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Abstract. We study the complexity of representing polynomials by
arithmetic circuits in both the commutative and the non-commutative
settings. Our approach goes through a precise understanding of the
more restricted setting where multiplication is not associative, meaning
that we distinguish (xy)z from x(yz).
Our first and main conceptual result is a characterization result: we
show that the size of the smallest circuit computing a given non-
associative polynomial is exactly the rank of a matrix constructed from
the polynomial and called the Hankel matrix. This result applies to the
class of all circuits in both commutative and non-commutative settings,
and can be seen as an extension of the seminal result of Nisan giving a
similar characterization for non-commutative algebraic branching pro-
grams.
The study of the Hankel matrix provides a unifying approach for proving
lower bounds for polynomials in the (classical) associative setting. Our
key technical contribution is to provide generic lower bound theorems
based on analyzing and decomposing the Hankel matrix. We obtain
significant improvements on lower bounds for circuits with many parse
trees, in both (associative) commutative and non-commutative settings,
as well as alternative proofs of recent results proving superpolynomial
and exponential lower bounds for different classes of circuits as corollar-
ies of our characterization and decomposition results.
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1. Introduction10

The model of arithmetic circuits is the algebraic analogue of Boolean11

circuits: the latter computes Boolean functions and the former12

computes polynomials, replacing OR gates by addition and AND13

gates by multiplication. Computational complexity theory is con-14

cerned with understanding the expressive power of such models. A15

rich theory investigates the algebraic complexity classes VP and16

VNP introduced by Valiant (Valiant 1979). A widely open prob-17

lem in this area of research is to explicitly construct hard poly-18

nomials, meaning for which we can prove superpolynomial lower19

bounds. To this day the best general lower bounds for arithmetic20

circuits were given by Baur and Strassen (Baur & Strassen 1983)21

for the polynomial
∑n

i=1 x
d
i , which requires Ω(n log d) operations.22

The seminal paper of Nisan (Nisan 1991) initiated the study23

of non-commutative computation: in this setting variables do not24

commute, and therefore xy and yx are considered as being two25

distinct monomials. Non-commutative computations arise in dif-26

ferent scenarios, the most common mathematical examples being27

when working with algebras of matrices, group algebras of non-28

commutative groups or the quaternion algebra. A second motiva-29

tion for studying the non-commutative setting is that it makes it30

easier to prove lower bounds which can then provide powerful ideas31

for the commutative case. Indeed, commutativity allows a circuit32

to rely on cancellations and to share calculations across different33

gates, making them more complicated to analyze.34

1.1. Nisan’s Characterization for ABP. The main result of35

Nisan (Nisan 1991) is to give a characterization of the smallest36

ABP computing a given polynomial. As a corollary of this char-37

acterization Nisan obtains exponential lower bounds for the non-38

commutative permanent against the subclass of circuits given by39

ABPs.40

We sketch the main ideas behind Nisan’s characterization, since41

our first contribution is to extend these ideas to the class of all42

non-associative circuits. An ABP is a layered graph with two dis-43

tinguished vertices, a source and a target. The edges are labelled44

by affine functions in a given set of variables. An ABP computes a45
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polynomial obtained by summing over all paths from the source to46

the target, with the value of a path being the multiplication of the47

affine functions along the traversed edges. Following Nisan, fix a48

polynomial f , and define a matrix Nf whose rows and columns are49

indexed by monomials: for u, v two monomials, let Nf (u, v) denote50

the coefficient of the monomial u · v in f .51

The beautiful and surprisingly simple characterization of Nisan52

states that for a homogeneous (i.e., all monomials have the same53

degree) non-commutative polynomial f , the size of the smallest54

ABP computing f is exactly the rank of Nf . The key idea is to55

decompose the computation arising in the ABP, say C: to any56

vertex r in C we associate two polynomials Lr and Rr that are57

respectively the one computed by the ABP induced by the original58

source of C and target r and the one computed by the ABP induced59

by source r and the original target of C. For a polynomial f and60

a monomial m we use f(m) to denote the coefficient of m in f .61

For u, v two monomials, we observe that the coefficient of u · v in62

f is equal to
∑

r Lr(u)Rr(v), where r ranges over all vertices of63

C, Lr(u) is the coefficient of u in Lr, and Rr(v) is the coefficient64

of v in Rr. We see this as a matrix equality: Nf =
∑

r Lr · Rr,65

where Lr is seen as a column vector, and Rr as a row vector. By66

subadditivity of the rank and since the product of a column vector67

by a row vector is a matrix of rank at most 1, this implies that the68

rank of Nf is bounded by the size of the ABP, yielding the lower69

bound in Nisan’s result.70

The crucial idea of splitting the computation of a monomial into71

two parts had been independently developed by Fliess when study-72

ing so-called Hankel Matrices in (Fliess 1974) to derive a very sim-73

ilar result in the field of weighted automata, which are finite state74

machines recognising words series, i.e., functions from finite words75

into a field. Fliess’ theorem (Fliess 1974, Th. 2.1.1) states that the76

size of the smallest weighted automaton recognising a word series77

f is exactly the rank of the Hankel matrix of f . The key insight to78

relate the two results is to see a non-commutative monomial as a79

finite word over the alphabet whose letters are the variables. Using80

this correspondence one can obtain Nisan’s theorem from Fliess’81

theorem, observing that the Hankel matrix coincides with the ma-82
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trix Nf defined by Nisan and that acyclic weighted automata corre-83

spond to ABPs. (We refer to an early technical report of this work84

for more details on this correspondence (Fijalkow et al. 2018).)85

1.2. Non-Associative Computations. Hrubeš, Wigderson and86

Yehudayoff (Hrubeš et al. 2011) drop the associativity rule and87

show how to define the complexity classesVP andVNP in the ab-88

sence of either commutativity or associativity (or both) and prove89

that these definitions are sound in particular by obtaining the com-90

pleteness of the permanent.91

In the same way that a non-commutative monomial can be seen92

as a word, a non-commutative and non-associative monomial such93

as (xy)(x(zy)) can be seen as a tree, and more precisely as an or-94

dered binary rooted tree whose leaves are labelled by variables. The95

starting point of our work was to exploit this connection. The work96

of Bozapalidis and Louscou-Bozapalidou (Bozapalidis & Louscou-97

Bozapalidou 1983) extends Fliess’ result to trees; although we do98

not technically rely on their results, they serve as a guide, in par-99

ticular for understanding how to decompose trees.100

Let us return to the key idea in Nisan’s proof, which is to101

decompose the computation of an ABP into two parts. The way102

a monomial, e.g., x1x2x3 · · ·xd, is evaluated in an ABP is very103

constrained, namely from left to right, or if we make the implicit104

non-associative structure explicit as w = (· · · (((x1x2)x3)x4) · · · )xd.105

The decompositions of w into two monomials u, v are of the form106

u = (· · · ((x1x2)x3) · · · )xi−1) and v = (· · · ((�xi)xi+1) · · · )xd. Here107

� is a new fresh variable (the hole) to be substituted by u. Moving108

to non-associative polynomials, a monomial is a tree whose leaves109

are labelled by variables. A context is a monomial over the set of110

variables extended with a new fresh one denoted � and occurring111

exactly once. For instance (see Figure 1.1) the composition of the112

monomial t = z((xx)y) with the context c = (xy)((z�)y) is the113

monomial c[t] = (xy)((z(z((xx)y)))y).114

Let f be a non-associative (possibly commutative) polynomial115

f , the Hankel matrix Hf of f is defined as follows: the rows of116

Hf are indexed by contexts and the columns by monomials, and117

the value of Hf (c, t) at row c and column t is the coefficient of the118

monomial c[t] in f .119
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Figure 1.1: On the left hand side the monomial t, in the middle
the context c, and on the right hand side the monomial c[t].

Extending Nisan’s proof to computations in a general circuit,120

which are done along trees, we obtain a characterization in the121

non-associative setting (a more precise statement is given by The-122

orem 2.4)).123

Theorem. Let f be a non-associative homogeneous polynomial124

and let Hf be its Hankel matrix. Then, the size of the smallest125

circuit computing f is exactly rank (Hf ).126

Note that this is a characterization result: the Hankel matrix127

exactly captures the size of the smallest circuit computing f (up-128

per and lower bounds), exactly as in Nisan’s result. Hence, under-129

standing the rank of the Hankel matrix is equivalent to studying130

circuits for f . We recover and extend Nisan’s characterization as131

a special case of our result.132

1.3. Parse Trees. At an intuitive level, parse trees can be used133

to explain in what way a circuit uses the associativity rule. Con-134

sider the case of a circuit computing the (associative) monomial135

2xyz. Since this monomial corresponds to two non-associative136

monomials: (xy)z and x(yz), the circuit may sum different com-137

putations, for instance 3(xy)z−x(yz), which up to associativity is138

2xyz. We say that such a circuit contains two parse trees, corre-139

sponding to the two different ways of parenthesizing xyz.140

The shape of a non-associative monomial is the tree obtained141

by forgetting the variables, e.g., the shape of (z((xy)((xx)y))) is142
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(_ ((_ _)((_ _) _))). The parse trees of a circuit C are the shapes143

induced by computations in C.144

Many interesting classes of circuits can be defined by restricting145

the set of allowed parse trees, both in the commutative and the146

non-commutative setting.147

◦ The simplest such class is that of Algebraic Branching Pro-148

grams (ABP) (Nisan 1991; Dvir et al. 2012; Ramya & Rao149

2018), whose only parse trees are left-combs, that is, the vari-150

ables are multiplied sequentially.151

◦ Lagarde, Malod and Perifel (Lagarde et al. 2016) introduced152

the class of Unique Parse Tree circuits (UPT), which are153

circuits computing non-commutative homogeneous (but as-154

sociative) polynomials such that all monomials are evaluated155

in the same non-associative way.156

◦ The class of skew circuits (Toda 1992; Allender et al. 1998;157

Malod & Portier 2008; Limaye et al. 2016) and its exten-158

sion to small non-skew depth circuits (Limaye et al. 2016),159

together with the class of unambiguous circuits (Arvind &160

Raja 2016) are all defined via parse tree restrictions.161

◦ We propose in our technical developments some related re-162

strictions called slightly balanced and slightly unbalanced cir-163

cuits.164

◦ Last but not least, the class of k-PT circuits (Arvind & Raja165

2016; Saptharishi & Tengse 2017; Lagarde et al. 2018) is sim-166

ply the class of circuits having at most k parse trees.167

1.4. Contributions and Outline. In this paper we prove lower168

bounds for classes of circuits with parse tree restrictions, both in169

the commutative and non-commutative setting.170

Our first and conceptually main contribution is the character-171

ization result stated in Theorem 2.4 which gives an algebraic ap-172

proach to understanding circuits in the non-associative setting. All173

the subsequent results in this paper are based on this approach.174
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Section 3.1 and Section 3.2 are devoted to the definition of parse175

trees and a classical tool for proving lower bounds, partial deriva-176

tive matrices. We can already show at this point (in Section 3.3)177

how Theorem 2.4 can be specialized to give a characterization re-178

sult for UPT circuits, extending Nisan’s result. We note that a179

characterization result for UPT circuits was already known (La-180

garde et al. 2016), we slightly improve on it. As a corollary we181

obtain exponential lower bounds on the size of the smallest UPT182

circuit computing the permanent.183

Our most technical developments are discussed in Section 4.184

We prove generic lower bound results by further analyzing and185

decomposing the Hankel matrix, with the following proof scheme.186

We consider a polynomial f in the associative setting. Let C be a187

circuit computing f . Forgetting about associativity we can see C as188

computing a non-associative polynomial f̃ , which projects onto f ,189

meaning is equal to f assuming associativity. This induces a set of190

linear constraints: for instance if the monomial xyz has coefficient191

3 in f , then we know that f̃((xy)z) + f̃(x(yz)) = 3. We make use192

of the linear constraints to derive lower bounds on the rank of the193

Hankel matrix Hf̃ , yielding a lower bound on the size of C.194

The final section is devoted to applications of our results, where195

we obtain superpolynomial and exponential lower bounds for var-196

ious classes. In the results mentioned below, n is the number of197

variables, d is the degree of the polynomial, and k the number of198

parse trees. We note that the lower bounds hold for any (prime)199

n, any d, and any field.200

We obtain alternative proofs of some known lower bounds: un-201

ambiguous circuits (Arvind & Raja 2016), skew circuits (Limaye202

et al. 2016) and small non-skew depth circuits (obtaining a much203

shorter proof than (Limaye et al. 2016)).204

Our novel results are:205

◦ Slightly unbalanced circuits. We extend the exponential lower206

bound from (Limaye et al. 2016) on 1
5
-unbalanced circuits to207 (

1
2
− ε
)
-unbalanced circuits.208

◦ Slightly balanced circuits. We derive a new exponential lower209

bound for ε-balanced circuits.210
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◦ Circuits with k parse trees in the non-commutative setting.211

We substantially extend the superpolynomial lower bound212

of (Lagarde et al. 2018) from k = 2d
1/3−ε to k = 2d

1−ε , the213

total number of possible non-commutative parse trees being214

2O(d).215

◦ Circuits with k parse trees in the commutative setting. We216

substantially extend the superpolynomial lower bound from (Arvind217

& Raja 2016) from k = d1/2−ε to k = 2d
1/3−ε , and even to218

k = 2d
1−ε , when d is polylogarithmic in n.219

1.5. Related Work. We argued that proving lower bounds in220

the non-commutative setting is easier, but this has not yet ma-221

terialized since the best lower bound for general circuits in this222

setting is the same as in the commutative setting (by Baur and223

Strassen, already mentionned above). Indeed, recent impressive224

results suggest that this may be hard: Carmosino, Impagliazzo,225

Lovett, and Mihajlin (Carmosino et al. 2018) (essentially) proved226

that a lower bound in the non-commutative setting which would227

be slightly stronger than superlinear can be amplified to get strong228

lower bounds (even exponential, in some cases) again in the non-229

commutative setting.230

Most approaches for proving lower bounds rely on algebraic231

techniques and the rank of some matrix. A different and beautiful232

approach was investigated by Hrubeš, Wigderson and Yehuday-233

off (Hrubeš et al. 2011) in the non-commutative setting through234

the study of the so-called sum-of-squares problem. Roughly speak-235

ing, the goal is to decompose (x21+· · ·+x2k)·(y21+· · ·+y2k) into a sum236

of n squared bilinear forms in the variables xi and yj. They show237

that almost any superlinear bound on n implies non-trivial lower238

bounds on the size of any non-commutative circuit computing the239

permanent.240

The quest of finding lower bounds is deeply connected to an-241

other problem called polynomial identity testing (PIT) for which242

the goal is to decide whether a given circuit computes the formal243

zero polynomial. The connection was shown in (Kabanets & Im-244

pagliazzo 2003), in which it is proved that providing an efficient245

deterministic algorithm to solve the problem implies strong lower246
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bounds either in the arithmetic or boolean setting. PIT was widely247

investigated in the commutative and non-commutative settings for248

classes of circuits based on parse trees restrictions, see e.g., (Raz &249

Shpilka 2005; Forbes et al. 2014; Agrawal et al. 2015; Gurjar et al.250

2017; Saptharishi & Tengse 2017; Arvind et al. 2017).251

2. Characterizing Non-Associative Circuits252

2.1. Basic Definitions. For an integer d ∈ N, we let [d] denote253

the integer interval {1, . . . , d}.254

Polynomials. Let K be a field and let X be a set of variables.255

Following (Hrubeš et al. 2011) we consider that unless otherwise256

stated multiplication is neither commutative nor associative. We257

assume however that addition is commutative and associative, and258

that multiplication distributes over addition. A monomial is a259

product of variables in X and a polynomial f is a formal finite260

sum
∑

i cimi where mi is a monomial and ci ∈ K is a non-zero261

element called the coefficient of mi in f . We let f(mi) denote the262

coefficient of mi in f , so that f =
∑

i f(mi)mi.263

The degree of a monomial is defined in the usual way, i.e.,264

deg(x) = 1 when x ∈ X and deg(m1m2) = deg(m1) +deg(m2); the265

degree of a polynomial f is the maximal degree of a monomial in f .266

A polynomial is homogeneous if all its monomials have the same267

degree. Depending on whether we include the relations u · v = v ·u268

(commutativity) and u ·(v ·w) = (u ·v) ·w (associativity) we obtain269

four classes of polynomials.270

Unless otherwise specified, for a polynomial f we use n for the271

number of variables and d for the degree.272

Trees and Contexts. The trees we consider have a single root273

and binary branching (every internal node has exactly two chil-274

dren). To account for the commutative and for the non-commutative275

setting we use either unordered trees or ordered trees, the only276

difference being that in the case of ordered trees we distinguish the277

left child from the right child. We let Tree denote the set of trees278

(it will be clear from the context whether they are ordered or not).279

The size of a tree is defined as its number of leaves.280
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A non-associative monomial t is a tree with leaves labelled281

by variables. If t is non-commutative then it is an ordered tree, and282

if t is commutative then it is an unordered tree. We let Tree(X)283

denote the set of trees whose leaves are labelled by variables in284

X and Treei(X) denote the subset of such trees with i leaves,285

which are monomials of degree i. Given a non-associative mono-286

mial t, we let label(t) be the associative monomial corresponding287

to the multiplication of the variables at the leaves of t. If t is non-288

commutative, the multiplication is done from left to right, and289

label(t) is a non-commutative monomial, that is, a word.290

In this paper, we see polynomials as finitely supported map-291

pings from monomials to K. For instance, in the non-associative292

setting where monomials are trees, a non-associative polynomial is293

a map Tree(X) → K. To avoid possible confusion, let us insist294

that the notation f(t) refers to the coefficient of the monomial t in295

the polynomial f , not to be confused with the evaluation of f at a296

given point.297

A (ordered or unordered) context is a tree with a distinguished298

leaf labelled by a special symbol called the hole and written �.299

We let Context(X) denote the set of contexts whose leaves are300

labelled by variables in X. Given a context c and a tree t we301

construct a new tree c[t] by substituting the hole of c by t. This302

operation is defined in both ordered and unordered settings. See303

Figure 1.1 for an example. It can be read in both the ordered or304

unordered settings.305

Hankel Matrices. Let f be a non-associative polynomial. The306

Hankel matrix Hf of f is the matrix whose rows are indexed by307

contexts and columns by monomials and such that the value of Hf308

at row c and column t is the coefficient of the monomial c[t] in f .309

Note that Hf is an infinite matrix with finite support, so its rank310

is well defined. As we will be interested in computing the rank of311

Hf , we freely depict its rows and columns ordered arbitrarily and312

conveniently.313

Arithmetic Circuits. An (arithmetic) circuit is a directed acyclic314

graph such that the vertices are of three types:315

◦ input gates: they have in-degree 0 and are labelled by vari-316
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Figure 2.1: A depiction of the Hankel matrix of a non-associative
polynomial f . Only one coefficient is displayed for clarity.

ables in X,317

◦ addition gates: they have arbitrary in-degree, an output318

weight in K, and a weight w(a) ∈ K on each incoming arc a,319

◦ multiplication gates: they have in-degree 2, and we distin-320

guish between the left child and the right child.321

Each gate v in the circuit computes a polynomial fv which we322

define by induction.323

◦ An input gate labelled by a variable x ∈ X computes the324

polynomial x.325

◦ An addition gate v with n arcs incoming from gates v1, . . . , vn326

and with weights α1, . . . , αn, computes the polynomial α1fv1+327

· · ·+ αnfvn .328

◦ A multiplication gate with left child u and right child v com-329

putes the polynomial fufv.330

The circuit itself computes a polynomial given by the sum over331

all addition gates of the polynomial computed by the gate times332
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its output weight. Note that it is slightly unusual that all addition333

gates contribute to the circuit; one can easily reduce to the classical334

case where there is a unique output addition gate by adding an335

extra gate.336

We shall make a syntactic assumption: each arc is either coming337

from, or going to (but not both), an addition gate. Any circuit can338

be put into this form by adding addition gates, at most one per339

input gate and per multiplication gate (see Figure 2.2). We also340

ask two input gates referring to the same variable to not feed the341

same addition gate. We then define the size of a circuit to be its342

number of addition gates, which compensates this small blow up.343

Doing so we slightly differ from usual, however this will allow our344

characterization result to be exact.345

Note that the definitions we gave above do not depend on which346

of the four settings we consider: commutative or non-commutative,347

associative or non-assocative.348

2.2. The Characterization. This section aims at proving the349

characterization stated in Theorem 2.4 below — the Hankel ma-350

trix Hf exactly captures (upper and lower bounds) the size of351

the smallest circuit computing f —, extending Nisan’s character-352

ization of non-commutative ABPs to general circuits in the non-353

associative setting. The result holds for both commutative and354

non-commutative settings, the proof being the same up to cosmetic355

changes.356

The key step to go from ABPs to general circuits is the fol-357

lowing: the polynomial computed by an ABP is the sum over the358

paths of the underlying graph, whereas in a general circuit the sum359

is over trees. We formalize this in the next definition by introducing360

runs of a circuit. The definition is given in the non-commutative361

setting but easily adapts to the commutative setting as explained362

later in Remark 2.2.363

Definition 2.1. Let C be a circuit and V⊕ denote its set of addi-364

tion gates. Let t ∈ Tree(X) be a monomial. A run of C over t365

is a map ρ from nodes of t to V⊕ such that366

(i) A leaf of t with label x ∈ X is mapped to a gate with a367

non-zero edge incoming from an input gate labelled by x.368
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Figure 2.2: The circuit on the left does not satisfy our syntactic
assumption because of the edges leaving the greyed gates. However,
the one on the right, obtained by adding two addition gates does
satisfy the assumption. It has size 6. Both circuit compute the
same polynomials in each setting, which are given in the table
below, where the abbreviations A, NA, C, NC respectively stand
for associative, non-associative, commutative, non-commutative.
We use labelled outgoing edges to depict output weights, and omit
them when the output weight is 0.

(ii) If n is a node of t with left child n1 and right child n2, then369

ρ(n) has a non-zero edge incoming from a multiplication gate370

with left child ρ(n1) and right child ρ(n2).371

The value val(ρ) of ρ is a non-zero element in K defined as the372

product of the weights of the edges mentioned in items (i) and (ii)373

together with the output weight of ρ(r), r being the root of t.374

We write by a slight abuse of notation ρ : t→ V⊕ for runs of C375

over t.376

Figure 2.3 depicts a run in the circuit from Figure 2.2.377
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Figure 2.3: A run ρ in the circuit on the left, over the monomial
on the right. It has value −1.

Remark 2.2. In the commutative setting we simply replace item378

(ii) by: “if n is a node of t with children n1, n2, then ρ(n) has a379

non-zero edge incoming from a multiplication gate with children380

ρ(n1), ρ(n2)”.381

A run of C over a monomial t additively contributes to the382

coefficient of t in the polynomial computed by C, leading to the383

following straighforward lemma.384

Lemma 2.3. Let C be a circuit computing the non-associative poly-385

nomial f : Tree(X)→ K. Then the coefficient f(t) of a monomial386

t ∈ Tree(X) in f is equal to387 ∑
ρ:t→V⊕

val(ρ).

Wemay now state and prove our cornerstone result, which holds388

in both the commutative and non-commutative settings.389

Theorem 2.4. Let f : Tree(X) → K be a non-associative poly-390

nomial, Hf be its Hankel matrix, and C be a circuit computing391

f . Then |C| ≥ rank (Hf ). Moreover, if f is homogeneous this392

bound is tight, meaning there exists a circuit C computing f of393

size rank (Hf ).394
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Note that an interesting feature of this theorem is that the395

upper bound is effective: given a homogenous polynomial one can396

construct a circuit computing this polynomial of size rank (Hf ).397

The proof of the lower bound follows the same lines as Nisan’s398

original proof for non-commutative ABPs (Nisan 1991).399

Proof. We start with the lower bound, that is, |C| ≥ rank (Hf ).400

Let C be a circuit computing the non-associative polynomial401

f : Tree(X) → K. Let V⊕ denote the set of addition gates of C.402

To bound the rank of the Hankel matrix Hf by |C| = |V⊕| we show403

that Hf can be written as the sum of |V⊕| matrices each of rank404

at most 1.405

For each v ∈ V⊕ we define two circuits which decompose the406

computations around v. Let Cv1 be the circuit obtained from C by407

changing all output weights to 0 except that of v which is set to 1.408

Note that Cv1 can be seen as the restriction of C to descendants of v.409

Let Cv2 be another copy of C with just one extra input gate labelled410

by a fresh variable � /∈ X with a single outgoing edge with weight411

1 going to v. We let f v : Tree(X) → K denote the polynomial412

computed by Cv1 and gv : Context(X) → K denote the restriction413

of the polynomial computed by Cv2 to Context(X) ⊆ Tree(Xt{�}).414

We now show the equality415

Hf (c, t) =
∑
v∈V⊕

f v(t)gv(c).

For that, fix a monomial t ∈ Tree(X) and a context c ∈416

Context(X) and denote by n� the leaf of c labelled by �, which417

is also the root of t and the node to which t is substituted with in418

c[t]. Relying on Lemma 2.3, we calculate the coefficient f(c[t]) of419
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c[t] in f .420

f(c[t]) =
∑

ρ:c[t]→V⊕

val(ρ) =
∑
v∈V⊕

∑
ρ:c[t]→V⊕
ρ(n�)=v

val(ρ)

=
∑
v∈V⊕

∑
ρv1 :t→V⊕
ρv1(n�)=v

∑
ρv2 :c→V⊕
ρv2(n�)=v

val(ρv1)val(ρ
v
2)

=
∑
v∈V⊕

∑
ρv1 :t→V⊕
ρv1(n�)=v

val(ρv1)
∑

ρv2 :c→V⊕
ρv2(n�)=v

val(ρv2)

=
∑
v∈V⊕

f v(t)gv(c).

Let Mv ∈ KTree(X)×Context(X) be the matrix given by Mv(t, c) =421

f v(t)gv(c): its rank is at most one asMv is the product of a column422

vector by a row vector. The previous equality reads in matrix form423

Hf =
∑

v∈V⊕Mv. Hence, we obtain the announced lower bound424

using rank subadditivity:425

rank (Hf ) = rank

∑
v∈V⊕

Mv

 ≤ ∑
v∈V⊕

rank (Mv) ≤ |V⊕| = |C|.

We now turn to the upper bound, and assume f is homoge-426

neous.427

We first give a construction of a circuit, then provide and prove428

by induction a strong invariant which implies that the circuit does429

indeed compute f . For every t ∈ Tree(X), we let Ht denote the430

corresponding column in the Hankel matrix, i.e. Ht : c 7→ c[t].431

Let T ⊆ Tree(X) be such that (Ht)t∈T is a basis of {Ht |432

t ∈ Tree(X)}. In particular T has size rank (Hf ). For any t′ ∈433

Tree(X), we let αt′t denote the coefficient ofHt in the decomposition434

of Ht′ on (Ht)t∈T , that is,435

(?) Ht′ =
∑
t∈T

αt
′

t Ht.

We may now explicitly define circuit C:436
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◦ The addition gates are (identified with) elements of T . The437

output weight of t ∈ T is f(t).438

◦ The input gates are given by elements ofX (and the matching439

label). The input gate x ∈ X has an outgoing arc to the440

addition gate t ∈ T with weight αxt .441

◦ The multiplication gates are given by elements (t0, t1, t) ∈ T 3.442

Such a multiplication gate has an incoming arc from t0 on the443

left, an incoming arc from t1 on the right, and an outgoing444

arc to t, with weight αt1·t2t .445

Note that the size of C is |T | = rank (Hf ).446

For C to be well-defined as a circuit, it remains to show that447

its underlying graph is acyclic. This is implied by the fact that448

αt1·t2t may only be non-zero if deg(t) = deg(t1) + deg(t2), which we449

now prove. Since f is homogeneous of degree d, Ht may be non-450

zero only on contexts c such that deg(c[t]) = d, that is, deg(c) =451

d − deg(t) + 1. Hence, the set {Ht, t ∈ T} may be partitioned452

according to the degree of t into parts with disjoint support, so453

for the decomposition (?) to hold, it must be that αt′t 6= 0 implies454

deg(t) = deg(t′).455

For t ∈ T , we let gt : Tree(X) → K denote the polynomial456

computed at gate t in C. We will now show, by induction on the457

size of t′ ∈ Tree(X), that gt(t′) = αt
′
t .458

If t′ = x ∈ X, then gt(t′) = αxt , so the base case is clear. We now459

assume that t′ = t′1 · t′2 ∈ Tree(X), and show that
∑

t∈T gt(t
′)Ht =460

Ht′ , which is enough to conclude by uniqueness of the decomposi-461

tion in(?). For that we will show that the previous equality holds462

for any context c ∈ Context(X).463
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We first remark the following464 ∑
t∈T

gt(t
′)Ht =

∑
t∈T

( ∑
t1,t2∈T

αt1·t2t gt1(t
′
1)gt2(t

′
2)

)
Ht

=
∑
t∈T

( ∑
t1,t2∈T

αt1·t2t α
t′1
t1α

t′2
t2

)
Ht

=
∑

t1,t2∈T

α
t′1
t1α

t′2
t2

(∑
t∈T

αt1·t2t Ht

)
=
∑

t1,t2∈T

α
t′1
t1α

t′2
t2Ht1·t2 .

Now, let c ∈ Context(X). For any tree t ∈ Tree(X), we define465

c1t = c[� · t] ∈ Context(X), and c2t = c[t · �] ∈ Context(X) (see466

Figure 2.4). Then for any t1, t2, c[t1 · t2] = c1t2 [t1] = c2t1 [t2].467

Figure 2.4: A context c, and the contexts c1t2 and c2t1 .

Evaluating at c, we now obtain468 ∑
t∈T

gt(t
′)Ht(c) =

∑
t1,t2∈T

α
t′1
t1α

t′2
t2Ht1·t2(c) =

∑
t1,t2∈T

α
t′1
t1α

t′2
t2f(c[t1 · t2])

=
∑

t1,t2∈T

α
t′1
t1α

t′2
t2f(c1t2 [t1]) =

∑
t1,t2∈T

α
t′2
t2Ht1(c

1
t2

)

=
∑
t2∈T

α
t′2
t2Ht′1

(c1t2) =
∑
t2∈T

α
t′2
t2Ht′1·t2(c)

=
∑
t2∈T

α
t′2
t2f(c2t′1 [t2]) =

∑
t2∈T

α
t′2
t2Ht2(c

2
t′1

) = Ht′2
(c2t′1)

= Ht(c)
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which proves the wanted invariant, namely gt(t′) = αt
′
t . Hence, the469

value computed by the circuit for monomial t′ is precisely470 ∑
t∈T

gt(t
′)f(t) =

∑
t∈T

αt
′

t Ht(�) = Ht′(�) = f(t′),

which concludes the proof of the upper bound. �471

The remainder of this paper consists in applying Theorem 2.4 to472

obtain lower bounds in various cases. To this end we need a better473

understanding of the Hankel matrix: in Section 3 we introduce a474

few concepts and in Section 4 we develop decomposition theorems475

for the Hankel matrix.476

Before digging any deeper we can already give two applications477

of Theorem 2.4, yielding simple proofs of non-trivial results from478

the literature.479

The first lower bound we obtain is a separation of VP and480

VNP in the commutative non-associative setting. It was already481

obtained in (Hrubeš et al. 2010, Theorem 6).482

Another early result is an alternative proof of (Arvind & Raja483

2016, Theorem 26), which gives an exponential lower bound for484

the permanent and the determinant against unambiguous circuits485

in the associative setting.486

Separation of Commutative Non-Associative VP and VNP.487

We now give an alternative separation argument of the classes VP488

and VNP in the commutative non-associative setting. The orig-489

inal proof is due to (Hrubeš et al. 2010, Theorem 6), it exhibits490

a polynomial which requires a superpolynomial circuit to be com-491

puted. For simplicity, we give a slightly different polynomial, but492

the proof is very much a reinterpretation of that of Hrubeš et al.493

(2010) in the newly introduced vocabulary.494

Corollary 2.5. For d > 1, let f be the commutative non-associative495

polynomial of degree 2d and over two variables x0 and x1 defined496

by497

f =
∑

ε1,...,εd∈{0,1}

(((· · · (xε1xε2)xε3) · · · )xεd)2.

Any circuit computing f has size at least 3× 2d−2.498
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Proof. We give a lower bound on the rank of the Hankel matrix.499

We consider the submatrix restricted to contexts with (d+1) leaves500

of the form (((· · · (((xε1 · xε2) xε3) xε4) · · · ) xεd)�) and to trees501

with d leaves of the form ((· · · (((xε′1 · xε′2) xε′3) xε′4) · · · ) xε′d). See502

Figure 2.5 for a depiction.503

Figure 2.5: The context c = (((· · · (((xε1 ·xε2) xε3) xε4) · · · ) xεd)�),
the tree t = ((· · · (((xε′1 · xε′2) xε′3) xε′4) · · · ) xε′d) and their composi-
tion c[t].

This matrix is a permutation matrix of size 3× 2d−2, which is,504

up to commutativity, the number of different trees or contexts of505

the form mentioned above. �506

We now present a first lower bound in the associative setting.507

The method we shall use is generic: consider an associative circuit508

C, from a given restricted class of circuits, computing a given poly-509

nomial f . Let f̃ be the non-associative polynomial computed by510

C when it is seen as non-associative. The restriction on C together511

with the coefficients in f provide informations on f̃ which we use512

to derive a lower bound on rank (H), which is also a lower bound513

on C thanks to Theorem 2.4.514

Lower Bound Against Associative Unambiguous Circuits.515

We give a lower bound for unambiguous circuits computing the516

associative permanent or determinant. A circuit is said unam-517

biguous, if for each (associative) monomial m, there is at most518

one tree t labelled by m such that C has a run over t. Such cir-519

cuits were already studied in Arvind & Raja (2016), in which the520

authors provide a lower bound for the permanent: we show how to521
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recover their result using the Hankel matrix. Note that this notion522

makes sense in both the commutative and the non-commutative523

settings and that our lower bounds hold in both settings.524

Recall that, on variables X = {xi,j | i, j ∈ [n]}, if one lets Sn
denote the set of all permutations over [n] and sgn(σ) denote the
signature of a permutation σ, the determinant of degree n is the
polynomial

Det =
∑
σ∈Sn

n∏
i=1

sgn(σ)xi,σ(i)

and the permanent of degree n is the polynomial

Per =
∑
σ∈Sn

n∏
i=1

xi,σ(i).

525

Corollary 2.6. Any unambiguous circuit computing the deter-526

minant or the permanent of degree n has size at least
(
n
n/3

)
.527

Proof. Consider an unambiguous circuit C computing the per-528

manent (the proof is easily adapted to a circuit computing the de-529

terminant) of degree n on variables X = {xi,j | i, j ∈ [n]}. For any530

permutation σ, let tσ ∈ Tree(X) be the unique (non-associative)531

monomial along which there is a run computing the (associative)532

monomial x1,σ(1)x2,σ(2) · · ·xn,σ(n). Then, the non-associative poly-533

nomial f̃ computed by C when it is seen as a non-associative circuit534

is precisely f̃ =
∑

σ tσ. According to Theorem 2.4, it suffices to535

lower bound the rank of Hf̃ .536

Let (A, S) ⊆ [n]2 be a pair of subsets. We let TA→S ⊆ Tree(X)
be the subset of trees t such that the set of first (resp. second)
indices of the labels of t is precisely A (resp. S). Symmetrically, let
CA→S ⊆ Context(X) be the subset of contexts c such that the set
of first (resp. second) indices of the labels (except for the �) of c is
precisely [n]\A (resp. [n]\S). If (A, S) 6= (A′, S ′), then TA→S and
TA′→S′ are disjoint, as is the case for CA→S and CA′→S′ . Moreover,
if t ∈ TA→S and c ∈ CA′→S′ , it must be that f̃(c[t]) = 0. Hence,
Hf̃ is a block-diagonal matrix, with blocks HA,S being given by
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restricting the columns to some TA→S and the rows to CA→S. Note
that if |A| 6= |S| then HA,S = 0. In particular,

rank
(
Hf̃

)
=

∑
A,S⊆[n]
|A|=|S|

rank (HA,S) .

We now show using a counting argument that an exponential537

number of such blocks are non-zero and hence, have rank at least 1.538

For all permutations σ, we choose a subtree t′σ of tσ which has539

size in [n/3, 2n/3], and let (Aσ, Sσ) be such that t′σ ∈ TAσ→Sσ .540

Note that n/3 ≤ |Aσ| = |Sσ| = |t′σ| ≤ 2n/3, and that HAσ ,Sσ 6= 0.541

Moreover, it must be that σ(Aσ) = Sσ. Hence, if A, S ⊆ [n] are542

fixed such that n/3 ≤ |A| = |S| ≤ 2n/3,543

|{σ | Aσ = A and Sσ = S}| ≤ |{σ | σ(A) = S}| ≤
(n

3

)
!

(
2n

3

)
!

Hence, the number of non-zero blocks HA,S is at least544

n!(
n
3

)
!
(
2n
3

)
!

=

(
n

n/3

)
which concludes the proof. �545

Note that this exact proof goes beyond the case of unambiguous546

circuits. It is actually sufficient to assume that all non-associative547

monomials t such that f̃(t) 6= 0 are labelled by a monomial of the548

form x1,σ(1)x2,σ(2) · · ·xn,σ(n) for some permutation σ.549

3. Decomposing the Hankel Matrix: Unique550

Parse Tree Circuits551

Theorem 2.4, as already illustrated by Corollary 2.6, is a natural552

tool to derive lower bounds thanks to an analysis of the rank of553

the Hankel Matrix. In order to lower bound this rank for the554

most general classes possible, we need tools, parse trees and partial555

derivative matrices, that we introduce now; we then apply these556

tools to derive a general result regarding the class of Unique Parse557

Tree circuits (Theorem 3.9). In Section 4, we will push this analysis558

further and derive generic lower bounds.559
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3.1. Parse Trees. With any monomial t ∈ Tree(X) we associate560

its shape shape(t) ∈ Tree as the tree obtained from t by removing561

the labels at the leaves.562

Definition 3.1. Let C be a circuit computing a non-commutative563

non-associative polynomial f . A parse tree of C is any shape564

s ∈ Tree for which there exists a monomial t ∈ Tree(X) whose565

coefficient in f is non-zero and such that s = shape(t). We let566

PT (C) = {shape(t) | f(t) non-zero}.567

The notion of parse trees has been considered in many previous568

works, see for example (Jerrum & Snir 1982; Allender et al. 1998;569

Malod & Portier 2008; Arvind & Raja 2016; Lagarde et al. 2016;570

Saptharishi & Tengse 2017; Lagarde et al. 2018).571

Remark 3.2. Let C be a circuit computing a homogeneous poly-572

nomial of degree d. Then asymptotically, |PT (C) | ≤ 4d. Indeed,573

the maximal number of parse trees corresponds to the number of574

ordered binary trees with d leaves which is the (d− 1)-th Catalan575

number Cd−1. Asymptotically, one has Ck ∼ 4k

k3/2
√
π
which implies576

the announced lower bound on the number of parse trees.577

3.2. Partial Derivative Matrices. We now introduce a popu-578

lar tool for proving circuit lower bounds, namely, partial derivative579

matrices, originated from (Hyafil 1977; Nisan 1991) and widely580

used and extended in subsequent works, see for example (Nisan &581

Wigderson 1997; Dvir et al. 2012; Gupta et al. 2014; Kayal et al.582

2014a; Limaye et al. 2016; Kumar & Saraf 2017).583

For A ⊆ [d] of size i , u ∈ Xd−i, and v ∈ X i, we define the584

monomial u ⊗A v ∈ Xd: it is obtained by interleaving u and v585

with u taking the positions indexed by [d] \ A and v the positions586

indexed by A. For instance x1x2 ⊗{2,4} y1y2 = x1y1x2y2.587

Definition 3.3. Let f be a homogeneous non-commutative as-588

sociative polynomial. Let A ⊆ [d] be a set of positions of size589

i.590

The partial derivative matrix MA (f) of f with respect to591

A is defined as follows: the rows are indexed by u ∈ Xd−i and the592
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columns by v ∈ X i, and the value of MA (f) (u, v) is the coefficient593

of the monomial u⊗A v in f .594

Remark 3.4. The terminology partial derivative matrix, widely595

adopted in the literature, comes from the observation that the row596

labelled by monomial u of the matrix contains the coefficients of the597

partial derivative ∂f
∂u
. The same remark can be made for columns598

of MA (f). This will not be exploited in this paper.599

Example 3.5. Let f = xyxy + 3xxyy + 2xxxy + 5yyyy and A =600

{2, 4}. Then MA (f) is given below.601

x x x y y x y y
x x 0 2 0 1
y x 0 0 0 0
x y 0 3 0 0
y y 0 0 0 5

♦602

We define a distance dist : P([d]) × P([d]) → N on subsets
of [d] by letting dist(A,B) be the minimal number of additions
and deletions of elements of [d] to go from A to B, assuming that
complementing is for free. Formally,

dist(A,B) = min{|∆(A,B)|, |∆(Ac, B)|},

where ∆(A,B) = (A \ B) ∪ (B \ A) is the symmetric difference603

between A and B. This is illustrated in Figure 3.1.604

Remark 3.6. A similar looking notion of distance is also available605

in the current literature for commutative depth-4 lower bounds.606

This was first implicitly defined by Fournier et al. (2014) and607

by Kayal et al. (2014a), and later made explicit by Chillara &608

Mukhopadhyay (2019).609
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Figure 3.1: In this case, the symmetric difference is smaller when
complementing one of the sets, so dist(A,B) is the cardinality of
the hatched subset.

Remark 3.7. The apparent asymmetry in the definition is artifi-610

cial as it does hold that dist(A,B) = dist(B,A). It is also the case611

that dist(A,B) = 0 =⇒ A = B or A = Bc. In fact dist is indeed612

a distance over subsets of [d] modulo complementation.613

The following lemma (see e.g., (Limaye et al. 2016)) informally614

says that, if A and B are close to each other, then the ranks of the615

corresponding partial derivative matrices are close to each other as616

well. Though it is well known, we give a proof for completeness.617

Lemma 3.8. Let f be a homogeneous non-commutative associa-618

tive polynomial of degree d with n variables. Then, for any subsets619

A,B ⊆ [d], rank (MA (f)) ≤ ndist(A,B)rank (MB (f)).620

Proof. Without loss of generality, one may safely assume that621

dist(A,B) = |∆(A,B)| (by transposing the matrix MA (f) if nec-622

essary).623

We prove the statement by induction on d = |∆(A,B)|. If624

d = 0, this is trivial since A and B are identical in this case. For625

the case d = 1, let us assume that A = B∪{i} (the other case being626

very similar). We divideMA (f) into horizontal blocks, one for each627

variable x, that we call MA (f)x, corresponding to the monomials628

for which the position i is occupied by the variable x. Therefore629

the rank of MA (f) is upper bounded by
∑

x rank (MA (f)x), but630

each MA (f)x is a submatrix of MB (f) so that rank (MA (f)x) ≤631

rank (MB (f)), hence the result.632

If d > 1, we first find a set C such that |∆(A,C)| = 1 and633
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|∆(C,B)| = d − 1, and we conclude by applying the induction634

hypothesis and using the case d = 1. �635

At this point, we have the material in hands to describe a pre-636

cise characterization of the size of the smallest Unique Parse Tree637

circuit which computes a given polynomial. We take this short de-638

tour before moving on to our core lower bound results in Section 4.639

3.3. Characterization of Smallest Unique Parse Tree Cir-640

cuit. Unique Parse Tree (UPT) circuits are non-commutative as-641

sociative circuits with a unique parse tree. They were first intro-642

duced in (Lagarde et al. 2016). They generalize ABPs, which are643

equivalent to UPT circuits with a left comb as their unique parse644

tree (a left comb being a tree corresponding to the shape of tree t645

in Figure 2.5). Hence, we recover Nissan’s Theorem (Nisan 1991)646

when instantiating our characterization result, Theorem 3.9, to left647

combs. Our techniques allow a slight improvement and a better648

understanding of their results since the original result requires a649

normal form which can lead to an exponential blow-up.650

Given a shape s ∈ Tree of size d, i.e., with d leaves and a node651

v of s, we let sv denote the subtree of s rooted in v, and Iv ⊆ [d]652

denote the interval of positions of the leaves of sv in s. We say653

that s′ ∈ Tree is a subshape of s if s′ = sv for some v, and that654

I ⊆ [d] is spanned by s if I = Iv for some v. Figure 3.2 illustrates655

the occurrences of a subshape in a shape.656

Figure 3.2: A shape of size 11, in which three nodes v1, v2, v3 span
the same subshape. The corresponding spanned intervals are Iv1 =
[3, 5], Iv2 = [6, 8] and Iv3 = [9, 11]. We display the position of each
leaf for readability.

Let f be a homogeneous non-commutative associative polyno-657
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mial of degree d, let s ∈ Tree be a shape of size d, and let s′ be658

a subshape of s such that v1, . . . , vp are all the nodes v of s such659

that s′ = sv. We define660

Ms′ =


MIv1

(f)
MIv2

(f)
...

MIvp (f)

 .

Theorem 3.9. Let f be a homogeneous non-commutative asso-661

ciative polynomial of degree d and let s ∈ Tree be a shape of size662

d. Then the smallest UPT circuit with shape s computing f has663

size exactly664 ∑
s′ subshape of s

rank (Ms′) .

Proof. Let C be a UPT circuit with shape s computing f . We665

let f̃ denote the non-associative polynomial computed by C.666

Since C is UPT with shape s, f̃ is the unique non-associative667

polynomial which is non-zero only on trees with shape s and projects668

to f , i.e., f̃(t) = f(u) if shape(t) = s and t is labelled by u, and669

f̃(t) = 0 otherwise.670

In particular, the size of the smallest UPT circuit with shape671

s computing f is the same as the size of the smallest circuit com-672

puting f̃ , which thanks to Theorem 2.4 is equal to the rank of the673

Hankel matrix Hf̃ .674

The Hankel matrix of f̃ may be non-zero only on columns in-675

dexed by trees whose shapes s′ are subshapes of s, and on such676

columns, non-zero values are on rows corresponding to a context677

obtained from s by replacing an occurrence of s′ by �. The corre-678

sponding blocks are precisely the matrices Ms′ , and are placed in679

a diagonal fashion, hence the lower bound. �680

Theorem 3.9 can be applied to concrete polynomials, for in-681

stance to the permanent of degree d.682
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Corollary 3.10. Let s ∈ Tree be a shape. The smallest UPT683

circuit with shape s computing the permanent has size684 ∑
v node of s

(
d

|Iv|

)
,

where Iv is the set of leaves in the subtree rooted at v in s. In685

particular, this is always larger than
(
d
d/3

)
.686

Proof. Let s′ be a subshape of s, and v1, ..., vp be all the nodes
of s such that svi = s′. Let ` = |Ivi | which does not depend on i.
There are no i 6= j such that vi is a descendant of vj, so the Ivi
are pairwise disjoint. Let Ivi = [ai, ai + ` − 1]. The coefficient of
MIvi

(Per) in (u,w) ∈ Xd−` × X`, namely, Per(u ⊗Ivi w), may be
non-zero only if w is of the form

xai,b1xai+1,b2 · · ·xai+`−1,b`

for some b1, . . . , b` ∈ [d]. In particular, theMIvi
(Per) have non-zero

columns with disjoint supports, so

rank (Ms′) =
∑
i

rank
(
MIvi

(Per)
)
.

We claim now that rank
(
MIvi

(Per)
)

=
(
d
`

)
, which leads to the687

announced formula. Indeed, any subset A of [d] of size ` corre-688

sponds to a block full of 1’s in the matrix MIvi
(Per) in the follow-689

ing way: Per(u ⊗Ivi w) = 1 whenever u is a monomial whose first690

indices are [d] \ Ivi and the second indices are any permutation of691

[d] \ A, and w is a monomial whose first indices are Ivi and the692

second indices are any permutation of A. Two such blocks have693

disjoint rows and columns, and these are the only 1’s inMIvi
(Per).694

Moreover, there are
(
d
`

)
such sets A.695

�

Applied to s being a left-comb, Corollary 3.10 yields that the696

smallest ABP computing the permanent has size 2d + d. Applied697

to s being a complete binary tree of depth k = log d, the size of698

the smallest UPT is Θ
(

2d

d

)
.699
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4. Decomposing the Hankel Matrix: Generic700

Lower Bounds701

We now get to the technical core of the paper where we establish702

generic lower bound theorems through a decomposition of the Han-703

kel matrix, that we will later instantiate in Section 5 to concrete704

classes of circuits.705

We first restrict ourselves to the non-commutative setting. Our706

first decomposition, Theorem 4.1, seems to capture mostly pre-707

viously known techniques. However, the second, more powerful,708

decomposition, Theorem 4.2, takes advantage of the global shape709

of the Hankel matrix. Doing so allows to go beyond previous re-710

sults only hinging around considering partial derivatives matrices711

which turn out to be isolate slices of the Hankel matrix.712

We later explain in Section 4.3 how to extend the study to the713

commutative case.714

4.1. General Roadmap. Let f be a (commutative or non-com-715

mutative) associative polynomial for which we want to prove lower716

bounds. Consider a circuit C which computes f , and let f̃ be the717

non-associative polynomial computed by C. Our aim is, following718

Theorem 2.4, to lower bound the rank of the Hankel matrix Hf̃ .719

We know that polynomials f̃ and f are equal up to associativity,720

which provides linear relations among the coefficients of Hf̃ .721

The bulk of the technical work is to reorganize the rows and722

columns of Hf̃ in order to decompose it into blocks which may723

be identified as partial derivative matrices with respect to some724

subsets A1, A2, · · · ⊆ [d], of some associative polynomials which725

depend on f̃ and sum to f . The number and choice of these subsets726

depend on the parse trees of the circuit C.727

Now, assume that there exists a subset A ⊆ [d] which is at728

distance at most δ to each Ai. Losing a factor of nδ on the rank729

through the use of Lemma 3.8 we reduce the aforementioned blocks730

of Hf̃ to partial derivatives with respect to A. Such matrices can731

then be summed to recover the partial derivative matrix of f with732

respect to A, yielding in the lower bound a (dominating) factor of733

rank (MA (f)).734
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4.2. Generic Lower Bounds in the Non-commutative Set-735

ting. Following the general roadmap described above, we obtain736

a first generic lower bound result.737

Theorem 4.1. Let f be a non-commutative homogeneous poly-738

nomial of degree d computed by a circuit C. Let A ⊆ [d] and δ ∈ N739

such that all parse trees of C span an interval at distance at most740

δ from A. Then C has size at least rank (MA (f))n−δ|PT (C) |−1.741

Proof. The proof relies on a better understanding of the struc-742

ture of the Hankel matrix H = Hf̃ of a general non-associative743

polynomial f̃ : Tree(X)→ K.744

More precisely, we organize the columns and rows of H in or-745

der to write it as a block matrix in which we can identify and746

understand the blocks in terms of partial derivative matrices of747

some non-commutative (but associative) polynomials which will748

eventually correspond to parse trees. In the following we refer to749

Figure 4.1 for illustration of the decompositions.750

r s r

s

Figure 4.1: Decomposing H as blocks Hp
i,j, which further decom-

pose into partial derivative matrices. Here, I denotes the interval
[p, p+ i− 1].

Recall that Treek(X) ⊆ Tree(X) denotes the set of trees with751

k leaves, and let Contextk(X) ⊆ Context(X) denote the set of752
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contexts with k leaves (among which one is labelled by �). Note753

that any tree t ∈ Treed(X) decomposes into 2d− 1 different pairs754

(t′, c) ∈ Treek(X)×Contextd−k+1(X) for some k, such that c[t′] = t,755

which correspond to the 2d − 1 nodes in t. We further partition756

Contextk(X) =
⋃k
p=1 Context

p
k(X), with Contextpk(X) being the757

set of contexts where � is on the p-th leaf.758

Using these partitions for trees and contexts, we may write H759

as a block matrix with blocks Hi,j = H|Treei(X)×Contextj(X)
. Using the760

finer refinement of contexts, we write block Hi,j as a tower (recall761

that contexts label the rows of H) of sub-blocks Hp
i,j, for p ∈ [j],762

where Hp
i,j = H|Treei(X)×Contextp

j
(X)

. We now focus on Hp
i,j, which763

we will further decompose into blocks that are partial derivative764

matrices of some homogeneous non-commutative polynomials on765

the interval [p, p+ i− 1].766

As Treei(X) is the set of trees with i leaves, it can be seen
as all possible labeling of shapes with i leaves by variables in X.
Hence, Treei(X) ' Treei × X i ' Treei × X [p,p+i−1]. Likewise,
Contextpj(X) is the set of contexts with j leaves and � on the p-th
leave, which can be seen as Contextpj(X) ' Contextpj × Xj−1 '
Contextpj ×X [1,i+j−1]\[p,p+i−1], where Contextpj is the set of contexts
of size j with no labels, except for a unique � on the p-th leaf.
We now let, for any shape s ∈ Treei+j−1, the non-commutative
(but associative) homogeneous polynomial fs of degree i+ j−1 be
defined by

fs : X i+j−1 → K

u 7→ f̃(s labelled by u)

Now, grouping the columns t ∈ Treei(X) of Hp
i,j which corre-767

spond to the same shape s ∈ Treei, and the rows c ∈ Contextpj(X)768

which correspond to the same shape (of context) r ∈ Contextpj ,769

we obtain a block matrix, in which the block indexed by (s, r) is770

precisely the partial derivative matrix M[p,p+i−1]
(
fr[s]

)
.771

In the following, we will be interested in non-associative poly-772

nomials f̃ : Tree(X) → K which project to a given associative773
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f : X∗ → K, meaning that for each u ∈ X∗,774 ∑
t∈Tree(X)
label(t)=u

f̃(t) = f(u).

In this setting, one can see the decomposition f =
∑

s∈Tree fs as a775

decomposition over parse trees of a circuit computing f , fs being776

the contribution of the parse tree s in the computation of f . We777

have seen that if I = [p, p + i − 1] is an interval such that s de-778

composes into s = r[s′] for (s′, r) ∈ Treei×Contextpj , which means779

that I is spanned by s, then MI (fs) appears as a sub-matrix of H.780

Hence,781

(?) max
s∈Tree

I spanned by s

rank (MI (fs)) ≤ rank (H) .

Now, we have all the necessary tools to prove Theorem 4.1.782

Let f̃ : Tree(X)→ K be the non-associative polynomial computed783

by C when it is seen as a non-associative circuit. For any shape784

s ∈ Treed, let fs : Xd → K be defined as previously. In particular,785 ∑
s∈PT(C) fs = f.786

With a shape s ∈ PT (C), we associate an interval I(s) spanned787

by s and such that dist(A, I(s)) ≤ δ. Then we have788

rank (MA (f)) = rank

 ∑
s∈PT(C)

MA (fs)


≤

∑
s∈PT(C)

rank (MA (fs)) by rank subadditivity

≤
∑

s∈PT(C)

nδrank
(
MI(s) (fs)

)
by Lemma 3.8

≤ |PT (C) |nδrank (H) by equation (?)

Since, by Theorem 2.4, rank (H) ≥ rank (MA (f))n−δ|PT (C) |−1789

is a lower bound on |C|, we obtain the announced result. �790

The crux to prove Theorem 4.1 is to identify for each parse791

tree s of C a block in Hf̃ containing the partial derivative matrix792
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MI(s) (fs) where fs is the polynomial corresponding to the contri-793

bution of the parse tree s in the computation of f and I(s) is an794

interval spanned by s.795

However, we do not consider in this analysis how these blocks796

are located relative to each other. A more careful analysis of Hf̃797

consists in grouping together all parse trees that lead to the same798

spanned interval. Aligning and then summing these blocks we799

replace the dependence in |PT (C) | by d2 which corresponds to800

the total number of possibly spanned intervals of [d]. This yields801

Theorem 4.2.802

Theorem 4.2. Let f be a non-commutative homogeneous poly-803

nomial of degree d computed by a circuit C. Let A ⊆ [d] and δ ∈ N804

such that all parse trees of C span an interval at distance at most805

δ from A. Then C has size at least rank (MA (f))n−δd−2.806

Remark 4.3. Note that this is an important improvement since807

the number of parse trees can be up to about 4d (as noticed in Re-808

mark 3.2). As we shall see in Section 5 the lower bounds we obtain809

using Theorem 4.1 match known results, while using Theorem 4.2810

yields substantial improvements.811

Before going on to the formal proof of Theorem 4.2, we start812

by giving a high-level interpretation of the techniques used to go813

from Theorem 4.1 to Theorem 4.2. Our aim is still to lower bound814

the rank of the Hankel matrix H = Hf̃ of some (unknown) non-815

associative polynomial f̃ , under the constraints that, for each u ∈816

X∗,817 ∑
t∈Tree(X)
label(t)=u

f̃(t) = f(u),

for some non-commutative (but associative) polynomial f : X∗ →818

K that we control. Given the form of our constraints, a natural819

strategy would be to sum some well chosen sub-matrices of H in820

order to obtain a matrix that depends only on f , which we could821

choose to have high rank.822

As exposed earlier when proving Theorem 4.1, it is possible823

to decompose f as the sum of some fs’s, where s ranges over the824
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shapes used by f̃ , and then obtain partial derivative matrices of825

the fs’s with respect to interval spanned by s, as sub-matrices of826

H. If one can find a subset A ⊆ [d] such that each s spans an827

interval I(s) that is δ-close to A for some small δ, then one obtains828

a lower bound for polynomials f with high rank with respect to A.829

This first method leads to Theorem 4.1 and it is already strong830

enough to prove several lower bounds. We believe that in many oc-831

currences in the literature, when obtaining lower bounds involving832

a circuit decomposition and a partial derivative matrix with respect833

to a given partition of the set of positions [d], this is somehow the834

underlying method.835

However, this method poorly makes use of the structure of H,836

since it may happen that some of the chosen sub-blocks are face to837

face with one another. A short illustration of this phenomenon is838

the following. Let839

M =


A1,1 A1,2

A2,1 A2,2
C1

C2
B1,1 B1,2

B2,1 B2,2


be a block matrix, for which one wants to obtain a lower bound840

on the rank, knowing a lower bound on rank
(∑

i,j Ai,j +Bi,j

)
, and841

with no assumption on the Ci’s.842

The previous method would go as follows:843

rank (M) ≥ max

[
max
i,j

rank (Ai,j),max
i,j

rank (Bi,j)

]
≥ 1

8

∑
i,j

rank (Ai,j) + rank (Bi,j)

≥ 1

8
rank

(∑
i,j

Ai,j +Bi,j

)
.

Note that we have lost a factor of 8, which is the number of small844

blocks that we wish to sum.845

A more efficient method would consist in first summing rows846

and columns of M in order to put together the A’s and the B’s.847
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This would go as follows, for some matrices C ′1 and C ′2,848

rank (M) ≥ rank
([∑

i,j Ai,j C ′1
C ′2

∑
i,j Bi,j

])
≥ max

[
rank

(∑
i,j

Ai,j

)
, rank

(∑
i,j

Bi,j

)]

≥ 1

2
rank

(∑
i,j

Ai,j +Bi,j

)
.

By doing so, we have decreased the factor 8 to 2, which is the849

number of larger blocks.850

Back to the Hankel matrix H, this corresponds to putting851

together the polynomials fs for which we have chosen the same852

spanned interval (this corresponds to d2 larger blocks) instead of853

considering them separately (which corresponds to |PT (C) | smaller854

blocks). We now formalize this idea, using a total order to model855

the choice of intervals for convenience.856

Lemma 4.4. Let f̃ : Tree(X) → K be a non-associative non-857

commutative polynomial and let ≤int be a total order on inter-858

vals of [d]. For any shape s, let I(s) be the smallest (with respect859

to ≤int) interval spanned by s. For any interval I, define a non-860

commutative associative polynomial by861

fI : X∗ → K

u 7→
∑

t∈Tree(X)
label(t)=u

I(shape(t))=I

f̃(t).

Then, one has maxI rank (MI (fI)) ≤ rank
(
Hf̃

)
.862

We illustrate the definition of fI through a small example. Let863

t = ((xy)z), and assume [1, 2] is the smallest interval spanned by864

t, that is, [1, 2] ≤int {1}, {2}, {3}, [1, 3]. Then f̃(t) will contribute865

to f[1,2](xyz) as label(t) = xyz and I(shape(t)) = [1, 2].866

Proof. Our aim is to obtain MI (fI) from Hf̃ , by first taking a867

sub-matrix, then adequately summing its rows and columns. The868

proof is summarized in Figure 4.2.869
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Figure 4.2: Decomposition of the Hankel matrix used in the proof
of Lemma 4.4. Here, I = [p, p+ i− 1].

Let I = [p, p+ i− 1] be some fixed interval and j = d− i+ 1.870

Let r ∈ Contextpj be a shape of a context of size j and where �871

is on the p-th leaf, let v be a node in r and let [a, b] be the interval872

spanned by v in r. We define the interval I ′v by873

I ′v =


[a, b] if b < p

[a, b+ i− 1] if a ≤ p ≤ b

[a+ i− 1, b+ i− 1] if a > p,

The interval I ′v is to be seen as the interval of positions of the leaves874

that are descendants of v in some r[s′] where s′ is any element of875

Treei. In particular, if v is the leaf labelled by � in r, then I ′v = I.876

Likewise, for a node v of a (sub)shape s′ ∈ Treei, we define I ′v877

by I ′v = [a + p − 1, b + p − 1], where [a, b] is the interval spanned878

by v in s′. Note that if v is the root of s′ then Iv = I.879

We may now define (we use order ≤int on intervals)880

CI = {r ∈ Contextpj | I = min
v node in r

I ′v},

and881

TI = {s′ ∈ Treei | I = min
v node in s′

I ′v}.
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We extend these subsets to labelled trees and context in a882

straightforward fashion by defining C̃I = {c ∈ Contextpj(X) |883

shape(c) ∈ CI} and T̃I = {t ∈ Treei(X) | shape(t) ∈ TI}.884

Remark that for any t ∈ Tree(X) and u ∈ X∗, one has label(t) =885

u and I = I(shape(t)) if and only if t = r[s] for some (s, r) ∈886

T̃I × C̃I such that u = label(s)⊗I label(c).887

We now consider the submatrix H̃I of Hp
i,j where the rows are888

restricted to C̃I and the columns to T̃I . In this matrix, we now sum889

the rows which are indexed by contexts with the same label, and the890

columns which are indexed by trees with the same label, to obtain891

matrix HI . Clearly, rank (HI) ≤ rank
(
Hf̃

)
. We finally prove that892

HI = MI (fI) . Indeed, let g ∈ XI ' X i and h ∈ Xd\A ' Xj. Then893

MI (fI) (g, h) =
∑

t∈Tree(X)
label(t)=g⊗Ih
I(shape(t))=I

f̃(t) =
∑
s∈T̃I
c∈C̃I

label(s)=g
label(c)=h

f̃(c[s]) = HI(g, h),

which concludes the proof of Lemma 4.4. �894

With Lemma 4.4 in hands, we are ready to prove Theorem 4.2.895

Let f̃ : Tree(X)→ K be the non-associative polynomial computed896

by C when seen as a non-associative circuit. Let ≤int be a total897

order on intervals of d such that I 7→ dist(I, A) is non-decreasing.898

In other words, I1 <int I2 if and only if d(I1, A) < d(I2, A). Let899

fI : Xd → K be given by900

fI(u) =
∑

t∈Tree(X)
label(t)=u

I(shape(t))=I

f̃(t).

Then any interval I such that d(I, A) > δ is such that for every901

parse tree s ∈ PT (C), one has I 6= I(s), so fI = 0. Hence, we902

obtain903
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rank (MA (f)) = rank

MA

 ∑
I interval of [d]

fI



= rank

MA

 ∑
I interval of [d]

dist(A,I)≤δ

fI




≤
∑

I interval of [d]
dist(A,I)≤δ

rank (MA (fI)) by rank subadditivity

≤
∑

I interval of [d]
dist(A,I)≤δ

nδrank (MI (fI)) by Lemma 3.8

≤ d2nδrank
(
Hf̃

)
by Lemma 4.4

which yields the announced lower bound.904

4.3. General Lower Bounds in the Commutative Setting.905

We explain how to extend the notions of parse trees and the generic906

lower bound theorems to the associative commutative setting.907

Let X = X1 t X2 t · · · t Xd be a partition of the set X of908

variables. A monomial is set-multilinear with respect to the par-909

tition if it is the product of exactly one variable from each set Xi,910

and a polynomial is set-multilinear if all its monomials are.911

Example 4.5. The permanent and the determinant of degree d912

are set-multilinear with respect to the partition X = X1tX2t· · ·t913

Xd where Xi = {xi,j, j ∈ [d]}. The iterated matrix multiplication914

polynomial is another example of an important and well-studied915

set-multilinear polynomial. ♦916

Partial derivative matrices also make sense in the realm of set-917

multilinear polynomials.918

Definition 4.6. LetX = X1tX2t· · ·tXd, f be a set-multilinear919

polynomial of degree d, and A ⊆ [d] be a set of indices. The partial920

derivative matrix MA (f) of f with respect to A is defined as921
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follows: the rows are indexed by set-multilinear monomials g with922

respect to the partition
⊔
i/∈AXi and the columns are indexed by923

set-multilinear monomials h with respect to the partition
⊔
i∈AXi.924

The value of MA (f) (g, h) is the coefficient of the monomial g · h925

in f .926

The notion of shape was defined by (Arvind & Raja 2016), and927

it slightly differs from the non-commutative setting because we928

need to keep track of the indices of the variable sets given by the929

partition from which the variables belong. More precisely, given a930

partition of X = X1tX2t · · ·tXd, we associate to any monomial931

t ∈ Tree(X) of degree d its shape shape(t) ∈ Treed([d]) defined as932

the tree obtained from t by replacing each label by its index in the933

partition. In particular if t is set-multilinear, then each element934

in [d] appears exactly once as an index in shape(t). Hence we let935

Td ⊆ Treed([d]) denote the set of trees such that all elements of [d]936

appear exactly once as a label of a leaf.937

Let C be a commutative circuit. We let f̃ denote the commu-
tative non-associative polynomial computed by C when it is seen
as non-associative. A parse tree of C is any shape s ∈ Td for
which there exists a monomial t ∈ Tree(X) whose coefficient in f̃
is non-zero and such that s = shape(t). Formally, we let

PT (C) =
{
shape(t) | f̃(t) non-zero

}
∩ Td.

Remark 4.7. Note that it may be the case that a circuit C com-938

puting a set-multilinear polynomial f computes a non-associative939

f̃ such that f̃(t) 6= 0 for some non set-multilinear monomials t,940

provided their sums collapse to 0 in the associative setting. We941

do not count such shapes as parse trees (this explains the intersec-942

tion with Td in the above definition), which leads to more general943

classes of circuits against which we shall obtain lower bounds.944

Given a shape s ∈ Td and a node v of s, we let sv denote the945

subtree rooted at v and Av ⊆ [d] denote the set of labels appearing946

on the leaves of sv. We say that Av is spanned by s.947

Following the same roadmap as in the non-commutative setting948

we obtain the following counterpart of Theorem 4.1. We assume949
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that the set of variables is partitioned into d parts of equal size n950

(this is a natural setting for polynomials such as the determinant,951

the permanent or the iterated matrix multiplication). In particu-952

lar, it means that the polynomials we consider are of degree d and953

over nd variables.954

Theorem 4.8. Let f be a set-multilinear polynomial computed955

by a circuit C. Let A ⊆ [d] and δ ∈ N such that all parse trees of956

C span a subset at distance at most δ from A. Then C has size at957

least rank (MA (f))n−δ|PT (C) |−1.958

Proof. As this proof is an adaptation of that of Theorem 4.1,959

we concentrate on highlighting the necessary changes.960

LetX = X1tX2t· · ·tXd denote the underlying partition. Pre-
viously, we grouped together (sub-)trees and (sub-)contexts which
correspond to a given interval of positions. In the commutative set-
ting, we instead group together the (sub-)trees and (sub-)contexts
which correspond to a given subset of positions, where a position is
now being given by its index in the partition. Formally, for A ⊆ [d],
we let

TreeA(X) = {t ∈ Tree(X) | the set of indices of variables
labeling t is A},

and likewise,

ContextA(X) = {c ∈ Context(X) | the set of indices of variables
(different from �) labeling c is A},

and finally
HA = H|TreeA(X)×ContextAc (X)

.

Now, grouping together the columns of HA which correspond to961

trees which have a given fixed shape s′ (recall that a commutative962

shape contains the index in the partition of each leaf), and the963

rows which correspond to contexts which have a given fixed shape964

of context r yields the partial derivative matrix MA

(
fr[s′]

)
, where965
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the (commutative, associative) polynomial fs is defined, for any966

commutative shape s, by967

fs(u) = f̃(s labelled by u),

where the labeling respects the partition of X.968

Hence, rank (H) ≥ rank (MA (fs)) whenever A is spanned by969

s. The remainder of the proof exactly follows that of Theorem 4.1970

and therefore we do not repeat it here. �971

A notable difference with the non-commutative setting is that972

now parse trees no longer span intervals of [d] but subsets of [d]. As973

a consequence, if we follow the same technique as the one used to974

prove Theorem 4.2, we now groups together blocks corresponding975

to the same subset of [d] and therefore the multiplicative factor is976

now 2−d as there are 2d such subsets. This yields the following977

counterpart for Theorem 4.2.978

Theorem 4.9. Let f be a set-multilinear polynomial computed979

by a circuit C. Let A ⊆ [d] and δ ∈ N such that all parse trees of980

C span a subset at distance at most δ from A. Then C has size at981

least rank (MA (f))n−δ2−d.982

Proof. Again, we extend the ideas for the non-commutative983

setting to the commutative setting, and we reuse the notations of984

the proof of Theorem 4.2. As for proving Theorem 4.2, we mainly985

rely on a Lemma.986

Lemma 4.10. Let f̃ : Tree(X) → K be a non-associative com-987

mutative polynomial and let ≤int be a total order on subsets of988

[d]. For any commutative shape s, let A(s) be the smallest (with989

respect to ≤int) subset spanned by s. For any subset A, define a990

commutative associative polynomial by991

fA(u) =
∑

t∈Tree(X)
label(t)=u

A(shape(t))=A

f̃(t).

Then, one has maxA rank (MA (fA)) ≤ rank
(
Hf̃

)
.992
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The proof of Lemma 4.10 is very similar, yet a bit more pleasant
than that of Lemma 4.4, since we no longer need to shift any
interval. Formally, for A ⊆ [d] we define

TA = {t ∈ TreeA(X) | A is the smallest interval
spanned by shape(t)},

and likewise,

CA = {c ∈ ContextA(X) | A is the smallest interval
spanned by shape(c)}.

Now, the lemma follows from the fact that MA (fA) is obtained by993

summing rows from TA and columns from CA in H.994

The remainder of the proof is a very straightforward adaptation995

of the end of the proof of Theorem 4.2 from the non-commutative996

to the commutative setting. �997

Remark 4.11. While in the non-commutative setting, Theorem 4.2998

strengthens Theorem 4.1 (when d2 is small), this is no longer the999

case in the commutative setting. Indeed, the maximal number of1000

commutative parse trees being roughly d! (the exact asymptotic is1001 √
2−
√
2dd−1

ed(
√
2−1)d+1 , see Sloane (2011)), Theorem 4.8 and Theorem 4.9 are1002

incomparable.1003

5. Applications1004

In this section we instantiate our generic lower bound theorems on1005

concrete classes of circuits. We first show how the weaker version1006

(Theorem 4.1) yields the best lower bounds to date for skew and1007

small non-skew depth circuits. Extending these ideas we obtain1008

exponential lower bounds for
(
1
2
− ε
)
-unbalanced circuits, an ex-1009

tension of skew circuits which are just slightly unbalanced. We also1010

adapt the proof to ε-balanced circuits, which are slightly balanced.1011

We then move on to our main results, which concern circuits with1012

many parse trees, with lower bounds for both non-commutative1013

and commutative settings.1014
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Prior to that, we present a family of polynomials for which our1015

lower bounds hold, and we state Lemma 5.1 which is used several1016

times in our proofs.1017

High-Ranked Polynomials. The lower bounds we state below1018

hold for any polynomial whose partial derivative matrices with1019

respect to either a fixed subset A or all subsets have full rank.1020

Such polynomials exist for all fields in both the commutative and1021

non-commutative settings, and can be explicitly constructed. For1022

instance the so-called Nisan-Wigderson polynomial (Kayal et al.1023

2014b) — inspired by the notion of designs by Nisan and Wigder-1024

son (Nisan & Wigderson 1994) — has this property. In the com-1025

mutative, set-multilinear setting, it is given by1026

NWn,d =
∑

h∈Fn[z]
deg(h)≤d/2

d∏
i=1

xi,h(i),

where Fn[z] denotes univariate polynomials with coefficients in the1027

finite field of prime order n. In the non-commutative setting, we1028

remove index i, and insist that the product
∏d

i=1 xh(i) is done along1029

increasing values of i. The fact that there exists a unique polyno-1030

mial h ∈ Fn[z] of degree at most d/2 which takes d/2 given values1031

at d/2 given positions exactly implies that the partial derivative1032

matrix of NWn,d with respect to any A ⊆ [d] of size d/2 is a per-1033

mutation matrix. This is then easily extended to any A ⊆ [d].1034

A-balanced subsets. The following combinatorial Lemma is widely1035

used to derive our lower bounds. Intuitively, a subset B ⊆ [d] is1036

far from a subset A ⊆ [d] of size d/2 whenever it is A-balanced,1037

meaning that A ∩B and Ac ∩B have roughly the same size.1038

Lemma 5.1. Let A,B ⊆ [d] be such that |A| = d/2. Then

d(A,B) = d/2−
∣∣|A ∩B| − |Ac ∩B|

∣∣.
Proof. Let us first assume that |B ∩ A| ≥ |B|/2. This implies1039
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that |∆(A,B)| ≤ |∆(Ac, B)|, so1040

dist(A,B) = |∆(A,B)|
= |A ∪B| − |A ∩B|
= (|A|+ |Ac ∩B|)− |A ∩B|
= d/2− (|A ∩B| − |Ac ∩B|)
= d/2−

∣∣|A ∩B| − |Ac ∩B|
∣∣,

where the last line also follows from the assumption that |B∩A| ≥1041

|B|/2. Now if |B ∩ A| < |B|/2, it suffices to replace A with Ac in1042

the previous proof to obtain the announced result. �1043

5.1. Applications in the non-commutative setting.1044

5.1.1. Skew, Slightly Unbalanced, Slightly Balanced and1045

Small Non-Skew Depth Circuits. We show how using Theo-1046

rem 4.1 yields exponential lower bounds for four classes of circuits1047

in the non-commutative setting. We adapt the ideas of (Limaye1048

et al. 2016) into our newly introduced vocabulary and easily obtain1049

the same exponential lower bounds for skew circuits. Straightfor-1050

ward generalizations lead to previously unknown exponential lower1051

bounds on slightly unbalanced and slightly balanced circuits. Fi-1052

nally, we also adapt (and shorten) their proof of a lower bound on1053

small non-skew depth circuits. In each of these four cases the use1054

of our weaker theorem, namely Theorem 4.1 suffices.1055

Skew Circuits A circuit C is skew if all its parse trees are skew,1056

meaning that each node has at least one of its children which is1057

a leaf. We let Imid = (d/4, 3d/4], which has size d/2. As a direct1058

application of Theorem 4.1, we obtain the following result.1059

Theorem 5.2. Let f be a homogeneous non-commutative poly-1060

nomial of degree d and on n variables such that MImid (f) has full1061

rank nd/2. Then any skew circuit computing f has size at least1062

2−dnd/4.1063

Proof. The proof relies on the following two easy observations.1064
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Fact 5.3. Any skew shape spans intervals of each possible size,1065

and in particular, an interval of size 3d/4.1066

Proof. Let s ∈ Treed be a skew shape, v1 be its root, and for1067

all i = 1 . . . d− 2, vi+1 be the child of vi which is not a leaf. Then1068

any of the two children of vd−2 is a leaf, so it spans an interval of1069

size 1. Now for each i, vi spans an interval that includes Ivi+1
and1070

adds 1 to its size, so we easily conclude by induction. �1071

Fact 5.4. Any interval of size 3d/4 is at distance at most (in fact,1072

equal to) d/4 from Imid.1073

Proof. Indeed, let I ⊆ [d] be an interval of size 3d/4. Then1074

Imid ⊆ I (see Figure 5.1). Hence by Lemma 5.1,1075

d(I, Imid) = d/2−
∣∣|I ∩ Imid| − |I ∩ Ic

mid|
∣∣

= d/2− |d/2− (|I| − d/2)| = d/4.

�1076

Figure 5.1: Any interval I of size 3d
d
is at distance d

4
from Imid.

A skew circuit has only skew parse trees, which all span an1077

interval of size 3d/4. Such an interval is at distance d/4 from Imid,1078

so the announced lower bound follows directly from Theorem 4.1,1079

together with the fact that there are 2d skew trees. �1080

Remark 5.5. Note that the factor 2−d is easily replaced by d−21081

by applying Theorem 4.2 instead, but we find it remarkable that1082

simply using a decomposition of H into blocks is enough to obtain1083

such an exponential lower bound.1084
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Slightly Unbalanced Circuits A circuit C computing a ho-1085

mogeneous non-commutative polynomial of degree d is said to be1086

α-unbalanced if every multiplication gate has at least one of its1087

children which computes a polynomial of degree at most αd.1088

Theorem 5.6. Let f be a homogeneous non-commutative poly-1089

nomial of degree d and on n variables such that MImid (f) has full1090

rank nd/2. Then any
(
1
2
− ε
)
-unbalanced circuit computing f has1091

size at least 4−dnεd.1092

This result improves over a previously known exponential lower1093

bound on
(
1
5

)
-unbalanced circuits (Limaye et al. 2016).1094

Proof. This is an adaptation of the proof of Theorem 5.2 about1095

skew circuits. We now rely on these two observations, which re-1096

spectively generalize Fact 5.3 and Fact 5.4:1097

Fact 5.7. Any (1
2
− ε)-unbalanced shape spans an interval of size1098

between 3d/4− (1
2
− ε)d/2 and 3d/4 + (1

2
− ε)d/2, that is, between1099

d/2 + dε/2 and d− dε/2.1100

Proof. Let α denote (1
2
− ε) < 1/2 and let s ∈ Treed be an1101

α-unbalanced shape of size d. We let v1 be its root, and v2 be1102

the child of v1 which spans the largest interval, which has size1103

Iv2 ≥ (1 − α)d ≥ αd. If both children of Iv2 span intervals of size1104

≤ αd, we set r = 2, and otherwise iterate for i = 3 . . . r until both1105

children of vr span intervals of size ≤ αd. Now, if we choose vr+11106

to be a child of vr, the cardinalities of the growing sequence of1107

intervals Ivr+1 ⊆ Ivr ⊆ · · · ⊆ Iv1 = [d] range from ≤ αd to d with1108

differences bounded by αd, so one of the interval has a size lying1109

in [3d/4− α/2, 3d/4 + α/2]. �1110

Fact 5.8. Any interval I of size d/2 + εd/2 ≤ |I| ≤ d− εd/2 is at1111

distance ≤ d/2− εd/2 from Imid.1112

Proof. We make a case distinction and first assume that Imid ⊆1113
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I. Then, by Lemma 5.1, we have that1114

dist(I, Imid) = d/2−
∣∣|I ∩ Imid| − |I ∩ Ic

mid|
∣∣

= d/2− |d/2− (|I| − d/2)|
= d− |I| < d/2− εd/2.

Assume now that Imid * I. Then, either 3d/4 or d/4 + 1 does not1115

belong to I. Both cases being symmetrical, we assume without1116

loss of generality that 3d/4 /∈ I. We let ` = |I ∩ Imid|. The current1117

situation is depicted in Figure 5.2.1118

Figure 5.2: Illustrating I and Imid when 3d/4 /∈ I.

It follows that
∣∣I∩]3d/4, d]

∣∣ = 0, and
∣∣I∩]1, d/4]

∣∣ = (|I| − `) ≤1119

d/4. Multiplying this last inequality by two and summing with1120

−|I| ≤ −d/2 yields |I| − 2` ≤ 0, so we obtain1121

dist(I, Imid) = d/2−
∣∣|I ∩ Imid| − |I ∩ Ic

mid|
∣∣

= d/2−
∣∣`− (

∣∣I ∩ [1, d/4]
∣∣+
∣∣I∩]3d/4, d]

∣∣)∣∣
= d/2−

∣∣`− (|I| − `)
∣∣

= d/2− (2`− |I|).

Now since |I| − ` ≤ d/4, −2` ≤ −2|I|+ d/2, which leads to1122

dist(I, Imid) = d/2− 2`+ |I|
≤ d− |I| ≤ d/2− εd/2,

since |I| ≥ d/2 + εd/2.1123

�

We conclude the proof by applying Theorem 4.1, just as we did1124

for skew circuits. �1125
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Slightly Balanced Circuits A circuit C computing a homo-1126

geneous non-commutative polynomial of degree d is said to be α-1127

balanced if every multiplication gate which computes a polynomial1128

of degree k has both of its children which compute polynomials of1129

degree at least αk.1130

Theorem 5.9. Let f be a homogeneous non-commutative poly-1131

nomial of degree d and on n variables such that M[1,d/2] (f) has full1132

rank nd/2. Then any ε-balanced circuit computing f has size at1133

least 4−dnεd.1134

Proof. Let s be an ε-balanced shape, and r be the root of s.1135

Let I = [1, b] be the interval spanned by the left child of r. Since s1136

is ε-balanced, εd ≤ |I| = b ≤ (1− ε)d. Hence, I is at a distance of1137

at most d/2 − εd from [1, d/2], which allows us to conclude using1138

Theorem 4.1. �1139

Note that is suffices to simply restrict the last multiplication in1140

the circuit to be ε-balanced for the proof to carry on.1141

Small Non-Skew Depth Circuits A circuit C has non-skew1142

depth k if all its parse trees are such that each path from the root1143

to a leaf goes through at most k non-skew nodes, i.e., nodes for1144

which the two children are inner nodes. We obtain an alternative1145

proof of the exponential lower bound of (Limaye et al. 2016) on1146

non-skew depth k circuits as an application of Theorem 4.1. In1147

the rest of this section we assume that k ≥ 30, p ≥ 30 is some1148

multiple of 3 and d = 12kp. We will make extended use of the1149

subset A ⊆ [d] introduced in (Limaye et al. 2016),1150

A = [1, 3kp] ∪
3k⋃
i=1

]3(k + i)p+ 2p, 3(k + i+ 1)p] ⊆ [d],

of size 6kp = d/2 which is better understood in Figure 5.3.1151

Theorem 5.10. Let f be a homogeneous non-commutative poly-1152

nomial of degree d = 12kp and on n variables such thatMA (f) has1153

full rank nd/2. Then any circuit of non-skew depth k computing f1154

has size at least 4−dnp/3 = 4−dnd/36k.1155
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Figure 5.3: Subset A ⊆ [d].

Proof. We shall prove that any parse tree s ∈ Treed with non-1156

skew depth k spans an interval I(s) at distance ≤ d/2− p/3 from1157

A. Then the result follows by applying Theorem 4.1.1158

Assume towards contradiction that a non-skew depth k shape1159

s ∈ Treed spans only interval at distance > d/2− p/3 from A. We1160

consider (see Figure 5.4) the path v1 · · · vr in s from its root to the1161

leaf with position 3kp, and write ui for i ∈ r − 1, to refer to the1162

child of vi which is not vi+1. Since s has non-skew depth k, at least1163

r − k nodes among v1, . . . , vr−1 are leaves.1164

Figure 5.4: The path from the root v1 to vr, the leaf with position
3kp.

We now state and prove some facts which then lead to a con-1165

tradiction:1166
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Fact 5.11. For every i ∈ [r], if ui is the left child of vi then1167

|Iui | < p/3.1168

Proof. Indeed, ui being at the left of the path to the leaf at1169

position 3kp, Iui ⊆ [1, 3kp] ⊆ A. But dist(Iui , A) > d/2 − p/3, so1170

it must be that |Iui | < p/3. �1171

Fact 5.12. For every i ∈ [r], if ui is the right child of vi then1172

|Iui| < 5p.1173

Proof. Likewise, we now have Iui ⊆ [3kp + 1, d]. Intuitively,1174

a large interval in this zone must contain roughly twice as much1175

elements from Ac than from A, so they cannot be at distance close1176

to the maximum d/2.1177

Let l be the number of blocks of the form [3(k + i)p + 2p +1178

1, 3(k+ i+1)p] ⊆ A which intersects Iui . By contradiction, assume1179

that |Iui | > 5p. Note that it implies that l ≥ 2.1180

Assume that l = 2, then |A ∩ Iui| ≤ 2p hence, as |Iui | ≥ 5p,1181

|Ac∩Iui | ≥ 3p. Therefore, using Lemma 5.1, d(A, Iui) ≤ d/2−p ≤1182

d2 − p/3.1183

Finally, assume that l > 2. Then |A∩ Iui | ≤ pl and |Ac∩ Iui | ≥1184

2p(l− 1). Therefore, using Lemma 5.1, d(A, Iui) ≤ d/2− pl+ 2p ≤1185

d/2− p ≤ d2 − p/3. �1186

Fact 5.13. It must be that r ≥ 7kp.1187

Proof. Indeed, since [1, d]\{3kp} = [1, 12kp]\{3kp} is covered1188

by the Iui , which have size bounded by 5p (thanks to Fact 5.111189

and Fact 5.12) and among which all but k may have size > 1 (as1190

we consider a circuit of non-skew depth k), there must be at least1191

12kp− 5kp = 7kp of them. �1192

Fact 5.14. There is some index i0 such that ui0 , ui0+1, . . . , ui0+20p/3−11193

are all leaves in s.1194

Proof. Indeed, only k among the 7kp ui’s may not be leaves.1195

By contradiction assume that all blocks of consecutive leaves have1196
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length smaller than 20p/3, so overall length is (20p/3)(k + 1) +1197

k < 7kp as we initially assumed that k, p ≥ 30. This contradicts1198

Fact 5.13. �1199

We now consider the increasing sequence of intervals Ivi0+20p/3−1
⊆1200

Ivi0+20p/3−2
⊆ · · · ⊆ Ivi0 (where the nodes ui0 , ui0+1, . . . , ui0+20p/3−11201

are those given by Fact 5.14), which we simply denote I1 ⊆ I2 ⊆1202

· · · ⊆ I20p/3. Each Ii = [ai, bi] contains 3kp, and |Ii+1| = |Ii| +1203

1. We let ni = |Ii ∩ A| and mi = |Ii ∩ Ac|. The assumption1204

d(A, Ii) > d/2 − p/3 can be rephrased, thanks to Lemma 5.1, as1205

|ni −mi| ≤ p/3.1206

First, note that for all j < 6p, bj /∈ {3(k+ i)p+ 2p+ 1 | 1 ≤ i ≤1207

3k}. Indeed, for such a j one would have |nj+2p/3+1−mj+2p/3+1| =1208

|nj −mj| + 2p/3 + 1 > p/3 leading to a contradiction. Therefore,1209

all the bj for j = 1, . . . , 6p− 1 belong to [3(k + i)p+ 2p+ 2, 3(k +1210

i+ 1)p+ 2p] for some 1 ≤ i ≤ 3k. Hence, m6p−1 −m1 ≤ 2p, which1211

implies that n6p−1 − n1 ≥ 4p.1212

Finally,1213

2p/3 ≥
∣∣|n1 −m1| − |n6p−1 −m6p−1|

∣∣
≥ |n6p−1 −m6p−1| − |n1 −m1|
≥ n6p−1 −m6p−1 +m1 − n1

≥ 4p− 2p

which leads to a contradiction and concludes the proof. �1214

5.1.2. Circuits with Many Parse Trees. We now turn our1215

focus to k-PT circuits which are circuits with at most k different1216

parse trees. We first start by a key technical lemma that works1217

both in the non-commutative and commutative (later discussed in1218

Section 5.2) settings.1219

Balanced Subsets For s ∈ Treed and X ⊆ [d], we define

dist(X, s) = min {dist(X,A) | A spanned by s} .
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In the following, we let
(
[d]
d/2

)
denote the subsets of [d] of size d/2.1220

For a subset P ⊆ 2[d] we write U (P) for the uniform distribution1221

over P .1222

Recall that, following Lemma 5.1, if X ∈
(
[d]
d/2

)
and A ⊆ [d],1223

dist(X,A) > d/2− δ rewrites as
∣∣|A∩X|− |Ac∩X|

∣∣ ≤ δ, meaning1224

that A is X-balanced.1225

The following lemma is a subtle probabilistic analysis bounding1226

the number of subsets that are balanced over all subsets spanned1227

by a given fixed shape s. This will later entail the existence of a1228

subset which is close to all parses trees in PT (C), provided |PT (C) |1229

is not too large. It holds in both the non-commutative (in which1230

it was originally proved) and the commutative settings.1231

Lemma 5.15 (Adapted from Claim 15 in Lagarde et al. 2018). Let1232

s ∈ Treed be a shape with d leaves, and δ ≤
√
d/2. Then1233

Pr
X∼U

(
( [d]
d/2)

) [dist(X, s) > d/2− δ
]
≤ 2−αd/δ

2

,

where α is some positive constant.1234

We shall use an intermediate result from the aforementioned1235

paper. Their proof (based on a greedy construction) can be read1236

just as such in the commutative setting.1237

Lemma 5.16 (Subclaim 21 in Lagarde et al. 2018). Let s ∈ Treed,1238

and r, t be integers such that rt ≤ d/4. Then there exists a se-1239

quence u1, . . . , ur of nodes of s such that for all i ∈ [r],1240 ∣∣∣∣∣Avi \
(
i−1⋃
j=1

Auj

)∣∣∣∣∣ ≥ t.

We now give the proof of Lemma 5.16 in the commutative set-1241

ting, noting that the proof in the non-commutative setting is a1242

restricted version of the one we give, where spanned subsets of [d]1243

are replaced by spanned intervals.1244

Proof. We pick t = δ2 and r = d
4δ2

, and apply Lemma 5.16 to1245

obtain a sequence v1, ..., vr of nodes of s. Then we have:1246
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Pr
X∼U

(
( [d]
d/2)

) [dist(X, s) > d/2− δ
]

= Pr
X∼U

(
( [d]
d/2)

) [for all node v of s,
∣∣|X ∩ Av| − |Xc ∩ Av|

∣∣ ≤ δ
]

≤ d Pr
X∼U(2[d])

[
for all node v of s,

∣∣|X ∩ Av| − |Xc ∩ Av|
∣∣ ≤ δ

]
The last inequality follows from the general fact, applied using

2d ≤ d
(
d
d/2

)
, that, for any event E and finite subsets P ⊆ P ′ with

|P ′| ≤ k|P| one has

Pr
A∼U(P)

(E) ≤ k Pr
A∼U(P ′)

(E).

Following from there, we let Ei, for i ∈ [r], be the event
∣∣|X ∩1247

Avi | − |Xc ∩ Avi |
∣∣ ≤ δ, and obtain1248

d Pr
X∼U(2[d])

[
for all node v of s,

∣∣|X ∩ Av| − |Xc ∩ Av|
∣∣ ≤ δ

]
≤ d Pr

X∼U(2[d])

[
∀i ∈ [r], Ei

]
≤ d

r∏
i=1

Pr
X∼U(2[d])

[Ei | ∀j < i, Ej]

In order to bound the terms PrX∼U(2[d])[Ei | ∀j < i, Ej] we use1249

the following consequence of the Central Limit theorem.1250

Fact 5.17. There exist β < 1 such that for all random variable Y1251

following an unbiased binomial law of parameter n, and all interval1252

I with |I| ≤ 2
√
n, one has Pr(Y ∈ I) ≤ β.1253

If X is sampled uniformly among [d] and X ∩
(⋃

j<iAuj

)
is1254

fixed, let e = |X ∩
(⋃

j<iAuj

)
| − |Xc ∩

(⋃
j<iAuj

)
|. Then the1255

event Ei can be rephrased as having a random variable following1256
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an unbiased binomial law of parameter t = δ2 sit in [−δ − e, δ − e]1257

of size 2δ, which is bounded by β thanks to Fact 5.17. Hence,1258

Pr
X∼U

(
( [d]
d/2)

) [dist(X, s) > d/2− δ
]
w ≤ dβr = dβ

d
4δ2 ≤ 2−αd/δ

2

for some positive constant α. �1259

Superpolynomial lower bounds Lagarde, Limaye, and Srini-1260

vasan (Lagarde et al. 2018) obtained a superpolynomial lower bound1261

for superpolynomial k (up to k = 2d
1
3−ε). In the statement below,1262

the first item shows how to obtain the same result using Theo-1263

rem 4.1, while the second item improves the previous bound by1264

applying Theorem 4.2 instead.1265

Theorem 5.18. Let f be a homogeneous non-commutative poly-1266

nomial of degree d and with n variables such that, for all A ⊆ [d],1267

MA (f) has full rank. Let ε > 0. Then for large enough d,1268

(i) any 2d
1/3−ε-PT circuit computing f has size at least 2d

1/3(logn−d−ε);1269

(ii) any 2d
1−ε-PT circuit computing f has size at least ndε/3d−2.1270

Proof. Let C be a k-PT circuit computing f , and δ ≤
√
d. We

first show that there exists a subset A ⊆ [d] which is close to all
parse trees in C. Indeed, a union bound and Lemma 5.15 yield

Pr
A∼U

(
( [d]
d/2)

) [∃s ∈ PT (C) , dist(A, s) > d/2− δ
]

≤
∑

s∈PT(C)

Pr
A∼U

(
( [d]
d/2)

) [dist(A, s) > d/2− δ
]
≤ k2−αd/δ

2

for large enough d.1271

Choosing appropriate values for δ and k and applying Theo-1272

rem 4.1 (resp. Theorem 4.2) leads the first (resp. second) item.1273

(i) Choosing δ = d1/3 and k = 2d
1/3−ε , we have that k2−αd/δ

2
=

2d
1/3−ε−αd1/3 < 1, This implies the existence of a subset A ⊆

[d] of size d/2 such that for all s ∈ PT (C) , dist(A, s) ≤ d/2−
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δ, that is, any s ∈ PT (C) spans an interval I(s) at distance
at most d/2 − δ from A. Finally, we apply Theorem 4.1 to
obtain

|C| ≥ rank (MA (f))n−(d/2−δ)k−1 = nd/2n−(d/2−d
1/3)2−d

1/3−ε

= 2d
1/3(logn−d−ε).

(ii) Choosing δ = dε/3 and k = 2d
1−ε , we have that k2−αd/δ

2
=1274

2d
1−ε−αd1−

2
3 ε < 1, which again lets us choose A ⊆ [d] of size1275

d/2 and such that for all s ∈ PT (C), dist(s, A) ≤ d/2 − δ.1276

Now, applying Theorem 4.2 we obtain1277

|C| ≥ rank (MA (f))n−(d/2−δ)d−2 = nδd−2 = nd
ε/3

d−2.
�

In the second item, the bound 2d
1−ε on the number of parse1278

trees is to be compared to the total number of shapes of size d1279

which is bounded by 22d as noticed in Remark 3.2. As explained in1280

the introduction this means that we obtain superpolynomial lower1281

bounds for any class of circuits which has a small defect in the1282

exponent of the total number of parse trees.1283

5.2. Applications in the commutative setting. Regarding1284

application in the commutative setting, we again consider the class1285

of k-PT circuits which are set-multilinear circuits with at most k1286

different commutative parse trees. Recall from Section 4.3 that1287

in the commutative set-multilinear setting, parse trees are shapes1288

whose leaves are labelled by integers without repetition. In par-1289

ticular the number of parse trees is roughly bounded by d! (see1290

Remark 4.11).1291

Arvind and Raja (Arvind & Raja 2016) showed a superpoly-1292

nomial lower bound for k-PT circuits computing set-multilinear1293

polynomial for sublinear k (up to k = d1/2−ε). We improve this1294

to superpolynomial k (up to k = 2d
1−ε).1295

However, the generic lower bound theorems, namely Theorem 4.81296

and Theorem 4.9, are not exactly the same, so we obtain two incom-1297

parable bounds. In the following lower bounds, the set-multilinear1298

polynomials that we consider have their variables partitionned into1299

X = X1 tX2 t · · · tXd with n = |Xi| for all i.1300
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Theorem 5.19. Let f be a set-multilinear commutative polyno-1301

mial such that for all A ⊆ [d], the matrixMA (f) has full rank. Let1302

ε > 0. Then for large enough d,1303

(i) any 2d
1/3−ε-PT circuit computing f has size at least 2d

1/3(logn−d−ε);1304

(ii) any 2d
1−ε-PT circuit computing f has size at least ndε/3d−2.1305

In particular, this lower bound is super polynomial when d is1306

at most a polynomial in log n.1307

Proof. Let C be a k-PT circuit computing f , and δ ≤
√
d. By

union bound and Lemma 5.15 for the commutative setting,

Pr
A∼U

(
( [d]
d/2)

) [∃s ∈ PT (C) , dist(A, s) > d/2− δ
]

≤
∑

s∈PT(C)

Pr
A∼U

(
( [d]
d/2)

) [dist(A, s) > d/2− δ
]
≤ k2−αd/δ

2

Choosing appropriate values for δ and k and applying Theo-1308

rem 4.8 (resp. Theorem 4.9) leads the first (resp. second) item.1309

(i) Choosing δ = d1/3 and k = 2d
1/3−ε , we have that k2−αd/δ

2
=

2d
1/3−ε−αd1/3 < 1. Hence, picking a subset A ⊆ [d] of size d/2

such that any s ∈ PT (C) spans an interval I(s) at distance
at most d/2− δ from A, and applying Theorem 4.8 yields

|C| ≥ rank (MA (f))n−(d/2−δ)k−1 = nd/2n−(d/2−d
1/3)2−d

1/3−ε

= 2d
1/3(logn−d−ε).

(ii) Choosing δ = dε/3 and k = 2d
1−ε , we have that k2−αd/δ

2
=1310

2d
1−ε−αd1−

2
3 ε < 1. Hence, picking a subset A ⊆ [d] of size d/21311

and such that for all s ∈ PT (C), dist(s, A) ≤ d/2 − δ, and1312

applying Theorem 4.9 yields1313

|C| ≥ rank (MA (f))n−(d/2−δ)k−1 = nδ2−d
1−ε

= nd
ε/3

2−d.
�
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6. Discussion1314

We presented a new tool for proving lower bounds for arithmetic1315

circuits in the form of the Hankel matrix. We obtained strong1316

lower bounds both in the commutative and non-commutative set-1317

tings using generic decompositions of the Hankel matrix. A natural1318

question is how far this approach can be pushed. The first remark1319

is that the rank of the Hankel matrix is exactly the size of the1320

smallest circuit computing a given (non-associative) polynomial,1321

hence the potential loss can only be in analyzing the Hankel ma-1322

trix. Limaye, Malod and Srinivasan (Limaye et al. 2016) defined1323

a polynomial computed by a circuit of polynomial size but such1324

that all partial derivative matrices have full rank: this shows that1325

one cannot use our decomposition of the Hankel matrix to obtain1326

strong lower bounds for the class of all circuits. This limitation is1327

an invitation to get a deeper understanding of the Hankel matrix1328

and to find other ways of decomposing it.1329

On a different perspective, the Hankel matrix has been suc-1330

cessfully used as a data structure for learning algorithms (in both1331

supervised and unsupervised settings). It is tempting, using the1332

characterization that we present in this paper, to construct algo-1333

rithms for learning polynomials relying on the Hankel matrix as1334

algorithmic representation.1335
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