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Abstract

Geometry of Interaction (GoI) is a research program initiated by Jean-Yves Gi-
rard which aims at defining a semantics of linear logic proofs accounting for the
dynamical aspects of cut elimination. We present here a parametrised construc-
tion of a Geometry of Interaction for Multiplicative Additive Linear Logic (MALL)
in which proofs are represented by families of directed weighted graphs. Contrar-
ily to former constructions dealing with additive connectives [15, 21], we are able
to solve the known issue of obtaining a denotational semantics for MALL by in-
troducing a notion of observational equivalence. Moreover, our setting has the
advantage of being the first construction dealing with additives where proofs of
MALL are interpreted by finite objects. The fact that we obtain a denotational
model of MALL relies on a single geometric property, which we call the trefoil
property, from which we obtain, for each value of the parameter, adjunctions.
We then proceed to show how this setting is related to Girard’s various construc-
tions: particular choices of the parameter respectively give a combinatorial ver-
sion of his latest GoI [21], a refined version of older Geometries of Interaction
[13, 12, 15], and even a generalisation of his multiplicatives [11] construction.
This shows the importance of the trefoil property underlying our constructions
since all known GoI construction to this day rely on particular cases of it.

1. Introduction

The Geometry of Interaction program [14]. It was introduced by Girard a
couple of years after his discovery of Linear Logic [10]. It aims at giving a se-
mantics of linear logic proofs that would account for the dynamical aspects of
cut-elimination, hence of computation through the proofs-as-program correspon-
dence. Informally, a Geometry of Interaction (GoI) consists in:

• a set of mathematical objects — paraproofs — that will contain, among
other things, the interpretations of proofs (or λ-terms);

• a notion of execution that will represent the dynamics of cut-elimination
(or β-reduction [6, 27]).
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Then, from these basic notions, one should be able to "reconstruct" the logic from
the way the paraproofs interact:

• From the notion of execution, one defines a notion of orthogonality between
the paraproofs that will allow to define formulas — types — as sets of para-
proofs closed under bi-orthogonality (a usual construction in realisability).
The notion of orthogonality should be thought of as a way of defining nega-
tion based on its computational effect.

• The connectives on formulas are defined from "low-level" operations on the
paraproofs, following the idea that the rules governing the use of a connec-
tive should be defined by the way this connective acts at the level of proofs,
i.e. by its computational effect.

Throughout the years, Girard defined several such semantics, mainly based
on the interpretation of a proof as an operator on an infinite-dimensional Hilbert
space. In particular, two such constructions offer a treatment of additive con-
nectives of linear logic [15, 21]. It is also worth noting that the first version of
GoI [13] was used to analyse lambda-calculus’ β-reduction [24, 7], elucidating
Lamping’s optimal reduction [26].

The latest version of GoI [21], from which this work is greatly inspired, is
related to quantum coherent spaces [19], which suggest future applications to
quantum computing. Moreover, the great generality and flexibility of the defini-
tion of exponentials also seem promising when it comes to the study of complexity.
Some results in this direction were already obtained: using a new technique pro-
posed by Girard [23], the author obtained, in a joint work with Clément Aubert,
new characterisations of the computational complexity classes co-NL [4] and L
[5] as sets of operators in the hyperfinite type II1 factor.

Interaction Graphs. Departing from the realm of infinite-dimensional vector
spaces and linear maps between them, we propose a graph-theoretical GoI where
proofs are interpreted by finite objects2. In this framework, it is possible to define
the multiplicative and additive connectives of Linear Logic. Although not the
first such work proposing a combinatorial formulation of GoI constructions [7, 1,
2], Interaction Graphs is the first work providing such an approach to Girard’s
hyperfinite GoI [21]. Another novelty lies in the fact that the construction is
parametrised by a map from the interval ]0,1] to RÊ0 ∪ {∞}, and therefore yields
not just one but a whole family of models.

We will show how, from any of these models, one can obtain a ∗-autonomous
category with

&6∼= ⊗ and 1 6∼= ⊥, i.e. a non-degenerate denotational semantics for
Multiplicative Linear Logic (MLL). However, as in all the versions of GoI dealing
with additive connectives, our construction of additives does not define a categor-
ical product. We solve this issue by introducing a notion of observational equiva-
lence within the model. We are then able to define a categorical product from our

2Even though the graphs we consider can have an infinite set of edges, linear logic proofs are
represented by finite graphs (disjoint unions of transpositions).
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additive connectives when considering classes of observationally equivalent ob-
jects, obtaining a denotational semantics for Multiplicative Additive Linear Logic
(MALL).

One important point in this work is the fact that all results rely on a single
geometric property we call the trefoil property. This property ensures the fours
following facts:

• we obtain a ∗-autonomous category; this is a consequence of the three-term
adjunction obtained as a corollary of the trefoil property;

• the observational equivalence is a congruence on this category;

• the quotiented category inherits the ∗-autonomous structure;

• the quotiented category has a full subcategory with products.

We then proceed to show how our framework is related to Girard’s versions
of GoI by looking at models obtained for particular choices of the parameter. In-
deed, a first choice of map gives us a model that can be embedded in Girard’s
GoI5 framework [21]. It can be shown that it is a combinatorial version of (the
multiplicative additive) fragment of GoI5, offering insights on its notion of or-
thogonality and constructions. On the other hand, a second choice of map defines
a model where orthogonality is defined by nilpotency: our construction thus de-
fines in this case a (refined) version of older Geometries of Interaction [13, 12, 15].
We also show how a special case of our construction can be related formally to
Girard’s Multiplicatives construction, the very first Geometry of Interaction con-
struction. These results show that the framework of Interaction Graphs captures
the different constructions studied by Girard, exposes the one geometric identity
underlying them (the trefoil property), gives new insights about those and shows
how they relate to each other.

In the last section, we show how the intuitions gained by Interaction Graphs
can be used to show results in the hyperfinite Geometry of Interaction of Girard.
For this, we show that a proof of a technical property (Proposition 65) obtained
on graphs can be adapted in order to obtain an equivalent property (Propositions
151 and 154) in Girard’s setting. This property, as it turns out, reveals a small
mistake in Girard’s paper. Our constructions of additives on graphs can however
be used to correct this mistake which turns out to be of small importance.

About terminology. We will use in this paper some unusual terminology, ex-
tending the terminology of the author’s previous paper [28] and inspired by Gi-
rard’s [21]. It is the author’s wish to keep, throughout the Interaction Graphs
papers’ series, a coherent terminology which does not convey incorrect intuitions.

Let us illustrate how usual terminology may lead to incorrect intuitions. Al-
though some well-known syntactic notions might be related to the specific objects
introduced in the paper, the latter are generalisations of the former, and it may
convey the wrong ideas to collapse the terminologies. For instance the notion of
project, introduced later in this paper, generalises the notion of proof in that some
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specific projects will be interpretations of proofs. However, a project is not in gen-
eral a representation of a proof. Other usual terminology from a more semantic
tradition relates to the notion of project such as game semantics’ strategies or
classical realisability’s λc-terms, which are more general than winning strategies
and quasi-proofs respectively and characterise (and sometimes capture) those
objects interpreting proofs. Although one may have borrowed terminology from
those semantic traditions, it might once again have conveyed some incorrect intu-
itions. For instance, λc terms may contain cuts (β-redexes), while projects should
be understood as some sort of normal form. Concerning game semantics, the no-
tion of conducts, which are interpretations of proofs, is quite different from the
notion of game: while a strategy is defined on a given game, a project will belong
to several conducts. This latter difference is styled by Girard as an opposition
between “a posteriori” typing (conducts) and “a priori” typing (games), in some
ways reminiscent of the distinction between Curry-style and Church-style typing.
Notice that it makes subtyping a natural feature of Interaction Graphs; in this
particular aspect the GoI and realisability approaches are again quite similar.

We show (Figure 1) a table proposing translations of the terminology used in
this paper and more usual terminology from both syntactic and semantic tradi-
tions. We write in boldface the “usual” words whose meaning is closest to the
meaning of the interaction graph term on the left; note that this idea of closeness
is quite subjective as it reflects the author’s understanding of the notions used in
the paper. We stress that the boldface terms are borrowed from different lines
of work, which is another argument for a specific terminology: the combined use
of notions from game semantics, proof nets and realisability would be more con-
fusing than using brand new terminology. The symbol “—” denotes the lack of
adequate notion.

2. Graphs and Cycles

2.1. Basic Definitions
We first recall some definitions and notations of our earlier paper [28]. We

include the proofs of Propositions 6 and 10 to keep this section self-contained.

Definition 1. A directed weighted graph is a tuple G = (VG ,EG , sG , tG ,ωG), where
VG is the set of vertices, EG is the set of edges, sG and tG are two functions from
EG to VG , the source and target functions, and ωG is a function3 EG →]0,1].

In this paper, we will work with directed weighted graphs where the set of
vertices is finite, and the set of edges is finite or countably infinite.

3We chose here to work with the set ]0,1] as the set of possible weights for the edges of our graphs.
The fact that we chose this particular set is used in Sections 6 and 7. However, the constructions
and results of Sections 2, 3, 4 and 5 are independent of this choice and could be performed with
graphs with edges weighted in any semi-group (associative magma) (Ω,×) (the multiplication being
necessary to define the weight of paths, see Definition 9).
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Interaction Graphs Sequent Calculus Proof Nets
project (Definition 21) — proof structure
wager (subsection 3.2) — —
carrier (Definition 21) — —

execution/cut (Definition 23) normalisation normalisation
Fax (Proposition 37) axiom rule axiom link

successful project (Definition 94) proof proof net
conduct (Definition 27) formula formula

behaviour (Definition 55) “linear” formula “linear” formula
orthogonality (Definition 26) — correctness criterion

observational equivalence (Definition 66) — —
(a) Correspondence with syntactic traditions

Interaction Graphs Game Semantics Realisability
project (Definition 21) strategy λc-term
wager (subsection 3.2) — —
carrier (Definition 21) arena —

execution/cut (Definition 23) composition β-reduction
Fax (Proposition 37) copy-cat identity

successful project (Definition 94) winning strategy quasi-proof
conduct (Definition 27) game type

behaviour (Definition 55) — —
orthogonality (Definition 26) — orthogonality

observational equivalence (Definition 66) — contextual equivalence
(b) Correspondence with semantics traditions

Figure 1: Tables showing terminologies’ (approximate) correspondence
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1 2 3 4

(a) The graph F

1 2

(b) The graph G

1 2

(c) The graph H

Figure 2: Three weighted graphs F, G and H.

We will write EG(v,w) the set of e ∈ EG satisfying sG(e) = v and tG(e) = w.
Moreover, we will sometimes forget the exponents when the context is clear. In
the next definition, and throughout the paper, we will use the notation · ] · to
denote both the disjoint union of sets or the co-pairing of functions, i.e. if f : E → S
and g : F → S, the function f ] g has domain E]F and codomain S.

Definition 2 (Plugging). Given two graphs G and H, we define the graph GäH
as the union graph (VG ∪V H ,EG ] EH , sG ] sH , tG ] tH ,ωG ]ωH) of G and H,
together with a coloring function δ from EG ]EH to {0,1} such that{

δ(x)= 0 if x ∈ EG

δ(x)= 1 if x ∈ EH

We refer to GäH as the plugging of G and H.

Example 3. Let us consider the graphs F, G and H illustrated in Figure 2. The
plugging FäG and the plugging FäH are represented in Figure 3, where edges
e such that s(e)= 0 are shown above the vertices and edges such that s(e)= 1 are
shown below them.

Definition 4 (Paths, cycles and k-cycles). A path in a graph G is a finite sequence
of edges (e i)0ÉiÉn (n ∈ N) in EG such that s(e i+1) = t(e i) for all 0 É i É n−1. We
will call the vertices s(π)= s(e0) and t(π)= t(en) the beginning and the end of the
path.

We will also call a cycle a path π = (e i)0ÉiÉn such that s(e0) = t(en). If π is a
cycle, and k is the greatest integer such that there exists a cycle ρ with4 π= ρk,
we will say that π is a k-cycle.

Definition 5 (Alternating paths). Let G and H be two graphs. We define the
alternating paths between G and H as the paths (e i) in GäH which satisfy

δ(e i) 6= δ(e i+1) (i = 0, . . . ,n−1)

We will call an alternating cycle in GäH a cycle (e i)0ÉiÉn in GäH which is an
alternating path and such that δ(en) 6= δ(e0).

4Here, we denote by ρk the concatenation of k copies of ρ.

6



1 2 3 4

F

G

(a) The graph FäG

1 2 3 4

F

H

(b) The graph FäH

Figure 3: Examples of plugging.

3 4

(a) Alternating paths in FäG

3 4

(b) Alternating paths in FäH

Figure 4: Alternating paths.
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The set of alternating paths in GäH will be denoted by Path(G,H), while
Path(G,H)V will mean the subset of alternating paths in GäH with source and
target in a given set of vertices V .

Proposition 6. Let ρ = (e i)0ÉiÉn−1 be a cycle, and let σ be the permutation taking
i to i+1 (i = 0, . . . ,n−2) and n−1 to 0. We define the set

ρ̄ = {(eσk(i))0ÉiÉn−1 | 0É k É n−1}

Then ρ is a k-cycle if and only if the cardinality of ρ̄ is equal to n/k. In the
following, we will refer to such an equivalence class modulo cyclic permutations
as a k-circuit.

Proof. We use classical cyclic groups techniques here. We will abusively denote
by σp(ρ) the path (eσp(i))0ÉiÉn−1.

First, notice that if ρ is a k-cycle, then σn/k(ρ) = ρ. Now, if s is the smallest
integer such that σs(ρ) = ρ, we have that e i+s = e i. Hence, writing m = n/s, we
have ρ =πm where π= (e i)0ÉiÉs−1. This implies that k = n/s from the maximality
of k. Hence ρ is a k-cycle if and only if the smallest integer s such that σs(ρ) = ρ

is equal to n/k.
Let s be the smallest integer such that σs(ρ) = ρ. We have that for any inte-

gers p, q such that 0 É q < s, σps+q(ρ) = σq(ρ). Indeed, it is a direct consequence
of the fact that σps(ρ) = ρ for any integer p. Moreover, since σn(ρ) = ρ, we have
that s divides n. Hence, we have that the cardinality of ρ̄ is at most s. To show
that the cardinality of ρ̄ is exactly s, we only need to show that σi(ρ) 6= σ j(ρ) for
i < j between 0 and s−1. But if it were the case, we would have, since σ is a
bijection, ρ =σ j−i(ρ), an equality contradicting the minimality of s.

Definition 7 (The set of 1-circuits). We will denote by Circ(G,H) the set of al-
ternating 1-circuits in GäH, i.e. the quotient of the set of alternating 1-cycles by
cyclic permutations.

Example 8. Figure 4 shows the alternating paths between F and respectively
G and H. Notice that in Figure 4(b) the circle represent an infinity of paths,
since there are two paths of length k for every integer k (of sources 1 and 2
respectively). Let us denote by f and h the edges of F and H used to define thoses
paths. The alternating cycles between F and H are also infinite in number: every
such path of even length defines a cycle, i.e. cycles are paths (e f )k or ( f e)k where
πk denotes the concatenation of k copies of π. Since circuits are equivalence
classes of cycles modulo cyclic permutations, there are then one circuit for each
even integer, and therefore the number of circuits is still infinite. However, there
is only one 1-circuit alternating between F and H, namely the equivalence class ρ
of cycles of length 2. Indeed, every other circuit π is obtained as the concatenation
ρk for an integer k.

8



Definition 9. Let F and G be two graphs. We define the execution of F and G as
the graph F ::G defined by:

V F ::G = V F∆VG = (V F ∪VG)− (V F ∩VG)

EF ::G = Path(F,G)V F∆VG

sF ::G = π 7→ s(π)

tF ::G = π 7→ t(π)

ωF ::G = π= {e i}n
i=0 7→

n∏
i=0

ωGäH(e i)

When V F ∩VG =;, we will write F ∪G instead of F ::G.

Proposition 10 (Associativity). Let G0,G1,G2 be three graphs with VG0 ∩VG1 ∩
VG2 =;. We have:

G0 ::(G1 ::G2)= (G0 ::G1) ::G2

Proof. Let us first define the 3-colored graph G0äG1äG2 as the union graph
(
⋃

V i,
⊎

E i,
⊎

si,
⊎

ti) together with the coloring function δ from
⊎

E i into {0,1,2}
which associates to each edge the number i of the graph G i it comes from. We
consider the 3-alternating paths between G0,G1,G2, that is the paths (e i) in
G0äG1äG2 satisfying:

δ(e i) 6= δ(e i+1)

Then, we can define the simultaneous reduction of G0, G1, and G2 as the graph
::i G i = (V 0∆V 1∆V 2,F, sF , tF ), where F is the set of 3-alternating paths between
the graphs G0, G1, and G2, sF (e) is the beginning of the path e and tF (e) is its
end.

We then show that this induced graph ::i G i is equal to (G0 ::G1) ::G2 and
G0 ::(G1 ::G2). This is a simple verification. Indeed, to prove for instance that
::i G i is equal to (G0 ::G1) ::G2, we just write the 3-alternating paths in G0,G1,G2
as an alternating sequence of alternating paths in G0äG1 (with5 source and tar-
get in V 0∆V 1, i.e. an edge of G0 ::G1) and edges in G2.

Definition 11. For any function6 m :]0,1] → RÊ0 ∪ {∞}, let us define a measure
on graphs by �F,G�m =∑

π∈Circ(F,G) m(ωFäG(π)).

5This is where the hypothesis V 0∩V 1∩V 2 =; is important. If this is not satisfied, one gets some
3-alternating paths of the form ρx, where x is an edge in G2 and ρ is an alternating path in G0äG1,
but such that ρ does not correspond to an edge in G0 ::G1.

6When one is working with a monoid of weights Ω, the function m should be tracial, i.e. satisfy for
every a,b ∈Ω, the equation m(ab) = m(ba). Even though satisfied by every map m :Ω→ RÊ0 ∪ {∞}
when Ω is a commutative monoid, the traciality is not ensured in general. This requirement is
necessary in the general case from the very definition of the measurement, since the quantity m(ω(π))
for a circuit π would not be well-defined without it, as the value m(ρ1) and m(ρ2) would not be equal
for two choices of representatives ρ1,ρ2 of the circuit π.
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2.2. The Trefoil Property
In our first paper [28], we obtained the following three-terms adjunction in

the case m(x)=− log(1− x):

�F,G∪H�m = �F,G�m +�F ::G,H�m

As it turns out, the adjunction is independent from the chosen measure, and
comes from a more general geometrical identity that describes how the sets of
1-circuits interact with the execution. This more general identity, which we call
the trefoil property, turns out to be of great importance in our construction. On
the one hand it gives the adjunction which ensures that the construction of mul-
tiplicative connectives is adequate (i.e. it implies that A⊗B = (A(B‹ )‹ ), i.e.
that one can obtain a ∗-autonomous category GraphMLL. On the other hand, it
will allow us to show that:

• the & connective we define is a product up to observational equivalence;

• this observational equivalence is a congruence on the category GraphMLL;

• the quotient category inherits the ∗-autonomous structure of GraphMLL.

As a consequence of this sole geometrical property, we thus obtain a family of GoI
constructions for MALL which all define a categorical model.

2.2.1. The trefoil property explained
We will use Figure 5 to explain the trefoil property. In this figure, we consider

three graphs F, G, and H such that a given vertex (in any of the graphs) cannot be
a vertex in the three graphs simultaneously, i.e. the intersection V F ∩VG ∩V H is
empty. The double arrows in Figure 5(a) represent the sets of edges (in any of the
graphs) that one can go through to go from one graph to the other: for instance
the double arrow between V F and VG stands for the set of edges of F whose target
is an element of VG . We also represent the sets of cycles formed from edges of
F and G only (respectively edges of F and H only, respectively edges of G and H
only) by a dotted cycle (respectively plain, respectively dashed) in Figures 5(b),
5(c), 5(d), and 5(e). Finally, the set of cycles that contain at least one edge from
each graph is represented by a double-line cycle in these figures. The rectangles
in Figures 5(c), 5(d), and 5(e) represent the computation of the execution between
two graphs, respectively F and G (Figure 5(c)), G and H (Figure 5(d)) and F and
H (Figure 5(e)). We then notice that during the execution of two graphs, one hides
and forget about the alternating cycles contained in the rectangle. For instance
when the execution between F ans G has been computed, we can no longer “see”
the cycles composed of edges of F and G only. As a consequence, in order to
account for all cycles, one should consider both the set of cycles between F ::G
and H and the set of cycles between F and G. The trefoil property then states
that, if Cyc(A,B) denotes the set of alternating cycles between the two graphs A
and B:

Cyc(F ::G,H)∪Cyc(F,G)∼=Cyc(G ::H,F)∪Cyc(G,H)∼=Cyc(H ::F,G)∪Cyc(H,F)
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V F

V H VG

(a) Representation of F,G,H

V F

V H VG

(b) Alternating cycles between F, G and H

V F

V H VG

(c) Alternating cycles between F ::G and H

V F

V H VG

(d) Alternating cycles between G ::H and F

V F

V H VG

(e) Alternating cycles between F ::G and H

Figure 5: Graphical representation of the trefoil property
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2.2.2. The trefoil property: formally
Proposition 12 (Geometric trefoil property). Let F,G,H be three graphs such
that V F ∩VG ∩V H =;. Then:

Circ(F,G)∪Circ(F ::G,H) ∼= Circ(G,H)∪Circ(G ::H,F)
∼= Circ(H,F)∪Circ(H ::F,G)

Moreover, these bijections preserve weights.

Proof. We prove this following the idea of the proof of associativity.
Let A = FäGäH the three-colored graph obtained from F,G,H together with

its 3-coloring function ρ, and consider a 3-alternating 1-cycle in FäGäH, i.e. a
1-cycle (e i)n

i=0 which is 3-alternating and that satisfies ρ(e0) 6= ρ(en). Denote by
Cy3(F,G,H) the set of 3-alternating 1-cycles in FäGäH.

Then π ∈ Cy3(F,G,H) is either an alternating 1-cycle in FäG (if it does not
contain any edge from H) or it is a 1-cycle composed of alternations between
alternating paths (with source and target in V F∆VG , see Footnote 5) in FäG
and edges in H. Hence, π is either in Circ(F,G) or in Circ(F ::G,H). Conversely,
any alternating 1-cycle in FäG corresponds to a unique 3-alternating cycle in
FäGäH, and any alternating 1-cycle in (F ::G)äH corresponds to a unique 3-
alternating 1-cycle in FäGäH. Hence we have a bijection

Cy3(F,G,H)∼=Circ(F,G)∪Circ(F ::G,H)

A similar argument shows that Cy3(F,G,H)∼=Circ(G,H)∪Circ(G ::H,F) and
that Cy3(F,G,H)∼=Circ(H,F)∪Circ(H ::F,G).

Corollary 13 (Scalar trefoil property). Let F,G,H be such as in the preceding
proposition. Then:

�F,G�m +�F ::G,H�m = �G,H�m +�G ::H,F�m

= �H,F�m +�H ::F,G�m

Corollary 14 (Geometric three-terms adjunction). Let F, G, and H be weighted
graphs such that VG ∩V H =;. We have

Circ(F,G∪H)∼=Circ(F,G)∪Circ(F ::G,H)

Corollary 15 (Scalar three-terms adjunction). With the hypotheses of the last
corollary:

�F,G∪H�m = �F,G�m +�F ::G,H�m

3. The Additive Construction

3.1. Sliced Graphs
The additive construction consists in considering finite weighted families of

graphs G i on the same set of vertices. This can be related to the way additives
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are dealt with in Girard’s proof nets [17]: a sum G+G′ intuitively corresponds to
the superposition of two proof structures G and G′ using a boolean weight p. The
main interest of this approach is that it allows us to juxtapose two graphs while
making sure they cannot interact: such an operation will be the interpretation of
the & connective in the GoI construction defined later on. In this section, we will
define sliced graphs and extend in a natural way the operations of execution and
measurement; we then show that the scalar trefoil property can be extended to
this setting.

Definition 16. A sliced graph F with carrier V F is a family F = ∑
i∈IF αF

i Fi

where IF is a finite set, and, for all i ∈ IF , αF
i is a real number and Fi is a graph

on the set of vertices V F .
Given a sliced graph F, we define the real number 1F =∑

i∈IF αF
i .

Let us emphasise that the summation sign is merely a notation for indexed
families. We will suppose here that these families are identified modulo isomor-
phisms of the indexing set; although not essential – the corresponding sliced
graphs would be “identified”7 modulo observational equivalence (Definition 66)
– this supposition makes the manipulation of indexed families easier. No other
properties are supposed: for instance A + A and 2A are different sliced graphs.
Let us notice however that these sliced graphs are “identified” as well when con-
sidering the quotient modulo observational equivalence.

We can now easily extend execution and measurement on sliced graphs.

Definition 17. Let F and G be two sliced graphs. We define their execution as:( ∑
i∈IF

αF
i Fi

)
::

( ∑
i∈IG

αG
i G i

)
= ∑

(i, j)∈IF×IG
αF

i α
G
j Fi ::G j

When V F ∩VG =;, we will denote the execution by F ∪G.

Definition 18. Let F and G be two sliced graphs. We define the measurement:

� ∑
i∈IF

αF
i Fi,

∑
i∈IG

αG
i G i�m = ∑

(i, j)∈IF×IG
αF

i α
G
j �Fi,G j�m

In the case where some of the �Fi,G j�m are equal to ∞, we set �F,G�m to be equal
to ∞.

A simple computation gives us the trefoil property for sliced graphs as a direct
consequence of the trefoil property for graphs.

Proposition 19. Let F,G,H be sliced graphs such that V F ∩VG ∩V H =;. Then

1H�F,G�m +�F ::G,H�m

= 1F�G,H�m +�G ::H,F�m

= 1G�H,F�m +�H ::F,G�m

7We use quotes here as the equivalence is defined on projects, not sliced graphs. However two
projects (a, A) and (a,B), where B is obtained from A through an isomorphism of the indexing set,
will always be equivalent. This is how the graphs A,B are “identified” by the equivalence on projects.
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Proof. This is a straightforward computation, consequence of Corollary 13:

�F,G ::H�m +1F�G,H�m

= �F,G ::H�m +
( ∑

i∈IF
dF (i)

) ∑
j∈IG

∑
k∈IH

�G j,Hk�m

= ∑
i∈IF

∑
j∈IG

∑
k∈IH

dF (i)dG( j)dH(k)�Fi,G j ::Hk�m

+ ∑
i∈IF

∑
j∈IG

∑
k∈IH

dF (i)dG( j)dH(k)�G j,Hk�m

= ∑
i∈IF

∑
j∈IG

∑
k∈IH

dF (i)dG( j)dH(k)(�Fi,G j ::Hk�m +�G j,Hk�m)

= ∑
i∈IF

∑
j∈IG

∑
k∈IH

dF (i)dG( j)dH(k)(�Hk,Fi ::G j�m +�Fi,G j�m)

= ∑
i∈IF

∑
j∈IG

∑
k∈IH

dF (i)dG( j)dH(k)�Fi tG j,Hk�m

+ ∑
i∈IF

∑
j∈IG

∑
k∈IH

dF (i)dG( j)dH(k)�Fi,G j�m

= �H,F ::G�m +
( ∑

k∈IH
dH(k)

) ∑
i∈IF

∑
j∈IG

�Fi,G j�m

= �H,F ::G�m +1H�F,G�m

The other equality is obtained in a similar way.

Corollary 20. Let F, G, and H be sliced graphs such that VG ∩V H =;. Then:

�F,G∪H�m = 1H�F,G�m +�F ::G,H�m

3.2. Wagers
In order to get an adjunction in the usual sense, i.e. relating only the terms

�F,G∪H�m and �F ::G,H�m, we need to get rid of the additional term 1H�F,G�m.
A good way of doing so is to capture this term in a real number that will be
associated to our graphs, the wager. Hence, the objects we will be working with
will be couples of a wager and a sliced graph.

Definition 21. A project is a couple a = (a, A) where A is a sliced graph and
a ∈R∪ {∞}. We will call V A the carrier of a and denote it by supp(a).

Since we will work in R∪ {∞}, we need to explain how sums and products
are defined on ∞. We will follow a very simple rule: any sum and any product
containing ∞ will be equal to ∞.

Definition 22. Let a,b be projects. We define the measurement:

¿a,bÀm = a1B +1Ab+�A,B�m

14



Definition 23. Let f and g be projects. We define the cut between f and g by:

f ::mg= (¿f,gÀm,F ::G)

When a,b are with disjoint carriers, i.e. V F ∩VG =;, the execution a ::mb defines
the tensor product of a and b as (a1B +b1A , A∪B).

The following theorem is a straightforward application of Proposition 19.

Theorem 24 (Trefoil Property). Let f,g,h be projects such that V F ∩VG∩V H =;.
Then:

¿f ::mg,hÀm =¿f ::mh,gÀm =¿g ::mh, fÀm

Proof. We only show one equality, namely ¿f ::mg,hÀm =¿f ::mh,gÀm. Using
the definitions and Proposition 19:

¿f ::mg,hÀm = ( f 1G + g1F )1H +h1F1G +�F ::G,H�m

= ( f 1H +h1F )1G + g1F1H +�F ::H,G�m

= ¿f ::mh,gÀm

The second equality is obtained by a similar computation.

Corollary 25 (Adjunction). Let f,a,b be projects such that V A ∩V B =;. Then:

¿f,a⊗bÀm =¿f ::ma,bÀm

4. Localised Connectives

We can now proceed with the construction of connectives. We first define a
notion of orthogonality from which we derive the notion of conduct: a set which
is closed under bi-orthogonality. Interpreting the orthogonality a‹ b as the fact
that a passes the test b, the definition of conducts can be understood as a way
of typing the projects: a is an element of a conduct A if and only if it passes all
the tests in A‹ . The constructions of the connectives is then defined on projects
and extends to a definition on conducts by applying the constructions on the ele-
ments and closing under bi-orthogonality. Connectives are thus defined by their
computational meaning.

4.1. Multiplicatives
Definition 26 (Orthogonality). Two projects a,b on the same carrier are orthog-
onal, denoted by a‹m b, if ¿a,bÀm 6= 0,∞.

If A is a set of projects, the orthogonal A‹m of A is defined as the set:

{b | ∀a ∈ A,a‹ b}

We will in general forget about the subscript m in order to simplify notations.
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Definition 27 (Conducts). A conduct is a set A of projects which is equal to its bi-
orthogonal, i.e. A=A‹‹ , together with a set V A such that a ∈A⇒ supp(a)=V A .
The set V A will be called the carrier of the conduct, and denoted by supp(A).

Proposition 28. Let A be a conduct, and a = (∞, A) ∈ A be a project with an
infinite wager. Then A‹ =;. We will denote by 0V A =A‹ the empty conduct with
carrier V A and by TV A =A the conduct that contains all projects with carrier V A .

Proof. From the definition of operations on ∞, any algebraic expression con-
taining ∞ is equal to ∞. It follows that no project is orthogonal to the project
a= (∞, A). Hence A‹ =;.

Remark 29. If there exists only one conduct (up to the choice of a carrier) con-
taining projects with infinite wager, then why introduce them ? In fact, the intro-
duction of infinite wagers ensures that the application f ::m a is always defined.
Technically, this allows us to have the equality between 0V ( A and A‹ ( TV ,
which wouldn’t be the case if application were not always defined. Indeed, by def-
inition of the linear implication (Definition 34 below), the conduct 0V (A would
be equal to TV∪V A , while the conduct A‹ (TV would contain only the projects f
with supp(f)=V ∪V A such that f ::m a is defined for all a ∈A‹ .

Definition 30 (Tensor on Conducts). Let A,B be conducts of disjoint carrier. We
can form the conduct A⊗B

A⊗B= {a⊗b | a ∈A,b ∈B}‹‹

Proposition 31. We denote by A¯B the set {a⊗ b | a ∈ A,b ∈ B}. Let E,F be
non-empty sets of projects of respective carriers V ,W with V ∩W =;. Then

(E¯F)‹‹ = (E‹‹ ¯F‹‹ )‹‹

Proof. Obviously, we have E ⊂ E‹‹ and F ⊂ F‹‹ , hence E ¯F ⊂ E‹‹ ¯F‹‹
and finally we get a first inclusion (E¯F)⊂ (E‹‹ ¯F‹‹ )‹‹ .

For the other inclusion, we prove that (E ¯ F)‹ ⊂ (E‹‹ ¯ F‹‹ )‹ . Let a
be a project in (E ¯ F)‹ . Then for all e ∈ E and f ∈ F we have ¿a,e⊗ fÀm 6=
0,∞. By the adjunction this means that ¿a ::m e, fÀm 6= 0,∞, i.e. a ::m e ∈ F‹ .
Thus ¿a ::m e, f′Àm 6= 0,∞ for all e ∈ E and f′ ∈ F‹‹ . Since ¿a ::m e, f′Àm =
¿a ::m f′,eÀm, we deduce that a ::m f′ ∈ E‹ , which means that a ::m f′ ‹ e′ for all
f′ ∈ F‹‹ and e′ ∈ E‹‹ . To conclude, just notice that this is equivalent to the fact
that for all e′ ∈ E‹‹ and for all f′ ∈ F‹‹ , ¿a,e′⊗ f′Àm 6= 0,∞. This implies that
a ∈ (E‹‹ ¯F‹‹ )‹ which gives us the second inclusion.

Definition 32. We will write 0V the project (0, (V ,;)) where (V ,;) is the empty
graph on the set of vertices V considered as a one-sliced graph. Then we will
denote by 1V the conduct {0V }‹‹ .

Proposition 33 (Properties of the Tensor). The tensor product is commutative
and associative. Moreover it has a neutral element, namely 1;.
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Proof. These properties are consequences (using Proposition 31) of the fact that
⊗ on projects is commutative, associative and has a neutral element: the project
0;. Indeed, the tensor product is a special case of execution which is associative
and commutative (we did not prove commutativity but it is a direct consequence
of locativity). Moreover, one can easily check that a⊗0; = a.

Definition 34 (Linear Implication). Let A,B be conducts with disjoint carriers
V A and V B.

A(B= {f | supp( f )=V A ∪V B ∧∀a ∈A, f ::m a ∈B}

The fact that this defines a conduct is justified by the following proposition,
which is a simple corollary of the adjunction (Corollary 25).

Proposition 35 (Duality). For any conducts A,B with disjoint carriers:

A(B= (A⊗B‹ )‹

Proof. Choose a in A and b′ ∈ B‹ . Then, for any project f with carrier V A ∪V B

the adjunction 25 is written:

¿f,a⊗b′Àm =¿f ::ma,b′Àm

This shows that f ∈ (A⊗B‹ )‹ if and only if f ∈A(B.

We now introduce delocations, which are renaming of projects’ (and conducts’)
carriers through a chosen bijection. This leads to the introduction of specific
projects, named faxes following Ludic’s terminology [18], which intuitively corre-
spond to axiom links or copy-cat strategies: these are the projects that interpret
axiom rules.

Definition 36 (Delocations). Let a be a project with carrier V A , and φ : V A →V B

a bijection. We define the delocation of a graph G as the graph φ(G)= (V B,EA ,φ◦
sA ,φ ◦ tA ,ωA). This extends to projects: the delocation of a = (a,

∑
i∈I A αA

i A i) is
defined as φ(a)= (a,

∑
i∈I A αA

i φ(A i)).
Similarly, the delocation of a conduct A with carrier V A is defined as the

conduct φ(A)= {φ(a) | a ∈A} with carrier V B.

Proposition 37. Keeping the notations of Definition 36 and supposing V A∩V B =
;, we define the project Faxφ = (0, {Φ}) whose slice has weight 1 and where:

EΦ = {(a,φ(a)) | a ∈V A}∪ {(φ(a),a) | a ∈V A}

Φ = (V A ∪V B,EΦ,ωΦ(e)= 1)

Then Faxφ ∈A(φ(A).

4.2. Additives
To define additive connectives, we will use the formal sum introduced on

graphs. In a way, this formal sum corresponds to the notion of slice tradition-
ally introduced to define additive proof nets without boxes.
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4.2.1. Definitions
Definition 38. We extend the sum and product by a scalar to projects as follows:

a+λb= (a+λb, A+λB)

where A+λB is a notation for
∑

i∈I A αA
i A i +∑

i∈IB λαB
i Bi.

Proposition 39. Let a,b be projects, and λ ∈R∗. Then, for any project c, we have:

¿a+λb,cÀm =¿a,cÀm +λ¿b,cÀm

Corollary 40 (Homothety Lemma). Conducts are closed under homothety: for
all a ∈A and all λ ∈R with λ 6= 0, λa ∈A.

In order to define the ⊕ connective, we need to be able to associate to a project
a in a conduct A a project a↑B in the conduct A⊕B. There is only one natural
way of defining such a project a↑V B .

Definition 41. Let a= (a, A) be a project with carrier V A , and V a finite set such
that V ∩V A =;. We will write a↑V the project a⊗0V .

If A is a conduct with support V A , then A↑V will denote the set {a↑V | a ∈ A}.
Usually, this construction will be used in the particular case where V =V B is the
support of a conduct B; when in this case we will use the notations A↑B and a↑B
instead of A↑V B and a↑V B .

Let A be a conduct with carrier V A and let V be a finite set such that V∩V A =
;, then we want to define from A a conduct with carrier V A ∪V . A conduct A can
be considered as defined by its elements — the projects a ∈A — or its test — the
projects a′ ∈ A‹ . This means that an extension of the conduct A should satisfy
two properties: contain the extended elements of A and pass the extended tests
of A.

Definition 42. A conservative extension of a conduct A along a set V such that
V ∩V A =; is a conduct B with carrier V ∪V A such that:

• B contains the extensions a↑V of the elements of a ∈A;

• B‹ contains the extensions a′↑V of the elements of a′ ∈A‹ ;

Proposition 43. If B is a conservative extension of a conduct A on a set V , then
B‹ is a conservative extension of A‹ on the set V .

Proof. By definition of conservative extensions, B‹ contains the set (A‹ )↑V and
B contains the set A↑V . Since A‹‹ = A and B‹‹ = B, the second property is
equivalent to the fact that B‹‹ contains the set (A‹‹ )↑V . Hence B‹ satisfies
the properties of conservative extensions of A‹ along V .

Notice that if a↑V and a′↑V are elements of A↑V and (A‹ )↑V respectively,
we have ¿a↑V ,a′↑VÀm =¿a,bÀm 6= 0,∞. This implies that the sets A↑V and
(A‹ )↑V are contained in the orthogonal of the other:

A↑V ⊂ ((A‹ )↑V )‹
(A‹ )↑V ⊂ (A↑V )‹
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We will now consider two particular conservative extensions. The first is to
extend the elements of A and take the bi-orthogonal closure of the set thus ob-
tained, i.e. consider the conduct (A↑V )‹‹ . This is a conservative extension since
it contains the set A↑V by definition, and we have (A‹ )↑V ⊂ (A↑V )‹ . This con-
servative extension intuitively corresponds to the set of projects that act as an
element of A on V A and act as the project 0V .

The second possibility is to extend the set of tests of A, i.e. the elements of A‹ ,
and take the orthogonal of this set, i.e. consider the conduct ((A‹ )↑V )‹ . This is
a conservative extension of A along V since it is a conduct (as the orthogonal of a
set, it is equal to its bi-orthogonal closure), which satisfies A↑V ⊂ ((A‹ )↑V )‹ and
such that its set of tests contains the set (A‹ )↑V by definition. This conservative
extension intuitively corresponds to the set of projects that act as an element of
A on V A without any restriction on what they can do on V since the set of tests
they have to pass act as 0V .

These two different "completions", which are the core of the definition of addi-
tives, intuitively seem to be the minimal and maximal conservative extensions of
A along V . As it turns out, one can actually show that these intuitions are true.

Proposition 44. Let B be a conservative extension of A along V . Then:

(A↑V )‹‹ ⊂B⊂ ((A‹ )↑V )‹

Proof. Since B is a conservative extension of A along V , it is a conduct containing
A↑V . This implies that (A↑B)‹‹ ⊂ B‹‹ . Since B is a conduct, we have shown
(A↑B)‹‹ ⊂B.

Since B is a conservative extension of A along V , its orthogonal is a con-
duct containing (A‹ )↑V . We therefore obtain that ((A‹ )↑V )‹‹ ⊂ B‹ , i.e. B ⊂
((A‹ )↑V )‹ .

We will now proceed to define the additives on conducts. The underlying idea
is simple. On the one hand, the set A⊕B should contain projects that either act
as an element of A on V A and as 0V B on V B, or act as an element of B on V B and
as 0V A on V A .

On the other hand, the set A&B should contain elements that act like an
element of A on V A and act as an element of B on V B. The natural way to de-
fine this set is therefore to consider the intersection of the maximal conservative
extensions of A and of B.

Definition 45 (Additive Connectives). Let A,B be conducts. We define the con-
ducts A&B and A⊕B as follows:

A⊕B = ((A↑B)‹‹ ∪ (B↑A)‹‹ )‹‹
A&B = ((A‹ )↑B)‹ ∩ ((B‹ )↑A)‹

One can check that these two definitions are dual.

Proposition 46.
A‹ ⊕B‹ = (A&B)‹
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Proof. The orthogonal of a union is the intersection of the orthogonals, and thus:

A‹ ⊕B‹ = (((A‹ )↑B)‹‹ ∪ (((B‹ )↑A)‹‹ )‹‹
= (((A‹ )↑B)‹‹‹ ∩ ((B‹ )↑A)‹‹‹ )‹
= (((A‹ )↑B)‹ ∩ ((B‹ )↑A)‹ )‹‹
= (A&B)‹

Proposition 47. Let A,B be conducts. Then:

({a⊗0B | a ∈A}∪ {0A ⊗b | b ∈B})‹‹ =A⊕B

Proof. For any sets A,B such that A= A‹‹ and B= B‹‹ one has:

(A∪B)‹ = A‹ ∩B‹
(A∩B)‹‹ = (A‹ ∪B‹ )‹

The first equality — satisfied by any sets A,B — is a consequence of the fact that
a ∈ (A ∪B)‹ if and only if a ∈ A‹ and a ∈ B‹ if and only if a ∈ A‹ ∩B‹ . The
second — which is true only when A,B are conducts — comes from the fact that
(A∩B)‹‹ = (A‹‹ ∩B‹‹ )‹‹ = (A‹ ∪B‹ )‹‹‹ = (A‹ ∪B‹ )‹ .
Denoting by A↑B (resp. B↑A) the set {a⊗0B | a ∈A} (resp. the set {0A ⊗b | b ∈B}),
we can use these equalities to obtain:

(A↑B ∪B↑A)‹‹ = ((A↑B)‹ ∩ (B↑A)‹ )‹
= ((A↑B)‹ ∩ (B↑A)‹ )‹‹‹
= ((A↑B)‹‹ ∪ (B↑A)‹‹ )‹‹

As a consequence, {a↑B | a ∈A}∪ {b↑A | b ∈B} generates the behaviour A⊕B.

It is quite natural to wonder if these additive connectives can be characterised
in some way by means of conservative extensions. The answer to this question
will turn out to be negative, as shown in Corollary 53, even though the next
proposition seems to hint at a positive answer!

Proposition 48. Let A,B be conducts with disjoint carriers. If there exists a
conduct C which is both a conservative extension of A along V B and a conservative
extension of B along V A , then A⊕B⊂C⊂A&B.

Proof. Since C is both a conservative extension of A and B, it contains A↑B and
B↑A . It therefore contains A↑B ∪B↑A , which implies that (A↑B ∪B↑A)‹‹ ⊂B.

On the other hand, C‹ is both a conservative extension of A‹ along V B and a
conservative extension of B‹ along V A by Proposition 43. As a consequence, C‹
contains A‹ ⊕B‹ . Taking the orthogonal reverses the inclusion and we obtain
that C⊂ (A‹ ⊕B‹ ). We then conclude using Proposition 46.
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This proposition, however, is true for all the wrong reasons, and conveys the
wrong intuitions about the additive connectives. In fact, the inclusion A⊕B ⊂
A&B is not satisfied in general, i.e. the proposition holds because there exists
no common conservative extensions of A and B. Let us try to describe what the
fact that the inclusion A⊕B⊂A&B is satisfied implies for A and B.

Lemma 49. Let C be a conservative extension of a conduct A along a set V B

disjoint from V A . For every project c ∈C, c ::0V B ∈A.

Proof. Let c be an element of C and a′ an element of A‹ . By definition of conser-
vative extensions, C‹ contains (A‹ )↑B, which means that ¿c,a′⊗0V BÀm 6= 0,∞.
By the trefoil property, this implies ¿c ::0V B ,a′Àm 6= 0,∞, i.e. c ::0V B ∈A.

Proposition 50. Let A and B be conducts with disjoint carriers such that A⊕B⊂
A&B. Then:

• if A 6= 0V A , then 0V B ∈B;

• if A 6=TV A , then 0V B ∈B‹ ;

Proof. As a consequence of Proposition 46, the inclusion A⊕B⊂A&B is equiva-
lent to the inclusion A‹ ⊕B‹ ⊂A‹ &B‹ .

If A⊕B⊂A&B, then A↑B and B↑A are contained in A&B. By definition of &,
this means that in particular A↑B is contained in ((B‹ )↑A)‹‹ , i.e. all elements
of the form a⊗0V B are in ((B‹ )↑A)‹‹ . Supposing that A is not empty it implies,
using the preceding lemma, that 0V B ∈B.

Using the same reasoning on the inclusion A‹ ⊕B‹ ⊂ A‹ &B‹ , one shows
that 0V A ∈A‹ as long as A‹ 6= 0V A , i.e. as long as A 6=TV A .

Proposition 51. Let A and B be conducts with disjoint carriers. Then A⊕B ⊂
A&B if and only if A,B are both empty or A,B are both full.

Proof. By the preceding proposition, if A is neither equal to 0V A nor TV A , then
0V B is an element of both B and B‹ . This is of course a contradiction, since
¿0V B ,0V BÀm = 0. Similarly, we reach a contradiction if we suppose that B is
neither equal to 0V B nor equal to TV B . As a consequence, A and B are either
empty of full (the orthogonal of the empty conduct).

Using this fact, one can then show that A = 0V A if and only if B = 0V B (and
symmetrically, B = TV B if and only if A = TV A ). To show this, we just need to
remark that A= 0V A implies that A 6=TV A . By the preceding lemma this implies
that 0V B is an element in B‹ , hence B‹ is non-empty, which implies that B =
0V B . Conversely, if B = 0V B , then B 6= TV B hence 0V A ∈ A‹ by the preceding
proposition, and finally A= 0V A .

Corollary 52. Let A and B be conducts with disjoint carriers V A ,V B, and let
V =V A ∪V B. Then A⊕B⊂A&B if and only if A⊕B= 0V or A&B=TV .
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Proof. We show that A⊕B = 0V if and only if A = 0V A and B = 0V B . This is a
direct consequence of the fact that A⊕B = (A↑B ∪B↑A)‹‹ . If one of A and B is
non-empty, then A↑B∪B↑A is non-empty, and therefore A&B is non-empty since
it contains A↑B ∪B↑A . Conversely, it is clear that 0VA ⊕0VB = 0V .

This implies by duality that A&B=TV if and only if A=TV A and B=TV B .
We then conclude by using the preceding proposition.

Corollary 53. Let A and B be conducts with disjoint carriers V A ,V B, and let
V =V A∪V B. If A⊕B 6= 0V and A&B 6=TV , then no conduct is both a conservative
extension of A along V B and a conservative extension of B along V A .

Proof. This is a simple consequence of the preceding corollary and Proposition
48.

Even though, as we have just seen, the additive connectives we defined cannot
be described in terms of conservative extensions, it turns out that they satisfy all
the properties we expect. We already saw that the duality between them is sat-
isfied. It is now a simple exercise to see that these connectives are commutative,
associative and have neutral elements.

Proposition 54. The & connective is commutative, associative, and has a neutral
element: the full conduct on the empty carrier T;.

However, these constructions leave us more or less empty-handed: how could
one obtain a project in A&B from two projects a,b respectively in A,B? We will
need a more explicit construction of the & construction at the level of projects. In
order to do this, one has to restrict to a particular class of conducts which we will
call behaviours8.

4.2.2. behaviours
Definition 55. A behaviour A with carrier V is a conduct A such that for all
λ ∈R:

1. if a= (a, A) ∈A, then a+λ0V ∈A.;
2. if a= (a, A) ∈A‹ , then a+λ0V ∈A‹ .

Remark 56. The orthogonal of a behaviour is a behaviour.

This definition of behaviour is however quite cumbersome and difficult to
work with, as it is quite unnatural to reason about the elements of the orthog-
onal. We will thus first obtain a characterisation of behaviours (Proposition 60)
which will simplify greatly the proofs of the results of this section.

Proposition 57. If A is a non-empty set of projects with carrier V such that
a ∈ A ⇒ a+λ0V ∈ A, then any project in A‹ is wager-free, i.e. if (a, A) ∈ A‹ then
a = 0.

8The behaviours are the Interaction Graphs’ counterpart of Girard’s dichologies in his recent "man-
ifeste" [22]
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Proof. Chose a= (a, A) ∈A, which is possible since A is supposed to be non-empty.
Then for any b = (b,B) ∈ A‹ , ¿a,bÀm 6= 0. But a+λ0 ∈ A for any λ ∈ R. Then
¿a+λ0,bÀm =¿a,bÀm +bλ must be non-zero, hence b must be equal to 0.

Proposition 58. If A is a non-empty set of projects with the same carrier V A

such that (a, A) ∈ A implies a = 0, then b ∈ A‹ implies b+λ0V A ∈ A‹ for all λ ∈R.

Proof. Chose a= (a, A) ∈A. For any project b, we have ¿a,b+λ0Àm =¿a,bÀm+
λa. Since a = 0, we get that ¿a,b+λ0Àm =¿a,bÀm. Hence, if b ∈ A‹ , b+λ0 ∈
A‹ .

Corollary 59. If a conduct A with carrier V is such that

1. if a ∈A, then a+λ0V ∈A;
2. if a= (a, A) ∈A then a = 0;
3. A is non-empty.

Then A is a behaviour, and its orthogonal satisfies all the conditions above. We
call such a behaviour proper.

Proof. From the preceding proposition and the second and third conditions, we
get that A‹ satisfies that b ∈ A‹ ⇒ b+λ0 ∈ A‹ . Hence A is a behaviour. More-
over, if A‹ were empty, any project a with the same carrier as A would be in the
orthogonal of A‹ . Hence A wouldn’t be a conduct, since it contains only wager-
free projects. Finally, all projects in A‹ are wager-free from proposition 57.

Proposition 60. A behaviour is either proper, equal to 0V = ; or equal to TV =
0‹V .

Proof. Let A be a behaviour. If it is empty, then A= 0. If A‹ is empty, then A=T.
In the other cases, since A‹ is non-empty we get that A contains only wager-free
projects from proposition 57. Hence A is proper since it satisfies all the needed
conditions.

As a consequence of this proposition, it is easy to show that 1 and ⊥ are not
behaviours. However, the class of behaviours, which is closed under taking the
orthogonal, is closed under the multiplicative and additive connectives, as the
following propositions state.

Proposition 61. If A and B are behaviours with disjoint carriers, then A(B
and A⊗B are behaviours.

Proof. First suppose A,B are proper. Let f ∈A(B, a ∈A and b ∈B‹ be projects.
Then, from the adjunction we have that f‹ a⊗b if and only if f ::ma‹ b. Since
A¯B‹ is non-empty and contains only wager-free projects, f ∈ A(B implies
f+λ0 ∈A(B. Moreover, for all λ ∈R, f ::m a+λ0 ∈B, hence f 1A+ f λ+¿F, AÀ=
0. We therefore get that f = 0. Hence A(B contains only wager-free projects.
Finally, either A(B is empty, and therefore equal to 0, either it is non-empty
and therefore satisfies the conditions needed to be a proper behaviour.

Now, if either A= 0 or B=T, it is easy to see that A(B=T.
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The last case is when A=T and B is proper or B= 0 while A is proper. Then by
definition of the linear implication we get that A(B = 0 in the second case. To
prove that T(A= 0 when A is proper, notice that if f is with carrier V∪V A , then
applying f to a project with infinite wager yields a project with infinite wager.
Hence, if T(A were to be non-empty, A should contain a project with an infinite
wager, i.e. A would not be proper.

From the duality of multiplicative connectives, A⊗B = (A(B‹ )‹ . Since
A,B‹ are behaviours, A(B‹ is a behaviour. Therefore A⊗B is the orthogonal
of a behaviour, hence a behaviour.

Proposition 62. Let A, B be behaviours. Then A&B and A⊕B are behaviours.

Proof. Let A be a proper behaviour and let V B be such that V B ∩V A =;. Then
if a⊗0 ∈ A↑B, a⊗0+λ0 ∈ A↑B since (a+λ0)⊗0= a⊗0+λ0. Moreover, A contains
only wager-free projects, hence A↑B contains only wager-free projects. Since A↑B
is closed under expansion, non-empty and contains only wager-free projects, it
generates a behaviour (A↑B)‹‹ . Thus if A is a proper behaviour, A‹ is a proper
behaviour, which implies as just showed that (((A‹ )↑B)‹‹ is a behaviour, and
finally ((A‹ )↑B)‹ is a behaviour.

If A=TV A , we have T‹
V A = 0V A , hence (((T‹

V A )↑B)‹ =TV A∪V B . Thus ((A‹ )↑B)‹
is a behaviour.

If A = 0V A , then A‹ = TV A , hence ((A‹ )↑B)‹ = {a⊗0V B | a ∈ TV A }‹ = (TV A ⊗
1V B )‹ = T ( ⊥V B . But, since there exists infinite wager projects in T, any f ∈
T(⊥V B would yield a project with an infinite wager. Hence ⊥V B should contain
a project with an infinite wager. But this is not possible, since ⊥V B 6=TV B . Hence
T(⊥V B is necessarily empty, i.e. ((0‹

V A )↑B)‹ = 0V A∪V B is a behaviour.
This implies that if A,B are behaviours, the conduct A&B is a behaviour, as

the intersection of ((A‹ )↑B)‹ and ((B‹ )↑A)‹ which are behaviours.
Since the orthogonal of a behaviour is a behaviour, we get that if A,B are

behaviours, then A‹ ,B‹ are behaviours, hence A‹ &B‹ is a behaviour, and
eventually A⊕B= (A‹ &B‹ )‹ is a behaviour.

4.3. Additive Constructions on Projects
Now, there is something more. We justified the restriction to behaviours by

the fact that additive connectives on conducts were not obtained through an op-
eration at the level of projects, and therefore did not allow us to interpret the
additive rules of sequent calculus. As we show in the next results, this restric-
tion bore its fruits since we are now able to define the interpretation of the & rule
at the level of projects.

Definition 63. Let A and B be non-empty conducts with disjoint carriers, we
define the set

A+B= {a↑B +b↑A | a ∈A,b ∈B}

Lemma 64. Let A,B be non-empty behaviours. Then A+B⊂A&B.
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Proof. Choose f= a⊗0V B +b⊗0V A ∈ A+B. By the preceding proposition, we can
write:

A&B = (A‹ ⊕B‹ )‹
= ({a↑B | a ∈A}∪ {b↑A | b ∈B})‹

It is thus sufficient to show that for any c ∈ (A‹ )↑B ∪ (B‹ )↑A , one has f‹ c. We
suppose, without loss of generality, that c ∈ (A‹ )↑B, i.e. c = a′⊗0V B for a chosen
a′ ∈A‹ . One can notice that

¿b⊗0V A ,a′⊗0V BÀm = 0

because the wagers of b and a′ are equal to 0. We thus obtain:

¿f,cÀm = ¿a⊗0V B +b⊗0V A ,a′⊗0V BÀm

= ¿a⊗0V B ,a′⊗0V BÀm +¿b⊗0V A ,a′⊗0V BÀm

= ¿a,a′Àm

Finally, f‹ c.

However, the set A+B do not in general generate A&B, as we will show in
the following proposition.

Proposition 65. Suppose the map m :]0,1] → RÊ0 ∪ {∞} takes a value µ 6= 0,∞
(i.e. there exists x ∈]0,1] such that m(x) 6= 0,∞). If A,B are proper behaviours,
then (A+B)‹m‹m (A&B.

Proof. Let a′ ∈A‹m , and define 0u as the project (0,U) where U is the one-sliced
graph with a unique edge from a source vertex sa ∈ V A and a target vertex
sb ∈ V B. Then for all project c in A+B, one has ¿c,0UÀm = 0 and therefore
¿c,a′⊗0V B +0UÀm =¿c,a′⊗0V BÀm 6= 0,∞. As a consequence,

d= a′⊗0V B +0U ∈ (A+B)‹

We will now show that for all ν, 0 < λ < 1 and a,b in A,B respectively, the
project tν = a+b+ν0λU∗ is an element of (A‹m ⊕B‹m )‹m — where U∗ is the one-
sliced graph with a unique edge whose source is sb and target if sa. Indeed, for
all a′′⊗0 ∈ (A‹m )↑B (resp. b′′⊗0 ∈ (B‹m )↑A), we can compute:

¿a′′⊗0,tνÀm =¿a′′⊗0,aÀm +¿a′′⊗0,bÀm +ν¿a′′⊗0,0λU∗Àm =¿a′′,aÀm
¿b′′⊗0,tνÀm =¿b′′⊗0,aÀm +¿b′′⊗0,bÀm +ν¿b′′⊗0,0λU∗Àm =¿b′′,bÀm

As a consequence, we have that a′′⊗0‹m tν and b′′⊗0‹m tν. This means that
tν ∈ (A‹m ⊕B‹m )‹m (Proposition 47), i.e. tν ∈A&B.

But ¿tν,a′⊗0V B +0UÀm =¿a′,aÀm+νm(λ). Eventually changing the value
of λ, one can suppose that m(λ) = µ 6= 0,∞. Since ¿a′,aÀm and m(λ) are both
different from 0 and ∞, one can define ν = (−¿a′,aÀm)/µ. Then ¿tν,dÀm = 0,
i.e. tν 6∈ (A+B)‹m‹m .

Finally, we showed the inclusion (A+B)‹m‹m ⊂ A&B — a consequence of
Proposition 64 — is strict.
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To deal with this issue, we will define a notion of observational equivalence
and show that even though the elements of the form a+b do not generate the
behaviour A&B, any element in A&B is observationally equivalent to such a
sum. We will now define the notion of equivalence and state some of its properties
before showing this result.

Definition 66 (Equivalence). We define, given a conduct A, an equivalence rela-
tion on the set of projects in A as follows:

a∼=A b⇔∀c ∈A‹ ,¿a,cÀm =¿b,cÀm

We will denote the equivalence class of f by [ f ]A, forgetting the subscript when it
is clear from the context.

Proposition 67. Let A,B be conducts such that A⊂B. Then:

a∼=A b⇒ a∼=B b

Proof. One only needs to notice that A⊂B implies that B‹ ⊂A‹ . Then:

a∼=A b ⇔ ∀e ∈A‹ , ¿a,eÀm =¿b,eÀm

⇒ ∀e ∈B‹ , ¿a,eÀm =¿b,eÀm

By definition of the equivalence, this shows that a∼=A b⇒ a∼=B b.

Lemma 68. Let E be a set of projects with carrier V , and a,b ∈ E‹ . Then a∼=E‹ b
if and only if ∀e ∈ E,¿a,eÀm =¿b,eÀm.

Proof. By definition, if a∼=E‹ b, we have ∀f ∈ E‹‹ ,¿a, fÀm =¿b, fÀm, which is
equivalent to ∀λ ∈ R,¿λa−λb, fÀm = 0. Thus the equivalence of a and b can be
restated as ∀λ ∈ R,∀c ∈ E‹ ,c+λa−λb ∈ E‹ . This is by definition equivalent to
∀λ ∈ R,∀c ∈ E‹ ,∀e ∈ E,¿c+λa−λb,eÀm 6= 0, i.e. ¿λa−λb,=Àm0. Finally, we
have showed that a∼=E‹ b if and only if ∀e ∈ E,¿a,eÀm =¿b,eÀm.

Proposition 69. Let A,B be non empty behaviours, and f ∈ A&B. Then there
exists g ∈A and h ∈B such that

f∼=A&B g+h

Proof. Take a project f ∈ A&B. Since f ∈ ((A‹ )↑B)‹ ∩ ((B‹ )↑A)‹ , we have that
¿f,a′⊗0Àm 6= 0,∞ and ¿f,0⊗b′Àm 6= 0,∞ for all a′ ∈ A‹ ,b′ ∈ B‹ . Hence g =
f ::m 0V B ∈A and h= f ::m 0V A ∈B. We are going to show that f∼=A&B g+h.

Notice first that ((A‹ )↑B∪(B‹ )↑A)‹ = ((A‹ )↑B)‹∩((B‹ )↑A)‹ =A&B. Hence,
by lemma 68, we only need to show that ¿f,cÀm =¿g+h,cÀm for all c ∈ (A‹ )↑B∪
(B‹ )↑A in order to prove that f∼=A&B g+h.

Now, take for instance a′⊗0 in (A‹ )↑B. Then, since:

¿a⊗0V,b⊗0VÀm =¿a,bÀm
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We get:

¿g+h,a′⊗0Àm = ¿g⊗0,a′⊗0Àm +¿0⊗h,a′⊗0Àm

= ¿g⊗0,a′⊗0Àm

= ¿(f ::m0)⊗0,a′⊗0Àm

= ¿f ::m0,a′Àm

= ¿f,a′⊗0Àm

Similarly, for any b′⊗0 in (B‹ )↑A , we have:

¿g+h,b′⊗0Àm =¿g,b′⊗0Àm =¿f,b′⊗0Àm

We have thus shown that f∼=A&B g+h.

Proposition 70. Let A,B be non empty behaviours, and f ∈ A⊕B. Then there
exists h ∈A↑B ∪B↑A such that

f∼=A⊕B h

Proof. Let f ∈ A⊕B. Then, since A⊕B ⊂ (A‹ +B‹ )‹ , we have that f is orthogo-
nal to a′+b′ for any a′ ∈ A‹ and b′ ∈ B‹ . If A‹ ,B‹ are non-empty, we can take
a0,b0 in them. Then, for any λ,µ, the projects λa0 and µb0 are in A‹ ,B‹ respec-
tively, hence ¿f,λa0+µb0Àm =λ¿f,a0Àm+µ¿f,b0Àm 6= 0,∞. Since this must
be true for any λ,µ 6= 0, we have that either ¿f,a0Àm = 0 and ¿f,b0Àm 6= 0,∞,
either ¿f,b0Àm = 0 and ¿f,a0Àm 6= 0,∞.

Without loss of generality, we can suppose we are in the first case, that is:
¿f,a0Àm = 0 and ¿f,b0Àm 6= 0,∞. Then, for any a′ ∈A‹ , we have ¿f,a′Àm = 0
since for all λ and µ, ¿f,λa′+µb0Àm 6= 0,∞. This implies that ¿f,b′Àm 6= 0,∞
for any b′ ∈ B‹ . This gives us that ¿f,b′⊗0V AÀm = ¿f ::m0,b′Àm 6= 0,∞, i.e.
f ::m0V A is in B.

Now, we want to show that f∼=A‹&B‹ f ::m0V A ⊗0V A . For this, we chose an el-
ement g ∈ A‹ &B‹ . We want to show that ¿f,gÀm =¿(f ::m0)⊗0,gÀm. Using
the preceding proposition, there are two projects g1 and g2 in A‹ , B‹ respec-
tively, such that ¿g,cÀm =¿g1+g2,cÀm for all c ∈A⊕B. Hence, we know that

¿f,gÀm =¿f,g1+g2Àm ¿(f ::m0)⊗0,gÀm =¿(f ::m0)⊗0,g1+g2Àm

Since ¿f,a′Àm = 0 for all a′ ∈A‹ , we obtain:

¿f,g1+g2Àm =¿f,g1Àm +¿f,g2Àm =¿f,g2Àm

On the other hand, ¿(f ::m0)⊗0,g1+g2Àm =¿(f ::m0)⊗0,g2Àm+¿(f ::m0)⊗0,g1Àm.
Since ¿(f ::m0)⊗0,g1Àm = 0, we obtain:

¿(f ::m0)⊗0,g1+g2Àm = ¿(f ::m0)⊗0,g2Àm

= ¿(f ::m0)⊗0,g2⊗0Àm

= ¿f ::m0,g2Àm

= ¿f,g2⊗0Àm

= ¿f,g2Àm
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We finally obtained that the equality ¿f,gÀm = ¿(f ::m0)⊗0,gÀm is satisfied
for all g ∈A‹ &B‹ .

4.4. Some Properties
In order to prove distributivity, the following corollaries of Proposition 31 will

be useful.

Corollary 71. Let A be a conduct. Then (A↑V )‹‹ =A⊗1V .

Proof. This is a simple application of Proposition 31 with E =A and F = {0V }.

Proposition 72. Let A be a conduct with carrier W , and f a project with carrier
V such that f ::0V ∈A. Then f ∈ 1V (A.

Proof. For all a′ ∈A‹ , we have ¿f,a′⊗0VÀm 6= 0,∞. Hence f ∈ (A‹ ¯ {0V })‹ . By
Proposition 31, it implies that f ∈ (A‹ ⊗1V )‹ , and finally f ∈ 1V (A.

Proposition 73 (Distributivity). For any behaviours A,B,C, and delocations
φ,ψ,θ,ρ of A,A,B,C respectively, there is a project distr in the behaviour

((φ(A)(θ(B))&(ψ(A)(ρ(C)))((A((B&C))

Proof. Let g be a project in (φ(A) ( θ(B)) & (ψ(A) ( ρ(C)). Using the definition
of &, and propositions 35 and 71, we get:

(φ(A)( θ(B))&(ψ(A)( ρ(C))

= (((φ(A)( θ(B))‹ )↑ψ(V A )∪ρ(V C ))
‹ ∩ (((ψ(A)( ρ(C))‹ )↑φ(V A )∪θ(V B))

‹

= (φ(A)⊗θ(B)⊗1φ(V A )∪ρ(V C ))
‹∩(ψ(A)⊗ρ(C)⊗1φ(V A )∪θ(V B))

‹
= (φ(A)( (1ψ(V A )∪ρ(V C ) ( θ(B)))∩(ψ(A)( (1φ(V A )∪θ(V B) ( ρ(C)))

Now, define the projects:

f1 = Faxφ⊗Faxθ⊗0ψ(V A )∪ρ(V C ) ⊗0V C

f2 = Faxψ⊗Faxρ ⊗0φ(V A )∪θ(V B) ⊗0V B

distr = f1+ f2

We have Distr ::mg= f1 ::mg+ f2 ::mg. Let us compute (f1 ::mg) ::ma for a ∈A:

(f1 ::mg) ::ma

= ((Faxφ⊗Faxθ⊗0ψ(V A )∪ρ(V C ) ⊗0V C ) ::m g) ::m a

= (Faxθ⊗0ψ(V A )∪ρ(V C ) ⊗0V C ) ::m(g ::mφ(a))

= (Faxθ⊗0V C ) ::m((g ::mφ(a)) ::m 0ψ(V A )∪ρ(V C ))

Since, as we have shown earlier, g ∈ (φ(A)( (1ψ(V A )∪ρ(V C ) ( θ(B))), the project
((g ::mφ(a)) ::m 0ψ(V A )∪ρ(V C )) is in θ(B), hence it is equal to θ(b) with b ∈ B. This
yields:

(f1 ::mg) ::ma = (Faxθ⊗0V C ) ::m θ(b)

= b⊗0V C
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Similarly, one gets that (f2 ::mg) ::ma = c⊗0V B for c ∈ C. Hence (distr ::m g) ::m a ∈
B+C⊂B&C.

Eventually, distr ::m g ∈ A(B&C, which implies that the project distr we
defined is the one we were looking for.

Distributivity is quite easy to grasp without going into details: the project
Distr just superimposes elements of ((φ(A)(θ(B)) and (ψ(A)(ρ(C))) over the
carrier of A.

Proposition 74. The mix rule is never satisfied for proper behaviours.

Proof. Let A, B be behaviours, and let a, a′, b, and b′ be projects in the conducts
A, A‹ , B, and B‹ respectively. Then, noticing that:

¿A∪B, A′∪B′À
= ∑

i, j,k,l
αA

i α
B
j α

A′
k αB′

l ¿A i ∪B j, A′
k ∪B′

lÀ

= ∑
i, j,k,l

αA
i α

B
j α

A′
k αB′

l (¿A i, A′
kÀ+¿B j,B′

lÀ)

= 1B1B′¿A, A′À+1A1A′¿B,B′À

we can compute ¿a⊗b,a′⊗b′Àm as follows:

¿a⊗b,a′⊗b′Àm

= 1A′1B′ (1Ab+1Ba)+1A1B(1A′b′+1B′a′)
+¿A∪B, A′∪B′À

= 1A1A′ (1B′b+1Bb′+¿B,B′À)

+1B1B′ (1A′a+1Aa′+¿A, A′À)

= 1A1A′¿b,b′Àm +1B1B′¿a,a′Àm

Since ¿a,a′Àm and ¿b,b′Àm are different from 0 and ∞, it is possible to make
the last expression be equal to 0 by changing the value of 1A for instance, using
the fact that for c = a+λ0, we have ¿c,a′Àm = ¿a,a′Àm and that 1C = 1A +
λ.

Proposition 75. Weakening does not hold for non-empty behaviours.

Proof. Let A,B be conducts, let C be a behaviour, and let f ∈ A(B. Then
f⊗ 0V C is not an element of A⊗C(B. Indeed, chose a⊗ c in A⊗C. Then
¿f⊗0,a⊗ cÀm = 1C¿f,cÀm. Moreover, (F ⊗0)::(A ⊗C) = 1CF :: A. This yields
that (f⊗0) ::m(a⊗ c) = 1Cf ::ma. Since C is a behaviour, it is possible to cancel 1C
by considering c−1C0 ∈ C. Eventually, this gives that f⊗0 is not in A⊗C(B
unless B=T or A= 0.

Remark 76. This amounts to showing that there are no maps from C to 1 when
C is a behaviour.
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4.5. Booleans
One of the interests of the MALL fragment of Linear Logic is the possibility

of defining booleans as proofs of T⊕T. Although it is possible to define a type
of booleans in the multiplicative fragment, this additive version is more natu-
ral, especially when one considers that the proofs represented True and False
are closely related to the usual lambda-calculus definitions true := λx.λy.x and
false := λx.λy.y. Our construction, however, satisfies a property that could be
seen as a drawback in this perspective.

Proposition 77.
T;⊕T; =T;

Proof. The conduct T; is defined as the full behaviour, i.e. the orthogonal of the
empty set, over the empty set. One can check that:

T; = {(a,;) | a ∈R}‹‹ = {(∞,;)}‹‹

By definition, T;⊕T; is equal to the bi-orthogonal closure of the union of T;↑;
and itself. But T;↑; = {t⊗ 0; | t ∈ T;} = {t ∈ T;}. This implies that T;⊕T; =
T;.

This shows that the classical way of defining booleans does not work in our
setting. We could imagine a solution: replacing T; by TV where V is a non-empty
location. Unfortunately, this solution is not satisfying.

Proposition 78. Let {t, f } be a two-element set. Then T{t} ⊕T{ f } is equal to T{t, f }.

Proof. The argument is quite straightforward. Since T{t} contains a project with
infinite wager, so does T{t} ⊕T{ f }. Thus, by Proposition 28, T{t} ⊕T{ f } is equal to
T{t, f }.

To define adequate booleans, we need a more radical change to get rid of
infinite wagers. First notice that, as a consequence of the homothety lemma
(Corollary 40), a conduct never contains exactly one element up to observational
equivalence. We therefore need to consider conducts up to a more restrictive
equivalence to obtain quotients of conducts that contain a finite number of ele-
ments.

Definition 79. Let V be a set. A conduct A with carrier V is singular when
A 6= TV and it contains exactly one element up to homothety and observational
equivalence, i.e. for all a,b ∈A, there exists a real number λ such that a≡A λb.

The following proposition shows that singular conducts can be used to define
a boolean type.

Proposition 80. If A,B are singular conducts with respective (disjoint) carriers
T and F, the conduct A⊕B contains exactly two elements up to homothety and
observational equivalence.

Proof. Let us take an element c in A⊕B. By Proposition 70, we have two cases:
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• either c= t⊗0F where t ∈A;

• or c= 0T ⊗ f where f ∈B.

By definition of singular conducts, any two projects p,q in either A or B are equiv-
alent up to scalar multiplication. Moreover, for any conduct C and set V disjoint
from the carrier of C, p ∼=C q implies that p⊗ 0V ∼=(C↑V )‹‹ q⊗ 0V . Choosing el-
ements true and false in A and B respectively, we have that there exists a real
number λ such that c is either equivalent to λ.true⊗0F in the conduct (A ↑F)‹‹
or equivalent to λ.false⊗0T in the conduct (B↑T)‹‹ . Since both (A↑F)‹‹ and
(B↑T)‹‹ are subsets of the behaviour A⊕B, we finally obtain, by Proposition 67:

• either c∼=A⊕B λ.true⊗0F ;

• or c∼=A⊕B λ.false⊗0T .

In order to define adequate booleans, we still need to understand if singular
behaviours, or at least singular conducts, do exist. This is in fact depends on the
chosen parameter map m :]0,1]→RÊ0 ∪ {∞}. For instance, if one choses the map
m : x 7→ ∞, then Proposition 143 shows that all behaviours are either empty or
full, thus no singular behaviours exist in this model. For this reason, we do not
study further here the existence of singular behaviours and conducts.

5. Denotational Semantics

In this section, we will show how the GoI construction we obtained can be
used to obtain a categorical model of MALL. The first part of the section is a
quick overview of the definitions of the category GraphMLL. As this construction
is presented in detail (though not in the sliced graphs setting) in our previous
work [28], we will not dwell on the details of the proofs which are straightforward
adaptations of the corresponding proofs in the simpler setting of graphs.

5.1. A ∗-autonomous category
Let us first define the category of conducts. For this, we define ψi : N → N×

{0,1} (i = 0,1):
ψi : x 7→ (x, i)

Definition 81 (Objects and morphisms of GraphMLL). We define the following
category:

Obj= {A | A=A‹‹ with carrier XA ⊂N}
Mor[A,B]= {f ∈ψ0(A)(ψ1(B)}

To define the composition of morphisms, we will use three copies of N. We
thus define the following useful bijections:

µ : N× {0,1} → N× {1,2}, (x, i) 7→ (x, i+1)
ν : N× {0,2} → N× {0,1}, (x, i) 7→ (x, i/2)
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Definition 82 (Composition in GraphMLL). Given two morphisms f and g in
Mor[A,B] and Mor[B,C] respectively, we define

g◦ f= ν(f ::mµ(g))

Then one can show that this is indeed a category [28]. Notice the identities
are defined by faxes (Definition 37) which are represented by finite graphs.

We now define a bifunctor ⊗, and for that we will use the functions φ : N×
{0,1}→N defined9 by φ((x, i))= 2x+ i and τ

τ :


N× {0,1} → N× {0,1}

(2x+1,0) 7→ (2x,1)
(2x,1) 7→ (2x+1,0)

(x, i) 7→ (x, i) otherwise

Definition 83. We define on GraphMLL the bifunctor ⊗̄ induced by the tensor
product. It is defined on objects by

A⊗̄B=φ(ψ0(A)⊗ψ1(B))

and on morphisms by
f⊗̄g= τ(ψ0(φ(f))⊗ψ1(φ(g)))

Theorem 84. The category GraphMLL is a ∗-autonomous category. More pre-
cisely, (GraphMLL,⊗̄,1;) is symmetric monoidal closed and the object ⊥; = 1‹; is
dualizing.

Proof. A proof of this result for directed weighted graphs can be found in our
earlier paper [28]. The proof in this case (sliced graphs) is a straightforward
adaptation of it.

5.2. Products and Coproducts
Moreover, to have a denotational semantics for MALL, we need to define a

product. The natural construction would be to define the category GraphMALL:

Obj= {A | A=A‹‹ behaviour with carrier XA ⊂N}
Mor[A,B]= {f ∈ψ0(A)(ψ1(B)}

and then define on this full subcategory of GraphMLL the bifunctor &̄ by A,B 7→
φ(ψ0(A)&̄ψ1(B)) on objects, and:

f&̄g= τ(Distr ::mψ0(φ(f)&ψ1(φ(g)))

9This function, called the Cantor pairing, is heavily used in the first GoI constructions. Its use here
has the exact same purpose, although it did appear in the very definition of connectives in former GoI
models while we only use it to define the categorical models. This difference comes from the fact that
we are defining a localised GoI model, while former GoI constructions were “delocalised” from the
start.
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Slice 1

Locations

Slice 2

f⊗0V C

h⊗0V C

g⊗0V B

h⊗0V C

V A V B V C V D

· · · ·

· · · ·

Here an edge from V i to V j represents the set of edges whose sources are in V i and targets are
in V j . We did not represent those sets of edges that are necessarily empty (for instance from V C

to V C in the graph of f⊗0). The circled dots represent the location of the cut, i.e. the vertices that
disappear during the execution.

Figure 6: Graphic representation of the plugging of f&̄g and h⊗0V C .

However, this does not define a categorical product. Indeed, as usual when
dealing with geometry of interaction for additives, the problem lies in the elimi-
nation of the cut between additive connectives.

Here is what happens on an example. Let us take two projects f,g in respec-
tively A(B and A(C. Suppose moreover that both projects have only one
slice to simplify the following discussion; we think of f,g as interpretations of
two sequent calculus proofs π f and πg. Then, f&̄g is a project with two slices
in A( (B&C), where the first slice contains the graph F ∪;V C , and the sec-
ond contains the graph G ∪;V B . We want f&̄g to be the interpretation of the
proof obtained from π f and πg by a & rule; we will denote this proof by π&.
Now, let us take a project h (once again we suppose it has only one slice to ease
the discussion) in B ( D, and let us think of it as the interpretation of a proof
πh. Then the project h⊗0V C is in (B&C)(D (we use here Lemma 109 which
will be shown in the next section). This project will be the interpretation of the
proof obtained from πh by applying a ⊕ rule, which we will denote by π⊕. Tak-
ing the cut between f&̄g and h⊗0V C then gives us the interpretation of the proof
π obtained by applying a cut rule between π& and π⊕. Applying one step of
the cut-elimination procedure on π then gives us a proof π′ whose interpretation
should be f ::mh. This raises the question: is p′ = f ::mh equal to (f&̄g) ::m(h⊗0V C )
? One can easily see that it is never the case! Indeed, (f&̄g) ::mh is equal to
p = ((f⊗0V C ) ::mh)+ ((g⊗0V B ) ::m 0V C ) (see the graphic representation in Figure
6). It is clear that p is not equal to p′ since p has two slices, while p′ has only one.
The situation is actually even worse: even though one slice of p is equal to p′, the
other one is not in general equal to the empty graph. Indeed, in the result of the
execution (G∪ (V B,;)) ::(H∪ (V C ,;)) one keeps the edges in G whose source and
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target are in V A and the edges in H whose source and target are in V D .
So, the categories considered are not a denotational semantics for MALL, and

the & seems to be a bad candidate for defining a product. We will now see how
one can solve this issue by using the observational equivalence.

5.3. Observational Equivalence
As we explained earlier, the & connective does not define a categorical prod-

uct because, if f ∈ A(B, g ∈ A(C and b ∈ B‹ , the computation of the cut
(f&̄g) ::m(b⊗0)V C yields f+res where res is a residue equal to (g⊗0V B ) ::m(b⊗0V C ).
The following proposition shows, however, that this residue is not detected by the
elements of A‹ , i.e. that ¿res,a′Àm = 0 for all a′ ∈ A‹ . This means that & de-
fines a categorical product up to observational equivalence.

Proposition 85. Let f ∈ A(B and g ∈ A(C be projects, and write h = f&̄g.
Then for all b ∈B‹ , f ::m b∼=A h ::m b⊗0V C .

Proof. For any a ∈A, we have h ::m(a↑V B )= f ::m a+g ::m 0V B . Now, let b ∈B‹ be a
project. Then ¿h ::ma↑V B ,bÀm =¿f ::ma,bÀm +¿g ::m0V B ,bÀm. Now, suppose
that ¿g ::m0V B ,bÀm =λ 6= 0. Since f ::ma ∈B, we have ¿f ::ma,bÀm =µ 6= 0. But,
by the homothety lemma 40, we get g=−λ

µ
f ∈A(B. Since g ::m a=−λ

µ
f ::m a, we

finally obtain that ¿distr ::m(f&g),bÀm = 0, which is a contradiction.
Thus, for any b ∈B‹ , we have ¿g ::m0V B ,bÀm = 0.

As a consequence, we would like to quotient the category GraphMLL by the
observational equivalence. For this, we need to show that the categorical struc-
ture we have does not collapse when taking the observational quotients. The
following proposition — an easy consequence of the trefoil property (Theorem 24)
— and its corollaries10 make sure of that.

Proposition 86. Let f ∼=A(B f′ and g ∈ B(C be projects. Then f ::mg ∼=A(C
f′ ::mg.

Proof. For all c ∈C(A, we have ¿f ::mg,cÀm =¿f,g ::m cÀm. Therefore:

¿f ::mg,cÀm = ¿f,g ::m cÀm

= ¿f′,g ::m cÀm

= ¿f′ ::mg,cÀm

Corollary 87. Let f, f′,g,g′ be projects such that f∼=A(B f′ and g∼=B(C g′. Then
f ::mg∼=A(C f′ ::mg′.

Corollary 88. Let a∼=A a′ and f∼=A(B g be projects. Then f ::m a∼=B g ::m a′.

10They do more than just that, they also ensure that the quotiented category inherits the monoidal
structure of GraphMLL .
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Corollary 89. If a∼=A a′ and b∼=B b′, then a⊗b∼=A⊗B a′⊗b′.

Corollary 87 shows that the observational equivalence defines a congruence
on the category GraphMLL. This allows us to define the following quotient cate-
gory:

Definition 90. Define the category Cond by

Obj= {A | A=A‹‹ with carrier XA ⊂N}
Mor[A,B]= {[ f ] | f ∈ψ0(A)(ψ1(B)}

Proposition 91. The category Cond inherits the ∗-autonomous structure of the
category GraphMLL.

Proof. Notice that we quotient only the hom-sets. The three corollaries of Propo-
sition 86 above ensure that we have indeed defined a category, and that it inher-
its the monoidal structure of GraphMLL. To show that Cond is closed, one shows
that the isomorphism between Mor[A,B(̄C] and Mor[A⊗̄B,C] in GraphMLL is
compatible with the equivalence relation. This compatibility is however obvi-
ous: equivalence is preserved by delocations. The fact that ⊥ is dualizing is a
direct consequence of the preservation of isomorphisms when one takes the quo-
tient.

Definition 92. Define the category Behav by

Obj= {A | A behaviour with carrier XA ⊂N}
Mor[A,B]= {[ f ] | f ∈ψ0(A)(ψ1(B)}

Proposition 93. The category Behav is a full subcategory of Cond closed under
the monoidal product, the internalisation of Hom-sets and duality, which has
products, coproducts and in which mix and weakening do not hold.

Proof. It is sufficient to prove that ⊕ is a coproduct, since Behav is closed under
taking the orthogonal. Let A,B,C be behaviours, and f ∈ A(C, g ∈ B(C be
projects. Then the project f&̄g is a project in (A⊕B)(C. Define ιA (resp. ιB)
as the identity on A (resp. on B) tensored with 0V B (resp. 0V A ). Then, it is an
easy consequence of Proposition 85 that, for any representative h of [f&̄g] and
any representative i of [ιA], we have h ::m i ∈ [f]. The verification concerning ιB is
similar.

So the categorical model we obtain has two layers (see Figure 7). The first
layer consists in a non-degenerate (i.e. ⊗ 6= &

and 1 6= ⊥) ∗-autonomous category
Cond, hence a denotational model for MLL with units. The second layer is the
full subcategory Behav which does not contain the multiplicative units but is a
non-degenerate model (i.e. ⊗ 6= &

, ⊗ 6= & and 0 6= >) of MALL with additive units
that does not satisfy the mix and weakening rules.

Moreover, all the results up to this point are independent of the choice of the
parameter (the function m that measures cycles), hence we did not define one,
but a whole lot of such models.
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Cond
(∗-autonomous)

Behav
(closed under ⊗,(,&,⊕, (·)‹ )

NO weakening, NO mix

•⊥ •1

•T •0

Figure 7: The categorical models

6. Truth and Soundness

In this section, we suppose that the measurement map m satisfies m(1)=∞.

6.1. Truth
The notion of a successful project captures the kind of projects that are inter-

pretations of proofs of the sequent calculus. Keeping in mind that the graphs are
a generalisation of the set of axiom links of a proof net, the graph of a successful
project should be a disjoint union of transpositions, that is a graph in which each
vertex is the source (resp. the target) of at most one edge, and such that for each
edge e ∈ E(v,w), there exists e∗ ∈ E(w,v) and ω(e) = 1 =ω(e∗). Moreover, the wa-
ger of such a project should be equal to zero, since a non-zero wager marks the
appearance of a cycle in an application.

Definition 94 (Success). A project a = (a, A) is successful when a = 0 and A =∑
i∈I A A i, and, for all i ∈ I A , the graph A i is a disjoint union of transpositions.

Definition 95 (Truth). A conduct A is true when it contains a successful project.

Proposition 96 (Consistency). The conducts A and A‹ cannot be simultaneously
true.

Proof. Let a= (0, A) and a′ = (0, A′) be two successful projects on the same carrier
V A . Their interaction is measured by the sum∑

(i, j)∈I A×I A′
�A i, A′

j�m
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It is easy to show the only possible cases are ¿a,a′Àm = 0 and ¿a,a′Àm =∞.
This shows that a and a′ cannot be orthogonal.

Proposition 97 (Compositionality). Let f= (0,F) and a= (0, A) be two successful
projects in the conducts A(B and A respectively. Then B is true. Moreover, if
B 6=TV B , then f ::ma is a successful project.

Proof. Since the wagers of f and a are equal to zero, we get

¿f,aÀm = �F, A�m = ∑
(i, j)∈IF×I A

�Fi, A j�m

Since each of the terms �Fi, A j�m are either null or equal to ∞, we deduce that
¿f,aÀm is either null or equal to ∞.

• Suppose that ¿f,aÀm =∞. Since f ::ma is, by definition of A(B, a project
in B whose wager is equal to ¿f,aÀm, we have that B contains a project
with infinite wager, and therefore B = TV B by Proposition 28. As a conse-
quence, B is true since it contains the successful project 0V B .

• Suppose now that ¿f,aÀm = 0. In this case, the same reasoning we used
to prove Theorem 44 in [28], applied to each pairing of slices (i, j) ∈ IF × I A ,
shows that Fi :: A j is a disjoint union of transpositions. We then conclude
that

f ::ma= (0,
∑

(i, j)∈IF×I A
Fi :: A j)

is a successful project in B.

In particuler, if one supposes that B 6= TV B , one finds himself in the second case
(i.e. ¿f,aÀm = 0) since ¿f,aÀm =∞ implies B=TV B .

6.2. Full Soundness
Definition 98. We fix V = {X i( j)}i, j∈N a set of localised variables11. For i ∈ N,
the set X i = {X i( j)} j∈N will be called the variable name X i, and an element of X i
will be referred to as a variable of name11 X i. Moreover, we suppose that each
variable name X i has an associated size ni ∈N.

For i, j ∈ N we define the location ]X i( j) of the localised variable X i( j) as the
set

{(i,m) | jni É m É ( j+1)ni −1}

Definition 99 (Formulas of locMALLT,0). We inductively define the formulas of
localised multiplicative additive linear logic locMALL as well as their locations
as follows:

11The variable names are the variables in the usual sense, while the notion of localised variable is
close to the usual notion of occurence of a variable.
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• A localised variable X i( j) of name X i is a formula whose location is defined
as ]X i( j);

• If X i( j) is a localised variable of name X i, then (X i( j))‹ is a formula whoe
location is ]X i( j).

• If A,B are formulas and X ,Y are their locations and satisfy X∩Y =;, then
A⊗B (resp. A

&

B, resp. A & B, resp. A⊕B) is a formula whose location is
X ∪Y ;

• The constants T]Γ and 0]Γ are formulas whose location is ]Γ.

If A is a formula, we will denote by ]A the location of A. We also define the se-
quents `Γ of locMALL when the formulas of Γ have pairwise disjoint locations12.

Definition 100 (Formulas of MALLT,0). The formulas of MALLT,0 are defined
by the following grammar:

F := X i | X‹
i | F ⊗F | F

&

F | F & F | F ⊕F | 0 | T

where the X i are variable names.

Remark 101. Notice that multiplicative units are not considered here. This is
coherent with the idea of a purely linear fragment, where weakening does not
hold. Indeed, multiplicative units 1 and ⊥ are not purely linear as they can be
defined as !T and ?0 respectively. This translates in our models as the fact that
multiplicative units are not behaviours, but merely conducts. A more involved
sequent calculus which includes multiplicative units can be introduced by con-
sidering with some notion of polarities. The amount of additional work needed
would not be justified for merely including multiplicative units in our calculi, and
such considerations will be introduced in forthcoming works when extending our
models with exponential connectives.

Remark 102. To any formula of locMALLT,0 there corresponds a unique formula
of MALLT,0 obtained by replacing localised variables by their name, i.e. by apply-
ing the transformation X i( j) 7→ X i to each localised variable X i( j). Conversely, it
is always possible to localise a formula of MALLT,0 (though not in a unique way):
if e is an enumeration of occurences of variable names in A, one can define in a
natural way a formula Ae of locMALLT,0.

Definition 103 (Proofs of locMALLT,0). A proof of locMALLT,0 is a derivation
obtained from the sequent calculus rules shown in Figure 8, and such that any
localised variable X i( j) and any negation (X i( j))‹ of a localised variable appears
at most once in a premise-free rule (axiom or > rule).

Definition 104 (Proofs of MALLT,0). A proof of MALLT,0 is a derivation obtained
from the sequent calculus rules shown in Figure 9.

12This is a natural condition since the comma in (one-sided) sequents corresponds to a

&

.
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Ax ( j 6= j′)
` X i( j)‹ , X i( j′)

` A,∆ ` A‹ ,Γ
Cut13`∆,Γ

` A,∆ ` B,Γ
⊗13

` A⊗B,∆,Γ
` A,B,Γ &

` A

&

B,Γ
` A i,Γ ⊕i` A0 ⊕ A1,Γ

` A,Γ ` B,Γ
&` A & B,Γ

>]Γ`>,Γ No rule for 0.

Figure 8: localised sequent calculus locMALL

Ax
` X‹

i , X i
` A,∆ ` A‹ ,Γ

Cut`∆,Γ
` A,∆ ` B,Γ

⊗` A⊗B,∆,Γ
` A,B,Γ &

` A

&

B,Γ
` A i,Γ ⊕i` A0 ⊕ A1,Γ

`Γ, A `Γ,B
&`Γ, A & B

>`>,Γ No rule for 0.

Figure 9: Sequent calculus MALLT,0

Remark 105. To any proof of locMALLT,0 corresponds a unique proof of MALLT,0
obtained by replacing localised variables by their names. Conversely, if e is an
enumeration of the occurrences of variable names appearing in the axiom and >
rules of a proof of MALLT,0 π, one one can extend this enumeration to the whole
derivation tree and obtain in this way a proof of locMALLT,0 π

e.

Definition 106 (Interpretations). We define an interpretation basis as a map Φ
which associates to any variable name X i a behaviour with carrier {0, . . . ,ni −1}.

Definition 107 (Interpretation of locMALLT,0 formulas). LetΦ be an interpreta-
tion basis. We define the interpretation IΦ(F) along Φ of a formula F inductively:

• If F = X i( j), then IΦ(F) is the delocation (i.e. a behaviour) of Φ(X i) along
the bijection x 7→ (i, jni + x);

• If F = (X i( j))‹ , we define the behaviour IΦ(F)= (IΦ(X i( j)))‹ ;

• If F =T]Γ (resp. F = 0]Γ), we define IΦ(F) as the behaviour T]Γ (resp. 0]Γ);

13It is necessary that (]A ∪ ]∆)∩ (]B∪ ]Γ) = ; in order to apply the ⊗ rule and that ]∆∩ ]Γ = ; in
order to apply the cut rule. Similarly, one should have that (]A)∩ (]B) = ; in order to apply the &
rule.
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• If F = A⊗B, we define the behaviour IΦ(F)= IΦ(A)⊗ IΦ(B);

• If F = A

&

B, we define the behaviour IΦ(F)= IΦ(A)

&

IΦ(B);

• If F = A⊕B, we define the behaviour IΦ(F)= IΦ(A)⊕ IΦ(B);

• If F = A & B, we define the behaviour IΦ(F)= IΦ(A)& IΦ(B).

Moreover, a sequent ` Γ will be interpreted as the

&

of the formulas in Γ, which
we will denote by

&

Γ.

Definition 108 (Interpretation of locMALLT,0 proofs). Let Φ be an interpreta-
tion basis. We define the interpretation IΦ(π) of a proof π of locMALLT,0 induc-
tively:

• if π consists only in an axiom rule ` (X i( j))‹ , X i( j′), we define IΦ(π) as the
project Fax corresponding to the bijection (i, jni + x) 7→ (i, j′ni + x);

• if π consists only in a T]Γ rule, we define IΦ(π)= (0, (]Γ,;));

• if π is obtained from π′ by a

&

rule, then IΦ(π)= IΦ(π′);

• if π is obtained from π1 and π2 by a ⊗ rule, we define IΦ(π)= IΦ(π1)⊗IΦ(π′);

• if π is obtained from π′ by a ⊕i rule introducing a formula whose location is
V , we define IΦ(π)= IΦ(π′)⊗0V ;

• if π of conclusion ` Γ, A0 & A1 is obtained from π0 and π1, of respective
conclusions `Γ, A0 and `Γ, A1, by a & rule, we define:

ψi : x 7→ (x, i) (i = 0,1)

ψ̃i = ((ψi)�]Γ )−1 (i = 0,1)

ψ̇i = ((ψi)�]Ai
)−1 (i = 0,1)

The interpretation of π is then defined as:

IΦ(π)=Distr
ψ̃0,ψ̃1
ψ̇0,ψ̇1

::m(ψ0(IΦ(π0))⊗0]A1 +ψ1(IΦ(π1))⊗0]A0 )

• if π is obtained from π1 and π2 by a cut rule, we define

IΦ(π)= IΦ(π1) ::m IΦ(π2)

Figure 10 represent the different steps in the interpretation of the & rule.
Notice that the result can be easily understood and is a quite natural definition:
the shared context Γ is superimposed on two slices, and these slices contain the
two projects interpreting the premisses of the rule.

Lemma 109. Let A,B,C be behaviours. Then (A(B)⊕C⊂A( (B⊕C).
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Proof. It is equivalent to show the inclusion A⊗ (B‹ &C‹ )⊂ (A⊗B‹ )&C‹ . Us-
ing the definition of &, we get:

A⊗ (B‹ &C‹ ) = A⊗ ((B↑C)‹ ∩ (C↑B)‹ )

= {a⊗d | a ∈A,d ∈ ((B↑C)‹ ∩ (C↑B)‹ )}‹‹
(A⊗B‹ )&C‹ = (((A⊗B‹ )‹ )↑C)‹ ∩ (C↑A,B)‹

= ((A(B)↑C)‹ ∩ (C↑A,B)‹
= ((A(B)↑C ∪C↑A,B)‹

All which is left to do is to show that a project of the form a⊗ d, where a is
an element of A and d ∈ ((B↑C)‹ ∩ (C↑B)‹ ), is orthogonal to any project in E =
(A(B)↑C ∪C↑A,B. Let e be a project in E. Then:

1. either e ∈ C↑A,B, i.e. e = c⊗ 0V A∪V B . Then ¿a⊗d,eÀm = ¿d,c⊗0V BÀm.
But, since d ∈ (C↑B)‹ ), this entails that ¿d,c⊗0V BÀm 6= 0,∞. Therefore
e‹ a⊗d.

2. or else e ∈ (A(B)↑C , i.e. e= f⊗0V C with f ∈A(B. Then:

¿e,a⊗dÀm = ¿f⊗0V C ,a⊗dÀm

= ¿f, (a⊗d) ::m0V CÀm

= ¿f,a⊗ (d ::m0V C )Àm

= ¿f ::ma,d ::m0V CÀm

= ¿(f ::ma)⊗0V C ,dÀm

But, since f ::ma ∈ B, we have (f ::ma)⊗0V C ∈ B↑C . The project d is by defi-
nition in (B↑C)‹ , and finally we obtain e‹ a⊗d.

Proposition 110 (localised soundness). Let Φ be an interpretation basis. If π
is a proof of conclusion ` ∆, then IΦ(π) is a successful project in the behaviour
IΦ(`∆).

Proof. We show this result by induction on the last rule in π. By definition,
the interpretation of the axiom rule introducing ` (X i( j))‹ , X i( j′) is a successful
project in IΦ(X i( j))( IΦ(X i( j′)) which is equal to IΦ((X i( j))‹ &

X i( j′)). Then:

• if π consists only in the rule T]Γ, then IΦ(π) = (0,0]Γ) is successful and an
element of T]Γ;

• the cases of multiplicative connectives are dealt with as in our former paper
([28], Proposition 54);

• if the last rule is a ⊕ rule — we suppose without loss of generality that it is
a ⊕1 rule:
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]A0 ]Γ ]A1
IΦ(π1)

IΦ(π2)

(a) Interpretations of π0 and π1

ψ0(]A0) ψ0(]Γ) ψ1(]A1) ψ1(]Γ)

ψ0(]A0) ψ0(]Γ) ψ1(]A1) ψ1(]Γ)

ψ
0(

I Φ
(π

0)
)⊗

0
]A

1
ψ

1(
I Φ

(π
1)

)⊗
0
]A

0
(I)

ψ0(IΦ(π0)) 0]A1

ψ1(IΦ(π1))0]A2

(b) Summation of the delocations

]A0 ]Γ ]A1

]A1]Γ]A0

]A0 ]Γ ]A1

]A1]Γ]A0

I Φ
(π
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(c) Interpretation of π

Figure 10: Interpretation of the & rule (of conclusion `Γ, A0 & A1) applied to the proofs π0 and π1 of
respective conclusions `Γ, A0 and `Γ, A1
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...π
′

`Γ, A1 ⊕1
`Γ, A1 ⊕ A2

Then IΦ(π) = IΦ(π′)⊗0V , and IΦ(` Γ, A1 ⊕ A2) = (

&

Γ)

&

(A1 ⊕ A2). We now
use the fact that (A(B)⊕C⊂A( (B⊕C) (Lemma 109) to show the inclu-
sion IΦ(`Γ, A1)⊕ IΦ(A2)⊂ IΦ(`Γ, A1⊕A2). But, since IΦ(π′) is a successful
project in IΦ(` Γ, A1), IΦ(π) is a successful project in IΦ(` Γ, A1)⊕ IΦ(A2).
As a consequence, it is a successful project in IΦ(`Γ, A1 ⊕ A2);

• if the last rule is a & rule:

...π0

`Γ, A0

...π1

`Γ, A1
&`Γ, A0 & A1

Using the notations of Définition 108, we have:

IΦ(π)=Distr
ψ̃0,ψ̃1
ψ̇0,ψ̇1

::m(ψ0(IΦ(π0))⊗0]A1 +ψ1(IΦ(π1))⊗0]A0 )

By definition, the interpretations IΦ(πi) are successful projects in the be-
haviours IΦ(` Γ, A i). We deduce from this that the projects ψi(IΦ(πi)) are
successful in the behaviours ψi(IΦ(`Γ, A i)) (delocations obviously preserve
success). Since A+B ⊂ A&B when A,B are non-empty behaviours, we
have14 that

ψ0(IΦ(π0))⊗0]A1 +ψ1(IΦ(π1))⊗0]A0

is a successful project in

ψ0(IΦ(`Γ, A0))&ψ1(IΦ(`Γ, A1))

Since delocations are implemented by successful projects and the project
implementing distributivity is defined as the sum of two delocations, IΦ(π)
is a successful project. Moreover, it is an element of the interpretation
IΦ(`Γ, A0 & A1) of `Γ, A0 & A1 by Proposition 73.

• if π is obtained by a cut rule between π1 and π2, of respective conclusions
` A,Γ1 and ` A‹ ,Γ2, then Theorem 97 ensures us15 that IΦ(π1) ::m IΦ(π2)
is a successful project in

&

Γ.

14Indeed, the interpretations of the sequents `Γ, A0 and `Γ, A1 are non-empty by construction.
15Notice that in some cases, Theorem 97 does not ensure that the resulting project is successful,

since the wager can be infinite. We are however in a particular case, since the graph of the project
interpreting the T]Γ rule is empty, it cannot produce cycles. We are thus necessarily in the case of a
null wager, i.e. the case where the produced project is successful.
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Following the remarks we made earlier concerning the translation from the
non-localised system to the localised one, we can chose an enumeration of the
variable names in a proof π of MALLT,0: we thus obtain a proof πe of locMALLT,0
whose conclusion is Ae. The following theorem is then a simple consequence of
the preceding one.

Theorem 111 (Full soundness for MALLT,0). Let Φ be an interpretation basis, π
a proof of MALLT,0 of conclusion ` Γ, and e an enumeration of the occurrences of
the variable names in axiom and > rules in π. Then IΦ(πe) is a successful project
in IΦ(`Γe).

7. Graphs and Operators

In this section, we study two particular values of the parameter m. The first,
m(x) = − log(1− x), will give us a combinatorial version of Girard’s Geometry of
Interaction in the Hyperfinite Factor (GoI5); the second, m(x)=∞, will give us a
refined version of (the multiplicative fragment) of more ancient versions of GoI
[13, 12, 15]. Finally, we will relate our model to Girard’s first GoI construction
with permutations [11].

Let H be a separable infinite-dimensional Hilbert space (for instance, the
space l2(N) of square-summable sequences), and let {e i}i∈N be a base of H. For
every finite subset S ⊂ N there is a projection on the subspace generated by
{es | s ∈ S} that we will denote by pS .

7.1. localised Adjacency Matrices and the Contraction Property
Definition 112. From a directed weighted graph G, we can define a simple graph
i(G) with weights in R>0 ∪ {∞}:

Vi(G) = VG

Ei(G) = {(v,w) | ∃e ∈ EG , sG(e)= v, tG(e)= w}

ωi(G) : (v,w) 7→ ∑
e∈EG (v,w)

ωG(e)

If the weights of i(G) are in R>0, we will say it is total.

Definition 113 (localised weight matrix). If G is a weighted graph, the weight
matrix of i(G) defines an operator in pVG B(H)pVG (hence in B(H)). We will make
an abuse of notation and denote this operator, the localised weight matrix of G,
by MG .

Lemma 114 (Contraction Lemma for m(x)=− log(1− x)). Let m :]0,1]→R∪ {∞}
be defined as m(x)=− log(1− x). Then, for any graphs F,G:

¿F,GÀm =¿i(F),i(G)À

Proof. The proof is quite involved and can be found in our earlier paper [28].
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Lemma 115 (Contraction Lemma for m(x)=∞). Let m :]0,1]→R∪{∞} be defined
as m(x)=−∞. Then, for any graphs F,G:

¿F,GÀm =¿i(F),i(G)À
Proof. We have either ¿F,GÀ= 0 if there are no alternating 1-circuits in FäG,
or ¿F,GÀ=∞ if there is at least one such 1-circuit.

In the first case, the replacement of F by i(F) does not create any 1-circuit.
Indeed, if such a 1-circuit existed in i(F)äG, for instance π̄= f̄0 g0 . . . f̄k gk, then
for each edge f̄ i in Ei(F) one can chose an edge f i in EF with same source and
target as f̄ i. Then π = f0 g0 . . . fk gk is a 1-circuit in FäG, contradicting the fact
that ¿F,GÀ= 0.

In the second case, that is when there exists at least one 1-circuit in FäG,
then there exists at least one 1-circuit in i(F)äG. To see that, let us denote by
π= f0 g0 . . . fk gk a 1-circuit in FäG. Then the edges f i are replaced by edges with
same source and target in i(F), which we will denote f̄ i. Then there is a 1-circuit
in i(F)äG, namely the circuit π̄= f̄0 g0 . . . f̄k gk.

We have just shown that ¿F,GÀ=¿i(F),GÀ. By symmetry of ¿·, ·À and
using this result on G, we obtain ¿F,GÀ=¿i(F),i(G)À.

7.2. The Feedback Equation
From the very beginning, the geometry of interaction construction has been

related with the computation of paths in proof nets [8, 3]. As we will see, the oper-
ation of execution between graphs captures exactly the corresponding operation
in the setting of operators. To show this result, we will first recall the feedback
equation, and define execution between operators.

The feedback equation [20] is the operator-theoretic counterpart of the cut-
elimination procedure. A solution of a feedback equation corresponds to the nor-
mal form of a proof net containing a cut. Let u,v be operators acting on the
Hilbert spaces H⊕H′ and H′⊕H′′ respectively. A solution to the feedback equation
involving u and v is an operator w acting on the Hilbert space H⊕H′′ such that
w(x⊕ z)= x′⊕ z′ when there exists y, y′ ∈H′ such that:

u(x⊕ y) = x′⊕ y′

v(y′⊕ z) = y⊕ z′

This equation is usually illustrated as in Figure 11. Figure 12 illustrates the
feedback equation with proof nets: if u and v represent two proof nets (shown
with two conclusions only in order to simplify the exposition), then cutting the
two proof nets corresponds to adding the equation y= w′ and y′ = w to the picture.
The cut-free proof net obtained from the cut-elimination procedure would then
be represented by an operator w such that w(x⊕ z) = x′ ⊕ z′ when there exist
y, y′,w,w′ satisfying:

u(x⊕ y) = x′⊕ y′

v(w⊕ z) = w′⊕ z′

w = y′

w′ = y
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Figure 11: Illustration of the feedback equation

This is the same as saying that the cut-free proof net obtained is represented by
a solution to the feedback equation involving u and v.

If we write p, p′, p′′ the projections onto the spaces H,H′,H′′ respectively, the
execution formula u ::v = (p+p′′v)

(∑
iÊ0(uv)i) (up+p′′), when it is defined, gives a

solution to the feedback equation involving u and v. More generally, the formula
(p+ p′′v)(1−uv)−1(up+ p′′), when 1−uv is invertible, defines such a solution.

Girard studied, in his paper entitled Geometry of Interaction IV: the Feedback
Equation [20], an extension of this solution when the operator 1− uv is non-
invertible. He then showed that for the couples of operators (u,v) where u,v are
hermitians whose norm is at most 1, the solution involving the inverse operator
(1−uv)−1 defines a sort of (partial) functional application, which can be extended
to all couples of operators (u,v) with u,v hermitians whose norm is at most 1.
Moreover, this extension is the unique such extension preserving associativity
and verifying some continuity properties.

In his first constructions, Girard defined the execution between two operators
u,v to be equal to u ::v = (p+ p′′v)

(∑
iÊ0(uv)i) (up+ p′′) when this expression was

defined, i.e. when the product uv was nilpotent. The fact that this definition
was partial conveyed the (somewhat wrong) impression that orthogonality was
introduced to deal with this problem: two operators were orthogonal when the ex-
ecution between them was defined. In his latest construction, i.e. the geometry
of interaction in the hyperfinite factor, Girard builds upon his general solution
to the feedback equation a geometry of interaction in which execution is always
defined. The notion of orthogonality, which uses the Fuglede-Kadison determi-
nant16 is then in its rightful place: it does not ensure that execution is defined
but gives information on how execution is performed.

16The Fuglede-Kadison determinant is a generalisation of the usual determinant of matrices that
can be defined in any type II1 factor.
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Figure 12: Illustration of the feedback equation
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Definition 116. Let u,v be operators. We denote by Ex(u,v) the solution, when
it is defined, of the feedback equation involving u and v.

7.3. Paths as a Solution to the Feedback Equation
Girard’s general solution to the feedback equation is actually restricted to the

case where the two operators involved are hermitians of norm at most 1. For
this reason, the geometry of interaction in the hyperfinite factor only deals with
hermitian operators of norm at most 1. Although the restriction to hermitian
operators does not seem crucial for his result, the condition of the norm is, on
the other hand, essential in the proofs. We therefore consider the notion of op-
erator graphs whose weight matrix is of norm at most 1, and the special case of
symmetric operator graphs whose matrix is moreover self-adjoint.

Definition 117 (Operator Graphs). An operator graph is a graph F such that
‖MF‖ É 1. An operator graph is said to be symmetric when MF =M∗

F , i.e. when
for all edges e ∈ Ei(F)(v,w) (v,w ∈ Vi(F)), there is an edge e∗ ∈ Ei(F)(w,v) such
that ωi(F)(e)=ωi(F)(e∗).

As it turns out, even though the general solution of the feedback equation
is constructed with the use of unbounded operators, it can be constructed in a
very simple manner when one restricts to operators acting on finite-dimensional
Hilbert spaces. In our earlier paper [28], we showed that, provided F,G satisfy
�F,G�− log(1−x) 6=∞, execution between operator graphs F,G corresponded to solv-
ing the feedback equation between the associated matrices of weights. Here, we
will extend this result by showing it holds in full generality. Indeed, the ma-
trix of weights of the graph i(F ::H) can be shown to be equal to the matrix∑∞

i=0(pF i (F)+ pG)(i(F))i(pF +i(G)pG). Since this series is always convergent
when the operators i(F),i(G) are of norm at most 1, this gives the result.

Proposition 118. Let u (resp. v) be a n+m (resp. m+ k) square matrix of norm
at most 1 seen as n+m+k matrices:

u =
 un,n un,m 0

um,n um,m 0
0 0 0

 v =
 0 0 0

0 vm,m vk,m
0 vm,k vk,k


Let p, q, r be the projections defined as the block matrices:

p =
 Id 0 0

0 0 0
0 0 0

 q =
 0 0 0

0 Id 0
0 0 0

 r =
 0 0 0

0 0 0
0 0 Id


Then the series: ∑

iÊ0
(pu+ r)(vu)i(p+ rv)

is convergent and defines a solution to the feedback equation involving u and v.
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Proof. Let us first compute the product vu.

vu =
 0 0 0

vm,mum,n vm,mum,m 0
vm,kum,n vm,kum,m 0


Let us write q1 as the largest projection such that q1 É q and q1vm,mum,mq1 =

q1 (this may be equal to 0), and denote by q<1 the projection q−q1. Notice that q1
is the projection on the subspace corresponding to the eigenvalue 1 of vm,mum,m.
We can write vu as a 4×4 block matrix along the projections p, q1, q<1, r as fol-
lows:

vu =


0 0 0 0

w2,1 Id w2,3 0
w3,1 w3,2 w3,3 0
w4,1 w4,2 w4,3 0


But since ‖vu‖ É 1, we have that w2,1 = w2,3 = w3,2 = w4,2 = 0:

vu =


0 0 0 0
0 Id 0 0

w3,1 0 w3,3 0
w4,1 0 w4,3 0


I.e. vu = q1 + z where (1− q1)z(1− q1) = z. Using the fact that q1z = zq1 = 0 we
obtain, for any integer k > 0:

(vu)k = q1 + zk

Hence:∑
iÊ0

(pu+ r)(vu)i(p+ rv)= ∑
iÊ0

(pu+ r)(q1 + zi)(p+ rv)= ∑
iÊ0

(pu+ r)zi(p+ rv)

Now, we can make z into a triangular matrix by making w3,3 triangular. It is
clear that the non-null elements on the diagonal are strictly lesser than 1, or
else it would contradict the fact that q1 was the largest projection satisfying
q1 É q and q1vm,mum,mq1 = q1. This implies that 1− z is invertible since all
its diagonal coefficients are different from zero. Hence (pu+ r)(1− z)i(p+ rv) =
(pu+r)

∑
iÊ0 zi(p+rv) is always defined and is equal to

∑
iÊ0(pu+r)zi(p+rv).

Proposition 119. Let F and G be operator graphs, MF and MG their localised
weight matrices. Then:

MF ::G =Ex(MF ,MG)

Proof. Let p, q, r be the projections corresponding to the sets V F −V F ∩VG ,V F ∩
VG ,VG −V F ∩VG respectively.

We first write F ::G as the union ∪kÊ1Ck where Ck is the graph of alternating
paths in FäG with source and target in V F∆VG and of length equal to k. Each
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Ck can be written as the union ∪i, j∈{F,G}C i, j
k where C i, j

k is the graph of paths in
Ck with source in i and target in j. It is easily seen that:

CF,F
k =

{
pMF (MGMF )

k−1
2 p k odd

0 otherwise

CG,G
k =

{
q(MGMF )

k−1
2 MG q k odd

0 otherwise

CF,G
k =

{
q(MGMF )

k
2 p k even

0 otherwise

CG,F
k =

{
pMF (MGMF )

k−2
2 MG q k > 2 even

0 otherwise

Now, since MF ::G =∑
k>0

∑
i, j∈{F,G} MC i, j

k
, we obtain:

MF ::G = ∑
k>0 even

(
q(MGMF )

k
2 p+ pMF (MGMF )

k
2 MG q

)
+ ∑

k>0 odd

(
pMF (MGMF )

k−1
2 p+ q(MGMF )

k−1
2 MG q

)
= ∑

k>0

(
q(MGMF )k p+ pMF (MGMF )kMG q

)
+ ∑

k>0

(
pMF (MGMF )k p+ q(MGMF )kMG q

)
= ∑

k>0
(pMF + r)(MGMF )i(p+ rMG)

From the previous proposition, this series converges, and therefore defines a solu-
tion to the feedback equation involving MF and MG . Hence, we have just shown
that MF ::G =Ex(MF ,MG).

7.4. GoI in the Hyperfinite Factor
We will now extend the previous results to sliced graphs and show how the

choice of the measurement map m(x)=− log(1−x) defines a combinatorial version
of Girard’s hyperfinite GoI. However, before doing so, we will recall the important
definitions of the latter, and discuss two constructions of the additive connectives.

Girard defines his latest geometry of interaction in the hyperfinite factor R0,1
of type II∞ with a fixed trace tr. This von Neuman algebra can be obtained as
the tensor product of B(H) with the hyperfinite factor of type II1, usually denoted
R. We will therefore work with operators in B(H)⊗R and the trace defined as
the tensor product of the normalized trace on B(H) (i.e. the trace of minimal
projections is 1) and the normalized trace on R (i.e. the trace of the identity is 1).

We first recall the notion of project used by Girard. We will refer to them as
hyperfinite projects to avoid a collapse of terminology.
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Definition 120 (Hyperfinite projects). A hyperfinite project is a 5-tuple:

a= (p,a,A ,α, A)

consisting of:

• a finite projection p∗ = p2 = p ∈R0,1, the carrier of the project a;

• a finite and hyperfinite von Neumann algebra A , the idiom of a;

• a normal hermitian tracial form α on A , the pseudo-trace of a;

• a real number a ∈R∪ {α(1A )∞}, the wager of a;

• an hermitian A ∈ (pR0,1 p)⊗A such that ‖A‖ É 1.

As in Girard’s paper, we will denote such an object by a= a ·+ ·α+ A.
We will also distinguish those hyperfinite projects satisfying α(1A) 6= 0, and

call these strict hyperfinite projects.

Let a,b be two hyperfinite projects, and A ∈R0,1⊗A and B ∈R0,1⊗B be their
associated operators. We will denote by A†B and B‡A the operators in R0,1⊗A⊗B
defined by:

A†B = A⊗1B
B‡A = (IdR0,1 ⊗σ)(B⊗1A)

where σ is the natural isomorphism B⊗A→A⊗B.
The geometry of interaction in the hyperfinite factor uses a generalisation of

the usual determinant of matrices known as the Fuglede-Kadison determinant
[9]. Indeed, a type II1 factor possesses a trace, and it is therefore possible to
define a determinant by using the identity det(exp(A))= exp(tr(A)) which relates
the determinant to the trace and which is satisfied for any A acting on a Hilbert
space of finite dimension.

The Fuglede-Kadison determinant is defined as follows: if Tr denotes the
normalized trace (i.e. Tr(1)= 1), one defines, for any invertible operator A:

detFK (A)= eTr(log(|A|))

This definition is then extended to non-invertible operators17.
Since GoI5 deals with pseudo-traces, we need to extend this definition.

Definition 121. If α is a pseudo-trace on A, and tr a trace on R, we define, for
all invertible A ∈R⊗A:

detFK
tr⊗α(A)= etr⊗α(log(|A|))

We will abusively denote by detFK
tr⊗α any extension of this definition to R⊗A.

17This extension is not unique, but the results we show are independant of the chosen extension.
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Definition 122 (Measurement between hyperfinite projects). Let a= a ·+ ·α+ A
and b = b · + ·β+B be two hyperfinite projects. One defines the measurement of
the interaction between a and b as:

¿a,bÀ= aβ(1B)+bα(1A)− log(detFK
tr⊗α⊗β(1− A†BB‡A ))

Definition 123 (Execution between hyperfinite projects). Let a= a ·+·α+A and
b = b ·+ ·β+B be two hyperfinite projects. One defines the execution of a and b,
denoted by a ::b, as the project ¿a,bÀ·+·α⊗β+Ex(A†B ,B‡A ).

The definition of the tensor product of two hyperfinite projects is, as in the
case of graphs, a particular case of execution: if a and b are hyperfinite projects of
respective carriers p and q such that pq = 0, then their tensor product is defined
as a ::b. Notice that in this configuration, the solution to the feedback equation is
equal to A†B +B‡A .

7.5. Additives in GoI5: the two versions
The construction of additive connectives in Girard’s paper differs slightly from

the one that has led to our graph-theoretic constructions. Indeed, the approach
chosen in this paper is inspired from a remark Girard made after his paper on
hyperfinite GoI was published, namely that the restriction to strict hyperfinite
projects (a restriction imposed in the first version of GoI5) can be omitted. This
slight difference leads to a more natural approach to additive connectives: while
in the initial construction one had to consider two kinds of conducts (namely
positive and negative conducts), we can now work in a more uniform framework
where one can consider only one restriction on conducts (dichologies in the words
of Girard, which correspond to our behaviours) which is self-dual. We will present
here the two different constructions in order to help the reader grasp the small
differences arising from this change.

In both constructions, we will be using the following formal weighted sum of
projects:

a+λb= (p,a,A,α, A)+µ(q,b,B,β,B)= (p∧ q,a+µb,A⊕B,α⊕µβ, A⊕B)

where p∧ q denotes the smallest projection r such that p É r and q É r.
We will also use the notion of extension: if a = (p,a,A,α, A) is a hyperfinite

project and q a projection such that pq = 0, then one defines a↑q as the project
(p+ q,a,A,α, A). Notice that a↑q = a⊗0q with 0q = (q,0,C,1C,0). As in Section 4,
we define A↑q = {a↑q | a ∈ A} for conducts A with carrier p such that pq = 0. In
practice, the projection q will be the carrier of a conduct B, in which case we will
denote A↑q (resp. a↑q) by A↑B (resp. a↑B).

7.5.1. The initial construction: GoI5.1
The initial framework dealt only with strict hyperfinite projects. Additives

can, as in the graphs setting, be defined on conducts by:

A⊕B= ((A↑B)‹‹ ∪ (B↑A)‹‹ )‹‹
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Figure 13: Multiplicative Connectives and Polarized Conducts

A&B= ((A‹ )↑B)‹ ∩ ((B‹ )↑A)‹

In order to define those constructions on projects, one needs to restrict the type
of conducts considered. In particular, one wants the elements of the form a+b
(a ∈ A, b ∈ B) to be in the conduct A&B. As a consequence, one needs to restrict
to conducts such that a = 0 for all a. This leads to the definition of negative
conducts. This restriction is however not self-dual, and leads to the notion of
positive conducts which are orthogonals of negative conducts.

Definition 124 (Negative Conducts). A conduct A is negative if:

• for all a= a ·+ ·α+ A ∈A, we have a = 0;

• for all a ∈A and all λ such that λ+α(1A) 6= 0, the project a+λ0 is in A.

A negative conduct is proper if it is non-empty.

Dually, one defines the notion of positive conducts.

Definition 125 (Positive Conducts). A conduct B is positive if:

• it contains all daimons: for all λ 6= 0, Daiλ =λ ·+ ·1C +0 ∈B;

• if b ·+ ·β+B ∈B, with b 6= 0, then for all c 6= 0, c ·+ ·β+B ∈B.

A positive conduct is proper if it does not contain the project Dai0 = 0 ·+ ·1C +0.

One then can define & only between negative conducts, and ⊕ on positive ones.

Definition 126 (Additives on polarized conducts). Let A,B be negative conducts.
Then A&B is negative and A‹ ⊕B‹ is positive.

One then needs to restrict to the proper cases, in order to obtain some results
concerning the polarization of tensor products. Moreover, the restriction to posi-
tive/negative proper conducts is not completely satisfying since it yields in some
cases unpolarized conducts, and the table of polarities is far from being what one
would expect (i.e. it does not correspond to the usual notion of polarization in
linear logic).

Proposition 127 (Multiplicatives on polarized conducts). The relationship be-
tween polarization and multiplicative connectives is as depicted in Figure 13.
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7.5.2. The modified construction: GoI5.2
The omission of the restriction to strict hyperfinite projects was suggested by

Girard [22], and leads to a more satisfying construction. Indeed, one still defines
additives on conducts as:

A⊕B= ((A↑B)‹‹ ∪ (B↑A)‹‹ )‹‹

A&B= ((A‹ )↑B)‹ ∩ ((B‹ )↑A)‹

But now the restriction to conducts such that a = 0 for all a can be made self-dual,
leading to the notion of dichologies which correspond to the notion of behaviours
defined in Section 4.

Definition 128 (Dichologies). A dichology is a conduct A such that:

• if a ∈A then for all λ ∈R, a+λ0 ∈A.

• if a ∈A‹ then for all λ ∈R, a+λ0 ∈A‹ .

It is proper if neither A nor A‹ are empty.

One can then get a characterisation of proper dichologies in the same way we
characterised proper behaviours in the sliced graph setting (Propositions 59 and
60). As a matter of fact, all results stated in Section 4 can be obtained in this set-
ting: even the proofs are the same (using the adjunction for operators rather than
the adjunction for graphs). Additive connectives are therefore defined between
any two dichologies, without restriction. Moreover, the multiplicative construc-
tions behave in a much more satisfying way.

Proposition 129 (Connectives and Dichologies). If A,B are dichologies with dis-
joint carriers, then A‹ ,A

&

B,A⊗B,A&B,A⊕B are dichologies.

We will therefore consider the embedding in GoI5.2 rather than the original
version. We want however to stress that the graph setting could very well be em-
bedded in GoI5.1 in the same way by considering the restriction to strict projects,
i.e. projects a= (a, A) where 1A 6= 0.

7.6. Graphs and Hyperfinite GoI
The results and definition relating operator and graph operations we have

exposed up to this point only dealt with graphs and not sliced graphs. We now
extend these results and definitions to sliced graphs.

Definition 130. Let A be a sliced graph. The localised weight matrix of A,
denoted by MA is defined as

⊕
i∈I A MA i , i.e. the direct sum of the localised weight

matrices corresponding to the slices of A.

Definition 131. A sliced operator graph is a sliced graph A such that MA is of
norm at most 1. It is said to be symmetric if MA is moreover hermitian.

An operator project is a project (a, A) where A is a sliced operator graph.
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We now want to associate to each operator project a = (a, A) a hyperfinite
project φ(a) = (p,b,A ,α, φ̄(A)). The finite projection p of the resulting project
will of course be the projection associated to the set of vertices of A and the
wager of φ(a) will be equal to the wager of a, i.e. p = pV A and a = b. Moreover,
the idiom A will be defined as

⊕
i∈I A C so the image of a project will therefore

have a commutative idiom, while the coefficients αA
i for i ∈ I A will define the

pseudo-trace on A .
We therefore first define the embedding φ̄ that maps an operator graph G to

the operator MG ⊗1R in R0,1. This defines a translation of graphs as operators
in the hyperfinite type II∞ factor. To a sliced graph is associated a direct sum
of matrices

⊕
i∈I MA i , i.e. a matrix in the algebra L (H)⊗⊕

i∈I C. We can then
extend φ̄ to such a direct sums of matrices by considering φ̄⊗ Id⊕

iI C which we
will abusively denote by φ̄ in the following.

This embedding can then be extended to map operator projects to hyperfinite
projects as follows. We will denote by

⊕
i∈I λi, where λi are real numbers, the

pseudo-trace on
⊕

i∈I C defined as:

(
⊕
i∈I

λi)(
⊕
i∈I

xi)=
∑
i∈I
λixi

Definition 132. To an operator project a = (a, A) we associate the hyperfinite
project φ(a)= a′ ·+ ·αA +⊕

i∈I A φ̄(MA i ), where:

• a′ =−∞ if 1A < 0 and a =∞, and a′ = a otherwise;

• αA is the pseudo-trace defined as
⊕

i∈I A αA
i

Lemma 133. Let A,B be idioms and α,β be pseudo-traces on A,B respectively.
Then for all operators A ∈ R⊗A and B ∈ R⊗B, we will denote by A ⊕B the
operator in R⊗(A⊕B) defined by ι1(A)+ ι2(B) where ι1 (resp. ι2) is the embedding
R⊗A→R⊗ (A⊕B) (resp. R⊗B→R⊗ (A⊕B)). One can then define the pseudo-
trace α⊕β on A⊕B, and we have:

− log(detFK
tr⊗(α⊕β)(1− A⊕B))=− log(detFK

tr⊗α(1− A))− log(detFK
tr⊗β(1−B))

Proof. Since detFK (AB)= detFK (A)detFK (B), one obtains:

− log(detFK (A))− log(detFK (B))=− log(detFK (AB))

Then, using the fact that detFK is multiplicative:

− log(detFK
tr⊗(α⊕β)(1− A⊕B))

= − log(detFK
tr⊗(α⊕β)((1− A)⊕ (1−B)))

= − log(detFK
tr⊗(α⊕β)(1− A)⊕1)− log(detFK

tr⊗(α⊕β)(1⊕ (1−B)))
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Let us compute − log(detFK
tr⊗(α⊕β)(1− A)⊕1):

− log(detFK
tr⊗(α⊕β)((1− A)⊕1)) = tr⊗ (α⊕β)(log(|(1− A)⊕1|))

= tr⊗ (α⊕β)(log(|1− A|⊕1))

= tr⊗ (α⊕β)(log(|(1− A)|)⊕0)

= tr⊗α(log(|(1− A)|))
= − log(detFK

tr⊗α(1− A))

Similarly, − log(detFK
tr⊗(α⊕β)(1⊕ (1−B))) = − log(detFK

tr⊗β(1−B)). We can now con-
clude.

Lemma 134. Let a · + ·α+ A be a hyperfinite project such that A = C (in which
case α ∈R):

− log(detFK
tr⊗α(1− A))=−α× log(detFK (1− A))

Proof. By definition:

detFK
tr⊗α(1− A) = exp(−tr⊗α(log(|1− A|)))

= exp(α× (−tr(log(|1− A|))))
= (exp(−tr(log(|1− A|))))α
= (detFK (1− A))α

Thus − log(detFK
tr⊗α(1− A))=− log((detFK (1− A))α =−α log(detFK (1− A)).

Proposition 135. Let G,H be sliced graphs. Then:

�G,H�m =− log(detFK
tr⊗αG⊗αH (1−Φ(M †H

G )Φ(M ‡G
H )))

Proof. Notice that M
†H
G =⊕i∈IG ⊕ j∈IH MG i and M

‡G
H =⊕i∈IG ⊕ j∈IH MH j . Thus:

− log(detFK
tr⊗αG⊗αH (1−Φ(M †H

G )Φ(M ‡G
H )))

= − log(detFK
tr⊗αG⊗αH (1−Φ(M †H

G M
‡G
H )))

= − log(detFK
tr⊗(⊕i∈IG ⊕ j∈IH )(1−⊕i∈IG ⊕ j∈IH φ̄(MG i MH j )))

= ∑
i∈IG

∑
j∈IH

− log(detFK
tr⊗αG

i α
H
j

(1− φ̄(MG i )φ̄(MH j ))

= ∑
i∈IG

∑
j∈IH

−αG
i α

H
j log(detFK (1− φ̄(MG i )φ̄(MH j )))

Now, we use the fact that − log(detFK (1− φ̄(MG i )φ̄(MH j ))) = �G i,H j�− log(1−x), a
result that was proven in our earlier paper [28]. We thus obtain:

− log(detFK
tr⊗αG⊗αH (1−Φ(M †H

G )Φ(M ‡G
H )))= ∑

i∈IG

∑
j∈IH

αG
i α

H
j �G i,H j�m

Finally, − log(det tr⊗αG⊗αH (1−M
†H
G M

‡G
H ))= �F,G�m.
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Proposition 136. Let F,G be sliced graphs. Then MF ::G is the solution to the
feedback equation involving M

†G
F and M

‡F
G .

Proof. By definition i(F ::G)=∑
i∈IF

∑
j∈JG αF

i α
G
j i (Fi,G j). Thus:

MF ::G = M∑
i∈IF

∑
j∈JG αF

i α
G
j i(Fi ,G j)

= ⊕i∈IF ⊕ j∈JG MFi ,G j

Proposition 119 ensures us that MFi ,G j is the solution to the feedback equation
involving MFi and MG j . From this, one can deduce that ⊕i∈IF ⊕ j∈JG MFi ,G j is

the solution to the feedback equation involving M
†G
F and M

‡F
G . Finally, MF ::G =

Ex(M †G
F ,M ‡F

G ).

From the preceding propositions, one can then show that the interaction
graphs setting, in the special case of m(x)=− log(1−x), is a combinatorial version
of the hyperfinite geometry of interaction of Girard.

Theorem 137. Let a,b be operator projects, and let m be the map x 7→ − log(1−x).
We have the following:

¿a,bÀm = ¿φ(a),φ(b)À (1)

φ(a ::mb) = φ(a) ::mφ(b) (2)

φ(a⊗b) = φ(a)⊗φ(b) (3)

φ(a+λb) = φ(a)&λφ(b) (4)

φ(a)‹ φ(b) iff a‹ b (5)

Proof. The first equality is given by Proposition 135, and it induces the last state-
ment. The second equality is a consequence of Propositions 135 and 136:

φ(a ::mb) = φ(¿a,bÀ− log(1−x), A ::B)

= ¿a,bÀ− log(1−x) ·+ · ⊕
(i, j)∈I A×IB

αA
i α

B
j +Φ(A ::B)

= ¿Φ(A),Φ(B)Àm ·+ · ( ⊕
i∈I A

αA
i )⊗ (

⊕
j∈IB

αB
j )+Φ(A ::B)

= ¿Φ(A),Φ(B)Àm ·+ · ( ⊕
i∈I A

αA
i )⊗ (

⊕
j∈IB

αB
j )+Ex(A†B ,B‡A )

The third equality is obtained by noticing that a⊗b = a ::mb (once the locations
of a and b are disjoint, the two constructions coincide). This leaves the equality
φ(a+λb) =φ(a)&λφ(b). The proof of this, however is a direct consequence of the
definition of + and the definition of & in Girard’s framework.

7.7. Orthogonality as Nilpotency
Definition 138. Let G be a graph. We define the localised connectivity matrix
M conn

G of G to be the operator of pVG B(H)pVG ⊂ B(H) whose matrix in the base
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{e i | i ∈ VG} is the connectivity matrix of G, that is the matrix (ai, j)i, j∈VG such
that:

ai, j =
{

0 if EG =;
1 otherwise

The connectivity matrix of a sliced graph G = {G i}i∈IG is defined as the direct
sum M conn

G =⊕
i∈IG M conn

G i
.

If G,H are two sliced graph, we define:

M conn
G ?M conn

H = ⊕
(i, j)∈IG×IH

M conn
G i

M conn
H j

Remark 139. The ? operation is defined in this way in order to avoid dealing with
the dialects and the operations (·)† and (·)‡ (defined in the preceding subsections).
However, one could very well define it as the connectivity matrix of the product
(M conn

G )†H (M conn
H )‡G .

Proposition 140. Let a,b be two projects with carrier V , and m(x) =∞ for x ∈
]0,1]. Then:

a‹ b⇔
{

M conn
A ?M conn

B is nilpotent
1Ab+1Ba 6= 0,∞

In particular, if A,B have only one slice, the product M conn
A M conn

B is nilpotent.

Proof. We show the left-to-right implication: a‹ b implies a1B +b1A +�A,B�m 6=
0,∞. But, if there were a cycle in one of the A iäB j, the last term �A,B�m would
be equal to ∞. Hence ¿a,bÀm would be infinite, and the projects would not be
orthogonal. Thus M conn

A ?M conn
B is nilpotent and �A,B�m = 0, which means that

1Ba+b1A 6= 0,∞.
The converse is straightforward.

Remark 141. This proposition is true because we are working with finite graphs.
What we are really proving is that a‹ b if and only if 1Ab+1Ba 6= 0,∞ and for
all i, j, no cycles appear in A iäB j. In the case of infinite graphs, this condition
would imply weak nilpotency (hence more in the style of the second version of
GoI [12]).

Corollary 142. Let a = (a, A) be a project, and a′ = (a, A′) be such that M conn
A′ =

M conn
A . Then a∼=A a′ for all conduct A containing a.

The model we obtain when taking m(x) = ∞ can therefore be reduced, by
working up to observational equivalence, to working with simple (at most one
edge between two points) non-weighted directed graphs.

Notice however the differences between the first versions of GoI and our
framework. The addition of the wager is a quite important improvement: without
it, we would have 1 = ⊥. Moreover, the additive construction (the use of slices)
allows us to define, as we have shown, a categorical model of MALL. Looking a
little closer at this model, one can see, however, that it is not that exciting.

Proposition 143. Let m(x)=∞ and A be a behaviour. Then A is either empty or
the orthogonal of an empty conduct.

58



Proof. Notice that a proper behaviour and its orthogonal contain only project
a = (a, A) with a = 0. But two such projects cannot be orthogonal when m(x) =
∞. Hence there are no proper behaviours and using Proposition 60 we have the
result.

Hence, the categorical model we get with an orthogonality defined by nilpo-
tency is nothing more than a truth-value model.

7.8. Multiplicatives
We will here show how one can obtain a refined version of the construction

depicted by Girard in his multiplicatives paper [11]. To obtain it, one needs not
only to consider a particular choice of map m, but also to change slightly the
notion of orthogonality. Before going into the details of the construction, let us
first explain this change.

As in the classical realisability setting [25], we will define a notion of pole. A
pole will be a subset of R that contains the values of the measurement represent-
ing a successful interaction.

Definition 144. A pole is a subset ‹ ∈R.

One can then define orthogonality with respect to the pole in the following
way:

Definition 145. Two projects a,b are orthogonal with respect to the pole ‹ when
¿a,bÀm ∈‹. This will be denoted by a‹ b.

Remark 146. This definition extends the definitions given in Section 4: one just
have to choose the pole R− {0}.

The reason why we chose not to present the whole paper in this way comes
from the fact that the main properties of the additive construction use the fact18

that we work with the particular pole R−{0}. However, all the results concerning
multiplicative connectives are independent of the choice of a pole. Among these
multiplicative constructions, we will have a closer look at the one defined by:

• the pole R− {1};

• the map m(x)= 1.

18The construction of additive connectives can be performed with any pole not containing 0. This
obviously does not mean that no additive construction can be performed in the other cases. However,
the answer to the question of defining additives in the case of an arbitrary pole is outside the scope
of this paper.
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Let us define Gσ to be the graph associated to a permutations σ on the set X
by:

VGσ = X
EGσ = X
sGσ = x 7→ x
tGσ = x 7→σ(x)

ωGσ = x 7→ 1

Of course, the execution defined in this paper is a generalisation of the exe-
cution defined by Girard between permutations. In this case, as in the first GoI
constructions, the difference is that our execution is always defined while Gi-
rard’s was defined only when no cycles appeared between the two permutations.
But in the case the execution as permutations is defined, the two notion coincide.
This means that if σ,τ are permutations and Ex(σ,τ) is defined, then:

GEx(σ,τ) =Gσ ::Gτ

Orthogonality was defined as σ‹ τ if and only if στ is a cyclic permutation. This
is equivalent to saying that σ‹ τ if and only if στ decomposes in a single cycle.
Which can be translated in terms of graphs as:

σ‹ τ⇔�Gσ,Gτ�m = 1

These results lead to the following theorem.

Theorem 147. If σ,τ are permutations and gσ = (0,Gσ) and gτ = (0,Gτ) are the
associated projects:

σ‹ τ ⇔ gσ‹ gτ

gσ ::τ = gσ ::m gτ

gσ⊗τ = gσ⊗gτ

Proof. The only thing we did not already prove is the fact that gσ⊗τ = gσ⊗gτ. But
this equality is a consequence of the previous one, taking into account the fact
that the tensor product is a special case of execution (the case when carriers are
disjoint).

8. An application of graphs for GoI5

In this section, we will show how the combinatorial version of GoI5 obtained
from the graphs of interaction can help understand important and fine aspects of
the hyperfinite GoI construction. We will focus on the construction of additives,
and more particularly on the fact that the set of projects A+B does not generate
the behaviour A&B. As it turns out, the counter-example produced in the proof
of Proposition 65 can be used to obtain a similar result in the hyperfinite GoI.
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While this result could have been obtained directly in the hyperfinite setting, the
finding of this proof came through the setting of graphs in which intuitions are
easier to come by. As it turns out, one just has to mimic the proof of the graph
case to obtain the same result with operators.

For this, we recall that in the theory of von Neumann algebras, one defines
a notion of equivalence of projections: two projections p, q are equivalent (in the
sense of Murray and von Neumann) in a von Neumann algebra M when there
exists an element19 u ∈M such that uu∗ = q and u∗u = p. One can then quotient
the partial order on projections defined by p É q if and only if pq = p by this
equivalence relation to obtain a partial order denoted by -M. It is a standard
fact that if M is a factor, then the order -M is total. In particular, given two
projections p, q, then one of them is equivalent to a sub-projection of the other.

The main idea of the proof of Proposition 65 is to construct an element which
is in (A+B)‹ but not in (A&B)‹ by considering a project of the form a+b+0u,
where a,b are in A,B respectively and 0u consists in a single edge from the carrier
of A to the carrier of B. The main intuition is that the edge in 0u cannot be seen
by tests in A+B — i.e. cannot be used to create cycles — while it can be used by
tests in A&B. In the case of hyperfinite Geometry of Interaction, we will use the
same proof. The only difficulty is to understand how to construct the hyperfinite
project equivalent to 0u. We will use the total order - to obtain a partial isometry
between the carrier of one of the two conducts A,B and a sub-projection of the
other. This partial isometry will play the rôle of the edge used to define 0u. The
rest of the proof simply consists in computations.

8.1. GoI5.2 construction
We will first need to show an important proposition which will be used ex-

tensively in the computations. This proposition (Proposition 150) states that
the Fuglede-Kadison determinant of 1− u is equal to 1 when u is nilpotent.
We will use two properties of the Fuglede-Kadison determinant in the proof:
the fact that the determinant of A is less than or equal to the spectral radius
rad(A) of A, and the fact that the determinant is multiplicative and therefore
detFK (A−1) = (detFK (A))−1. These two properties are stated and proved in the
Fuglede and Kadison paper [9].

Lemma 148. If A is nilpotent, then rad(A)= 0.

Proof. We know that rad(A) = limn→∞‖An‖ 1
n . If A is nilpotent of degree k, then

‖An‖ = 0 for all n Ê k. Thus rad(A)= 0.

Lemma 149. Chose k ∈ N and α1, . . . ,αk in C. If A is nilpotent, then P(A) =∑k
i=1αk Ak is nilpotent.

Proof. The minimal degree of A in P(A)i is equal to A i. Thus P(A)i = 0 for all
i Ê k.

19The equations satisfied by u imply that u is a partial isometry.
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Proposition 150. If A is nilpotent, then detFK (1+ A)= 1.

Proof. Let us denote by k the nilpotency degree of A. Since A is nilpotent,
rad(A)= 0 by Lemma 148. Chose λ in the spectrum Spec(1+ A) of 1+ A. By defi-
nition, λ−1− A is non-invertible, which means that (λ−1)− A is non-invertible,
i.e. λ−1 ∈ Spec(A). This implies that λ= 1 since the spectrum of A is reduced to
{0}. Thus rad(1+ A)É 1 and therefore detFK (1+ A)É 1.

Moreover, (1+ A)−1 = ∑k−1
i=0 (−A)i = 1+∑k−1

i=1 (−A)i. By Lemma 149, we know
that B = ∑k−1

i=1 (−A)i is nilpotent, and thus detFK (1+B) É 1 applying the same
arguments as before. Since detFK (1+B) = detFK ((1+ A)−1) = (detFK (1+ A))−1,
we finally conclude that detFK (1+ A)= 1.

Proposition 151. Let A,B be proper dichologies. There exists a hyperfinite project
f ∈ (A‹ +B‹ )‹ such that f 6∈A⊕B.

Proof. We can suppose, without loss of generality, that p - q. As a consequence,
there exists a projection p′ É q such that p′ ∼ p. Now, let u be a partial isometry
such that uu∗ = p and u∗u = p′. Let a ∈A and c= ap+q +0u where 0u = 0 ·+ ·1C +
(u+u∗).

We will now show that the hyperfinite project c satisfies the wanted proper-
ties: we will first show that c ∈ (A‹ +B‹ )

‹
, and then we will show that c 6∈A⊕B.

Showing that c ∈ (A‹ +B‹ )‹ .
Let d= a′p+q +b′p+q ∈A‹ +B‹ . Then:

¿c,dÀ = ¿ap+q +0u,a′p+q +b′p+qÀ
= ¿ap+q,a′p+qÀ+¿ap+q,b′p+qÀ+¿0u,a′p+qÀ+¿0u,b′p+qÀ
= ¿a,a′À+¿0u,a′p+qÀ+¿0u,b′p+qÀ

Since u∗ = u∗uu∗ = p′u∗, A′ = A′p and pp′ = 0, one has:

− log(detFK (1− A′(u+u∗))) = − log(detFK (1− A′u− A′u∗))

= − log(detFK (1− A′u− A′pp′u∗))

= − log(detFK (1− A′u))

Since u = uu∗u = up′ and A′ = pA′, we have A′uA′u = A′up′pA′u = 0, i.e.
A′u is nilpotent. By using Proposition 150, we then obtain:

− log(detFK (1− A′u)) = 0

Thus ¿0u,a′p+qÀ = 0 since all wagers are equal to zero. We show in a
similar way that ¿0u,b′p+qÀ= 0 since uB = puBq and thus (uB)2 = 0:

− log(detFK (1− (u+u∗)B)) = − log(detFK (1−uB−u∗B))

= − log(detFK (1−uB−u∗pqB))

= − log(detFK (1−uB))

= − log(1)

As a consequence we have ¿c,dÀ=¿a,a′À, i.e. c ∈ (A‹ +B‹ )
‹

.
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Showing that c 6∈A⊕B.
To show this, we will find an element t in (Ap+q)‹∩(Bp+q)‹ such that c 6‹ t.
Chose b′ ∈B, a′ ∈A, λ ∈RÊ0 with |λ| < 1 and define 0λu = 0·+·1C+λ(u+u∗).
We will show that there exists a real number µ such that t= b′p+q +a′p+q +
µ0λu satisfies t ∈ (Ap+q)‹ , t ∈ (Bp+q)‹ and t 6‹ c. Let us chose b ∈ B. One
can compute:

¿t,bp+qÀ = ¿b′p+q +a′p+q +µ0λu,bp+qÀ
= ¿b′p+q,bp+qÀ+¿a′p+q,bp+qÀ+µ¿0λu,bp+qÀ
= ¿b,b′À+¿a′p+q,bp+qÀ+µ¿0λu,bp+qÀ

Since A′B = 0, we have ¿a′p+q,bp+qÀ= 0. Moreover we have, as in previous
computations:

¿0λu,bp+qÀ = − log(detFK (1−λ(u+u∗)B))

= − log(detFK (1−λuB+λu∗pB))

= − log(detFK (1−λuB))

= − log(1)

= 0

This shows that ¿t,bp+qÀ=¿b,b′À, hence t ∈ (Bp+q)‹ .

Let us now chose a ∈A. One can compute:

¿t,ap+qÀ = ¿b′p+q +a′p+q +µ0λu,ap+qÀ
= ¿b′p+q,ap+qÀ+¿a′p+q,ap+qÀ+µ¿0λu,ap+qÀ
= ¿a,a′À+¿b′p+q,ap+qÀ+µ¿0λu,ap+qÀ

Since AB′ = 0, we have ¿b′p+q,ap+qÀ= 0. Moreover:

¿0λu,ap+qÀ = − log(detFK (1−λ(u+u∗)A))

= − log(detFK (1−λup′A+λu∗A))

= − log(detFK (1−λu∗A))

= − log(1)

= 0

This shows that ¿t,ap+qÀ=¿a,a′À, hence t ∈ (Ap+q)‹ .

We just showed that t ∈ (Ap+q)‹ ∩ (Bp+q)‹ . This shows that t ∈ (A⊕B)‹ :

(A⊕B)‹ = (Ap+q ∪Bp+q)‹‹‹
= (Ap+q ∪Bp+q)‹
= (Ap+q)‹ ∩ (Bp+q)‹
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Let us now compute ¿t,cÀ:

¿t,cÀ = ¿b′p+q +a′p+q +µ0λu,ap+q +0uÀ
= ¿b′p+q,ap+qÀ+¿b′p+q,0uÀ+¿a′p+q,ap+qÀ+ . . .

· · ·+¿a′p+q,0uÀ+µ¿0λu,ap+qÀ+µ¿0λu,0uÀ

We have ¿b′p+q,ap+qÀ = 0. Moreover, we know ¿b′p+q,0uÀ, ¿a′p+q,0uÀ
and ¿0λu,ap+qÀ are all equal to zero (this is once again the same reason-
ing: one of the two terms u,u∗ disappears, and we then use Proposition
150). This gives us:

¿t,cÀ = ¿a′p+q,ap+qÀ+µ¿0λu,0uÀ
= ¿a′,aÀ+µ¿0λu,0uÀ

But one can compute the second term, which is different from zero:

¿0λu,0uÀ = − log(detFK (1−λ(u+u∗)(u+u∗)))

= −2tr(p) log(1−λ)

We can then define µ= ¿a,a′À
2tr(p) log(1−λ) and, in this case, ¿t,cÀ= 0.

This shows that c ∈ (A‹ +B‹ )‹ and c 6∈ (Ap+q ∩Bp+q)‹‹ — i.e. c 6∈A⊕B.

8.2. GoI5.1
Contradicting what we just showed (Proposition 151), Girard states (Proposi-

tion 16) in his paper that the set of elements of the form a+b with a ∈A and b ∈B
generates the conduct A&B under bi-orthogonality. It is then natural to ask why
the construction of additives in GoI5.2 satisfies weaker properties than the one
defined by Girard. As it turns out, Proposition 16 in Girard’s paper is not true.
We will obtain the proof of this claim as an adaptation of the previous proof.

Lemma 152 ((GoI5.1)). Let A be a negative conduct, a ∈ A and b ∈ A‹ . Then we
necessarily are in one of the two following cases:

• either the wager b of b is equal to zero;

• or the interaction − log(detFK (1− A†B‡)) is equal to zero.

Proof. Suppose that both the interaction λ=− log(detFK (1− A†B‡)) and the wa-
ger b of b are different from zero. We have:

¿a,bÀ= bα(1A)− log(detFK (1− A†B‡))

Since α(1A) 6= 0, we can define the non-zero real number λ/α(1A). Using a prop-
erty of positive conducts, we can deduce that b′ =−λ/α(1A) ·+·β+B is an element
of A‹ . But ¿a,b′À= 0, which is a contradiction. As a consequence, either a = 0,
or λ= 0.
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Lemma 153 ((GoI5.1)). If A,B are negative conducts, one has A+B⊂A&B.

Proof. Since A&B = (A⊕B)‹ = (Ap+q ∪Bp+q)‹ , we will show that any element
of A+B is in the orthogonal of Ap+q ∪Bp+q. Let f+g be an element of A&B,
ap+q ∈Ap+q and b ∈Bp+q. Then:

¿fp+q +gp+q,ap+qÀ = ¿fp+q,ap+qÀ+¿gp+q,ap+qÀ
= ¿f,aÀ+aγ(1G)

Using the preceding lemma, either ¿f,ap+qÀ = aϕ(1F) or a = 0. In the first
case, we obtain that ¿fp+q +gp+q,ap+qÀ = a(ϕ(1F)+γ(1G)) which is necessarily
different from 0 and ∞. In the second case, ¿fp+q +gp+q,ap+qÀ =¿f,aÀ which
is also different from 0 and ∞.

We show in a similar way that ¿fp+q +gp+q,bp+qÀ 6= 0,∞.

Proposition 154 (Counter-examples in GoI5.1). Let A,B be two positive con-
ducts with disjoint carriers. There exists a strict hyperfinite project in (A‹ +B‹ )‹
which is not an element of A⊕B.

Proof. This proof is an adaptation of the proof of Proposition 151 that deals with
the small differences between the GoI5.1 and GoI5.2 constructions. If we write
p and q the respective (disjoint) carriers of A and B, we can suppose without
loss of generality that p - q, and thus that there exists a projection p′ É q such
that p ∼ p′. We will write u a partial isometry such that uu∗ = p and u∗u = p′.
We chose an element a = a · + · 1C + 0 in A and define c = ap+q + 0u − 0 where
0u = 0 ·+ ·1C + (u+u∗) and 0= 0 ·+ ·1C +0.

The project c is an element of (A‹ +B‹ )‹ .
Let d ∈ A‹ +B‹ . Then d = a′p+q +b′p+q where a′ ∈ A‹ and b′ ∈ B‹ . We
can then compute ¿c,dÀ (using the fact that a′,b′ are elements of a neg-
ative conduct and therefore have a null wager, we notice that ¿0,a′p+qÀ=
¿0,b′p+qÀ= 0):

¿c,dÀ = ¿ap+q +0u +0,a′p+q +b′p+qÀ
= ¿ap+q,a′p+q +b′p+qÀ+¿0u,a′p+qÀ+ . . .

· · ·+¿0,a′p+qÀ+¿0u,b′p+qÀ+¿0,b′p+qÀ
= ¿ap+q,a′p+q +b′p+qÀ+¿0u,a′p+qÀ+¿0u,b′p+qÀ

As in the proof of Proposition 151, we show that both ¿0u,a′p+qÀ and
¿0u,b′p+qÀ are equal to zero since the wagers of a′,b′ are equal to zero.
Thus:

¿c,dÀ = ¿ap+q,a′p+qÀ

We can conclude, using the preceding lemma, that c‹ d.
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The project c is not in A⊕B.
To show this, we find an element t in (Ap+q)‹∩(Bp+q)‹ such that c 6‹ t. Let
us chose b′ ∈B‹ , a′ ∈A‹ , λ ∈RÊ0 with |λ| < 1 and 0λu = 0 ·+·1C+λ(u+u∗).
We will show that there exists a real number µ such that t= b′p+q +a′p+q +
µ0λu−µ0 satisfies t ∈ (Ap+q)‹ , t ∈ (Bp+q)‹ and t 6‹ c. Let us chose b ∈B; we
can compute:

¿t,bp+qÀ = ¿b′p+q +a′p+q +µ0λu −µ0,bp+qÀ
= ¿b′p+q +a′p+q,bp+qÀ+µ¿0λu,bp+qÀ−µ¿0,bp+qÀ
= ¿b′p+q +a′p+q,bp+qÀ+µ¿0λu,bp+qÀ−µ¿0,bp+qÀ

Using the fact that A′B = 0, we have ¿a′p+q,bp+qÀ = α′(1A′ )b. Moreover,
¿0,bp+qÀ= b. Thus:

¿0λu,bp+qÀ = b− log(detFK (1−λ(u+u∗)B))

= b− log(detFK (1−λuB+λu∗pB))

= b− log(detFK (1−λuB))

= b− log(1)

= b

As a consequence, ¿t,bp+qÀ = ¿bp+q,b′p+q +a′p+qÀ, which shows (using
the preceding lemma) that t ∈ (Bp+q)‹ .

Let us now chose a ∈A. We can compute:

¿t,ap+qÀ = ¿b′p+q +a′p+q +µ0λu − (1+µ)0,ap+qÀ
= ¿b′p+q,ap+qÀ+¿a′p+q,ap+qÀ+ . . .

· · ·+µ¿0λu,ap+qÀ− (1+µ)¿0,ap+qÀ
= ¿a,a′À+¿b′p+q,ap+qÀ+ . . .

· · ·+µ¿0λu,ap+qÀ− (1+µ)¿0,ap+qÀ

Since AB′ = 0, ¿b′p+q,ap+qÀ= a; similarly ¿0,bp+qÀ= a. Moreover:

¿0λu,ap+qÀ = a− log(detFK (1−λ(u+u∗)A))

= a− log(detFK (1−λup′A+λu∗A))

= a− log(detFK (1−λu∗A))

= a− log(1)

= a

Thus ¿t,ap+qÀ =¿a,a′À+a+µa− (1+µ)a =¿a,a′À, which shows that
t ∈ (Ap+q)‹ .

66



We just showed that t ∈ (Ap+q)‹ ∩ (Bp+q)‹ , which means that t ∈ (A⊕B)‹ :

(A⊕B)‹ = (Ap+q ∪Bp+q)‹‹‹
= (Ap+q ∪Bp+q)‹
= (Ap+q)‹ ∩ (Bp+q)‹

We can now compute ¿t,cÀ:

¿t,cÀ = ¿b′p+q +a′p+q +µ0λu −µ0,ap+q +0u −0À
= ¿b′p+q +a′p+q,ap+qÀ+¿µ0λu −µ0,0u −0À
= ¿b′p+q +a′p+q,ap+qÀ+µ¿0λu,0uÀ

The computation of the third term gives us:

¿0λu,0uÀ = − log(detFK (1−λ(u+u∗)(u+u∗)))

= −2tr(p) log(1−λ)

As a consequence:

¿t,cÀ = ¿b′p+q +a′p+q,ap+qÀ−2µtr(p) log(1−λ)

By chosing µ= ¿b′
p+q+a′

p+q,ap+qÀ
2tr(p) log(1−λ) we have ¿t,cÀ= 0.

Finally, we just showed that c ∈ (A‹ +B‹ )‹ and c 6∈ (Ap+q ∩Bp+q)‹‹ — i.e. c 6∈
A⊕B.

8.3. Discussion about the preceding results
It is now necessary to discuss the obtained result. Indeed, one must under-

stand to what extent this counter-example to Girard’s proposition 16 changes the
results of his paper.

The construction of additive connectives described in Section 4 corresponds
to the alternative construction of additives in the hyperfinite setting (GoI5.2).
These constructions, and the proofs of their properties, use only the adjunction for
graphs and some combinatorial properties of the formal sum defined on graphs
and extended to projects. It turns out that hyperfinite projects satisfy all those
properties. Hence, the proofs of these Propositions yield proofs in Girard’s setting
by simply understanding the projects as hyperfinite projects. We can conclude
that the construction described in Section 4 can be mimicked step by step with
hyperfinite projects to yield an additive construction having the exact same prop-
erties. Notice however that one should prove formally that the trefoil property
holds in this case in order to ensure that the results of Section 5 also hold in this
case.

The case of the initial construction of additives (GoI5.1) described by Girard
in his paper [21], is more complicated. Once again, the adjunction is satisfied
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by strict hyperfinite projects, but one should be careful when applying the com-
binatorial properties of the formal sum which may yield non-strict hyperfinite
projects. We believe that with some care one should be able to show that the
proofs of the propositions obtained in Section 4 can be adapted to this setting.
We will however not attempt to do so in this paper, believing that such results
extend beyond the scope of the paper.

9. Conclusion

9.1. Results
Generalising the first GoI model introduced by Girard [11], we were able to

define a graph-theoretic geometry of interaction in which one can interpret the
Multiplicative Additive fragment of Linear Logic. Contrary to what happens in
the two other versions of GoI dealing with additives [15, 21], proofs of MALL are
interpreted in our framework by finite objects.

Moreover, we were able to define an internal notion of observational equiv-
alence with which we were able to solve the usual issue when dealing with ad-
ditives in GoI: the connective & is not a product. We were then able to show
that one can obtain, from our constructions, categorical models of MALL (with
additive units) where no connectives and units are equal and in which neither
the mix rule nor the weakening rule are satisfied. These models are moreover
obtained as subcategories of ∗-autonomous categories, i.e. models of MLL with
units. All these results moreover rely on a single geometric property we called
the trefoil property.

All these constructions being parametrised by a choice of a "measuring map"
from ]0,1] → RÊ0 ∪ {∞}, we looked more closely at the construction in two par-
ticular cases. It can be shown that a first choice (m(x) = − log(1− x)) defines a
combinatorial version of the Multiplicative Additive fragment of Girard’s GoI5
[21]. It therefore gives insights on the notion of orthogonality used by Girard,
and his use of idioms — which corresponds in our setting to slices — and pseudo-
trace — which corresponds in our setting to the weights associated to the slices.
On the other hand, a second choice of map (m(x)=∞) defines a refined version of
the Multiplicative fragment of the first versions of GoI where orthogonality was
defined as nilpotency. However, this choice of parameter yields a trivial model of
the additives. Nonetheless, our construction makes a bridge between "old-style"
geometry of interaction and Girard’s most recent work [21].

These results unveil the trefoil property as a fundamental identity upon which
all Girard’s GoI constructions are founded. Indeed, the adjunctions obtained from
the determinant, from nilpotency or from the cyclicity in case of permutations are
all special cases of the trefoil property.

9.2. Perspectives
This work opens a number of perspectives. Among these, we think the fol-

lowing two are of great interest and importance: extending the results to deal
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with exponential connectives, and obtain a better understanding of the trefoil
property.

The extension to exponentials is the object of an upcoming paper. Although
we know how to extend the setting of graphs to deal with exponentials [29], some
work is still needed to understand the relations between the obtained construc-
tion and Girard’s numerous GoIs. This work seems of great interest, in particular
when it comes to the study of computational complexity. We should be able to ob-
tain characterisations of complexity classes as particular sets of graphs in the
same way we recently obtained characterisations of the classes co-NL and L as
sets of operators [4, 5]. Moreover, this new framework can help gain intuitions
about the restrictions on exponential connectives in systems like Elementay Lin-
ear Logic or Light Linear Logic [16] since we naturally obtain a restrained system
as in Girard’s GoI5.

Better understanding of the trefoil property may be used to help obtain new
GoI constructions. As a matter of fact, we believe that this property should be
satisfied in some (if not all) model categories. We would therefore like to char-
acterise the kinds of situations in which one can perform GoI constructions, in
the same way model categories characterise the kinds of situations where one
can define and study homotopy. The interest of such an axiomatization would
be to obtain new GoI constructions, in various domains of mathematics such as
algebraic geometry, without much effort. As the operator-theoretic construction
of the crossed product of an algebra and a group acting on it was used to obtain
computational complexity results [23, 4, 5], we believe one could use construc-
tions and invariants specific to other mathematical fields to obtain new results
and/or gain a better understanding of computation.
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