$F \subseteq V$ final vertex

$\Omega = V^* F V^\omega$

$\text{Attr}_o(F) = F$

$\text{Attr}_i(F) = \text{Attr}_i(F)$

$\text{Attr}_u(F) = \{ v \in V \mid \exists v' \in \text{Attr}_i(F) \text{ s.t. } v \rightarrow v' \}$

$\Omega \{ v \in V \mid \forall v' \in \text{Attr}_i(F) \text{ then } v' \in \text{Attr}_i(F) \}$

$(\text{Attr}_i)_7$

$\subseteq \text{Attr}_i(F)$ Permit

$\text{Th}: \text{Attr}_i(F) \subseteq WE$ + positional start
$\text{Att}_\omega^u (F)$

$\text{Att}_\omega^{u+1} (F)$
Buchi condition:

$F \subseteq V$ final vertex.

Eve wins a play if it visits F often.

$\Omega = \bigcap \left\{ V' : V^* F V' \supseteq \{w_0 v_1 v_2 \ldots | \exists^n : v_i \in F \} \right\}$

\[
\begin{align*}
\text{Attr}_0^+(S) &= \emptyset \\
\text{Attr}_{i+1}^+(S) &= \text{Attr}_i^+(S) \cup \{v \in V \mid \exists v' \text{ s.t. } v \rightarrow v' \text{ and } v' \in \text{Attr}_i^+(S) \cup S\} \\
&\quad \cup \{v \in V \mid \forall v' \text{ s.t. } v \rightarrow v' \text{ then } v' \in \text{Attr}_i^+(S) \cup S\}.
\end{align*}
\]

$\text{Attr}^+(S) = \text{Rim}(\text{Attr}_i^+(S)) ; i \geq 0$

\geq vertices from which Eve can force to revisit S in at least one step.

Proof: Like reachability games.
\(\text{Attr}^+(F) \)

\[
\begin{align*}
(zi) & \rightarrow 1 \\
Z_0 & = F \\
Z_{i+1} & = \text{Attr}^+(Z_i) \cap F \\
Z_\infty & = \text{lim}_{i \to \infty} Z_i \\
L_\ast & \text{ greatest fixed point}
\end{align*}
\]

\[
Z_\infty = \text{Attr}^+(Z_\infty) \cap F
\]

Ls Eve has a strat to go back to Z∞ from Z∞ in at least one step.

\[
\text{Th: } W_E = \text{Attr}^+(Z_\infty)
\]
Proof: $\text{Att}_n (Z^\omega) \subseteq \text{We} \subseteq \text{Att}_n (Z^\omega)$

Define φ positional on $\text{Att}_n (Z^\omega)$ by:

$$\varphi(v) = \varphi_i(v) \text{ if } v \in Z^n$$

$$= \varphi_0(v) \text{ if } v \notin Z^n$$

Let us prove that φ play starting in $\text{Att}_n (Z^\omega)$ where Eve respects φ is winning for Eve.

$$l = v_0,v_1,v_2,\ldots$$

$\forall i: v_i \in \text{Att}_n (Z^\omega)$ because v_0 does

φ_0 if v_i does then v_{i+1} does too

$$l = v_0 \overline{\varphi_0} \overline{\varphi_i} \overline{\varphi_0} \ldots$$

$$= v_0 \overline{\varphi_0} \overline{\varphi_{k_0}} \overline{\varphi_{k_0+1}} \overline{\varphi_{k_1}} \ldots \overline{\varphi_{k_i}} \overline{\varphi_{k_i+1}} \ldots \overline{\varphi_{k_i}} \Rightarrow \text{winning}$$

$\exists \in Z^\omega \overline{\varphi_{k_i}} \leq f$
\(V \setminus \text{Att}(Z_0) \subset W_A \)
\[v \notin \text{Att}(Z_0) \implies \exists i : 1 \leq i \leq \text{Att}(Z_i) \]
Call \(\kappa(v) = \text{smallest } i \text{ s.t. } v \in \text{Att}(Z_i) \setminus \text{Att}(Z_{i-1}) \)

Property: \(\forall v \notin \text{Att}(Z_0) \text{ then we have:} \)
- \(v \in \text{Att}(Z_0) \), \(v \) has a successor \(v' \) s.t. \(\kappa(v') < \kappa(v) \)
 and if \(v \in F \) then the inequality is strict
- \(\forall v \in F \), \(\forall v' \text{ s.t. } v \rightarrow v' \) one has \(\kappa(v') \leq \kappa(v) \)
 and if \(v \in F \) the inequality is strict.

Proof: \(v \) with \(\kappa(v) = i \) and \(v \notin \text{Att}(Z_0) \)
\[\Rightarrow v \in \text{Att}(Z_{i+1}) \Rightarrow \text{Adam can fire to stay outside of } \text{Att}(Z_{i+1}) \]
\[\Rightarrow \text{to stay in vertices of } \kappa \leq i \text{, } v \in \text{Att}^+(Z_i) \]
\(v \in F \), if \(\forall v' \text{ s.t. } v \rightarrow v' \text{ one has } \kappa(v') = i \Rightarrow \forall F \Rightarrow \kappa(v) = z_{i+1} \Rightarrow \kappa(v) = z_{i+1} \)
Define Ψ positional strict for Adam by letting

$$\Psi(v) = v'$$

for some v' s.t. $\Delta v(u') \leq \Delta v(u)$

strict if $v \in \mathcal{F}$. \\

$2 = \ldots v_0, v_1, v_2 \ldots$ where Adam respects Ψ and starting outside of \mathcal{F}. \\
Then: $\Delta v(u) < \Delta v(u')$ and decreases strictly when $v \in \mathcal{F}$.

\Rightarrow this can only happen finitely often.

$\Rightarrow \sum_{i=1}^{\infty} 1 \leq \mathcal{F}$.

\Rightarrow Adam wins in 2.

$\text{Adam}(200) \leq \text{WA}$
\[G = (V, E) \]

\[C = \{0, \ldots, d \} \subseteq \mathbb{N} \text{ colours} \]

\[E : V \rightarrow C \text{ : coloring set.} \]

\[\Omega = \{ \omega = v_0 v_1 \ldots \mid \lim \sup \{(v_i)_{i>0} \} > 0 \text{ even} \} \]

Th: One can compute winning region + positional strat that traps in the winning region

- Subarena: \(U \) is a subarena if \(G \cup U \) has no dead-end
- \(G(U, E \cap U \times U) \)

Trap: \(U \subseteq V \) is a trap for player \(\sigma \) if \(\bar{\sigma} \) has a strat to trap the play in \(U \) if it starts from \(\bar{\sigma} \)

If \(U \) is a trap then \(U \) is a subarena

The complement of an attractor for \(\bar{\sigma} \) is a trap for \(\sigma \)
Proof is by induction on the number σ of colours.

Base case: $\sigma = 1$ → trivial.

Induction: $\sigma = \sigma' + 1$.

Start at a position d in C.

Call σ the play that wins if d is as often repeated.

We will construct an infinite sequence (W^k, Y^k) such that:

1. W^k is a trap for σ and Y^k is winning on it and traps the play in W^k.
2. $(W^k)_{k=1}^\infty$ is an inhabitable sequence.
3. d^k geometrically dominates d.

For each k, W^k is an inhabitable sequence.

$W_0^0 = \varnothing$ and Y_0^0 is never.

Vertices with colour d: $W^k_{\sigma} = W^k_{\sigma} \cup U \cup Z_{\sigma}$

Subsequence with $\sigma-1$ colours.
\[w^k_l \mid \psi^k_l \]

\[X_k = \text{Add}^\sigma (w^k_l) \mid \psi \text{ path} \]

\[T = V \setminus X_k \]

\[Z_k = T_k \setminus \text{Add}^\sigma (N_k) \text{ when } N_k = \{ v \in T_k \mid c(v) = 0 \} \]

L subarena with \(n-1 \) colours

\[\Rightarrow Z^k_l \mid Z^k_\sigma \]

\[\psi^k_l \mid \psi^k_\sigma \}

by induction hypothesis on the \# colours

\[w_{k+1}^{l+1} = X_k \cup Z_k^l \]

\[\psi_{k+1}^l (v) = \begin{cases} \psi_\sigma^l (v) & \text{if } v \in \overline{Z^l_\sigma} \\ \psi^k_\sigma (v) & \text{if } v \in W^k_\sigma \end{cases} \]

W = Point (w^k_\sigma) \text{ winning by IH on } \psi^k_\sigma
Consider $V \setminus W^{\omega}$

situation when
six point is reached

Define Ψ strat in σ

$$
\Psi(v) = \begin{cases}
\Psi_0(v) & \text{if } v \in N \\
\Psi_{\text{oth}}(v) & \text{if } v \in \text{Adj}^\circ(N) \setminus N \\
\Psi_0(v) & \text{if } v \in Z_0
\end{cases}
$$

1. play starting in $V \setminus W^{\omega}$ when σ respects Ψ

 1) either \(\Delta \) stays in Z_0 eventually forever \Rightarrow winning by $5+$

 2) \(\epsilon \) often gets in $\text{Adj}^\circ(N)$ $\Rightarrow \epsilon$ often visits $N \Rightarrow$ man \(\epsilon \) often visited
color is \(c \) $\Rightarrow \sigma$ wins.
Corollary: Solving parity game is in \(\text{NP} \cap \text{co-NP} \).

Proof

NP:

Eve wins \(\iff \) she has a positional winning strategy.

Algorithm:

1. Guess a positional strategy for Eve
2. Check that it is winning

\(\subseteq \text{PTIME} \)

\(\text{co-NP:} \) duality problem

Big question: Is it in \(P \)?