
Games over finite graphs

Exercise 1

For the whole exercise we assume that we are given a finite graph G = (V,E), with V a
finite set of vertices and E ⊆ V ×V a finite subset of edges. Moreover, we assume that there is
no dead-end (that is for all v1 ∈ V there exists v2 ∈ V such that (v1, v2) ∈ E). We additionally
fix a partition VE ∪ VA of the vertices V (that is VE ∩ VA = ∅ and VE ∪ VA = V ). This partition
is then use to define an arena G = (G, VE, VA) as explained during the lectures.

Question 1: Let F1, · · · , Fn be a collection of subsets of V that are pairwise disjoint (for all
i 6= j, Fi ∩ Fj = ∅). We consider the following winning condition for Eve :

Ω = V ∗F1V
∗F2 · · ·V

∗FnV
ω

and we denote by G = (G,Ω) the associated game. Hence in this game, a play λ = v0v1v2 · · · is
won by Eve if and only if the sets F1, · · · , Fn are visited, in this order, at least one, i.e. there
are i1 < i2 < · · · in such that for all 1 ≤ j ≤ n, vij ∈ Fj .

(a) Give an algorithm that decide for a given vertex whether it is winning for Eve.
(b) What is the complexity of your algorithm?
(c) Does Eve always has a winning positional strategy from any winning vertex in G ?
(d) Can you build a winning strategy for Eve from any winning vertex for her in G ?

Answer. We define the following sets : Wn+1 = V and Wi = Attr(Wi+1 ∩Fi) for all 1 ≤ i ≤ n,
where Attr is the usual attractor for Eve as seen in the course. We have the following property :
for all 1 ≤ i ≤ n + 1, Wi consists of those vertices from which Eve has a winning strategy in
the game whose winning condition is Ωi = V ∗FiV

∗Fi+2 · · ·V
∗FnV

ω (with the convention that
Ωn+1 = V ω). Then the property is proved by (decreasing) induction on i. For i = n + 1
the property is obvious. Then assume the property holds for some i + 1. By definition of the
attractor, Eve has from Wi = Attr(Wi+1∩Fi) a positional strategy ϕ to reach the set Wi+1∩Fi

and by induction hypothesis, she has a strategy ϕ to ensure, from any vertex in Wi+1, that the
play belongs to Ωi+1. Now consider the strategy ϕi+1 of Eve that is defined as follows : play
accordingly to ϕ as long as Wi+1 ∩Fi is not reached and then play accordingly to ϕi+1 forever.
Consider a play λ that starts in Wi and where Eve respects ϕi+1 : first, it eventually visits
Wi+1 ∩ Fi (as Eve first respects ϕ), and is of the form λ1vλ2 with v ∈ Wi+1 ∩ Fi and λ1 not
visiting Wi+1 ∩Fi. Then vλ2 is a play where Eve respects ϕi+1, hence λ2 ∈ Ωi+1, hence λ ∈ Ωi.
This proves that from any vertex in Wi Eve has a strategy to ensure that the resulting play
is in Ωi. Conversely, consider now a vertex v /∈ Wi. By definition, Adam has a strategy ψ to
prevent reaching Wi+1 ∩ Fi, and (by induction hypothesis), for any element not in Wi+1 Adam
has a strategy ψi to prevent to produce a play in Ωi+1. Now consider the following strategy
for Adam : play according to ψ as long as Fi is not visited, and if this eventually happens,
then play according to ψi. Consider a play λ starting from a vertex not in Wi and where Adam
respects ψ : then either λ never reach Fi (hence λ /∈ Ωi) or λ = λ1vλ2 with v ∈ Fi (hence
v /∈ Wi+1) and λ1 not visiting Fi and vλ2 is a play where Adam respects ψi. Hence λ2 /∈ Ωi+1

and therefore λ /∈ Ωi. This concludes the induction. Thus the winning vertices in the original
game are those in W1.
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Computing W1 requires n computation of the attractor set, which can be achieved in O(n×
|E|)

Eve may not have a positional strategy in the game. For instance consider a three vertex
game where Eve is playing alone and such that the vertices are u,v and w and the edges
{(u, v)(v, u)(u, w)(w, u)} and F1 = {v} and F2 = {w}. Then any positional strategy will
produce a play that visits only {u, v} or only {u, w}, hence loosing. Of course Eve has winning
strategy in this game.

From the proof above, one can construct a winning strategy (as ϕi is built from ϕi+1 and
ϕ a positional strategy in a reachability game). In particular one can note that the resulting
strategy only uses finite memory (of size n).

Question 2: We again consider a collection F1, · · · , Fn of subsets of V that are pairwise
disjoint (for all i 6= j, Fi ∩ Fj = ∅). We consider the following winning condition for Eve :

Ω =
n⋂

i=1

V ∗FiV
ω

and we denote by G = (G,Ω) the associated game. Hence in this game, a play λ = v0v1v2 · · · is
won by Eve if and only if the sets F1, · · · , Fn are visited, in any order, at least one, i.e. there
are i1, i2, · · · , in such that for all 1 ≤ j ≤ n, vij ∈ Fj .

(a) Give an algorithm that decide for a given vertex whether it is winning for Eve. One
might design a new equivalent game (with a simpler winning condition studied in the
course).

(b) What is the complexity of your algorithm?
(c) Does Eve always has a winning positional strategy from any winning vertex in G ?
(d) Can you build a winning strategy for Eve from any winning vertex for her in G ?

Answer. We define a new graph G′ = (V ′, E ′) where V ′ = V × 2{1,··· ,n} and E ′ consists of
the pairs ((v1, S1), (v2, S2)) such that (v1, v2) ∈ V and S2 = S1 ∪ {i | v2 ∈ Fi}. We partition
V ′ by letting V ′

E = VE × 2{1,··· ,n}, which leads to define an arena G ′. Then one define a set of
final vertices F ′ = V ×{1, . . . , n} and let G′ be the reachability game induced by F ′ on G ′. We
claim that Eve has a winning strategy in G from a vertex v iff she has a winning strategy in
G′ from (v, {i | v ∈ Fi}). One can note that in G ′, from some vertex (v, S) if there is an edge
to some (v′, S ′) then S ′ is uniquely determined from v′ and S. In particular, it means that any
strategy ϕ in G can be lifted to a strategy in G′ by letting ϕ′((v1, S1) · · · (vk, Sk)) = (v, S) where
v = ϕ(v1 · · · vk) and S is the unique possible set. Assume that Eve wins in G from v and call ϕ
a winning strategy. Consider a (finite) play λ = (v1, S1)(v2, S2) · · · in G′ from (v, {i | v ∈ Fi})
where Eve respects ϕ′. It is straightforward to check that Sk = {i | ∃j ≤ k s.t. vk ∈ Fi} (this
is independent of ϕ′). Now by definition of ϕ′, one has that v1v2 · · · is a play in G where Eve
respects ϕ, hence it is winning, hence there is some k such that Sk = {1, · · · , n}, meaning that
ϕ′ is winning.

Now assume that Eve wins in G
′ from (v, {i | v ∈ Fi}) and call ϕ′ a winning strategy.

One can assume that ϕ′ is positional as G′ is a reachability game. Define a strategy ϕ in G by
letting ϕ(v0 · · · vk) = vk+1 where (vk+1, Sk+1) = ϕ′(vk, {i | ∃j ≤ k s.t. vk ∈ Fi}). Consider a play
v0v1 · · · where Eve respects ϕ. Then the play (v0, S0)(v1, S1) · · · where we let Sk = {i | ∃j ≤
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k s.t. vk ∈ Fi} is a play in G where Eve respects ϕ′. Therefore it is a winning play, meaning
that v0v1 · · · is winning for Eve in G. This concludes the proof.

Complexity is exponential as the game G′ is (and solving a reachability game is linear).
There is no memoryless strategy in general for the same reason as previously. From the

proof it follows that one can always construct a winning strategy in G (as one can built one in
G′ and lift it back to G.

Question 3: We again consider a collection F1, · · · , Fn of subsets of V that are pairwise
disjoint (for all i 6= j, Fi∩Fj = ∅). We consider the following winning condition for Eve : a play
λ = v0v1v2 · · · is won by Eve if and only if the each of the set F1, · · · , Fn is visited infinitely
often. Equivalently, for all 1 ≤ j ≤ n there exists i1 < i2 < i3 · · · such that for all 1 ≤ k,
vik ∈ Fj.

(a) Give an algorithm that decide for a given vertex whether it is winning for Eve. One
might design a new equivalent game (with a simpler winning condition studied in the
course).

(b) What is the complexity of your algorithm?

Answer. It suffices to remark that the winning condition is unchanged is one force the order
in which the sets Fi are visited, i.e. she has to infinitely visit F1 and then F2 and then F3 . . . Fn.
Hence it suffices to build an new game with an extra component recalling which Fi should be
visited next, and to define as a winning condition to infinitely often switch from the component
being n to the component being 1.

Question 4: [Difficult] We go back to the setting of the second question, but we additionally
assume that all the Fj are singleton. Give a polynomial time algorithm to decide whether a
vertex is winning for Eve.

Answer. For all pair (i, j) of vertices one check whether i belongs to the attractor of j. Then
one builds a graph whose vertices are 1, . . . , n and where there is an edge from i to j if and
only if i belongs to the attractor of j. Then in this graph there is a path that visits all vertices
if and only if Eve has a winning strategy (this is easy to check). Looking for such a path is
checked in polynomial time (one essentially builds the strongly connected components of the
graph).
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