is stated for arbitrary monoids.

Proposition 2.4. Let M,N be two arbitrary monoids.
1. The family Rec(M) is a Boolean algebra: if X,Y are in Rec(M) then so are
X ∪ Y , X ∩ Y and M \X.
2. If M is finitely generated, the intersection of a rational and of a recognizable
subset is rational: R ∈ Rat(M) and X ∈ Rec(M) implies R ∩X ∈ Rat(M).
3. If ϕ : M → N is a morphism and R ∈ Rat(M) then ϕ(R) ∈ Rat(N).

We will also need the following technical result.

Proposition 2.5. Let M = A∗1 × · · · × A∗k. If R ∈ Rat(M) and x, y ∈M then
x−1Ry−1 = {m ∈M | xmy ∈ R} is in Rat(M).

2.2 Star-chain and loop sets

Definition 2.6. A subset of M is star-chain rational if, for some m, if it is of
the form

x0U
∗
1 x1 . . . U

∗
mxm

where the Ui’s are rational subsets of M and the xj ’s are elements of M .

The following result is trivial by structural induction on rational relations of
a monoid. Its importance is due to the fact that it implies that intersection with
star-chain rational relations suffices to guarantee the HI property of a relation.

Proposition 2.7. Any rational set is a finite union of star-chain rational sets.

The simplest example of star-chain rational set is when all Ui’s are singleton
sets.

Definition 2.8. Let m ≥ 1. A subset of M is an m-loop if, for some elements
x0, . . . , xm, u1, . . . , um in M , it is of the form

x0u
∗
1x1 . . .xm−1u

∗
mxm .
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2.3 Combinatorics of words in a nutshell

We recall some notations and properties about words. The length of a word
u ∈ A∗ is denoted by |u|. The word v is a factor of u if there exist x and y
such that u = xvy. A factor can have several occurrences in u, e.g., ba has two
occurrences in ababa. The word u is primitive if the condition u = wn implies
n = 1. All nonempty words u are powers of a unique primitive word, called its
primitive root and denoted by ρ(u).

We recall two classical results about commutation and conjugacy of words,
cf. Lentin & Schützenberger [7] and Lothaire [8].

Proposition 2.9 (Commutation). Let u, v ∈ A∗ \ {1}. Then uv = vu if and
only if ρ(u) = ρ(v), i.e. there exists x ∈ A∗ \ {1} and α, β ∈ N \ {0} such that
u = xα, v = xβ.

Two words u, v are conjugate if they satisfy any of the conditions of the next
lemma. It is stated in a nonusual form which is more suitable for the proof of
Lemma 2.12.

Proposition 2.10 (Conjugacy). For all u, v ∈ A∗ \ {1} and w ∈ A∗, the
following properties are equivalent.

(i) ρ(u)w = wρ(v).

(ii) Equation uiwvj = umwvn has some non trivial solution (i, j) 6= (m,n).

(iii) There exist two unique words x, y ∈ A∗ and α, β, γ ∈ N such that xy is
primitive, u = (xy)α, v = (yx)β and w = (xy)γx.

The next result is a simple application of Proposition 2.10 to be used to
prove Lemma 4.5.

Lemma 2.11. Let x, y, u ∈ A∗ \{1} and w ∈ A∗. If |xm| = |ua| and |yn| = |ub|
with a, b ≥ 1 and xmwyn is a factor of some ur then ρ(x)w = wρ(y).

2.4 Intersection of 2-loop and 3-loop sets

The rational relations are not closed under intersection. As an application to
the elementary combinatorial properties of words just recalled, we state general
conditions under which the intersection of two rational relations is not rational.
Technical though they may look, the next two lemmas are the crux for our main
Theorem 5.6.

Lemma 2.12. Consider a 2-loop relation xu∗zv∗t where x, z, t are in M and
u, v are in M \ {1}. Assume that on some component i we have ui 6= 1, vi 6= 1
and ρ(ui)zi 6= ziρ(vi), whereas on some component j 6= i we have uj 6= 1 or
vj 6= 1. Then there exists a 3-loop set T such that xu∗zv∗t ∩ T is not rational.

Lemma 2.13. Consider a 3-loop relation R = xu∗yv∗zw∗t where x, y, z are
in M and u, v, w are in M \ {1}. Assume that, for some components i 6= j, at
least one of the following conditions holds:
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(a) ui 6= 1, vi 6= 1, ρ(ui)yi 6= yiρ(vi) and wj 6= 1
(b) vi 6= 1, wi 6= 1, ρ(vi)zi 6= ziρ(wi) and uj 6= 1
(c) ui 6= 1, wi 6= 1, ρ(ui)yizi 6= yiziρ(wi) and vj 6= 1

Then there exists a 2-loop subset S of R and a 3-loop set T such that S ∩ T is
not rational.

Proof of Lemma 2.12. The conclusion of the Lemma holds if and only if it holds
relative to the projections onto the two components i, j. Thus, it suffices to
consider the case k = 2, i.e., to work in the monoid A∗1×A∗2. Also, without loss
of generality we may assume x = t = 1. Finally, to simplify the notations we
suppose i = 1, j = 2.

Suppose u2 6= 1 (the case v2 6= 1 is similar) and consider the 3-loop set

T = (u1, 1)∗(z1, 1)(v1, u2)∗(1, z2)(1, v2)∗ = {(uα1 z1v
β
1 , u

β
2 z2v

γ
2 ) | α, β, γ ∈ N}.

An element of u∗zv∗, say (ui1z1v
j
1, u

i
2z2v

j
2) with i, j ∈ N, is in T if and only if

we have

uα1 z1v
β
1 = ui1z1v

j
1 (1)

uβ2 z2v
γ
2 = ui2z2v

j
2 (2)

We argue by case study.

Case v2 = 1. Then T is a 2-loop. Since v2 = 1, equation (2) yields β = i. Using
Proposition 2.10, the hypothesis ρ(u1)z1 6= z1ρ(v1) implies that equation (1) is
equivalent to α = i and β = j. Thus, α = β = i = j and u∗zv∗ ∩ T = {uizvi |
i ∈ N} is not rational.

Case v2 6= 1 and ρ(u2)z2 6= z2ρ(v2). Then equation (2) yields β = i and
γ = j. Also, as above, equation (1) yields α = i and β = j. Again, i = j and
u∗zv∗ ∩ T = {uizvi | i ∈ N} is not rational.

Case v2 6= 1 and ρ(u2)z2 = z2ρ(v2). Then Proposition 2.10 insures that u2 =
(λµ)a, z2 = (λµ)bλ and v2 = (µλ)c for some λ, µ ∈ A∗2 and a, b, c ∈ N. We
consider now the 2-loop relation

T ′ = (u1, (λµ)a+c)∗(z1, (λµ)bλ)(v1, 1)∗

= {(uα1 z1v
β
1 , (λµ)α(a+c)+bλ) | α, β ∈ N} .

An element uizvj = (ui1z1v
j
1, u

i
2z2v

j
2) is in T ′ if and only if

uα1 z1v
β
1 = ui1z1v

j
1 (3)

α(a+ c) + b = ia+ b+ jc (4)

Again, equation (3) yields α = i and β = j. Which shows that equation (4)
reduces to αc = jc and yields α = j since c 6= 0 (recall v2 6= 1). Thus, i = j and
u∗zv∗ ∩ T ′ = {uizvi | i ∈ N} is not rational. �

Proof of Lemma 2.13. Let R = xu∗yv∗zw∗t. We cannot reduce to the case
k = 2. Indeed, let πij be the projection of M onto its components of rank i and
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j for all 1 ≤ i, j ≤ k. Then it is not the case that the condition πij(S) ⊆ πij(R)
for all 1 ≤ i, j ≤ k implies S ⊆ R. To simplify the notations we assume i = 1.

First we treat the case where condition (a) holds: u1, v1 6= 1, ρ(u1)y1 6=
y1ρ(v1) and wj 6= 1 for some j 6= 1. We argue by case study on the values of
w1, the u`’s and the v`’s for ` 6= 1. In each case, we find some 2-loop relation
S ⊆ R which fulfills the hypothesis of Lemma 2.12.

Case u` 6= 1 or v` 6= 1 for some ` 6= 1. Then S = xu∗yv∗zt is a 2-loop subset of
R which fulfills the hypothesis of Lemma 2.12 (with ` in place of j).

Case w1 6= 1. Observe that ρ(u1)y1 6= y1ρ(v1) implies ρ(u1)y1z1 6= y1z1ρ(w1)
or ρ(v1)z1 6= z1ρ(w1). Indeed, if both equalities were true we would have
ρ(u1)y1z1 = y1ρ(v1)z1. Canceling out the suffix z1 to both handsides yields
ρ(u1)y1 = y1ρ(v1), contradicting the hypothesis on u, v. So one of these equal-
ities fails hence one of the two subsets xu∗yzw∗t and xyv∗zw∗t is a 2-loop
subset of R which fulfills the hypothesis of Lemma 2.12 (with i = 1 and the j
given by the assumed condition (a)).

Case u` = v` = 1 for all ` 6= 1 and w1 = 1. Decompose any k-tuple a ∈ M
as a = a′a′′ = a′′a′ where a′ is the k-tuple having all components equal to 1
except the first one equal to the first component a1 of a. Observe that a′ and
b′′ commute for all a, b in M hence (a′b′′)∗ ⊆ a′

∗
b′′
∗
. The hypothesis insures

that v′′ = w′ = 1 hence vw = v′w′′. Consider S = xu∗yz′′(v′w′′)
∗
z′t. We

have

S ⊆ xu∗yz′′v′
∗
w′′
∗
z′t = xu∗yv′

∗
z′′z′w′′

∗
t = xu∗yv∗zw∗t = R

By definition of z′′, w′′, v′, we have z′′1 = w′′1 = 1 and v′1 = v1, hence, using
condition (a) we get ρ(u1)y1z

′′
1 = ρ(u1)y1 6= y1ρ(v1) = y1z

′′
1 ρ(v′1w

′′
1 ). Also, again

by condition (a), we have u1 6= 1, v′1w
′′
1 = v1 6= 1 and, for the j in condition (a),

v′jw
′′
j = w′′j 6= 1. Thus, the subset S of R is a 2-loop which fulfills the hypothesis

of Lemma 2.12.
The case of condition (b) reduces to the previous case by taking the mirror

image. Concerning the last case with condition (c), observe similarly as above
that ρ(u1)y1z1 6= y1z1ρ(w1) implies ρ(u1)y1 6= y1ρ(v1) or ρ(v1)z1 6= z1ρ(w1). Let
S = xu∗yv∗zt if ρ(u1)y1 6= y1ρ(v1) and S = xyv∗zw∗t if ρ(v1)z1 6= z1ρ(w1).
Since we have v′j 6= 1, we see that S is a 2-loop included in R which fulfills the
hypothesis of Lemma 2.12. �

3 Degenerate relations

This section introduces the first family of rational relations which have the HI
property.

Definition 3.1. R ⊆ A∗1 × · · · ×A∗k is degenerate if at most one component of
R is not a singleton set. I.e., there exists ` ∈ {1, . . . , k} such that, for all j 6= `,
the projection of R on A∗j is a singleton.
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Proposition 3.2. A degenerate relation is rational if and only if its unique non
singleton component, say the i-th component, is a rational subset of A∗i .

By Proposition 2.3, degenerate rational relations are a very special case of
recognizable relation with which they share some properties. Actually, they
have stronger stability properties than recognizable relations.

Proposition 3.3. A rational subrelation of a degenerate relation is itself de-
generate. In particular, finite unions of rational degenerate relations have the
HI property.

The following easy Lemma is used in our main theorem to rule out a trivial
condition for a rational relation to have the HI property. It characterizes the
star-chain relations which are degenerate.

Lemma 3.4. Let R = x0U
∗
1 x1U

∗
2 . . .xm−1U

∗
mxm where the U`’s are subsets of

M = A∗1 × · · · ×A∗k and the x` = (x`,1, . . . , x`,k)’s are in M .
Then R is a finite union of degenerate relations if and only if it is degenerate

if and only if there exists i ∈ {1, . . . , k} such that for every p = 1, . . . ,m and
every (u1, . . . , uk) ∈ Up, it holds: uj = 1 if j 6= i.

4 Quasi-tally relations

This section presents the second family of rational relations which enjoy the HI
property. The intuition is as follows: if a relation R is included in a subset of the
form u∗1×· · ·×u∗k where u1 ∈ A∗1, . . . , uk ∈ A∗k then it can be viewed in a natural
way as a subset of Nk. Furthermore, for all other relations S ⊆ A∗1 × · · · × A∗k
the intersection R ∩ S can also be viewed as the intersection of two subsets of
Nk. It then suffices to resort to the fact that rational subsets of Nk are closed
under the Boolean operations, [5] or [3].

4.1 Tally and quasi-tally sets

By Proposition 2.9, any two arbitrary elements of a subset X ⊆ A∗1 × · · · × A∗k
commute if and only if for some u1 ∈ A∗1, . . . , uk ∈ A∗k, X is included in the
commutative submonoid u∗1 × · · · × u∗k, i.e., if it is included in a k-loop of the
form u∗1 · · ·u∗k where ui is a k-tuple having all components equal to 1 except
the i-th component. This leads to the following definition.

Definition 4.1. Let M = A∗1 × · · · ×A∗k and R ⊆M .
1. R is strictly tally if it is included in u∗1 × · · · × u∗k for some (u1, . . . , uk) ∈M .
2. R is tally if it is a finite union of strictly tally relations.

We introduce a slight variant of tally relations which behave in the same
way relative to the intersection property.
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Definition 4.2. Let M = A∗1 × · · · ×A∗k and R ⊆M .
1. R is strictly quasi-tally if it is of the form xTy for some x,y ∈M and some
strictly tally relation T .
2. R is quasi-tally if it is a finite union of strictly quasi-tally relations.

Observe that all 1-loop sets (cf. Definition 2.8) are strictly quasi-tally sets.
The converse is false: for instance, with k = 2, A1 = {a}, A2 = {b}, there
are two degrees of freedom in the set a∗ × b∗ = {ai, bj) | i, j ∈ N} whereas
there is only one in the 1-loop relation {(a, b)}∗ = {(ai, bi) | i ∈ N}. However,
every strictly quasi-tally set in A∗1× · · · ×A∗k is included in a k-loop of the form
xu1

∗ · · ·uk
∗y where u1,. . . , uk commute as discussed at the beginning of this

section.

We focus our attention on the quasi-tally relations that are rational. It
should not come as a surprise that they are defined in terms of rational subsets
of Nk.

Proposition 4.3. Let x = (x1, . . . , xk), y = (y1, . . . , yk) and (u1, . . . , uk) be
three elements of A∗1 × · · · × A∗k. A strictly quasi-tally relation R included in
x(u∗1 × · · · × u∗k)y is rational if and only if

{(i1, . . . , ik) ∈ Nk | x(ui11 , · · · , u
ik
k )y ∈ R}

is rational in the commutative monoid Nk.

Proof. Let ϕ : Nk → M be such that ϕ(i1, . . . , ik) = (ui11 , . . . , u
ik
k ). Since ϕ is

a morphism, if P ⊆ Nk is in Rat(Nk) then Point 3 of Proposition 2.4 insures
that ϕ(P ) is in Rat(M). Hence R = xϕ(P )y is also in Rat(M). Conversely,
if R ∈ Rat(M) then Proposition 2.5 insures that S = x−1Ry−1 is rational.
Since ϕ is an isomorphism between the monoids Nk and u∗1 × · · · × u∗k, we have
P = ϕ−1(S) ∈ Rat(Nk).

4.2 Closure properties of quasi-tally relations

Quasi-tally rational relations have remarkable closure properties.

Proposition 4.4. Let M = A∗1×· · ·×A∗k. The intersection and difference of a
rational quasi-tally relation with a rational relation (non necessarily quasi-tally)
are quasi-tally rational.

The complement of a quasi-tally rational relation is rational.

Observe that the complement of a tally relation is never tally except if all
Ai’s are singleton alphabets (in which case M is isomorphic to Nk).

Proof. Consider first the intersection. Since a quasi-tally relation is a finite
union of strictly quasi-tally relations and intersection distributes over union,
we suppose R is strictly quasi-tally rational: R ⊆ xUy for some x,y in M
and U = u∗1 × · · · × u∗k. By Proposition 2.3, U is recognizable . Consider
S ∈ Rat(M). Then R′ = x−1Ry−1 ⊆ U is rational by Proposition 2.5. The
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relation S′ = x−1Sy−1 ∩ U is rational as an intersection of a rational and a
recognizable relation by Proposition 2.4. Clearly, R ∩ S = x(R′ ∩ S′)y. To
prove that R ∩ S is rational, it suffices to prove that R′ ∩ S′ is rational. Now,
R′ and S′ are rational relations included in the monoid u∗1 × · · · × u∗k. By
Proposition 4.3, they correspond to rational relations P,Q in the monoid Nk.
Since Rat(Nk) is a Boolean algebra, P ∩Q is rational in Nk. Finally we conclude
by observing that P ∩Q corresponds to R′ ∩ S′.

Concerning the set difference, since union left distributes over set difference,
we again reduce to R strictly quasi-tally rational and argue in a similar way.

For the complement, observe that M \R = (M \U)∪ (U \R). The first term
is recognizable as is U hence is rational (cf. Proposition 2.4). The second term
is the difference of two quasi-tally rational relations hence is rational.

4.3 Quasi-tally star-chain languages

Lemma 3.4 characterized the star-chain relations which are degenerate. Here
we characterize those that are quasi-tally. Since this property holds if and only
if it holds componentwise, it suffices to state it in the case of languages.

Lemma 4.5. Let x0, . . . , xm be words in A∗ and let U1, . . . , Um be non empty
subsets of A∗. Consider the star-chain language L = x0U

∗
1x1U

∗
2 . . . xm−1U

∗
mxm.

The following conditions are equivalent

i) L is strictly quasi-tally

ii) L is quasi-tally

iii) the following conditions are both satisfied:

(a) ρ(u) = ρ(v) for p = 1, . . . ,m and all elements u, v ∈ Up \ {1},
(b) ρ(u) xp = xp ρ(v) for 1 ≤ p < m and all u ∈ Up \ {1} and v ∈ Up+1 \ {1}.

Proof. i) implies ii). Trivial.
iii) implies i). Let ρi be the common root of the elements in Ui \ {1}. Us-
ing the equality ρ∗i xi = xiρ

∗
i+1 a simple induction on 1 ≤ i ≤ m shows

that x0U
∗
1x1U

∗
2 . . . xi−1U

∗
i ⊆ x0x1 . . . xi−1ρ

∗
i . Then L ⊆ x0x1 . . . xm−1ρ

∗
mxm

as claimed.
ii) implies iii). Suppose L is quasi-tally, say L ⊆ (z1w

∗
1t1) ∪ . . . ∪ (znw

∗
ntn). Let

e be the least common multiple of the |wi|’s.
Condition (a). Let u, v be in Up \ {1} and choose a so that

|x0 · · ·xp−1ua| > max(|z1|, . . . , |zn|), |vaxp · · ·xm| > max(|t1|, . . . , |tn|) .

Then (x0 · · ·xp−1)ua+eve+a(xp · · ·xm) is in L hence in some z`w
∗
` t`. By choice

of a, we see that ueve is a factor of some wN` . Using Lemma 2.11, we conclude
that ρ(u) = ρ(v).
Condition (b). Let u ∈ Up \ {1}, v ∈ Up+1 \ {1} and choose a as above. Then
(x0 · · ·xp−1)ua+expv

e+a(xp+1 · · ·xm) is in L hence in some z`w
∗
` t`. By choice of

a, we see that uexpv
e is a factor of some wN` . Using Lemma 2.11, we conclude

that ρ(u)xp = xpρ(v).
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5 Hereditary rational intersection property

Before proving our main results in this section we recall the central property.

Definition 5.1. A rational subset R has the hereditary rational intersection
property if every rational set S included in R has a rational intersection with
every rational relation.

Definition 5.2. Let n ≥ 1. A rational subset R has the rational n-intersection
property if R ∩ T1 ∩ . . . ∩ Tn is rational when T1,. . . , Tn are rational.

This property which, for n ≥ 2, is formally stronger than HI happens to
coincide with it.

Proposition 5.3. The following conditions are equivalent

(1) R has the hereditary rational intersection property,

(2) For all n ≥ 1, R has the rational n-intersection property,

(3) R has the rational 2-intersection property.

Proof. (1) ⇒ (2). By induction of n. It is clear for n = 1. Consider now
R ∩ T1 ∩ . . . ∩ Tn+1 = (R ∩ T1 ∩ . . . ∩ Tn) ∩ Tn+1. By induction hypothesis,
R∩ T1 ∩ . . .∩ Tn is a rational subset of R and thus its intersection with Tn+1 is
again rational.
(2)⇒ (3). Trivial
(3) ⇒ (1). If S ⊆ R is rational then for all rational relations T the relation
R ∩ S ∩ T = S ∩ T is rational.

For 2-loop relations, we can strengthen the above equivalence.

Proposition 5.4. For a 2-loop relation, the following conditions are equivalent

(1) xu∗yv∗t has the hereditary rational intersection property,

(2) xu∗yv∗t has the rational 1-intersection property,

(3) The intersection of xu∗yv∗t with every 3-loop rational set is rational.

Proof. The sole non trivial implication is (3) ⇒ (1). If R = xu∗yv∗t is quasi-
tally or degenerate then it satisfies the HI property. Suppose R is neither quasi-
tally nor degenerate. A simple application of Lemma 4.5 shows that, on some
component i we have ui, vi 6= 1 and ρ(ui)yi 6= yiρ(vi). Since R is not degenerate,
on some other component j 6= i we have uj 6= 1 or vj 6= 1. Thus, R satisfies the
hypothesis of Lemma 2.12 hence there is a 3-loop relation contradicting the HI
condition.

Theorem 5.5. A star-chain rational subset of A∗1×· · ·×A∗k has the hereditary
rational intersection property if and only if it is degenerate or strictly quasi-tally.

Proof. ⇐ implication. Use Propositions 4.4 and 3.3.
For the ⇒ implication, suppose R is neither degenerate nor strictly quasi-tally
and is of the form

R = x0U
∗
1 x1U

∗
2 . . .xm−1U

∗
mxm . (5)

11



We show that there exists some 3-loop subset R′ of R satisfying the hypothesis
of Lemma 2.13. Fix some i such that the i-th projection of R is not quasi-tally.
Let X be the set of p’s in expression (5) such that the projection of Up on A∗i
is not reduced to {1}. Observe that the projection of R on A∗i is a star-chain
language L where the star sets are the projections of the Up’s with p ∈ X. Since
L is not quasi-tally, Lemma 4.5 insures that there exist p, q ∈ X and u ∈ Up,
v ∈ Uq such that p ≤ q and, letting z = xp · · ·xq−1 (which is equal to 1 by
convention in case p = q), we have ui 6= 1, vi 6= 1 and ρ(ui) zi 6= zi ρ(vi).

Now, since R is not degenerate, there exists some r among 1, . . . ,m and
some w ∈ Ur such that wj 6= 1 for some j 6= i (cf. Lemma 3.4).

Define a 3-loop relation R′ included in R as follows:

R′ =

 x0 · · ·xp−1u∗xp · · ·xq−1v∗xq · · ·xr−1w∗xr · · ·xm if q ≤ r (α)
x0 · · ·xr−1w∗xr · · ·xp−1u∗xp · · ·xq−1v∗xq · · ·xm if r ≤ p (β)
x0 · · ·xp−1u∗xp · · ·xr−1w∗xr · · ·xq−1v∗xq · · ·xm if p ≤ r ≤ q (γ)

Observe that in case (α) (resp. (β), (γ)) the set R′ is a 3-loop relation included
in R which satisfies condition (a) (resp. (b), (c)) of Lemma 2.13. We conclude
by applying Lemma 2.13.

Theorem 5.6. Let R be rational subset of A∗1 × · · · ×A∗k. The following condi-
tions are equivalent.

(1) R is the union of a quasi-tally relation and finitely many degenerate rela-
tions,

(2) R has the hereditary rational intersection property,

(3) For all 2-loop subsets S of R and all 3-loop relations T , the intersection
S ∩ T is rational.

Proof. (2)⇒ (3) is trivial. For (1)⇒ (2), use Propositions 4.4 and 3.3.
(3)⇒ (1). By Proposition 2.7, R is a finite union of star-chain rational relations.
If condition (3) holds for R then it holds for each star-chain rational relation
in the union. Thus, the implication follows from Theorem 5.5, which completes
the proof.
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