Coherence of Gray categories via rewritting

Simon Forest and Samuel Mimram

Abstract

Over the recent years, the theory of rewriting has been used and extended in order to
provide systematic techniques to show coherence results for strict higher categories. Here, we
investigate a further generalization to Gray categories, known to be equivalent to tricategories.
This requires us to develop the theory of rewriting in the setting of precategories, which
include Gray categories as particular cases, and are adapted to mechanized computations. We
show that a finite rewriting system in precategories admits a finite number of critical pairs
which can be efficiently computed and, as a variant of Squier’s theorem in our context, that
a convergent rewriting system is coherent, meaning that two parallel 3-cells are necessarily
equal. This allows us to prove coherence results for several well-known structures in the
context of Gray categories (monoids, adjunctions, Frobenius monoids).
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Introduction

Algebraic structures, such as monoids, can be defined inside arbitrary categories. In order to
generalize their definition to higher categories, the general principle is that one should look for a
coherent version of the corresponding algebraic theory: this roughly means that we should add
enough higher cells to our algebraic theory so that “all diagrams commute”. For instance, when
generalizing the notion of monoid from monoidal categories to monoidal 2-categories, associativity
and unitality are now witnessed by 1-cells, and one should add new axioms in order to ensure
their coherence: in this case, those are MacLane’s pentagon and unit equations, thus resulting
in the notion of pseudomonoid. The fact that these are indeed enough to make the structure
coherent constitutes a reformulation of MacLane’s celebrated coherence theorem for monoidal
categories [19]. In this context, a natural question is: how can we systematically find those higher
coherence cells?

Rewriting theory provides a satisfactory answer to this question. Namely, if we orient the
axioms of the algebraic structures of interest in order to obtain a rewriting system which is
suitably behaved (confluent and terminating), the confluence diagrams for critical branchings
precisely provide us with such coherence cells. This was first observed by Squier for monoids, first
formulated in homological language [23] and then generalized as a homotopical condition [24, 17].
These results were then extended to strict higher categories by Guiraud and Malbos [12, 13, 14]
based on a notion of rewriting system adapted to this setting, which is provided Buronni’s
polygraphs [7] (also called computads [25]). In particular, their work allow to recover the
coherence laws for pseudomonoids in this way.

Our aim is to generalize those techniques in order to be able to define coherent algebraic
structures in weak higher categories. We actually handle here the first non-trivial case, which
is the one of dimension 3. Namely, it is well-known that tricategories are not equivalent to
3-categories: the “best” one can do is to show that they are equivalent to Gray categories [10, 15],
which is an intermediate structure between weak and strict 3-categories, roughly consisting in
3-categories in which the exchange law is not required to hold strictly. This means that our
beloved rewriting techniques cannot be used out of the shelf in this context and one has to adapt
those to Gray categories, which is the object of this article.

It turns out that a slightly more general notion than Gray categories is adapted to rewriting:
precategories. Those are a generalization of the notion of sesquicategory whose use has already
been advocated by Street in the context of rewriting [26]. Precategories have gained quite
some interest recently, by being at the core of the graphical proof-assistant Globular [3, 4].
In particular, Gray categories are 3-precategories equipped with exchange 3-cells satisfying
suitable axioms. We first work out in details the definition of precategories and, based on the
work of Weber [27], show that (n+1)-precategories can be defined as categories enriched in
n-precategories equipped with the so-called funny tensor product, see Section 1. This is analogous
to the well-known fact that Gray categories are categories enriched over 2-categories equipped
with the Gray tensor product [10], what we recall in Section 2. We then define in Section 3 a
notion of polygraph adapted to precategories, called prepolygraph. It is amenable to computer
implementation: there is an efficient representation of the morphisms in free precategories,
which allows for mechanized computation of critical branchings. Moreover, it can be used to



present other precategories, in particular Gray categories (Section 2.3). In order to study these
presentations, we adapt the theory of rewriting to the context of prepolygraphs in Section 3, and
we show that our notion of rewriting system retains the classical properties. In particular, a
finite rewriting system always has a finite number of critical branchings, which contrasts with
the case of strict categories [18, 12, 21]. It moreover allows for a Squier-type coherence theorem
(Theorem 3.4.5). Finally, in Section 4, we apply our technology to several algebraic structures of
interest, which allows us to recover known coherence theorems and find new ones, such as for
pseudomonoids (Section 4.1), pseudoadjunctions (Section 4.2), self-dualities (Section 4.3) and
Frobenius pseudomonoids (Section 4.4).

1 Precategories

In this work, we use a variant of the notion of higher category called precategory whose 2-dimen-
sional version is better known as sesquicategory [26]. Many definitions of “semi-strict” higher
categories can be described as precategories with additional structures and equations, and this
is in particular the case for Gray categories. Moreover, since the exchange law is not required
for precategories (contrarily to strict higher categories), their cells can be easily described by
normal forms, making them amenable to computations. This notion was used to give several
definitions for semi-strict higher categories [4] and is the underlying structure of the Globular tool
for higher categories [3]. Premises of it can be found in the work of Street [26] and Makkai [20].
In what follows, we give equational and enriched definitions of precategories (Section 1.2 and
Section 1.4). Then, we define prepolygraphs as a direct adaptation of the notion of polygraph
for strict categories (Section 1.5), and we show that the cells of such a prepolygraph admit
a normal form (Section 1.8). Finally, we recall the usual construction of localizations in the
context of 3-dimensional precategories (Section 1.9), as our subsequent results will mostly target
(3, 2)-precategories.

1.1 Globular sets
Given n € N, an n-globular set C is a diagram of sets
% 9 95 91

Co Ch Cs .. Ch

+ + + +
8O 81 62 871, —1

such that 8] 09, = 8; 09}, | and 8 08 = 0;" 0 4 for 0 < i < n—1. An element u of C;
is called an i-globe of C and, for i > 0, the globes 9;_;(u) and ;" | (u) are respectively called
the source and target and u. We write Glob,, for the category of n-globular sets, a morphism
f: C — D being a family of morphisms f;: C; — D;, for 0 < ¢ < n, such that 9; o fiy1 = fi00; .
Given m > n and C € Glob,,, we denote by C<,, the n-globular set obtained from C' by removing
the i-globes for n < ¢ < m. This operation extends to a functor (—)<,: Glob,, — Glob,,.

The following notations will be useful in the following. For simplicity, we often implicitly
suppose that, in an n-globular set C, the sets C; are pairwise disjoint, write u € C' for v € | |; C;,
and write dim(u) for the index such that u € Cgipy), called the dimension of u.



For e € {—,+} and k > 0, we write

€

J— € € €
i,k = 0; Oai—i—l O+ 00; k1

for the iterated source (when ¢ = —) and target (when € = +) maps. We generally omit the
index k when it is clear from the context and sometimes simply write 0°(u) for 9 (u). Given
i,7,k € Nwith k <7 and k < j, we write C; xj, C; for the pullback

Ci Xk Cj

CZ L A C] )
N

A sequence of globes u; € Cj,,...,u, € C;, is said i-composable, for some i < min(iy,...,1ip),
when 9} (u;) = 85 (uj11) for 1 < j < p. Given u,v € Ciy1 with i < n, u and v are said parallel
when 0°(u) = 0°(v) for e € {—, +}.

For u € C;41, we sometimes write u: v — w to indicate that 9; (u) = v and J] (u) = w. In
low dimension, we use n-arrows such as =, =, =, etc. to indicate the sources and the targets of
n-globes in several dimensions. For example, given a 2-globular set C' and ¢ € Cy, we sometimes
write ¢: f = g: x — y to indicate that 9y (¢) = f, 0] (¢) = g, 9y (¢) = x and 9 (¢) = y. We
also use these arrows in graphical representations to picture the elements of a globular set C.
For example, given an n-globular set C' with n > 2, the drawing

T —9— Yy ——— 2 (1)

figures two 2-cells ¢, 9 € Co, four 1-cells f, g, h, k € C1 and three 0-cells x,y, z € Cy such that

or(e)=f (=01 ()=9g, ¥ =h,
0 (F)=05(9) =0 (h) ==z, Oy (f)=0;(9) =085 (h) =0 (k) =y, O (k)=0.

1.2 n-precategories
Given n € N, an n-precategory C' is an n-globular set equipped with
— identity functions id*: C;_; — Cj, for 0 < i < n,
— composition functions *; j: C; Xmin(ij)—1 Cj = Chax(ij), for 0 <i,5 <n,

satisfying the axioms below. Since the dimensions of the cells determine the functions to be used,
we often omit the indices of id and *, or write u *j v to indicate that min(dim(u), dim(v)) —1 = k.
For example, in a 2-precategory which has a configuration of globes as in (1), there are, among
others, 1-cells f %o k, h %o k and 2-cells ¢ %1 1 and ¥ *¢ k given by the composition operations.
The axioms of n-precategories are the following:



(i) for every (u,v) € Ci Xpin(i -1 Cj with 0 <4,j <n,

ux0(v) ifi<y, w0 (v) ifi<j,
0 (u*xv) =40 (u) if i =, O (uxv) =140t (v) if i = 7,
O~ (u)xv ifi>j, ot (u)xv  ifi>j,

(i) for every u € C; with 0 <i < n, - (id,) = v = d*(id,),
(iii) for every (u,v) € Cj Xyyinijy—1 Cj with 0 <, <n,
Py oS
R I
id if i > 7, id if 1 < 7,

U*V UV

(iv) for all I-composable cells u € C;, v € Cj, w € Cy, such that min(é, j) —1 = min(j,k) -1 =1,

(uxpv) % w = u* (v w),

(v) for all u € Cj, v € Cj and v' € Cj and
k = min(i, max(j,5")) — 1 and [ = min(j, ;") — 1
such that u,v are k-composable and v, v’ are [-composable and k < [,
kg (Vg 0') = (wkg v) x (U '),
and similarly, for all u € C;, v’ € Cy and v € C; and
k = min(i,i') — 1 and | = min(max(i, '), j) — 1
such that u,u' are k-composable and u, v are [-composable and k > [,
(uspu') v = (u* v)*p (U % v).
A morphism of n-precategories, called an n-prefunctor, is a morphism between the underlying
globular sets which preserves identities and compositions as expected. We write PCat,, for the
category of n-precategories. The above description exhibits n-precategories as an essentially
algebraic theory. Thus, PCat, is a locally presentable category [1, Thm. 3.36|; consequently,
it is complete and cocomplete [1, Cor. 1.28]. In the following, we write 1 for the terminal
n-precategory for n > 0.
In dimension 2, string diagrams can be used as usual to represent compositions of 2-cells. For

example, given a 2-precategory C and ¢: f = f' € Cy and ¢: g = ¢’ € Cy such that ¢, are
0-composable, we can represent the 2-cells (¢ *q g) *1 (f *x0 ) and (f %o ) *1 (¢ *0 g') respectively

by
/ g f g
o |
f! g f! q



Note however that, by our definition of precategories, the diagram

A
R
f! g

makes no sense.

1.3 Truncation functors

Similarly to strict categories [22], the categories PCat,, for n > 0 can be related by several
functors. For m > n, we have a truncation functor

7. PCat,, — PCat,

where, given an m-precategory C, 7T"(C) is the n-precategory obtained by forgetting all the
i-cells for n < ¢+ < m. This functor admits a left adjoint F)' which, to an n-precategory C,
associates the m-precategory F'(C) obtained by formally adding i-identities for n < i < m, i.e.,
F(C); = C; for i <nand F'(C); = C), for i > n.

Proposition 1.3.1. For m > n, the functors T, and F,' admit both left and right adjoints,
i.e., we have a sequence of adjunctions

HI A Fm AT AR

As a consequence, the functors T, and F,' preserve both limits and colimits.

Proof. Suppose given an m-precategory C. The n-precategory H,"'(C) has the same i-cells as C
for i <mn and H]'(C), is obtained by quotienting C), under the smallest congruence ~ such that
u ~ v whenever there exists an n + 1-cell a: u — v. The n-precategory R}, (C) has the same
i-cells as C' for 0 < i < n and, for n <i <m, R} (C);y1 is defined from R}, (C); as the set of
pairs (u,v) € Rl (C); x R (C); with 0~ (u) = 9~ (v) and 0 (u) = 91 (v), with 9~ (u,v) = u as
source and 07 (u,v) = v as target. Details are left to the reader. O

Given n < m, we write (=)™ for the functor F o 7™: PCat,, — PCat,, and, given an
m-precategory C, we call C(™ the n-skeleton of C. It corresponds to the m-precategory obtained
from C' by removing all non-trivial i-cells with ¢ > n. We write

j(—): (_)(n) — 1PCatm

for the counit of the adjunction F;' 4 T". Since F,' and T, both preserve limits and colimits
by Proposition 1.3.1, so does the functor (—)).



1.4 The funny tensor product

We now define the funny tensor product that we will use to give an enriched definition of
precategories. We give a rather direct and concise definition, and we refer the reader to the work
of Weber [27] for a more theoretical definition. Given n > 0 and two n-precategories C' and D,
the funny tensor product of C' and D is the pushout

c©  p© €Y% ) o p
jc XD(O)J rc.D
C x DO Lo CaD

Since j_) is a natural transformation, the funny tensor product can be extended to a functor
(-)O(-): PCat,, x PCat,, —» PCat,, .

We show that it equips PCat,, with a structure of monoidal category. First, we prove several
technical lemmas.

Lemma 1.4.1. Given n-precategories (C);c; and D, the canonical morphism

[[(¢"x D)= (J]C) x D

iel el
is an isomorphism.

Proof. Write F' for this morphism. A morphism between n-precategories is an isomorphism if
and only if the underlying morphism of globular sets is an isomorphism. Thus, it is sufficient to
show that the isomorphism holds dimensionwise, i.e., that the images of F' under the functors
(—);: PCat,, — Set are isomorphisms for 0 < j <n. Products and coproducts are computed
dimensionwise in PCat,, so that the functors (—); preserve products and coproducts. Since
coproducts distribute over products in Set, I is an isomorphism for 0 < j < n, and so is F'. [

Lemma 1.4.2. Given an n-precategory C, the functor C(©) x (—) preserves colimits.

Proof. Since, by Proposition 1.3.1, F§j preserves limits and colimits, we have C0) ~ Hoec, 1-
Given a diagram D: I — PCat,, by Lemma 1.4.1, we have

C™ x C(gél[ﬂl D(i) ~ xgo C(Z?élm D(i) ~ C(Z)él}rn x]é_lo D(i) ~ C(Z)éllm(C x D(i)) . O

Lemma 1.4.3. Given n-precategories C, D, E, there is an isomorphism
abpp: (COD)ODE S CO(DOE)

natural in C, D, E.



Proof. Given n-precategories C, D, E, the precategory (C' 0 D) E is defined by the pushout

(COXxDOYxjp
—- B

(C(O) X D(O)) X E(O) (C(O) X D(O)) x FE

jonop XE© rcop,E

(COD) x EO »(COD)OE

leop, e
Since, by Lemma 1.4.2, (—) x E©) preserves colimits, the following diagram is also a pushout

(C(O) Xip) % E(0)
R

(CO) x DO x EO) (CO) x D) x E©

(ic xD©)x E(©) ro,p xE©) -

(C x DO x E©) » (COD) x EO

IC’,D XE(O)

Thus, (C' O D) O E is the colimit of the diagram

(i xD©)x BO (C x DO) x EO)

(CO) x DO x EO) — (cOxj,)x5©® — (CO) x D) x E©

(COxDO)xjy (CO x DO x E

and C' O (D O FE) admits a similar diagram, and we deduce easily, using the associativity of x, a
canonical morphism O‘fC,D,E: (COD)OFE — CO(DOE), which is, by the symmetry of the
construction, an isomorphism. It is easily checked to be natural in C, D, E. ]

Given an n-precategory, there are canonical morphisms
Moo o and P01 50
where AL is defined by

1(0)><jc

10 x O 10 % ¢
i1 ><C<0)J( Jn,c
1,



and pr is defined similarly. Both are natural in C'. We can conclude that:
Proposition 1.4.4. (C,0,1,af, \, pf) is a monoidal category.

Proof. The axioms of monoidal categories follow from the pushout definition of the funny tensor
product and the cartesian monoidal structure on n-precategories. O

In fact, the funny tensor product is a suitable product for an inductive enriched definition of
precategories, i.e.,

Proposition 1.4.5. There is an equivalence of categories between (n+1)-precategories and
categories enriched in n-precategories with the funny tensor product.

Proof. See Appendix A. O

1.5 Prepolygraphs

In this section, we introduce the notion of prepolygraph which generalizes in arbitrary dimension
the notion of rewriting system. This definition is an adaptation of the notion of polygraph
introduced by Burroni for strict categories [7], generalized latter by Batanin to algebras of any
finitary monad on globular sets [6].

For n > 0, writting U, for the canonical forgetful functor PCat,, — Glob,,, we define PCat,"
as the pullback

+
PCatt ‘" Glob,.;
Vi [)2n

PCat, T Glob,,

and write L{T‘*L‘: PCat:lr — Glob,,4; for the top arrow of the pullback and V,, : PCat;LF — PCat,
for the left arrow. An object (C,C,41) of PCat.' consists of an n-precategory C' equipped with
a set Cpi1 of (n+1)-cells and two maps d,,d;}: Cpy1 — C, (note however that there is no

notion of composition for (n+1)-cells). There is a functor W,,: PCat, 11 — PCat, defined as

the universal arrow
Un+1
PCaty /\
Wa 4

+ Ui,
PCat;] — Glob,;

an l(*)gn

PCat, - Glob,,

and, since each category and functor on the diagram above are induced by finite limit sketches
and morphisms of finite limit sketches, they are all right adjoints ([5, Thm. 4.1] for example), so
that W,, admits a left adjoint L£,,: PCati — PCat, 1.

We define the category Pol,, of n-prepolygraphs together with a functor G, : Pol,, — PCat,,
by induction on n. We put Poly = Set and take Gy to be the identity functor. Now suppose

10



that Pol,, and G, are defined for n > 0. We define Pol,, ;1 as the pullback

g +
Pol, » PCat,
(< v
Pol, — PCat,
and write G/ : Pol,+; — PCat,’ for the top arrow and (—)<,, for the left arrow of the diagram.
Finally, we define G,,+1 as L, o gg .
More explicitly, an (n+1)-prepolygraph consists in a diagram of sets

P — Py - Py . - P P,i1
f / / b 27" g
io a- Jil q- i d-_ lin _
% 8; 1 J2 8;71 n—1 dn
0 T 1 T ce n—1<«—Fx—"'n
60 61 8n71

such that 9;" od; ; = 9; o di++1 and 9;" o diy, = O o diil, together with a structure of n-preca-
tegory on the globular set on the bottom row: P; is the set of i-generators, d;, dj: Pit1 — PY
respectively associate to each (i+1)-generator its source and target, and P is the set of i-cells,
i.e., formal compositions of i-generators.

By definition, an (n+1)-prepolygraph P has an underlying n-prepolygraph P<,. More
generally, for m > n, an m-prepolygraph P has an underlying n-prepolygraph obtained by
applying successively the forgetful functors (—)<; for m > i > n.

Example 1.5.1. We define the 3-prepolygraph P for pseudomonoids as follows. We put
Po = {z} Pi={f:2—x} Po={p:2=1,7: 0= 1}

where, given n € N, we write n for the composite f %o --- %o f of n copies of f, and we define P3
as the set with the following three elements

A: (uxol)*s1p = (Ixopu)xp

L: ko l)xp = ids

R: (Ixon)x1p = id;

Note that we extended the use of the arrows —, = and = to indicate the source and target of each
i-generator for i € {1,2}: f is a 1-generator such that dy (f) = dg (f) =z, p is a 2-generator
such that dy (u) = f *o f and df (1) = f, etc. In the following, we will keep using this notation
to describe the generators of other prepolygraphs.

1.6 Presentations

Given an n-precategory C with n > 0, a congruence for C' is an equivalence relation ~ on C,
such that, for all u,u’ € C,, satisfying u ~ v/,

— 051 (u) = 04 (u') for e € {—,+},

11



— for v,w € Ci41 with 0 <4 < n such that v, u, w are ¢-composable, we have

/
Vokg Uk W UK U X W,

Given such a congruence for C, there is an n-precategory C'/.. which is the n-precategory D such
that D; = C; for i < n and D,, = C,,/~ and where the identities and compositions are induced
by the ones on C'.

Now, consider the composite functor

g Hn+1
Pol,,; —— PCat,,; —— PCat,, .

To an (n+1)-prepolygraph P, it associates an n-precategory denoted by P. Concretely, P is
isomorphic to (P<,)*/..» where ~F is the smallest congruence such that 9, (u) ~" 9; (u) for
u € Ppt1. In the following, we say that an (n+1)-prepolygraph P is a presentation of an
n-precategory C' when C' is isomorphic to P.

1.7 Freely generated cells

Given (C,Cpy1) € PCat, following [22], we give an explicit description of the free (n+1)-pre-
category L, (C) it generates. This (n+1)-precategory has C' as underlying n-precategory so that
we focus on the description of the (n+1)-cells, which can be described as equivalence classes of
terms, called here expressions. The expressions are defined inductively as follows:

— for every element u € C,41, there is an expression, still noted u,
— for every n-cell u € Cy,, there is an expression id,,,

— for every 0 < i < n, for every v € C;41 and every expression v, there is an expression u *; v,

for every 0 < i < n, for every expression u and every v € Cj41, there is an expression u *; v,
— for every pair of expressions v and v, there is an expression u *, v.

We then define well-typed expressions through typing rules in a sequent calculus. We consider
judgments of the form

— Ft:u — v, where t is an expression and u,v € C,, with the intended meaning that the
expression ¢t has u as source and v as target,

— Ft=t":u— v, where t and t’ are expressions and u,v € C,,, with the intended meaning
that ¢t and t’ are equal expressions from u to v.

The associated typing rules are
— for every t € Cy, 41 with 9, (t) = v and 9} (t) = v,

Ft:u—wv

12



— for every u € Cy,
Fid,: u—u
— for every 0 < i < n, every u € Ciy1 with 9;7 (u) = 9; (v),

7

Ft:o—o

Fusit: (usv) — (uxv)

— for every 0 <i < n, every v € Ciy1 with ;" (u) = 9; (v)

(2

Ft:u—

Ftxg v (usv) — (u % v)

— and
Ft:u—wv Ft':v—w

Fts,t':u—w

The equality rules, which express different desirable properties of the equality relation, are
introduced below. The first rules say that equality is an equivalence relation:

Ft:iu—w Ft=t:u—wv Ft=t:u—wv Ft'=t"u—w

(2)

Ft=t:u—wv Ft=t:u—w Ft=t""u—wv

The next ones express that that identities are neutral elements for composition:

Ft:u—vw Ft:u—wv
Fid, #spt=t:u—v Ftx,id,=1t:u—wv
Ftiu— 1< n Ftou—
- qit1 4. / REP o S, /
Flda;(u)*zt—t.u%u f—t*lldaﬂu)—t.u%u

The next ones express that composition is associative:

|—t12’LLO*>U1 l—t2:u1%u2 l—t3:u2%u;),

F (t1 #n t2) %y t3 = t1 %y (t2 *p t3): ug — ug
Ftio— up,uz € Citq 0 (ur) = 9; (ug) 0 (u2) = 9; (v)

(]

I—u1 *g (UQ *Zt) = (u1 *iu2) *itl UL *; U2 *; UV — UL *iu2*ivl
Ftru— v1,v2 € Ciyq O (u) = 05 (1) O (v1) = 9; (v9)

K3 1 7

B (% v1) % o = t%; (V1 %; V)1 U x; V] *; Vo —> U *; V1 K Vo
Ftio— i<n u€Cip w € Cip O (u) = 9; (v) o (V) = 07 (w)

2 7 7

B ) 5w = wk; (Exw): wk v w — w0 s w

13



The next ones express that (n+1)-identities are compatible with low-dimensional compositions:

i<n u € Cit1 vedl, O (u) = 0; (v)
Fouxgid, = id,,.,,:
ueCy i<n veC; O (u) = 0; (v)

]

U ks UV —> UKV

Fidy, % v = idy, . ux v = ux v
The next ones express that n-compositions are compatible with low dimensional compositions:

Fti:vr — va Fto: vg — v3 u € Cipq 8+(u) = 8-7(7)1)

1 2

B (B %p to) = (w*; t1) xp (wk; t2): wx; v1 — u*; U3

Fti:ug — uo Fto: ug — us v € Ciyt O (u1) = 95 (v)

F(t1 %n t2) % v = (t1 %; ) % (E2 %5 V)2 UL % U —> Uz *; V

The next ones express the distributivity properties between the different low-dimensional compo-
sitions:

) =0 (w ) UECJ’H 3-*(@):3*(%0)

Ft:w—w 1<j<n u € Cizq o (u
Fusx (Vt) = (uxv) x5 (u*t): u*z( w) = u; (v

(2

Ftiv— i<j<n u € Cit1 8~+(u):8~_(v) wGCJH

K3 (2

v%\_/
Q>
5

Foawsg (B w) = (ukit) 5 (us w): wsk (v w) — ux (V
Ftio— i<j<mn ue Cj aj(u):a;(v) w € Ciy af(v):a*(w)
F(ukgt) s w = (u*;w) ok (Exw): (uk;v) s w— (uw;0) % w
Ftu— i<j<n veCj 8J+(u) = 0; (v) w € Citq 9" (v) = 9; (w)
F ot v) % w = (t*w)*; (v w): (uwkjv)*w— (U *v)*%w

Finally, the last ones express that equality is contextual:

Ft=t:v— u € Ciyy O (u) = 9; (v)

2

Fusit=u*t:ukxv— ukv
Ft=t:u— veCim 0 (u) = 05 (v)

1 1

Ftsjo=t %v:iuxv—u *v

l—tlztllzul—ﬂm f‘tg:U2—>U3

Ftl*ntgzt,l*ntgiul—>U3
l—tl:ul—>uQ l_t2:t/2:U2—>U3

Ftl*ntzztl*ntézu1%u3

The following lemmas show that typing is unique and well-behaved regarding equality. They are
easily shown by inductions on the derivations:

Lemma 1.7.1 (Uniqueness of typing). Given an expressiont such thattt: uw — v andt-t: v’ — v’
are derivable, we have u = u' and v =v'.

14



Lemma 1.7.2. If-t =1t": u — v is derivable then - t: u — v and = t': w — v are derivable.

A term t is well-typed if there are u,v € C, such that - t: u — v is derivable using the above
rules. In this case, by Lemma 1.7.1, the types u and v are uniquely determined by ¢, and we write
Oy, (t) = w and 9;f (t) = v. We define C}; | to be the set of equivalent classes of = of well-typed
expressions. By Lemma 1.7.2, the operations 9, and 9, are compatible with the relation =. We
finally define £,,(C) as the (n+1)-precategory with C' as underlying n-precategory, Cy; | as set
of (n+1)-cells, with sources and targets given by the maps d;, and 9,". The compositions and
identities on the (n+1)-cells are induced in the expected way by the corresponding syntactic
constructions (this is well-defined by the axioms of =). The extension of this operation as a

functor and the verification that it is left adjoint to W, is left to the reader.

1.8 Normal form for cells

Suppose given (C, Cp41) € PCat,}. The set C;; of cells of £,(C') was described in previous
section as a quotient of expressions modulo a congruence =. In order to conveniently work with
its equivalence classes, we introduce here a notion of normal form for those. From now on, we
adopt the convention that missing parenthesis in expressions are implicitly bracketed on the
right, i.e., we write uj %y, Ug *y, - - - %, ug instead of uy %, (ug *p (- *p ug))-

By removing the relations (2) in the definition of the congruence = and orienting from left to
right the remaining equations, we obtain a relation = which can be interpreted as a rewriting
relation on expressions:

id, *pt =1 t*pid, =t

(t1 %y ta) %y tg = t1 %y (L2 %y t3) (ug *; tp) *; U = uq *; (ty *; ug)

We now study the properties of =. We recall that such a relation is said to be terminating when
there is no infinite sequence (t;);>o such that ¢; = t;11 for ¢ > 0; a normal form is an expression
t such that there exists no ¢’ with ¢ = ¢'; writing =* for the reflexive transitive closure of =, the
relation = is said locally confluent when for all expressions t,t1,to such that ¢ = ¢; and t = to,
we have t; =* t/ and to, =* t/ for some expression t; it is said confluent when for all expressions
t,t1,to such that t =* ¢t; and t =* to, we have t; =* ¢/ and to =* t/ for some expression t'.
Those notions are introduced in more details in [2].

Lemma 1.8.1. The relation = is terminating.

Proof. In order to show termination, we define a measure on the terms that is decreased by each
rewriting operation. To do so, we first define counting functions ¢, and [;,r; for 0 < i < n from
expressions to N that take into account the three kinds of operations in the expression: top
n-dimensional compositions, and lower i-dimensional left and right compositions. These functions
count the numbers of potential reductions in an expression ¢ with the associated operations. Since
reductions involving composition operations change value of counting functions of composition
operations of lower dimension, we will use a lexicographical ordering of the counting functions to
obtain the wanted measure. Given an expression ¢, we define ¢, (t) € N and [;(t),r;(t) € N for
0 < ¢ < n by induction on t as follows:
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— if g € Cp41, we put ¢,(g) = li(g) =71i(g) =0 for 0 <i < n,
— if u € Cy, we put ¢,(id,) = l;(id,,) = r(id,) = 1,
— if an expression t = t] *, t2, we put

cn(t) = 2¢n(t1) + enlt2) + 1,
Li(t) = Li(t) + Li(t2) + 2,
Tl(t) '(tl) —f—n(tg) + 2,
)

—ift =wu=x;t', we put ¢, (t) = ¢, (t') and
Li(#) it <1,
ri(t’) if j <1,
Lt) = d2,() +1 if j =1, ri(t) =
(6= J20() +1 =i o={" s

li(t/) +1 if j > 1,

—if t =t v, we put ¢, (t) = ¢, (t') and
(! if j <.

L) it <i, ) I

li(t) = e ri(t) =4 2n(t')+1 if j =i,

L) +1 if j>i, e

ri)+1 if j >

For each expression t, we define

N@) = (cn(t), ln1(t), rn_1(t), ..., lo(t),ro(t)) € N> 1

and consider the lexicographical ordering <jex on N??*1. For the inductive rules of =, we observe
that

—if t =t %ty and ¢ = ] %, ty With N(t1) <iex N(t}), then N(t) <iex N(#),
it =ty kp to if ¥ =t % th with N(t)) <iex N(t2), then N(t) <jex N(2),
—ift =ux*;tand t = u*; ¥’ with N(¥) <jex N(f), then N(¥') <jex N(t),
—ift =t*;vand ¢’ =t x; v with N(¥') <jex N(f), then N(¥') <jex N(2).
It is sufficient to prove that the other reduction rules decrease the norm N(—). We only cover the

most representative cases by computing the first component of N(—) modified by the reduction
rule and showing that it is strictly decreasing;:

en(id, *n t) = cn(t) + 3 > cn(t),
en((t1 #p t2) *p t3) = dep(t1) + 2¢n(t2) + cn(ts) +

> 2¢n(t1) + 2¢n(ta) + en(ts) + 2 = cn(t1 *n (t2 *n t3)),

Li(uy *; (ug %, t)) = 4L;(t) +3 > 2[;(t) + 1 lz((ul ki Ug) *; ),

ri((w1 *i t) %5 ug) = 2r5(t) + 3 > 2r(t) + 2 = ri(uy *; (t *; u2)),

Li(w g (t1 % t2)) = 2Ui(t1) + 21;(t2) + 5
> 2li(t1) + 20i(t2) +4 = Li((w*; t1) *p (u*; t2)),

Li(ws; (v;t)) = 20(t) +3 > 21;(t) + 2 = Li((u*; v) %5 (wx*; t)) for j > i.
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Thus, if t = ', we have N(t') <jex N(t). Since the lexicographical order <o, on N?"*! is
well-founded, the reduction rule = is terminating. O

Lemma 1.8.2. The relation = is locally confluent.

Proof. By a direct adaptation of the critical pair lemma (for example [2, Thm. 6.2.4]), it is enough
to show that all critical branchings are confluent. We can check by exhaustive computation that
there are critical branchings and all are confluent. For example, given t1,ts, t3, t4 suitably typed,
there is a critical branching given by the reductions

((t1#nt2) *n t3) *nta = (L1 %y (faknt3))knts  and  ((t1 %nt2) *n t3) *nta = (1 %5 t2) *p (T3 % t4).
This branching is confluent since
(1 % (t2 % t3)) *p ta = t1 %y ((E2 %n €3) *p ta) = 1 %5 (T2 % (t3 %y ta))

and
(t1 %p t2) *n (t3 % ta) = 1 *p (t2 *n (E3 %4 t1)).

Another critical branching is given by the reductions
U1 *; (UQ *; (tl *p tg)) = (u1 *; U,Q) *; (tl *pn tg)

and
U1 *; (’LLQ *; (tl *p, t2)) = U1 *{ ((UQ *; tl) *p ('LLQ *; tQ))

for uy,us € C; with i < n and t1, t5 suitably typed. This branching is confluent since
(w1 *; ug) *; (t1 *n t2) = ((ug *; uz) *; t1) *, ((u1 *; uz) *; t2)

and

U1 *; ((UQ x5 tl) *n (’LL2 *g tg)) = (Ul *; (’LL2 x4 tl)) *n (ul *5 (UQ *g tg))
= ((ug *; ug) *; t1) *pn ((ug *; ug) *; t2).
The other cases are similar. O

Theorem 1.8.3. Any cell in u € C}, 1 admits a unique representative by an expression of the
form
U = UL *p UQ *p * - *p UL

where each u; decomposes as
i = V% (- %o (U %1 (v kg AT kg wh) 1 wh) K9 - ) Hpyg W (3)

where A® is an element of Cp11 and 11; and wj« are j-cells in Cj.
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Proof. We have seen in Lemma 1.8.1 and Lemma 1.8.2 that the relation = is terminating and
locally confluent. By Newman’s lemma (see, for example, [2, Lem. 2.7.2]), it is thus confluent
and every equivalence class of expressions contains a unique normal form, which can be obtained
by reducing any expression to its normal form. It can be checked that those normal forms are in
bijective correspondence with the expression of the form (3) (essentially, those expressions are
normal forms where identities have been suitably inserted). O

A cell of C}; ¢ of the form (3) is called a whisker. By the inductive definition of prepolygraphs
from Section 1.5 and Theorem 1.8.3, given an m-prepolygraph P with m > 0, an (i41)-cell v € P}
with ¢ € {0,...,m — 1} can be uniquely written as a composite of (i+1)-dimensional whiskers
U7 *y - -k ug for a unique k € N that is called the length of u and denoted by |u|. Moreover,
each whisker u; admits a unique decomposition of the form (3). We will extensively use this
canonical form for cells of precategories freely generated by a prepolygraph in the following, often
omitting to invoke Theorem 1.8.3.

Example 1.8.4. Recall the 3-prepolygraph of pseudomonoids P from Example 1.5.1. Theo-
rem 1.8.3 allows a canonical string diagram representation of the elements of P5: first, we
represent the 2-generators p and n by Y and Q respectively. Secondly, we represent the whiskers
mx*gaxgn form,n € N and a € Py by adding m wires on the left and n wires on the right of the
representation of a. For example, 2 xq %o 3 is represented by | | ' | | |. Finally, a 2-cell
of P35, which decomposes as a composite of whiskers wy *; --- %1 wg, is represented by stacking
the representation the whiskers. For example, below are shown two 2-cells with their associated
graphical representation:

(0*0/,1*02)*1(1*0#*00)*1u:w (Q*OM*OO)*l(O*Oﬂ*ol)*lﬂ:\g‘

Note that, contrary to 2-cells of strict 2-categories, these two 2-cells are not equal in P5. The
above graphical representation can be used in order to define unambiguously the source and target
of 3-cells. Here, the 3-generators A, L, and R can be described graphically by

1.9 (3,2)-precategories

In the following sections, we will mostly consider 3-precategories that are generated by 3-pre-
polygraphs (as the one from Example 1.5.1), whose 3-generators should moreover be thought
as “invertible operations” (think of the 3-generators A, L, R of Example 1.5.1). Thus, we will in
fact be dealing with 3-precategories whose 3-cells are all invertible. Such (3, 2)-precategories will
usually be obtained by applying a localization construction to the 3-precategory P* for some
3-prepolygraph P. This localization construction, which is a direct adaptation of the one for
categories, is described below.

18



Given a 3-precategory C, a 3-cell F': ¢ = ¢’ € C5 is invertible when there exists G: ¢/ = ¢
such that F'#3 G = id, and G *3 F' = id. In this case, G is unique and we write F~lforG. A
(3,2)-precategory is a 3-precategory where every 3-cell is invertible. The (3, 2)-precategories form
a full subcategory of PCats denoted PCat s o).

There is a forgetful functor

U: PCat(372) — PCats

which admits a left adjoint (=)' also called localization functor described as follows. Given a
3-precategory C, for every F': ¢ = ¢' € C3, we write F'* for a formal element of source ¢ and
target ¢, and F~ for a formal element of source ¢’ and target ¢. A zigzag of C' is a list

(Fi o FF)g e (4)

for some k > 0, F,...,F; € Cs and €1,...,¢; € {—,+} such that ¢ = 0~ (F}), ¢’ = 0T (F*)
and 9% (F{) = 0~ (F}') for 1 < i < k (there is one empty list ()4 for each ¢ € P5, by
convention). The source and the target of a zigzag as in (4) are ¢ and 1) respectively. Then, we
define (C'")<2 as C<y and (CT)3 as the quotient of the zigzags by the following equalities: for
every zigzag (F1',..., F*) .o

— if F; =id,, for some i € {1,...,k} and ¢ € Cy, then

(Ffl, .. '7Fl§k)¢:¢/ = (Ffl,. . .,F;i_ll,F;j__‘il,. . "erzk)¢7¢/7

— if ¢, = €41 = + for some ¢ € {1,...,k — 1}, then

(F{Y o i) = (Y FC  (Fyko Fop) T FLS B ) g

— if ¢, = €41 = — for some i € {1,...,k — 1}, then

(Flelw"?Flsk)(f),(l?/ = (Fflv"-7ﬂeiila(ﬂ+l *2 F‘i)_vﬂz§2a" . 7F]§k)¢,q§’a

— if {€, €41} ={—,+} and F; = F;4; for some i € {1,...,k — 1}, then

(Ff' o FiR) g = (FYY . F FO L F ) g

11—

Since the definitions of source and target of zigzags are compatible with the above equalities,
they induces source and target operations 9,07 : (CT)3 — Cy. Given

F=(F . . F")g 6 €(CT)z and G = (G,...,GM)p, 45 € (CT)3,

we define F x5 G as
€ 9 6
F*QG = (Fll,...,Flsk,Gll,...,Gll)¢1’¢3
and, given i € {0,1}, u € Cip1 and F = (F{',..., F*)y o with 8 (u) = 9; (¢), we define u *; F
as
wi F= (i 1) (ki o)™ s i
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and, finally, given ¢ € C3, we define id as ()¢,¢- All these operations are compatible with the
quotient equalities above, and they equip C'T with a structure of 3-precategory.

There is a canonical 3-prefunctor H: C' — C'T sending F: ¢ = ¢ € C3 to (F ). Moreover,
given a (3,2)-precategory D and a 3-prefunctor G: C — D, we can define G': CT — D by
putting G'(u) = G(u) for u € C; with i < 2 and

G'((F*, ..., FEF)pw) = G (FfY) %9 ... %0 G'(F*)
for a zigzag (FY*,..., F{F )y, where

&(F) = {G(F) if e =+

GF)™! ife=—
for F € C5 and € € {—, +}. The definition of G’ is compatible with the quotient equalities above
so that G’ is well-defined, and G’ can be shown to uniquely factorize G' through H. Hence, (—)"
is indeed a left adjoint for . In the following, given a 3-precategory C' and F' € (3, we often
write F' for H(F).

2 Gray categories

Strict 3-categories are categories enriched in (Catg, x). Similarly, Gray categories are cate-
gories enriched in Catqy together with the Gray tensor product. The latter can be seen as an
“asynchronous” variant of the cartesian product, similar to the funny tensor product, where two
interleavings of the same morphisms are related by “exchange” cells. Typically, consider the
1-categories C' and D below

C= a1y D=y—25y
their funny and Gray tensor products are respectively
(fy) (fw)
(2,) =% (',y) (2,) =% (',y)
COD= g L) CHD=@gl Ux lag
/ / / / / /
(@,9) 72, y) (@,9) 72, @ y)

where the exchange 2-cell x can be invertible or not, depending on whether we consider the
pseudo or lax variant of the Gray tensor product. We first recall quickly the definition of the
Gray tensor product, or more precisely, its lax and pseudo variants. We then give a more explicit
description in terms of generators and relations of categories enriched in 2-categories with the
Gray tensor product. Then, we give a way for presenting canonically a Gray category.

2.1 The Gray tensor products

We recall here the definitions of the Gray tensor products on 2-categories, in its lax and pseudo
variants. We refer the reader to [11, Sec. 1,4] for details.
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A (strict) 2-category is a 2-precategory C such that, for all ¢, € Cy with 95 (¢) = 95 (¥),
(6 %0 07 (1)) *0 (37 (6) %0 1) = (97 (¢) 0 ¥) %0 (¢ %0 Oy ().

We denote Caty the full subcategory of PCato whose objects are 2-categories. We write 1 for
the terminal 2-category and we write * for its unique 0-cell.

Given C and D two 2-categories, we can define another 2-category C'X'®* D which is presented
as follows:

— the O-cells of C' X' D are the pairs (z,y) where 2 € Cy and y € Dy,
— the 1-cells of C K'** D are generated by 1-cells
(fiy): (v,y) = (2'y) and  (z,9): (v,y) = (2,9),
for frx— 2’ €Ciand g: y — v € Co,
— the 2-cells of C X'®* D are generated by the 2-cells
(¢.9): (fy) = (fly) and (z,9): (2,9) = (2,9)
for ¢: f= f € Cay,¢p: g= ¢ € Cz and z,y € Cp, and by the 2-cells

(z,y) Uy, («',y)

(w,g)i V(f,9) J(l‘@g)

('177 y/) m (:E/a y/)

for frx—2' €Ciand g:y =y € C4,
under the conditions that
(i) the l-generators are compatible with 0-composition, meaning that
(ldz, y) = (l’, ldy) = ld(x,y)

(f *0 f/7y) = (f7y) *0 (f,7y)
(1’,9 *0 g/) = (x,g) *0 (x,g')

for all x € Cy, y € Dy, 0-composable f, f' € C; and 0-composable g,¢’ € Dy,
(ii) the 2-generators are compatible with 0-composition, meaning that

(id2,y) = (z,id}) = id,
(¢1 *0 ¢2a y) = (¢17 y) *0 (¢2ay)
(2,91 %0 Y2) = (@, 41) *o (2,2)
for all z € Cy, y € Dy, 0-composable ¢,¢’ € Co and 0-composable 1,1’ € Ds, i.e.,
graphically,
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(ldz 7y) (x71dy) ld(:tvy)

(x,y) ll(idgray) (1’,2/) = (‘Tay) U(l‘JdZ) (x,y) - (x,y) Uid(:z:,y) (x’y)
~_ ~_ ~_
(idg,y) (w,id,) id(%y)
(fl*OfZ’y) (flvy) (fQ’y)

(.’L'(), ) “(¢1*0¢27 ) ($27 ) = (1‘0, y) ‘U’(¢17 y) (xla y) ll(¢2a y) (1'2, y)
(Fl*ofhy) (f1:9) (f3:9)

(x,91*%092) (z,91) (z,92)
(‘T?yO)‘U’(wﬂl}l*Od)Q) (:E?yZ) = ("E’yO) ll(l'a'(bl) (:anl) 1}(30,1!12) (l',yZ)
(2,9, *0g}) z,91 .95

(iii) the 2-generators are compatible with 1-composition, meaning that

(idy,y) = idy,)

(¢1 %1 b2,y) = (¢17 y) *1 (62,9)
(z,id,) =

(2,11 %1 o) = ( ) 1 (2, 12)

for all ¢;: fii1 = fi:x — 2’ and ¥;: gi—1 = gi:y — ¢ for i € {1,2} and f: z — 2/ and
g:y — v, i.e., graphically,

(fy) (fsy)
(z,y) VGdpy) (@y) = (z,y) $dgy, (@y)
\(f)/ \(f)/
Y Y

fosy)

(
(fo,y)
T YETOR RN

(x,y)ll(¢1*1¢27y)(x’,y) = ( ) (fl y) ( ,’y)

(f2,9)

(z,9) (z,9)
/\ /\
(z,y) d(zidy) (z,¢) = (z,y) Vdugy (2,9)
\()/ \()/«

z,g .9
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(Ct,go)

(z,90)
/\ ‘U’ (:E) 7/)1 )

(x7y)W(xay/) = (1:73/) 12%927 (xlay)
z,
e e

(iv) the interchangers are compatible with 0-composition, meaning that

(id,, g) =
(f1*0 fo,9) = ((fla 0 (f2,9)) *1 ((f1,9) %0 (f2,9/))
(f?ldy> :ldfy
(f,91 %0 g2) = ((f,91) *o0 (2", 92)) %1 (2, 91) *0 (f,92))
for all f;: ;-1 — z; and g;: yi—1 — y; for i € {1,2} and f: 2z — 2’ and g: y — ¢/, i.e
graphically,
(ld,l/7 ) )
@o|  (dp9) @) = @ Q‘{@@ (2.9)
/ /
(z,9) W (z,9) (z,1/)
(20, ) LB, (4 ) (20,y) — L (@1, y) — LY (@, )
(J:oﬂg)l J(fixof2,9) l(:vw) = (ﬂco,g)l $(f1,9) (wlv,g) I(f2,9) l(ww)
/ / / / /
(xo,y)m(@,y) (ﬂﬁo,y)W(ﬁ?l,y)W(@,y)
(fsy) ' (fry)
(xay) E— (l’ 7y) T
(x,idy)l U(f,id,) l(:cﬂidy) = (z,y) $idgy) (¢y)
’ \_/’
(‘/L‘a y) — (I’ 7y) (fv)
(fsy)
(:L‘v yO) M) (xlvyO)
(fvyO) / ’
(2. 90) —"" (a',30) @o|  V(Fg) @
(w,gl*ogz)i J(f, 91%092) J(w’,gl*ogz) = (z,y1) — Fw) = (2, y1)
/ ’
(2, 92) W (@', 2) (%m)l U(f,92) l(fr :92)

/
w) gy )
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(v) the interchangers commute with the 2-generators, meaning that

forg: f= f:x— 2 andy: g=¢:y— 1y, ie., graphically,

(fy) (frv)
TN T
(x,y) U(f.9) («',y) (z,y) (o) (2 y)

wo| U wa = wo| T e
(z,9/) li(cé, ) @y (@,y) 4(f'9) (@y)

\_/f \/
(v (F" )
f? f?
(z,9) 225 (2!, ) (z,y) 225 (2!, )
(,9) <({g/1><x,g> (Jigg) ><xcg> = (x,g'><(fg’) (w’,g’><fﬁg__¢> (@) -

(@,y') —— (@', ¢) (@,y') —— (¢, ¢)

(f,y")

The construction extends to a bifunctor Caty x Caty — Caty by defining, for F': C' — C’ and
G: D — D', FX"® @ as the unique functor mapping

(0,y) = (F(¢),G(y))
(z,9) = (F(z),G(¥))
(f,9) = (F(f),G(9))

forall x € Cy, y € Dy, ¢ € Cy, 9p € Do, f € Cy and g € Dy.
For C, D, E € Cats, there is a 2-functor

afp p: (CR™ D)™ B = C )™ (DK™ E)

which is an isomorphism natural in C, D, E and which is uniquely defined by the following
mappings on generators

((¢,9),2) = (¢, (y,2)) ((f,9),2) = (f:(9,2))
(@, 9),2) = (2, (1, 2)) ((fs9):h) = (2, (g,h))
((z,9),7) = (2, (y,7)) ((z,9),h) = (2, (g,h))

forg: f=frao—adeCyv:g=>g:y—>y e€Dyandy: h=n":2— 2 €Cs.
For C' € Catsy, there are a 2-functors

MR C - O and  pf: CR™ 1= C
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which are isomorphisms natural in C' and which are uniquely defined by the mappings
A((k,9)) =9 and  p™((¢, %)) = ¢

for ¢ € Cy. By checking coherence conditions between %, A% and p'#* we get that:

Proposition 2.1.1. The bifunctor K together with the unit 1 and the natural isomorphisms
alax  \ax - plax ooy Caty with a structure of a monoidal category.

The monoidal structure (Caty, K2 1, a1, Aax p) is called the lax Gray tensor product. The
other variant of Gray tensor is called the pseudo Gray tensor product and is the monoidal structure
(Caty, X, 1, a, \, p) where, given C, D € Caty, CX D is defined the same way as C X'** D, except
that we moreover require that the 2-cells (f, g) of C'X D be invertible. The natural isomorphisms
a, A, p are uniquely defined by similar mappings than those defining %, X2 pla% and we have:

Proposition 2.1.2. The bifunctor X together with the unit 1 and the natural isomorphisms a,
A, p equip Caty with a structure of a monoidal category.
2.2 Gray categories

To each Gray tensor product defined in the previous section, there is an associated notion of
3-dimensional category that we describe here.

A laz Gray category (as in [11, 1,4.25]) is a category enriched in the category of 2-categories
equipped with the lax Gray tensor product. Alternatively, we give a more explicit definition
using generators and relations: a Gray category is a 3-precategory C together with, for all
o: f=frx—yt:g=4g:y— 2z with ¢, O-composable, a 3-cell

Xow: (@x0g) %1 (f'x0) = (frov)*1(d*0g)

which can be represented using string diagrams by

f g f g
¢ (0
) ) )
f g f g
called interchanger and satisfying the following sets of axioms

(i) compatibility with compositions and identities: for ¢: f = f', ¢': f' = ", : g = ¢,
V' g = ¢” in Cy and e, h in O such that e, ¢, 1), h are O-composable, we have

Xidp = 1d iy Koo = (950 9) *1 X ) #2 (Ko 1 (' %0 9'))
Xojid, = 1dg.og Xopurpr = (Xogx1 (f *000")) *2 ((f %0 ¥) %1 Xg)

25



and
Xexopp = € %0 Xg9p X pxoh = Xgpp *0 D

Moreover, given ¢,9 € Cy and f € C] such that ¢, f, ¢ are 0-composable, we have
Xowofw = Xo, frov

(ii) exchange law for 3-cells: for all A: ¢ = 1) € C5 and B: ¢ = 1)/ € C5 such that A, B are
1-composable, we have

(A*1 %) %2 (¢ 1 B) = (¢ 1 B) %2 (A#1¢)
(iii) compatibility between interchangers and 3-cells: given
A:p=¢:u=u €03 and B:y =1y :v=1 €(Cs,
such that A, B are 0-composable, we have

((Axov) #1 (u' %0 1)) %2 Xoy oy = Xy #2 (w0 1) #1 (Ax00))
(¢ x0v) *1 (U %0 B)) %2 Xy = Xpp %2 (w0 B) #1 (¢ %0 V")).

A morphism between two lax Gray categories C' and D is a 3-prefunctor F': C' — D such that
F(Xo) = Xr9) F()-

We similarly have a notion of pseudo Gray category which is a category enriched in the
category of 2-categories equipped with the pseudo Gray tensor product. In terms of generators
and relations, a pseudo Gray category is a lax Gray category C' where Xy 4 is invertible for
0-composable ¢, 1 € Cy. A morphism between two pseudo Gray categories C, D is a morphism
of lax Gray categories between C' and D.

In the following, a (3,2)-Gray category is a lax Gray category whose underlying 3-precategory
is a (3, 2)-precategory. Note that it is then also a pseudo Gray category. As one can expect, a
localization of a lax Gray category gives a (3,2)-Gray category:

Proposition 2.2.1. If C is a laxz Gray category, then CT is canonically a (3,2)-Gray category.

Proof. Given l-composable F: ¢ = ¢',G: 1 = 1/ € C3, by the exchange law for 3-cells, we
have, in C’;—,
(F #19) %2 (¢ %1 G) = (¢ #1 G) %2 (F +19").

By inverting F' %1 ¢ and F %1 ¢, we obtain

(¢ %1 G) o (F~ s o) = (F71 1 4p) 2 (¢ %1 G).

Similarly,
(gb *1 G_l) *9 (F *1 1/}) = (F *1 w/) *9 ((ﬁl *1 G_l)

and

(Flsq ) #g (951 G1) = (¢ %1 G 1) g (F 5 ).
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Now, given general 1-composable F': ¢ = ¢/, G: ¢ = ¢’ € CJ , we have that
F = F1 *9 F2_1 k9 v %9 F2k—1 *9 FQ_kl

and
-1 -1
G= G1 *9 G2 ko v v kg Gglfl *9 GZZ

for some k,l > 1 and F;,G; € P3 for 1 <i <2k and 1 < j < 2l. By applying the formulas above
4kl times to exchange the F;’s with the G’s, we get

(F x1 1) %2 (¢' %1 G) = (¢ %1 G) *2 (F ¥y ¢').

A similar argument gives the compatibility between interchangers and 3-cells of C'". Thus, C'T
is a (3,2)-Gray category. O

2.3 Gray presentations

Starting from a 3-prepolygraph P such as the one of Example 2.3.1, we want to add 3-generators
to P and relations on the 3-cells of P3 so that we obtain a presentation of a lax Gray category.
This can of course be achieved naively by adding, for each pair of 0-composable 2-cells ¢, in
P3, a 3-generator corresponding to the interchanger “Xgy ,,”, together with the relevant relations,
but the resulting presentation has a large number of generators, and we detail below a more
economical way of proceeding in order to present lax Gray categories.

A Gray presentation is a 4-prepolygraph P containing the following distinguished generators:

(i) for O-composable «, g, 5 with o, f € Pa, g € P}, a 3-generator X, 4 3 € P3 called interchange
generator, which is of type

Xa,g,,B: (Oé *0 g *0 h) *1 (f, *0 g *0 /3) 3 (f *0 g *0 /8) *1 (O[ *0 g *0 h/)

which can be represented using string diagrams by

f g h f g h
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(ii) for every pair of 3-generators A, B € P3 and e,e’, h,h' € P} and x € P} as in

f

AT
PN

Ux > : (5)

’ f h'

/\

a 4-generator of type I' S A, called independence generator, where
[ = ((exp Axgh)*1 x*1 (e %01 *0 h')) %2 ((e 0 @' *0 h) %1 x *1 (¢/ %0 B o h'))
and

A = ((exq ¢ *oh) 1 x *1 (e %0 Bxg h)) *2 ((e %0 Axg h) x1 x *1 (€ 01’ %9 h'))

(iii) for all O-composable A, g, with A € P3, g € P} and 8 € Py, and respectively, 0-composable
a,g, B with a € Py, ¢’ € P} and B € P3 as on the first or the second line below

f h
STA M 9 TN
rol=l¢ s’ —— 1y U y
~_ " ~_ "
f/ h/

. (©)
h
S J ~"B ™
v la o ———yPpl=Uy
~_ " ~_
fl h/

a 4-generator, called interchange naturality generator, respectively of type

(Ao g*oh)*1 (" %0 g%0B)) %2 X/ guop = Xogsos *2 (f *0 hxo B) %1 (A% g *o I'))
and

((Oé *( g/ *Q h) *1 (f, *Q g, *( B)) *9 Xa*og’ﬂ/)’ % Xa*og/7w *9 ((f *Q g, *( B) *1 (O{ *Q gl *0 h/))
where X, \, for O-composable x1,x2 € P3 is defined below.

The 3-cells Xy € P3, which appear in the above definition, generalize interchange generators to
any pair of 0-composable 2-cells ¢ and . Their definition consists in a suitable composite of the
generators X, , 3. For example, consider a Gray presentation Q with

Qo =1z}, Qu={l:z—2z} and Q={r:1=1}
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where 7 is pictured by ¢. Then, the following sequence of “moves” is an admissible definition

for Xyyrorr %% ) % ) I% . ﬁ ) %% 0

Each “move” above is a 3-cell of the form ¢ %1 X7 ;q - *1 9 for some ¢,v € Q3 and where X q_ -
is an interchange generator provided by the definition of Gray presentation. Another admissible
sequence of moves is the following:

R I

We see that there are multiple ways one can define the 3-cells Xy, based on the interchange
generators of a Gray presentation P. We will show in Proposition B.8 that, in the end, the choice
does not matter, because all the possible definitions give rise to the same 3-cell in P. Still, we
need to introduce a particular structure that allows to represent all the possible definitions of
the 3-cells X and reason about them. This structure consists in a graph ¢ L v associated to
each pair of 0-composable ¢, in P3: intuitively, a vertex in this graph will correspond to an
interleaving of the 2-generators of ¢ and 1, and an edge will correspond to a “move” as above,
i.e., an interchange generator X, 4 5 in context that exchanges two 2-generators a from ¢ and 3
from v, which appear consecutively in an interleaving of ¢ and . Given 2-cells

¢ = 1wy 1 - ¥ wWE € P and 1/1:w’1*1-~-*1w;€/€P§

with w; = fi %0 a; %0 gi and w} = f} o o %o g} for some fi, g;, f},g; € P and a;,a; € P2, we
define the graph ¢ Ly whose

— vertices are the shuffles of the words |y ...l and ri...ry on the alphabet
Z(ﬁﬂ/f’ = {|17' S % 6 DI rk’}a
— edges are of the form Xy, . : whrjw’ — wr;liw’ for ¢ € {1,...,k} and j € {1,...,k'} and
w,w' € ¥, such that wlirjw’ € (¢ W 1)o.
Given 0 < i <k and 0 < j < k" and a shuffle u of the words I; ... li;p—1 and rj...rj 44— for some
p,qwith0<p<k—i+1and0<qg<k —j+1, we define [u];; by induction:
(w; %0 07 (w))) *1 [W]iv1; if u =l
[ulij = § (OF (wi) o w)) 1 [W]ijpr  if u=rju,
(0T (w;) %0 0T (w;) if u is the empty word,
where, by convention, 0 (wg) = 0~ (w1) and 97 (wf) = ™ (w]). for 0 <i < kand 0 < j <Kk
Note that the indices of [u]; ; are uniquely determined if u has at least an | letter and an r letter.

Intuitively, the letters |; and r; correspond to the 2-cells w; %o (—) and (—) %o w} where the
1-cells (—) are most of the time uniquely determined by the context, so that [u]; 1 for u € (¢LUY)o
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is an interleaving of the w; %o (—) and (—) %o w}. Now, given Xy, : ulirjv — urjl;v, we define the
3-cell [Xyo]: [ulirjv] = [urjlv] of P* by
Xuw) = [u]1,1 *1 (fi %o Xaigivofl o, ¥0 95) *1 [V]i1,441-
We get a functor [—]g.p: (¢ LW )" — Hom (95 (@) *o 9y (¥), 07 (¢) *0 0F (1))<1 defined by the
mappings
u€ (Pwa)o = [ulia
Xu,v € (¢ L w)l — [XUKU]'

For example, for Q defined as above and ¢ = ¢ = 7 %1 7, [lilarira]g and [lirilara]y  are
respectively the 2-cells of Q3

CO R

and [X, r,]¢. and [Xi v, ]y are respectively the 3-cells of Q3

We write Xy, for the path
Xu1,111 IR 3] Xukk“vkk, € HOHl((j)Lm/;)*(ll o lgrras Mg/ ,T1 ... rl ... |k)
defined by induction by
U1:|1...|k_1 and V1 =rg...Mg

and where wu;41,v;4+1 are the unique words of E(’; " such that

8+ (Xuz‘ﬂ)i) = ui+1|prqvi+1 with Uiyl = g1 .- Mgr |p+1 . |k

for some p,q € N. We can finally end the definition of Gray presentation by defining X, as

Xop = Koulop-
For example, for Q defined as above, X, 4, is the composite of 3-cells of Qj given by (7).
Example 2.3.1. We define the Gray presentation of pseudomonoids as the 4-prepolygraph

obtained by extending the 3-prepolygraph for pseudomonoids P seen in Example 1.5.1. First, we
add to P3 the 3-generators

Sow: YIS 2 Y X Yo = YIS
X Y [le = U139 X VLo = o T

forn € N. Second, we define P4 as a minimal set of 4-generators such that, given a configuration
of cells of (P<3)* as in (5), there is a corresponding independence generator in Py, and given a

configuration of cells of (P<3)* as in the first or the second line of (6), there is a corresponding
interchange naturality generator in Py.
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Our notion of Gray presentation is correct, in the sense that:

Theorem 2.3.2. Given a Gray presentation P, the presented precategory P is canonically a lax
Gray category.

Proof. See Appendix B. O
Corollary 2.3.3. Given a Gray presentation P, Pl s canonically a (3,2)-Gray category.

Proof. By Theorem 2.3.2 and Proposition 2.2.1. O

3 Rewriting

In this section, we get to the heart of the matter and introduce our tools in order to show
coherence results for presented Gray categories. These are obtained as generalizations of
techniques developed in rewriting theory by rewriting morphisms in free precategories, and
having a relation = on pairs of parallel rewriting paths which plays the role of witness for
confluence. We first define coherence and show how coherence can be obtained from a property of
confluence on 3-precategories (Section 3.1). Then, we adapt the elementary notions of rewriting
to the setting of 3-prepolygraphs (Section 3.2) together with classical results: a criterion for
termination based on reduction orders (Section 3.3), a critical pair lemma together with a
finiteness property on the number of critical branchings (Section 3.4). Our main result of
this section is a coherence theorem for Gray presentations (Theorem 3.4.4), together with an
associated coherence criterion (Theorem 3.4.5) that will be our main tool for the examples of the
next section.

3.1 Coherence in Gray categories

The aim of this article is to provide tools to study the coherence of presented Gray categories.
By this, we mean the following: a 3-precategory C'is coherent when, for every pair of parallel
paths Fi1,Fy: ¢ = ¢ € (3, we have Fy = F5; a Gray presentation P is coherent when the
underlying (3, 2)-precategory of the (3,2)-Gray category P' is coherent (remember that P is
a lax Gray category by Theorem 2.3.2, which implies that Pl isa (3,2)-Gray category by
Proposition 2.2.1). Gray presentations P with no other 4-generators than the independence
generators and the interchange naturality generators are usually not coherent. For example, in
the Gray presentation P of pseudomonoids given in Example 2.3.1, we do not expect the following

parallel 3-cells
G e
< et
=¥

31



to be equal in P'. For coherence, we need to add “tiles” in P4 to fill the “holes” created by
parallel 3-cells as the ones above. A trivial way to do this is to add a 4-generator R: F} = F; for
every pair of parallel 3-cells Fy and F5 of P*. However, this method gives quite big presentations,
whereas we aim at small ones, so that the number of axioms to verify in concrete instances is as
little as possible. We expose a better method in Section 3.4, in the form of Theorem 3.4.5: we
will see that it is enough to add a tile of the form

¢
Y O\
$1 b2
Fl\ }/F Py

(8

for every critical branching (S, S2) of P for which we chose rewriting paths Fy, F5 that make
the branching (51, S2) joinable (definitions are introduced below).

We end this section by showing how the coherence property can be obtained starting from
3-precategory whose 3-cells satisfy a property of confluence, motivating the adaptation of rewriting
theory to 3-prepolygraphs in later sections in order to study the coherence of Gray presentations.
In fact, we can already prove an analogous of the Church-Rosser property coming from rewriting
theory in the context of confluent categories.

A 3-precategory C' is confluent when, for all ¢,¢1,¢0 € Co and Fy: ¢ = ¢1 € (5 and
Fo: ¢ = ¢o € (3, there exists v € (o, G1: ¢p1 = ¢ € Cs3, Go: ¢po = 1 € (5 such that
F) %9 G1 = F3 %9 Ga. The 3-cells of a (3,2)-precategory associated to a confluent 3-precategory
admits a simple form, as in:

Proposition 3.1.1. Given a confluent 3-precategory C, all F: ¢ = ¢/ € CT can be written
F =G+ H™ for some G: ¢ =1 € C3 and H: ¢ = ¢ € C3.

The above property says that confluent categories satisfy a “Church-Rosser property” ([2,
Def. 2.1.3], for example), and is analogous to the classical result stating that confluent rewriting
systems are Church-Rosser ([2, Thm. 2.1.5], for example).

Proof. By the definitionof CT, all F: ¢ = ¢ € C'T can be written F = Gl_l*QHl*Q' . '*gGlzl*ng
for some k>0, G;: x; — ¢;—1 and H;: x; — ¢; for 1 <1 < k with ¢g = ¢ and ¢, = ¢, as in

X1 e
N N NS
%o o1 o Qp— o

We prove the property by induction on k. If kK = 0, F' is an identity and the result follows.
Otherwise, since C' is confluent, there exists ¢y, G}.: ¢r—1 — ) and Hj : ¢p — 1y, with

Xk
“y A\
Pp—1 = b -
(7
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By induction, the morphism
Gl_l *9 H1 kg + ot ko Gl;—IZ *9 Hk72 *9 G];_ll *9 (kal *9 G;c)

can be written G x9 H~! for some 9 in Cy and G: ¢pg = 1, H: ¢, = 1 in C3. Since G}, %2 G, =
Hy, %9 Hj,, we have G,;l xo Hy, = G, *2 H,’;l. Hence,

F =G % H ' %9 H,;_l =G xo (Hj %o H)™!
which is of the wanted form. ]

Starting from a confluent 3-precategory, we have the following simple criterion to deduce the
coherence of the associated (3, 2)-precategory:

Proposition 3.1.2. Let C be a confluent 3-precategory which moreover satisfies that, for all
Fi,Fy: ¢ = ¢ € C3, we have Fi = Fy in the localization CT. Then, C" is coherent. In
particular, if C' is a confluent 3-precategory satisfying that, for all Fy, Fy: ¢ = ¢' € Cs, there is
G: ¢ = ¢ € C3 such that F} %9 G = Fy %9 G in Cs, then CT is coherent.

Proof. Let F1, Fy: ¢ = ¢ € C4. By Proposition 3.1.1, for i € {1,2}, we have F; = G 2 Hi_1
for some 1; € Cy, G;: ¢ = 1p; € C3 and H;: ¢/ = 1); € C3, as in

G1 wl Hy
7 N
¢ ¢ -
N
o

By confluence, there are ) € Cy and K;: ¥; = ¢ € Cs fori € {1,2}, such that G1x2 K1 = Gax2 K.
By the second hypothesis, we have Hq %9 K1 = Ho %9 Ko so that

Gl *9 Hl_l = Gl *9 Kl *9 (Hl *9 Kl)il
= G *g Ko %o (Ha %9 Ko) !
= G9 *9 HQ_I.

Hence, F} = F». For the last part, note that if Fy %o G = Fy %9 G, then n(Fy) = n(F»). O

3.2 Rewriting on 3-prepolygraphs

As we have seen in the previous section, coherence can be deduced from a confluence property on
the 3-cells of 3-precategories. Since confluence of classical rewriting systems is usually shown using
rewriting theory, it motivates an adaptation of rewriting theory to the context of 3-prepolygraphs
for the purpose of studying the coherence of Gray presentations.

Given a 3-prepolygraph P, a rewriting step of P is a 3-cell S' € P of the form Axj (I%g Axqr)*1p
with [,r € PT, \,p € P5 and A € P3 with [, A, r 0-composable and A, xg A %¢ r, p 1-composable.
For such S, we say that A is the inner 3-generator of S. A rewriting path is a 3-cell F': ¢ = ¢’
in P3. Remember that, by Theorem 1.8.3, such a rewriting path can be uniquely written as
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a composite of rewriting steps Sy o - - - %9 Sg, since rewriting steps are exactly 3-dimensional
whiskers. Given ¢,¢ € P35, ¢ rewrites to 1 when there exists a rewriting path F': ¢ = 1.
A normal form is a 2-cell ¢ € P3 such that for all ¢ € P5 and F: ¢ = ¢, we have F' = id,,.
P is terminating when there does not exist an infinite sequence of rewriting steps F;: ¢; = ¢;t1
for i > 0;

A branching is a pair rewriting paths F: ¢ = ¢ and Fy: ¢ = ¢9; the symmetric branching of
a branching (F, F») is (Fa, F1). A branching (Fy, F») is local when both F} and F» are rewriting
steps; it is joinable when there exist rewriting paths G1: ¢1 = ¥ and Ga: ¢2 = 9, and, given a
congruence = on P*, if we moreover have that F} %9 G1 = Fb %9 Go, as in

A%
i1 o2

<

we say that the branching is confluent (for =).

A rewriting system (P,=) is the data of a 3-prepolygraph P together with a congruence =
on P*. (P,=) is (locally) confluent when every (local) branching is confluent; it is convergent
when it is locally confluent and P is terminating. Given a 4-prepolygraph P, there is a canonical
rewriting system (P<3, ~F) (recall the definition of ~F given in Section 1.6) where ~F intuitively
witnesses that the “space” between two parallel 3-cells can be filled with elementary tiles that
are the elements of P4. In the following, most of the concrete rewriting systems we study are of
this form.

Note that our notion of rewriting system differs from an abstract rewriting system where
the objects are the 2-cells of P* and the rewrite relation — is given by the rewriting steps of P.
Indeed, in our formalism, rewriting paths are not defined by the transitive closure of —, but are
sequences of concrete rewriting steps, so that two parallel rewriting paths are not necessarily
equal.

Nevertheless, the analogous of several well-known properties of abstract rewriting systems
can be proved in our context. In particular, the classical proof by well-founded induction of
Newman’s lemma ([2, Lem. 2.7.2], for example), can be directly adapted in order to show that:

Theorem 3.2.1. A rewriting system which is convergent is confluent.

Proof. Let (P,=) be a rewriting system which is convergent. Let =% C P x P} be the partial
order such that ¢ =7 1 if there exists a rewriting path F': ¢ = 1 € P4 with |F| > 0. Since the
underlying rewriting system is terminating, =T is well-founded. Thus, we can prove the theorem
by induction on =7T. So suppose given a branching F;: ¢ = ¢ € P} and Fy: ¢ = ¢y € P§. If
|F1] = 0 or |F3| = 0, then the branching is confluent. Otherwise, F; = S; x9 F, with S;: ¢ = ¢}
a rewriting step and F): ¢} = ¢; a rewriting path for i € {1,2}. Since the rewriting system
is locally confluent, there are ¢ € P} and rewriting paths G;: ¢, = 1 for ¢ € {1,2} such that
S1 %9 G1 = S %9 Go. Since the rewriting system is terminating and = is stable by composition,
by composing the G;’s with a path G: ¢ = 1’ where ¢/ is a normal form, we can suppose that
1 is a normal form. By induction on ¢} and ¢4, there are rewriting paths H;: ¢; = . and
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F/": ¢ = 1] such that F] xo H; = G; x2 F]' for i € {1,2}. Since 1 is in normal form, F;’ = id,,
and we have H;: ¢; = 1 for i € {1,2} as in

/ \?2
\Gl G/ \

®1 P2
Moreover,
F1 *9 H1 = Sl *9 (F{ *9 Hl)
= 51 %9 G4
= 55 %9 Gy
= SQ *9 (Fé *9 HQ)
= F2 *9 H2. ]

Given a confluent rewriting system, all parallel rewriting paths are equivalent, up to post-
composition, as stated in the lemma below. This will be useful when considering the (3, 2)-preca-
tegory associated to a rewriting system.

Lemma 3.2.2. In a rewriting system (P,=) which is convergent, given two rewriting paths

Fi,Fy: 9= ¢ €P}asin
¢
Flg >F2
/

there exist G: ¢/ = 1) € P§ such that Fy o G = Fg x9 G, i.e.,
Ff/ \FQ

Proof. Given Fi, F5 as above, since the rewrltlng system is terminating, there is a rewriting path
G: ¢ = 1 where 1) is a normal form. By confluence, there exist G1: ¢ = ' and Go: ¢ = o/
such that Fy x9 G %9 G1 = I3 %9 G %9 (G3. Since 9 is a normal form, we have G; = G = idw.
Hence, F %o G = F5 x5 G. ]

Note that, in Lemma 3.2.2, we do not necessarily have

¢
1 ( >F2
which explains why the method we develop in this section for showing coherence will only apply
to (3, 2)-precategories, but not to general 3-precategories.

/

-
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3.3 Termination

Here, we show a termination criterion for rewriting systems (P,=) based on a generalization
of the notion of reduction order in classical rewriting theory where we require a compatibility
between the order and the composition operations of cells.

A reduction order for a 3-prepolygraph P is a well-founded partial order < on P3 such that:

— if ¢ < 1), then 9°(¢) = 9°(¢) for € € {—,+},
— given A: ¢ = 1 € P3, we have ¢ > 1,

— given l-composable ¢, x,1 € P5, and x' € Pj such that x > X/, we have ¢ x1 x *1 ¢ >
¢ *1 X *1 9,

— given u,v € P} and x, X’ € P} such that u, x,v are 0-composable and y > x’, we have
U *g X 0 U > Uk X *0 V.

The termination criterion is then:

Proposition 3.3.1. If (P,=) is a rewriting system such that there ezists a reduction order for
P, then (P, =) is terminating.

Proof. The definition of a reduction order implies that, given a rewriting step A1 (I A7) %1 p
with I,r € P}, \,p € P and A: ¢ = ¢’ € P3 suitably composable, we have

Ax1 (I %0 p*o 7)1 p> N1 (Ixg @ %0 7) %1 p.

So, given a sequence of 2-composable rewriting steps (F;);<k, where k € NU {0}, F;: ¢; =
¢ir1 € P3 for ¢ < k, we have ¢; > ¢; 11 for ¢ < k. Since > is well-founded, it implies that £k € N
Hence, the rewriting sytem (P, =) is terminating. O

In order to build a reduction order for a Gray presentation P, we have to build in particular
a reduction order for the subset of Ps made of interchange generators. We introduce below a
sufficient criterion for the existence of such a reduction order. The idea is to consider the lengths
of the 1-cells of the whiskers in the decompositions of 2-cells and show that they are decreasing
in some way when an interchange generator is applied.

Given a 2-prepolygraph P, there is a function N, : P35 — N such that, given ¢ € P3,
decomposed uniquely (using Theorem 1.8.3) as ¢ = (I3 %o a1 %0 71) *1 - - - *1 (Ig *0 Qg *0 7)) With
liyr; € Py and «o; € Py for 1 <i <k, Niy(¢) is defined by

Ning(¢) = (I, [le=1l, - - 1))
Let N“ be the set of finite sequences of elements of N. We order N¥ by <, where
(al,...,ak) <w (blv---,bl)

when k = [ and there exists ¢ € N with 1 <4 < k such that a; = b; for j < i and a; < b;. Note
that <, is well-founded. Then, Nj,; induces a partial order <i; on P5 by putting ¢ <int ¥ when
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0°(¢) = 0°(¢) for € € {—, +} and Nipt (@) <w Nint(¢) for ¢, € P5. Given n > 2, we say that an
n-prepolygraph P is positive when |9; (a)| > 0 for all & € Py. Under positiveness, the order <jy
can be considered as a reduction order for the subset of 3-generators of a Gray presentation
made of interchangers, as in

Proposition 3.3.2. Let P be a positive Gray presentation. The partial order <iny has the
following properties:

(i) 0y (Xo.f.8) >int O3 (Xa.r.5) for every o, 3 € Py and f € P} such that «, f, 3 are 0-compo-
sable,

(ii) if ¢ >int @', then kg ¢ *o 1 >int L %0 ¢ xo 17 for ¢, ¢ € P5 and l,r € Py such that l,¢,r are
0-composable,

(7ii) if ¢ >int &', then A x1 ¢ x1 p >ing A %1 ¢ *1 p for ¢, &', N\, p € PS5 such that A\, ¢,p are
1-composable.

Proof. Given o, 3 € Py and f € P} with «, f, 8 are 0-composable, recall that X, r g is such that
Xoy.80 (ko f 001 (B)) *1 (97 (@) %0 f %0 B) = (9 (@) %0 f %0 B) %1 (a0 f *0 0] (B))
Then, we have
Nint (05 (X)) = (107 ()] + [f,0)  and  Ni(95 (X)) = (0,101 ()] + |f])-

Since P is positive, we have |0] (a)| > 0 so that Nip (05 (X)) >int Nint(05 (X)). Now, (ii) and (iii)
can readily be obtained by considering the whisker representations of ¢ and ¢’ and observing the
action of [ %o — %o and A %1 — %1 p on these representations and the definition of Niy. ]

The positiveness condition is required to prevent 2-cells with “floating components”, since Gray
presentations with such 2-cells might not terminate. For example, given a Gray presentation P
where Py and Py have one element and Py has two 2-generators \U and (M, there are 2-cells of P*
with “floating bubbles” which induce infinite reduction sequence with interchange generators as
the following one:

83003@0300385

3.4 Critical branchings

In term rewriting systems, a classical result called the “critical pair lemma” states that local
confluence is a consequence of the confluence of a subset of local branchings, called critical
branchings. The latter can be described as pairs of rewrite rules that are minimally overlapping
(see [2, Sec. 6.2] for details). Note that we used this result earlier in the proof of Lemma 1.8.2.

Here, we show a similar result for rewriting on Gray presentations. For this purpose, we
give a definition of critical branchings which is similar to term rewriting systems, i.e., as
minimally overlapping local branchings, where we moreover filter out some branchings that

37



involve interchange generators and that are automatically confluent by our definition of Gray
presentation. Then, we give a coherence theorem for Gray presentation based on the analysis
critical branchings together with an associated coherence criterion, and we finish the section by
stating a finiteness property on the critical branchings.

Let P be a 3-prepolygraph. Given a local branching (S1: ¢ = ¢1,52: ¢ = ¢2) of P, we say
that the branching (S, S2) is

— trivial when S1 = So,

— minimal when for all other local branching (57, 55) such that S; = X1 (I %9 S, %0 ) %1 p
for ¢ = 1,2 for some 1-cells [, 7 and 2-cells A, p, we have that [, r, ¢, are all identities,

— independent when

S1 = ((ln x0 A1 %0 m1) %1 x *1 (l2 %0 P2 *0 72)) S22 = ((I1 *0 d1 %0 71) *1 X *1 (I2 %0 A2 %0 72))
for some l;,7; € Py and A;: ¢; = ¢} € Ps for i € {1,2} and x € P3.
If moreover P = P’§3 where P’ is a Gray presentation, we say that the the branching (57, 52) is

— natural when
S1 = ((Axog*oh)* (f %0 g*0 1))
for some A: ¢ = ¢': f = f' € Ps, : h=h' € P} and g € P}, and

Sy = [Xuﬂf](ﬁ,g*ow with u=1;... |‘¢|,1 and v=ry... M|
and similarly for the situation on the second line of (6),

— critical when it is minimal, and both its symmetrical branching and it are neither trivial
nor independent nor natural.

In the following, we suppose given a Gray presentation P’ and we write (P,=) for (PL;, ~Ph.
Our next goal is to show an adapted version of the critical pair lemma. We start by two technical

lemmas:

Lemma 3.4.1. For all local branching (S1,S2) of P, there is a minimal branching (S4,S5) and
1-cells I, € P} and 2-cells X\, p € P5 such that S; = X *1 (L x0 S, *o 1) *1 p fori € {1,2}.

Proof. We show this by induction on N(S;) where N(S1) = |05 (S1)| + |07 (S1)|. Suppose
that the property is true for all local branchings (S7,S%) with N(S7) < N(S1). If (S1,52) is
not minimal, then there are rewriting steps 57,55 € P%, [,r € P7 and \,p € P such that
Si = Ax1 (Ixo S)*g 1) %1 p for i € {1,2}, such that I,r, A, p are not all identities. Since

07 (SOl =111+ 107 (S)| + Ir| and 05 (S1)] =[]+ |05 (S + |pl,
we have N(S]) < N(S1) so there is a minimal branching (57, 55) and I',r' € P7, X, p’ € P5 such

that S = N xq (I" %9 S’ %0 ') %1 p/ for i € {1,2}. By composing with \, p,l,r, we obtain the
conclusion of the lemma. O
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Lemma 3.4.2. A local branching of P which is either trivial or independent or natural is
confluent.

Proof. A trivial branching is, of course, confluent. Independent and natural branching are
confluent thanks respectively to the independence generators and interchange naturality generators
of a Gray presentation. O

The critical pair lemma adapted to our context is then:

Theorem 3.4.3 (Adapted critical pair lemma). The rewriting system (P,=) is locally confluent
if and only if every critical branching is confluent.

Proof. The first implication is trivial. For the converse, note that, by Lemma 3.4.1, to check
that all local branchings are confluent, it is enough to check that all minimal local branchings
are confluent. Among them, by Lemma 3.4.2, it is enough to check the confluence of the critical
branchings. O

We now state the main result of this section, namely a coherence theorem for Gray presentations
based on the analysis of the critical branchings:

Theorem 3.4.4 (Coherence). Let P’ be a Gray presentation and (P,=) = ( %3,~P/) be the
associated rewriting system. If P is terminating and all the critical branchings of (P,=) are
confluent, then P’ is a coherent Gray presentation.

Proof. By Theorem 3.4.3, the rewriting system (P, =) is locally confluent, and by Theorem 3.2.1
it is confluent. Since P’ = P*/=, it implies that P’ is a confluent 3-precategory. To conclude, it
is sufficient to show that the criterion in the last part of Proposition 3.1.2 is satisfied. But the
latter is a consequence of Lemma 3.2.2. ]

Note that Theorem 3.4.4 requires the rewriting system (P,=) to be confluent. If it is not the
case, one can still try to apply an analogous of the Knuth-Bendix completion algorithm (]2,
Sec. 7], for example) and add 3-generators together with 4-generators to obtain a confluent Gray
presentation, and then apply Theorem 3.4.4.

Our coherence theorem implies a coherence criterion similar to the ones shown by Squier et
al. [24, Thm. 5.2] and Guiraud et al. [12, Prop. 4.3.4], which states that adding a tile for each
critical branching is enough to ensure coherence:

Theorem 3.4.5. Let P be a Gray presentation, such that P<3 is terminating and, for every
critical branching (S1: ¢ = ¢1,52: ¢ = ¢2) of P<s, there exist ¢ € P35, Fi: ¢; = ¢ € P} for
i € {1,2} and G: Sy x3 F| = Sy x3 F» € Py. Then, P’ is a coherent Gray presentation.

Proof. The definition of P4 ensures that all the critical branchings are confluent, so that Theo-
rem 3.4.4 applies. O

Note that, in Theorem 3.4.5, we do not need to add 4-generator GG as in the statement for
a critical branching (S, 5) if there is already a generator G’ for the symmetrical branching
(S2,51), so that a stronger statement holds.

39



To finish this section, we mention a finiteness property for critical branchings of Gray
presentations. This property contrasts with the case of strict categories, where finite presentations
can have an infinite number of critical branchings [18, 12].

Theorem 3.4.6. Given a Gray presentation P where Py and Ps3 are finite and |05 (A)| > 0 for
every A € Ps, there is a finite number of local branchings (S1, S2) with rewriting steps S1, S2 € Pj
such that (S1,S2) is a critical branching.

Proof. See Appendix C. O

The proof of Theorem 3.4.6 happens to be constructive, so that we can extract an algorithm
to compute the critical branchings for such Gray presentations. An implementation of this
algorithm was used to compute the critical branchings of the examples of the next section.

4 Applications

We apply the techniques in the previous section to show the coherence of several presentations of
classical Gray categories corresponding to well-known algebraic structures. For each structure,
we give a Gray presentation, then we study the confluence of the critical branchings of the
associated rewriting system. If the rewriting system is terminating, it is sufficient to deduce
coherence by Theorem 3.4.5. Nevertheless, we present the example of self-dualities, where the
associated rewriting system is not terminating, for which we prove a weak coherence result.

4.1 Pseudomonoids

In Example 2.3.1, we introduced a Gray presentation P for the theory of pseudomonoids. The
set P4 of 4-generators contains only the required ones in a Gray presentation, so that we do
not expect P to be coherent. We will show that the rewriting system is terminating and
thus, Theorem 3.4.5, adding a 4-generator corresponding to each critical branching will turn
the presentation into a coherent one. Those branchings can be computed as in the proof of
Theorem 3.4.6, which is constructive: we obtain, up to symmetrical branchings, five critical
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We observe that each of these branchings is joinable, and we define formal new 4-generators

Rl, RQ, R3, R4, R5 that fill the holes:
e =
Ry M M S l“,

(==
m

We then define PMon as the Gray presentation obtained from P of Example 2.3.1 by adding
Ri,...,R5 to Py.

As claimed above, in order to deduce coherence, we need to show the termination of PMon.
For this purpose, we use the tools of Section 3 and build a reduction order. We split the task in
two and define a first order that handles the termination of the A, L, R generators, and then a
second one that handles the termination of interchange generators. For the first task, we use
a similar technique than the one used in [16]. Given n € N, we write <¢ for the partial order
on N” such that, given a,b € N", a < b when a; < b; for all ¢ € {1,...,n} and there exists

j€{1,...,n} such that a; < b;. Let MFun be the 2-precategory such that
— it has only one 0-cell: MFung = {x},
— its 1-cells are the natural numbers: MFun; = N,

— its 2-cells m = n for m,n € N are the strictly monotone functions

¢ (N <ex) = (N, <ex).

Moreover, id, = 0 and composition of 1-cells is given by addition. Given m € MFun;y, id,, is the
identity function on N and given m,n,k,k’ € N and x: k — k' € MFuns, the 2-cell

miox*on: m+k+n=m+k +n

is the function \/: N™+h+n s Nm+K'+n guch that, for 2 € N+ for i e {1,...,m+ k' 4+ n},
T; ifi<m
X,(x)l = X(xm+17--~7xm+k)i—m ifm <1 < m+k/
Ti— k' +k ifi>m+ K
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and, given m,n,p € N, ¢: m = n € MFuny and ¢¥: n = p € MFuny, ¢ %1 ¢ is defined as ¥ o ¢
and one shows readily that these operations indeed give strictly monotone functions. One easily
checks that MFun is a 2-category. Given m,m’,n,n’ € N and ¢: m = n,+: m' = n’ € MFun,
we write ¢ <ex ¥ when m =m/, n=n' and ¢(x) <ex ¥(z) for all x € N™. We have that:

Proposition 4.1.1. < is well-founded on MFuns.
Proof. We define a function N: MFuny — N by
N(p)=p(z)1+ -+ ¢(2)n for ¢: m = n € MFuny

where z = (0,...,0). Now, if ¢p: m = n € MFuny is such that ¢ <ex ¢, then 1(z) <ex ¢(2) so
that N(¢) < N(¢). Thus, <¢x on MFuny is well-founded. O

We observe that the order <qy is compatible with the structure of MFun:

Proposition 4.1.2. Given m,n,m’,n' kK’ € N, y: m’ = m, vin=n', and ¢,¢': k = k' €
MFuny such that ¢ >ex @', we have

(i) m kg @ %o n >ex M *o ¢ xo N,

(77) p*1 *1 vV >ex k1 ¢ *1 1.

Proof. Given a € N " we have ¢(amit1,. -, Gmak) >ex @ (Amaits- -5 Gmik) 50 (M *g ¢ *q
n)(a) >ex (m %o ¢ 0 n)(a). Also, given b € N we have ¢(uu(b)) >ex ¢'(1u(b)). Since v is
monotone, we have v(p(u(b))) >ex v(¢'(1(b))). O

We define a 2-prefunctor F': PMon; — MFun by the universal property of the 2-prepolygraph
PMonc, i.e., F is the unique functor such that F(x) = %, F(1) =1, F(u) = f, and F(n) = f,
where

fu: N? > N fr: N0 — N

are defined by f,(z,y) =22 +y+ 1 for all z,y € Nand f,() = 1. The interpretation exhibits
the 3-generators A, L and R of PMon as decreasing operations:

Proposition 4.1.3. The followings hold:

(i) P03 (A)) >ex F(OF(A)),

(i) F(05 (L)) >ex F(05 (L),

(iii) F(95 (R)) e F(35 (R)),

(iv) F(0f (Xamp)) = F(5 (Xamp)) for a, B € PMony and m € N.
Proof. Let ¢ = F(95 (A)) and v = F (05 (A)). By calculations, we get that

d(z,y,2) = (4 +2y + 2+ 3) and Y(z,y,2) =2 +2y+2+1)

for x,y,z € N, so ¢(z,y,2) >ex ¥(z,y,2) for all z,y,z € N. The case (ii) and (iii) are shown

similarly. (iv) is a consequence of the fact that MFun is a 2-category. O
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We define a partial order < on PMonj by putting, for ¢, € PMon3,
¢ < 1 when F(¢) <ex F(¢) or [F(¢) = F(¢) and Nipg(¢) <w Ning(20)].
Proposition 4.1.4. The partial order < on PMonj is a reduction order for PMon.

Proof. Let G € PMons. If G € {A,L,R}, then, by Proposition 4.1.3, 95 (G) < 95 (G). Otherwise,
if G = X445 for some o, B € PMony and u € PMon], then, by Proposition 4.1.3(iv),

F(05(G) =F(9;(G))  and  Nin(95 (G)) <w Ning(95 (G)).

So 95 (G) < 05 (G). The other requirements for < to be a reduction order are consequences of
Proposition 4.1.2 and Proposition 3.3.2(ii)(iii). O

Finally, we can use our coherence criterion to show that:
Theorem 4.1.5. PMon is a coherent Gray presentation.

Proof. By Proposition 4.1.4, PMon has a reduction order, so the rewriting system PMon is

terminating by Proposition 3.3.1. Since Ry,..., Rs € PMony, by Theorem 3.4.5, PMon ' is a
coherent (3,2)-Gray category. O

4.2 Pseudoadjunctions

We now show the coherence of the Gray presentation of pseudoadjunctions introduced below.
The way we do this is again by using Theorem 3.4.5. However, we need a specific argument to
show the termination of the interchange generators on the associated rewriting system. For this,
we introduce a notion of “connected” diagrams and we use a result of [8] saying that interchange
generators terminate on such connected diagrams.

We define the 3-prepolygraph for pseudoadjunctions as the 3-prepolygraph P such that

Po={x,y} and Pi={fix—y,g:y—=x} and Py={n:id, = fx*oge:g*of=1id,}
where 7 and € are pictured as (M and \U respectively, and P3 is defined by P35 = {N, N}, where
N: (n*of) 1 (fxo€) = ide and W: (g*o7n)*1 (e x0b) = id,

which can be represented by

N%| and m%| .

We then extend P to a Gray presentation by adding 3-generators corresponding to interchange
generators and 4-generators corresponding to independence generator and interchange naturality
generator, just like we did for pseudomonoids in Example 2.3.1. For coherence, we need to add
other 4-generators to P4. Provided that P is terminating, by Theorem 3.4.5, adding 4-generators
that fill the holes created by critical branchings is enough, just like for pseudomonoids.
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Using the constructive proof of Theorem 3.4.6, we compute all the critical branchings of P.
We then obtain, up to symmetrical branchings, two critical branchings:

==Y [In==nJ]
N\ N\

Y M

We observe that each of these branchings is joinable, and we define formal new 4-generators
R1, Ry that fill the holes:

U—=UVY [W—=nJ]
\U/ \mz/

We then define PAdj as the Gray presentation obtained from P by adding R; and Rs to Py.

We aim at showing that this rewriting system is terminating by exhibiting a reduction
order. However, we can not use Proposition 3.3.2 to handle interchangers (as for the case of
pseudomonoids) since P is not positive. So here, we invoke the result of [8] that states the
termination of interchangers on “connected diagrams”. Given a 2-prepolygraph Q, a 2-cell of Q3
is connected when, intuitively, each 2-generator on its graphical representation is accessible by a
path starting from a top or bottom input. For example, given Q such that Qy = {*}, Q; = {1}
and Q2 = {M: 0=2U:2= (_)}, we can build the following two 2-cells of Q3

i On

where the one on the left is connected whereas the one on the right is not, since the two generators
of the “bubble” can not be accessed from the top or bottom border.

A more formal definition can be obtained by computing the “connected components” of
the diagram, together with a map between the top and bottom inputs of the diagram to the
associated connected components. This is adequatly represented by cospans of Set. Based on
this idea, we define a 2-precategory that allows to compute the connected components of a 2-cell
of Q*. Let N,,, be the set {1,...,m} for m > 0.

We define the 2-precategory CoSpan as the 2-precategory such that:

— it has a unique 0-cell, denoted x,

— the 1-cells are the natural numbers, with 0 as unit and addition as composition,
— the 2-cells m = n are the classes of equivalent cospans N, EN S <N, in Set,

where two cospans A N S+ B and A EiN S &~ B are said equivalent when there exists an
isomorphism h: S — S” € Set such that f' = hof and ¢’ = hog. The unit of m € CoSpan, is the
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1 1
cospan N, I N, 2 N,., and, given ¢: m; = my € CoSpan, and 1: mg = m3 € CoSpan,,
represented by the cospans
N f g ' g
m — S —Np, and Np, — 5 <N,
respectively, their composite is represented by the cospan

s
h = v h

A

! S g I s g
N U N
N, N, N

where the middle square is a pushout. Given ¢: m = n € CoSpan, represented by
f g
N,, — S5+ N,
and p,q € CoSpan,, the 2-cell p x¢ ¢ *¢ ¢ is represented by the cospan

N,USUN,
(1Npr|—’1Nq)°9p,m,y \(le UgUly,)o0p,n.q

Np-+m-+q Nptntq

where 0, ¢ Npyryg = Ny UN, LN, for » € N, is the evident bijection. One easily verifies that
CoSpan is in fact a 2-category (fact that will be useful when dealing with interchange generators
later).

Given a 2-prepolygraph Q, by the universal property of 2-prepolygraph, we define a 2-pre-
functor Cong: Q* — CoSpan such that

— the image of x € Qq is *,
— the image of a € Qq is 1,
— the image of a: f = g € Qg is represented by the unique cospan Ny = {x} <& Nig|

We can conclude our definition: a 2-cell ¢ € Qb is connected when Cong(¢) is represented by a

cospan N,, N N,, with m = |0] (¢)| and n = |9] (¢)| such that f, g are jointly epimorphic.
Since the latter property is invariant by equivalences of cospan, if ¢ is connected, then for all

representant N, 4, S < N, of Congq(¢), f,g are jointly epimorphic.

As one can expect, connexity is not changed by interchangers in general:

Lemma 4.2.1. Let P be a 2-prepolygraph. Let o, € Py and g € P} such that o, g, are
0-composable. Then,

Conp (a9 g %0 97 (8)) *1 (8] () %0 g %0 B)) = Conp((8y () %0 g *0 ) *1 (e %0 g *0 97 (B)))
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Proof. This is a direct consequence of the fact that CoSpan is a 2-category. O
Moreover, in the case of PAdj, the 3-generators N and W do not change connexity:
Lemma 4.2.2. We have

Conpad;j((1 %o ) *1 (f %0 €)) = Conpag;(ids)

and
Conpadj((g *0 1) *1 (€ %0 g)) = Conpag (idg).

Proof. By calculations, we verify that

is a representant of both Conpagj((7 %o f) *1 (f %0 €)) and Conpagj(ids), so that

ConpAdj((n *Q f) *1 (f *Q 6)) = COI’lpAdj (idf)
and similarly,

COIlpAdj((g *Q 7]) *1 (6 *Q g)) = ConpAdj (idg). ]
We now prove a technical lemma that we will use to show the connexity of the 2-cells in PAdj5:
Lemma 4.2.3. Let P be a 2-prepolygraph and ¢,¢" € P and N,,, N S N,, be a representant
of Conp () for some ni,ne € N such that ¢,¢" are 1-composable and f is surjective. Then,
¢ *1 ¢ is connected if and only if ¢’ is connected.
Proof. Let N, TN S Ny, be a representant of Conp(¢’) for some ng, ng € N. Then, Conp(¢’)
I7of, gm 8709 N,,, where S”, f” and ¢” are defined by the pushout of ¢

is represented by N,
and f’ as in

f s g I’ o q
N U N
an an NnB

Suppose that ¢’ is connected, i.e., f’ and ¢’ are jointly surjective. Since f is surjective by
hypothesis and f” and ¢” are jointly surjective (by the universal property of pushout), we have
that f” o f,g" o f',¢g" o ¢’ are jointly surjective. Moreover,

g/lof/:f//og:fllofoh

where h is a factorization of g through f (that exists, since f is supposed surjective). Thus, we
conclude that f” o f,g” o g are jointly surjective.
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Conversely, suppose that f” o f and ¢g” o g are jointly surjective and let y € S’. We have to
show that y is in the image of f’ or ¢’. Recall that

§" =~ (ST 5/~

where ~ is the equivalence relation induced by g(z) ~ f'(z) for x € N,,, so either y is in the
image of f’ or [y is the only preimage of ¢”(y) by ¢” and ¢”(y) is not in the image of f”]. In the
former case, we conclude directly, and in the latter, since f” o f and ¢” o ¢’ are jointly surjective,
there is x € N,,, such that ¢” o ¢’(x) = ¢"(y), so that ¢’(x) = y, which is what we wanted. Thus,
f" and ¢’ are jointly surjective, i.e., ¢’ is connected. O

We can now prove our connexity result for pseudoadjunctions:
Proposition 4.2.4. For every ¢ € PAdj5, ¢ is connected.

Proof. Suppose by absurdity that it is not true and let N € N be the smallest such that the set
S ={¢ € PAdj5 | |¢| = N and ¢ is not connected} is not empty. Given ¢ € S, let

(f1 %0 a1 %0 h1) *1 - x1 (f§ *0 an *0 hy)

be a decomposition of ¢.

Note that there is at least one i € {1,..., N} such that a; = €. Indeed, given f,h € PAdj]
such that f,n, h are O-composable, a representant N,,, = T+~ N,, of Congq(f *o 1 *0 h) has the
property that v is an epimorphism. Since epimorphisms are stable by pushouts, given ¢’ € PAdj3
such that ¢/ = (f{ *o n %0 h}) *1 -+ x1 (f}, %0 m %0 h},) with f/,h, € PAdj for i € {1,...,k}, a
representant N,/ KNy, S N,,» of Conpagj(¢’) has the property that v’ is an epimorphism (by
induction on k), and in particular, ¢’ is connected. So let iy be minimal such that there is ¢ € S
with a;, = €.

Suppose first that i9 = 1. Then, given a representant N,,, St s Ny, of Conpagj(f1 *o
a1 *g h1), we easily check that up is an epimorphism. By Lemma 4.2.3, we deduce that

(f2 %0 ag %o ha) *1 - - - *1 (fr *0 o *0 hy)

is not connected, contradicting the minimality of V.
So ig > 1. By the definition of ig, we have o;,—1 = 1. There are different cases depending
on |f1‘0,1|:

— if [ fig—1| < |fio| — 2, then, since 95 (fis—1 *0 Qig—1 *0 hig—1) = 07 (fio *0 iy *0 iy ), We have
fio = fiom1 %007 (M) %0 g and  hiy—1 = g %0 07 (€) *o hi
for some g € PAdj]. By Lemma 4.2.1, we have

Conpadj((n *0 g *0 07 (€)) *1 (9 (1) *0 g *0 €)) = Con((d; (1) *0 g *0 €) *1 (1 *0 g *0 07 (€)))
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thus, by functoriality of Conpagj, the morphism ¢ defined by

@' = (f1 %0 a1 %0 h1) *1 -+ %1 (fig—2 *0 Qig—2 *0 Nig—2)
1 (fio—1 *0 g *0 € *0 hiy) *1 (fig—1 *0 1 *0 g *0 hiy)
1 (fio+1 *0 Qig+1 *0 hig+1) *1 -+ *1 (fi *0 g *0 hi,)

satisfies that Conpagj(¢) = Conpagj(¢’). So ¢’ is not connected, and the (ig—1)-th 2-gene-
rator in the decomposition of ¢’ is €, contradicting the minimality of 7g;

— if | fic—1| > | fio| + 2, then the case is similar to the previous one;
— if | fip—1] = | fis] — 1, then, since Conpadj((1 %o f) *1 (f %0 €)) = Conpagj(id¢) by Lemma 4.2.2,
the 2-cell ¢’ defined by
¢ = (f1 %0 1 %0 h1) *1 -+ %1 (fig—2 %0 ig—2 %0 hig—2)
1 (fig+1 *0 Qig+1 %0 hig+1) *1 -+ - *1 (fie *0 g *0 hy)

satisfies Conpadj(¢) = Conpagj(¢') (by functoriality of Conpagj), so that ¢’ is not connected,
contradicting the minimality of IV;

— if | fic—1| = | fio| + 1, then the situation is similar to the previous one, since, by Lemma 4.2.2,
Conpadj((g *0 1) *1 (€ *0 g)) = Conpag;(idy);
— finally, the case |fi,—1| = | fi,| is impossible since
fio—1 %0 OF (ig—1) *0 hig—1 = fiy %0 01 (ctiy) *0 hig

and
ar(aio—l) :f*Og#g*szal_(aio)' O

We are now able to prove termination:
Proposition 4.2.5. The rewriting system PAdj is terminating.

Proof. Suppose by contradiction that there is a sequence S;: ¢; = ¢; 41 for ¢ > 0 with S; rewriting
step in PAdj3. Since

10, (N)] =10, (M) =2 and |95 (N)| =195 (W)] =0,
if the inner 3-generator of S; is N or W, for some ¢ > 0, then |¢;11| = |¢;| — 2. Since

05 (Xaf,8) = 05 (Xa,p8) =2

for 0-composable o € PAdj,, f € PAdj], 8 € PAdj,, it means that there is ig > 0 such that for
i > 1ip, the inner generator of S; is an interchanger. By [8, Thm. 16], there is no infinite sequence
of rewriting steps made of interchangers. Thus, by Proposition 4.2.4, there is no infinite sequence
of rewriting steps whose inner 3-generator is an interchanger of PAdj, contradicting the existence
of (S;)i>0. Thus, PAdj is terminating. O
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Finally, we can apply our coherence criterion and show that:
Theorem 4.2.6. PAdj is a coherent Gray presentation.

Proof. By Proposition 4.2.5, PAdj3 is terminating. Since Ry, Ry € PAdj,, by Theorem 3.4.5, the
conclusion follows. O

4.3 Self-dualities

We modify a bit the preceding example by “untyping” the pseudoadjunctions. This new example
requires a special treatment since the underlying rewriting system is not terminating, and, more
fundamentally, the induces (3,2)-Gray category is not expected to be fully coherent. We show
instead a partial coherence result.

We define the 3-prepolygraph for self-dualities as the 3-prepolygraph P such that

Po={*} and Py ={1:%x— %} and Po={n:id, = 2,¢:2=1id,}
where we write 72 for 1 g --- g 1 for n € N. The 2-generators 1 and € are pictured as (M and \U
————
respectively, and P3 is defined by P3 = {N, N} where
N: (n#o 1)1 (Ixg€) =id; and W: (Ixgn) 1 (€% 1) = ids

which is pictured again by

N%| and m$|

As before, we then extend P to a Gray presentation by adding 3-generators corresponding to in-
terchange generators and 4-generators corresponding to independence generators and interchange
naturality generators. We also add the same 4-generators that we added for pseudoadjunctions

W=——=UY [Wn=—=nJ]
N Ny
) M
to P and we denote SD the resulting Gray presentation. We would like to apply Theorem 3.4.5

to obtain a coherence result, but it is not possible here. Indeed, SD is not terminating, since we
have the reduction

5+U00=0o=0U0=%
Moreover, this endomorphism 3-cell is not expected to be an identity, discarding hopes for the

presentation to be coherent. Following [9], we can still aim at showing a partial coherence
result by restricting to 2-cells which are connected (in the sense of the previoussection). In this
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case, termination can actually be shown by using the same arguments as for pseudoadjunctions.
However, the critical pairs are not joinable either since, for instance, we have

|UGWEM

(for which there is little hope that a Knuth-Bendix completion will provide a reasonably small
presentation). However, one can obtain a rewriting system, introduced below, which is terminating
on connected 2-cells and confluent by orienting the interchangers. Using this rewriting system,
we are able to show a partial coherence result.

We define an alternate rewriting system Q where

Qi =P forie{0,1,2} and Qz={N,U}U QL

where Qg“t

Yo Al O 2 NE A X NEU =2 A L
o UEIN =2 Y A Xao YU = Ul VY
for n € N.

There is an morphism of 3-precategories I': Q* — R uniquely defined by I'(u) = u for u € Q
with ¢ € {0, 1,2} and mapping the 3-generators as follows:

contains the following 3-generators, called Q-interchange generators:

N — N N—n
/ -1 !/
Xﬂﬁm = XT?ﬁJ? X"Lﬁ,ﬁ = Xn7ﬁ1€
!/ -1 /
Xe,ﬁ,n = Xe,ﬁ,e Xs,ﬁ,e = Xﬁ,ﬁ,ﬁ

for n € N.

We get a rewriting system (Q, =) by putting F = F’ if and only if T'(F) = I'(F") for parallel
F,F" € Qi. By observing the 3-generators of Qs, note that, given F: ¢ = ¢ € Qf, ¢ is
connected if and only if ¢’ is connected. Indeed, one easily checks that for every A € Qz, we
have Cong(dy (A)) = Cong(d; (A)), so that Cong(¢) = Cong(¢’).

We say that a branching (51, S2) of Q is connected when 05 (S1) is connected. We say that it
is Q-critical when it is local, minimal, not trivial and not independent.

We first show a weak termination property for Q, stating that it is terminating on connected
2-cells:

Proposition 4.3.1. Given a connected 2-cell ¢ in Q3, there is no infinite sequence Fy: ¢; = ¢i+1
where ¢pg = ¢ and F; is a rewriting step for i > 0.

Proof. Since a rewriting step whose inner 3-generator is N or W decrease by two the number of
2-generators in a diagram, it is enough to show that there is no infinite sequence of composable
rewriting steps made of elements of QI'*. Given a 2-cell ¢ = (111 %g v 071 ) %1+ - %1 (Mg k0 Qg %0 g )
of Q3, with o; € Qo and my,n; € N for ¢ € {1,...,k}, we define N1(¢) as

Ni(¢) =#{(i,j) |1 <i<j<kand oy =1 and a; = €}.
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Moreover, if we denote iy < --- <1, and j; < --- < jg in {1,...,k} such that
{ir, .. yip, g1, dg ={1,...,k} and «a;, =7 and o, =€
forr € {1,...,p} and s € {1,...,q}, we define NJ(¢) € N’ and N5(¢) € N? by

Ny (o) = (miy, ..., M) and N3(¢) = (njy, ..., nj,).
Finally, we define N(¢) € N'*P+d by

N(¢) = (N1(8), N7 (¢), N3(¢))
and we equip N'TPT¢ with the lexicographical ordering <jex. Now, keeping ¢ as above, let
Ay (Lxg Axgr)* p: = ¢ € Q3
be a rewriting step for some [, € Qf, A\, p, ¢’ € Q% and A € Q3 with
@' = (M) x0 oy %o 0y) *1 -+ - %1 (1M}, *0 Q) *0 7))

for some o € Qg and mj,n; € Nforie {1,...,k}. fA=X); or A= X,
then Nl(gb/) = Nl(gb) — 1.

Otherwise, if A = X, 3, for some u € N, then Ny (¢) = N1(¢) and, if r is such that r—1 = |},
then my = m) for s € {1,...,k} with s & {r,r + 1}. Moreover, we have m;_ | < m,11 — 2, so
that NJ(¢) <iex NJ(6).

Otherwise, A = X/ ; . for some u € N. Then Nj(¢) = N4 (¢') and, by a similar argument
as before, N5(¢') <iex N5(¢). In any case, we get that N(¢) <jex N(¢'). Since <jex is well-
founded, we conclude that there is no infinite sequence of rewriting steps R;: ¢; = ¢;+1 with ¢g
connected. O

for some u € N,

Our next goal is to show a weak confluence property for Q, stating that all connected
branchings of Q are confluent. We first state several technical lemmas.

Lemma 4.3.2. If all connected Q-critical branchings (S1,S52) of (Q,=) are confluent, then all
connected local branchings of (Q,=) are confluent.

Proof. By a direct adaptation of the proof of Theorem 3.4.3 to connected 2-cells and rewriting
steps between connected 2-cells. ]

Lemma 4.3.3. If all connected local branchings of (Q,=) are confluent, then all connected
branchings of (Q,=) are confluent.

Proof. By a direct adaptation of Theorem 3.2.1 to connected 2-cells and rewriting steps between
connected 2-cells, using Proposition 4.3.1. O

Lemma 4.3.4. The connected Q-critical branchings of (Q,=) are confluent.

Proof. We first consider the Q-critical branchings (S1,.S2) that are structural-structural, i.e., such
that the inner 3-generators of S; and Se are Q-interchange generators. We classify them as
separated and half-separated and not separated. There are eight kinds of separated structural-
structural Q-critical branchings listed below:
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C D
C
M

C
O
. C C C

C_
D
C
gl

=

O
C
DD R
r r
O _ O D
)
U
DO
-
D)

al10 = UllalI7

(8) = =
AL T A L NN
Each one can be shown confluent for = by considering the confluence of a natural branching
in (SD, ~°P). For example, (5) is joinable as follows:

.- .- U .- .- U .-
.- .- .- U .- .- U .-
Up to inverses, it corresponds to the following confluent natural branching of (SD, NSD):
UULIN<CIU I R=" 1V
SD
v ~ M
eee eee eee U eee eee U eee
UV ine Ul in« Y
By the definition of =, (5) is confluent for =. The other kinds of separated structural-structural
Q-critical branchings are confluent by similar arguments.
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There are four kinds of half-separated structural-structural Q-critical branchings listed here
U eee eee
(1) < U (] =
U eee eee
(2) V= U f =
o NlIpd = nllnd -
M
o N = nlln =
N
Each one can be shown confluent for = by considering the confluence of a natural branching
in (SD, ~°P). For example, (1) is joinable as follows

U=

JlJ=uyi

S 25 2

Up to inverses, it corresponds to the following confluent natural branching of (SD, NSD):
.- U .-
U m >
__SD
Ul J==uvn

By definition of =, it implies that (1) is confluent for =.
There are two kinds of not separated structural-structural Q-critical branchings listed below:

U . . .
v logecUllo=1J]]0
@ o= nl]0= 4[]0
107 NL A L
They are not confluent but they are not connected branchings.

We now consider structural-operational Q-critical branchings, i.e., those Q-critical branch-
ings (51, S2) such that the inner 3-generator of S; is a Q-interchange generator and the inner
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3-generator of S5 is N or V1. We classify them as separated and half-separated. There are four
kinds of separated structural-operational Q-critical branchings listed below:

o U= pdIIN=1rn
o Nlln=Wlln=1mn
o UV e pIU = 1o
o NIV = N[0 =1m

As above, each one can be shown confluent by considering a natural branching of (SD, NSD).
There are two kinds of half-separated structural-operational Q-critical branchings listed below:

(DUU&UU%U
(%Me(\ﬂan

As above, each one of them can be proved confluent by considering the associated critical
branching in (SD, ~°P).

Note that there are no operational-operational Q-critical branching, i.e., Q-critical branchings
(S1,S2) where the inner 3-generators of both S; and S; are in {N,}. Hence, all connected
Q-critical branchings are confluent. O

We can now show our weak confluence property:
Proposition 4.3.5. All the connected branchings of (Q,=) are confluent.
Proof. By Lemma 4.3.3, Lemma 4.3.2 and Lemma 4.3.4. O

In order to obtain a weak coherence property for SD, we first adapt several properties stated

in Section 3.1.

Lemma 4.3.6. Given F: ¢ = ¢ € QT where either ¢ or ¢ is connected, we have F = G %o H™1
for some G: ¢ = 1) and H: ¢’ = 1.

Proof. By a direct adaptation of Proposition 3.1.1 involving connected 2-cells only, and using
Proposition 4.3.5. O
Lemma 4.3.7. Given F|,Fy: ¢ = ¢' € Qs, if ¢ is connected, then Fy = Fy in QST

Proof. Since ¢ is connected, ¢’ is connected. By Proposition 4.3.1, there is G: ¢' = S Qs such
that ¢ is a normal form for Q. By Proposition 4.3.5, there is Hy, Ho: 1) = 9’ € Q3 such that
F1 %9 G x9 Hy = I %9 G %9 Hy. Since 1) is a normal form, H; = Hy = id¢. So F1 %9 G = Fy %9 G,

thus 7 = Fy in 63T O
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Lemma 4.3.8. Given Fy,Fy: ¢ = ¢ € 6;—, if ¢ is connected, then Fy = F» in 6;—

Proof. By a direct adaptation of the proof of Proposition 3.1.2, using Lemma 4.3.6 and
Lemma 4.3.7. ]

We can now conclude with the weak coherence property for SD:
Theorem 4.3.9. Given Fy,Fy: ¢ = ¢ € SD ' with ¢ or ¢ connected, we have Fy = F>.

Proof. LetT": GT ~+SD" be the 3-prefunctor which is the factorization of I' through the canonical
Q* — GT. By definition of SiDT, F; = Gi,l %9 Hijll D RRRE D) Gi,ki *9 szkll with Gi,j: ¢i,j71 = Q,Z)Z'J
and H; j: ¢;j = 1;; and ¢i0 = ¢ and ¢; , = ¢'. Since either ¢ or ¢ is connected, we have that
all the ¢; ;’s and the 1); ;’s are connected. Thus, all the G; ;’s and the H;;’s are in the image
of IV. So F; = T"(F}) for some F/: ¢ = ¢ € Q' By Lemma 4.3.8, we have F]| = F, so that
= F. O

4.4 Frobenius monoid

We finish our series of applications by the non-unitary Frobenius monoids. Sadly, it is only a
partial example since we were not able to show that our presentation is terminating, even though
we strongly believe that the latter is true. We nevertheless show the computation of critical
branchings for this example, hoping that a termination argument will be found later.

We define the 3-prepolygraph P for (non-unitary) Frobenius as follows. We put

Po={*} and P;={1} and Py={u:2—1,e:1— 2}
where we denote 7 by 1%q -+ % 1 for n € N. We picture p and € by 7 and A respectively, and
—_————

we define P3 by P3 = {N, U, A A M, M} where

AJER AER WA Aas s (928 &)=

As before, we then extend P to a Gray presentation by adding 3-generators corresponding to in-
terchange generators and 4-generators corresponding to independence generators and interchange
naturality generators.

Using the constructive proof of Theorem 3.4.6, we find 19 critical branchings, and we use
them to define a set of 19 4-generators Py = {R1,..., R19} shown below:

P2y e
T A LA Al
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We define then define PFrob as the Gray presentation obtained from
Ryq,..., Rig from above. We can directly conclude that:

-

by adding the 4-generators

Theorem 4.4.1. If PFrob is terminating, then PFrob is a coherent Gray presentation.

Proof. This is a consequence of Theorem 3.4.5. O

o7



References

1]

2]

Jifi Adamek and Jifi Rosicky. Locally presentable and accessible categories, volume 189.
Cambridge University Press, 1994.

Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge university press,
1999.

Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. Globular: an online proof assistant for
higher-dimensional rewriting. In LIPIcs, volume 52, pages 34:1-34:11, 2016.

Krzysztof Bar and Jamie Vicary. Data structures for quasistrict higher categories. In Logic
in Computer Science (LICS), 32nd Annual Symposium on, pages 1-12. IEEE, 2017.

Michael Barr and Charles Wells. Topos, triples and theories, ser. reprints in theory and
applications of categories, 2005.

Michael A Batanin. Computads for finitary monads on globular sets. Contemporary
Mathematics, 230:37-58, 1998.

Albert Burroni. Higher-dimensional word problems with applications to equational logic.
Theoretical computer science, 115(1):43-62, 1993.

Antonin Delpeuch and Jamie Vicary. Normalization for planar string diagrams and a
quadratic equivalence algorithm. arXiv preprint arXiv:1804.07832, 2018.

Lawrence Dunn and Jamie Vicary. Coherence for frobenius pseudomonoids and the geometry
of linear proofs. Preprint, 2016.

Robert Gordon, A John Power, and Ross Street. Coherence for tricategories, volume 558.
American Mathematical Soc., 1995.

John W Gray. Formal category theory: adjointness for 2-categories, volume 391. Springer,
1974.

Yves Guiraud and Philippe Malbos. Higher-dimensional categories with finite derivation
type. Theory and Applications of Categories, 22(18):420-478, 20009.

Yves Guiraud and Philippe Malbos. Coherence in monoidal track categories. Mathematical
Structures in Computer Science, 22(6):931-969, 2012.

Yves Guiraud and Philippe Malbos. Polygraphs of finite derivation type. Mathematical
Structures in Computer Science, pages 1-47, 2016.

Nick Gurski. Coherence in three-dimensional category theory, volume 201. Cambridge Univ.
Press, 2013.

Yves Lafont. Penrose diagrams and 2-dimensional rewriting. Applications of Categories in
Computer Science, 177:191-201, 1992.

o8



[17]

18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]
[27]

Yves Lafont. A new finiteness condition for monoids presented by complete rewriting systems
(after craig c. squier). Journal of Pure and Applied Algebra, 98(3):229-244, 1995.

Yves Lafont. Towards an algebraic theory of boolean circuits. Journal of Pure and Applied
Algebra, 184(2):257-310, 2003.

Saunders MacLane. Natural associativity and commutativity. Rice Institute Pamphlet-Rice
University Studies, 49(4), 1963.

Michael Makkai. The word problem for computads. Awvailable on the author’s web page
http: //www. math. mcgill. ca/makkat/, 2005.

Samuel Mimram. Towards 3-Dimensional Rewriting Theory. Logical Methods in Computer
Science, 10(1):1-47, 2014.

Frangois Métayer. Cofibrant objects among higher-dimensional categories. Homology,
Homotopy and Applications, 10(1):181-203, 2008.

Craig C Squier. Word problems and a homological finiteness condition for monoids. Journal
of Pure and Applied Algebra, 49(1-2):201-217, 1987.

Craig C Squier, Friedrich Otto, and Yuji Kobayashi. A finiteness condition for rewriting
systems. Theoretical Computer Science, 131(2):271-294, 1994.

Ross Street. Limits indexed by category-valued 2-functors. Journal of Pure and Applied
Algebra, 8(2):149-181, 1976.

Ross Street. Categorical structures. Handbook of algebra, 1:529-577, 1996.

Mark Weber. Free products of higher operad algebras. arXiv preprint arXiv:0909.4722,
20009.

99


http://www.math.mcgill.ca/makkai/

Appendix

A Equivalence between precategory definitions

Here, we prove the equivalence between the equational and the enriched definition of precategories:

Proposition 1.4.5. There is an equivalence of categories between (n+1)-precategories and
categories enriched in n-precategories with the funny tensor product.

Proof. Given C € PCat,, 1, we define a category enriched in n-precategories D. We put
Dy=Cyp and D(z,y)= Chz,y)

where

Crwyy = ] {veCil 8y (u)=xand df (u) =y}

0<i<n41

We define a composition morphism
comp, , . D(z,y) 0 D(y, 2) = D(z,2) € PCat,

uniquely defined such that the morphism comp, , . olp(s ), denoted [ y -, is the composite

D(y,z)»
D(e.y) x Dy, )@ ~ [ Dla.y) 202000, by )
g€D(y,z)o

and the morphism comp, , . 0rp(z4) D denoted 74 ., is the composite

(y,2)

D(#.))® x Dy, z)~ [ Dly.z) L2TNeemn, pe
feD(xz,y)o

We write unit,: 1 — D(z,x) for the morphism uniquely defined such that the unique O-cell * € 1
is sent to id,. We have that composition is associative, in the sense that

f
“D(w,2),D(x,y),D(y,2)

(D(w,z) O D(x,y)) O D(y, z) D(w,z) O (D(z,y) 0 D(y, z))
Compw,z,y DD(y,Z)J{ J{D(wvw)‘:’compz,y,z

D(w,y)d D(y, z) D(w,z) 0 D(x, z) (8)

J/COInp’LU T,z
COmp,, , -
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is commutative. Indeed, by precomposition with 1p 2)0D(2,),D(y,2) ©(LD(w,2),D(w,y) X 1D(y,2))s We
obtain the diagram
(D(w,z) x D(a,y)®) x D(y, 2)® —= D(w,x) x (D)@ x D(y,2))
lw,x,yXD(yvz)((])J J{D(’w,l‘)X(lzyy,ZO(jD(xy) Xl))

D(w,y) x D(y, 2) D(w,z) x D(z,2)©
k} J{wzz

which is certainly commutative since (u*og)*oh = uxq(g*oh) for all u € Cy(y ) and g € (Cyzy))o
and h € (Cyy.))o by the axioms of (n+1)-precategories. And, by similar arguments, the
precompositions with the other injections of (D(w,z)d D(x,y)) O D(y, z), namely

lD(w,x)DD(m,y),D(y,z) O(rD(w,.I),D(.I,y) X1D(y,z)(0)) and rD(w,a:)DD(a;,y),D(y,z)

induce commutative diagrams, so that (8) is commutative. Similarly, the composition is left and
right unital in the sense that

10 D(x,y) —222CY by 2) 0 D(x,y)

AfD(}/‘ A’wyryy
D(z,y)

D(z,y) 01—V 5y )0 Dy, y)

PD(\) ,Y) A’WN/

z,y)

are commutative. So D is a category enriched in n-precategories. The operation C' — D can
easily be extended to morphisms of (n+1)-precategories, giving a functor

F: PCat,;; — Cat(PCat,).

Conversely, given a category enriched in n-precategories C, we define an C' € PCat, ;. We
put

D():CO and Di+1: H C’(w,y)Z
$1y600

for 0 <i <n. Given 0 < k <n and vy y(f) € Di41, we define

by (0°(f)) ifk>0
0(tay(f)) =3 = ifk=0ande=—
Y ifk=0and e=+
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so that it equips D with a structure of (n+1)-globular set. Given 0 < 4,5 < n, k = min(i, j),
Ley(u) € Di and 1y v (v) € D; that are k-composable, we define

Loy (U ¥k ) ifk>0
Loy () *p Lar g (V) = S by (lp gy (u,v) ifk=0and j=1
Loy (Tayy (u,v)) ifk=0andi=1

where [, . is the composite

1 x z com T,Y,2
Cla,y) x Cly, 2)© S0, (g ) O Cly, 2) —o2% C(ar, 2)
and 75, - is the composite
C(,1) ) x Cly, z) 2200y (g, ) O Cly, 2) ——=22 Car, 2).

Given z € Dy, we put id, = 54 (unit;(*)) and, given iz 4 (f) € Dit1, we put id,_ S = = Lz y(idy).
We now have to show that the axioms of (n+1)-precategories are satisfied. Note that, since
the higher compositions of D are the ones of the n-precategories C(z,y) for z,y € Cy, it is
sufficient to check the axioms when a composition in dimension 0 is used. For example, given
0<4,j <n+1,k=min(i,j)—1,u € Di,v € Dyand w € D; such that u and v are 0-composable
and v and w are l-composable with 0 < [, then u = t5,(v), v = 1 .(v) and w = ¢ .(w') for
some v’ € C(z,y)o, v' € C(y,2)i—1 and w’' € C(y, z);—1. Moreover,

dmax(l,]

2,2 (1 0 x_pw'))

(T2,y,2(1
=1y Z(rx,yvz(ld’ V') k1 Ty (1dj_17 w'))
= lg,z (rx,y z( )) * by z(r:r,y, (ld{[l’ ’UJ,))

= (u % v) l(u*o w).

wxo (VR W) =g,

The other axioms are shown similarly. So D is an (n+1)-precategory. The construction C' +— D
extends naturally to enriched functors giving a functor G: Cat(PCat,,) — PCat,;.

Given an n-precategory C' and D = G o F(C), there is a morphism 7: C' — D which is the
identity between Cy and Dy and which maps f € C; to i, (f) where z = 9; (f) and y = 95 (f).
7 is obviously an isomorphism which is natural in C.

Conversely, given a category C enriched in n-precategories and D = F o G(C), there is a
morphism e: C' — D which is the identity between Cy and Dy, and, for all z,y € Co, €;, maps
feC(z,y) to tpy(f) € D(x,y). €is obviously an isomorphism which is natural in C'. Hence, F'
is an equivalence of categories. O
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B Gray presentations induce Gray categories

Until the end of this section, we suppose given a Gray presentation P. Our goal is to prove
Theorem 2.3.2, i.e., that P is a lax Gray category. We start by the exchange law for 3-cells that
we prove first on rewriting steps:

Lemma B.1. Given rewriting steps R;: ¢; = ¢, € P% for i € {1,2}, such that Ry, Ry are
1-composable, we have, in Ps,

(R1#1 ¢2) *2 (4] %1 R2) = (41 %1 Ra) %2 (R1 *1 ¢b).
Proof. Let l;,7; € P1, i, pi € Pa, A; € P such that R; = \; %o (I; %o A; %o 7;) *; p; for i € {1,2},
and p;, u; € Py such that A;: pu; = pl for i € {1,2}. In P3, we have
(R1 1 ¢2) *2 (¢} *1 Ra)
=)\
k1 [((I1 %0 A1 %0 r1) *1 p1 %1 A2 %1 (L2 %0 p2 *0 72))
x (11 %0 p] %0 71) %1 p1 %1 A2 %1 (I2 %0 Az %0 72))]
*1 P2 (by precategories axioms)
=\
1 [((1 %0 p1 *0 1) *1 p1 k1 A2 *q (l2 %0 Az *0 12))
xo (11 %0 A1 %0 71) %1 p1 %1 A2 *1 (l2 %0 11 %0 72))]
*1 P2 (by independence generator)
= (¢1 %1 Ra) *2 (R1 %1 ¢3) [

We can now conclude the exchange law for 3-cells:
Leinma B.2. Given F;: ¢; = ¢, € P3 fori e {1,2} such that Fy, Fy are 1-composable, we have,
m Pg,
(F1 %1 ¢2) *2 (0] #1 F2) = (¢1 %1 F2) %2 (F1 %1 ¢5).
Proof. As an element of P3, F; can be written F; = R %9 -+ x9 R; , where
Rij = Nij*1 (lij *0 Aij %0 Tij) *1 pij
for some k; € N, )‘i,jvpi,j € ﬁg, l@j,"f’@j S ﬁl, AiJ‘ ePsgforl <j<k,foric {1,2}. Note that

Fy %1 ¢po = (R11 %1 ¢2) %2 -+ - %2 (Ryk, *1 ¢2)

and
@1 %1 Fy = (¢ *1 Rap) *2 -+ - %2 (@] *1 Rop,).

Then, by using Lemma B.1 k1ks times as expected to reorder the Ry j,’s after the R» j,’s for
1<yj; <k forie{1,2}, we obtain that

(F1 #1 ¢2) *2 (¢ %1 Fo) = (¢1 %1 Fo) xo (F1 1 ¢y). O
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We now prove the various conditions on X_ _. First, a technical lemma:

Proposition B.3. Given f € P}, ¢,¢ € P5 with f, ¢, 0-composable, there is a canonical
isomorphism (f xo ¢) W ~ ¢ W and for all p € (¢ LW Y)], we have

[Pl fx0t = [ *0 [Plow

Similarly, given ¢, € P5 and h € PT with ¢,, h 0-composable, we have a canonical isomorphism
P (Y*oh) > W and for all p € (¢ (Y *o b))}, we have

[Pl pxon = [Plow *0 b

Finally, given ¢, € P5 and g € P] with ¢, g, 0-composable, we have a canonical isomorphism
(¢ 0 9) W~ ¢ (g*ov) and for all p € (¢ xo g) W )T, we have

[p]¢>*ogﬂ/) = [p]dhg*oiﬁ'

Proof. Let f € Py, ¢,¢ € P5 with f, ¢, 0-composable and let r,s > 0, f;,g; € P, a; € Py for
i€{l,...,r} and f},g; € P}, o) € Py for j € {1,..., s} such that

¢ = (fi*oa1*0g1)*1---*1 (fr*orx0gr) and = (f] xo o %o g7) *1 - *1 (f %0 &) %0 g;.)-

By contemplating the definitions of (f *g ¢) LW 1 and ¢ LW 1), we deduce a canonical isomorphism
between them. Under this isomorphism, we easily verify that we have [w] ¢4 = f *o0 [w]g,y for
w € ((f *o0 ¢) W)o. Now, given uljrjv € ((f *o ¢) LW 1))y, we have

Kol progae = [U] progaw *1 (F %0 fi %0 Xa givos; 0 %0 95) %1 [V] fropw
= [0 ([ulgw *1 (fi %0 Xay giros;.af ¥0 95) *1 [V]p)
= f *0 [Xu,v]da,v,l)-

By functoriality of [—]fy¢¢ and [—]4., we deduce that, for all p € (f *g ¢) L Y*,

[Pl fx0s,6 = f %0 [Plow-
The two other properties are shown similarly. ]
We can now conclude the most simple properties of X_ _:
Lemma B.4. Given ¢: f = f' € Py and v: g = ¢’ € Pa, we have the following equalities in Ps3:
(i) Xidfﬂ/, =idy,,, and X¢,idg = idy,,, when ¢, are 0-composable,
(71) Xiggp = U x0 Xgop for 1 € PT such that 1, ¢,4 are 0-composable,
(711) Xgwomuw = Xomrogw for m € P such that ¢, m, are 0-composable,

(1) Xgpsor = Xop *o 1 for r € PT such that ¢,1,r are 0-composable.
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Proof. (i) is clear, since both Xid,p and Xg iq, are identity paths on the unique 0-cells of (id pLugp)*
and (¢ LU idg)* respectively. (ii) is a consequence of Proposition B.3, since X .4, is sent to Xg 4
by the canonical isomorphism (f % ¢) LW ~ ¢ W p. (iii) and (iv) follow similarly. O

The last required properties on X_ _ are more difficult to prove. In fact, we need a proper
coherence theorem telling that, for 0-composable ¢, 1) € Po, Xy = [plg.y for all p € (¢ LW Y)}
parallel to X, . We progressively introduce the necessary material to prove this fact below.

Given a word w € (¢ L 1), there is a function

lFindex,: {1,...,|¢|} = {1,...,|¢| + ||}

defined such that, for i € {1,...,|¢[}, if w = w'l;w”, then l-index,, (i) = |w’| + 1. We have that
the function l-index characterizes the existence of path in (¢ W )*, as in:

Lemma B.5. Given 0-composable ¢, € Py and w,w’ € (¢ LU )y, there is a path
p:w—w € (o)}
if and only if l-index,, (i) < l-index, (i) for 1 <i <|@|.

Proof. Given Xy, : ul,rsv — urgl,v € (¢ W )1, it is clear that -indexy), (1) < l-indexyy,i,(7)
for all 1 < i < |¢|, so that, given a path p: w — w’ € (¢ W)}, by induction on p, we have
l-index,, (i) < l-index, (i) for 1 <i < |d|.

Conversely, given w,w’ € (¢ W)y such that l-index,, < l-index,s, we show by induction
on N(w,w’) defined by

N(w,w') = Z l-index,, (i) — l-index,,(7)

1<i<|g|

that there is a path p: w — w' € (¢ W Y);. If N(w,w’) =0, then w = v’ and 1,: w — W' is
a suitable path. Otherwise, let imax be the largest ¢ < |¢| such that |-index,, (i) > l-index,, (7).
Then, either imax = |¢| or l-indexy (imax) + 1 < l-indexy, (imax + 1) since

l-indexy, (imax) + 1 < l-index,y (imax)
< l-index,y (fmax + 1)

= l-indexy (fmax + 1)

So we can write w = ul;,, rjv for some words u,v and j € {1,...,|1)|}. We have a path generator
Xup: W — W € (¢W1p); where w = urjl;,, v. Then,

-index (i) = {"indexw(i) if 7 # imax

l-indexy (tmax) + 1 if © = imax
so l-index w < l-index w’ and N (w,w’) < N(w,w"). Thus, by induction, we get
P —w € (p)]

and we build a path Xy, %o p': w — w' € (¢ W 1))} as wanted. O
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Given O-composable ¢, € P3 and w = w ... wg|4|y| € (¢ W 1)o, we define Inv(w) as
Inv(w) = #{(i,7) |1 <i<j <|o| + [¢| and w; = ry and w; = Iy
for some i’ € {1,...,|¥|} and j" € {1,...,|9|}}.
We have that Inv characterizes the length of the paths of (¢ L )*, as in:

Lemma B.6. Given 0-composable ¢, € Py and p: w — w' € (¢ LW )F, we have
Ip| = Inv(w') — Inv(w).
In particular, given w,w’ € (¢ W)y, all the paths p: w — w' € (¢ W )T have the same length.

Proof. We show this by induction on the length of p. If p = id,,, then the conclusion holds.
Otherwise, p = X, *o r for some u,u’ € ¥y and r: 0 — w’ € (¢ W 1p);. Then, by induction
hypothesis, |r| = Inv(w’) — Inv(w). Note that, by the definition of X, ./, w = uljrju’ and
W = urjlr for some i € {1,...,|¢|} and j € {1,...,|¢|}. Hence,

Ip| = |r| +1 = Inv(w') — Inv(@) + Inv(®) — Inv(w) = Inv(w') — Inv(w). O
Given 0-composable ¢, € P5, we now prove the following coherence property for (¢ L )*:

Lemma B.7. Let =~ be a congruence on (¢ LU )*. Suppose that, for all words uy,us,us € X¢ 4,
i, € {1,...,]¢|} and j,j" € {1,...,|¥|} such that uilyrjuslyrjiuz € (¢ W Y)o, we have

urlirjuglyryrus

u1 u2l s /V \)<1,L1|7;|"7"U42,u3

’LL1FJ|ZUQ| APIIE ullirjUerlli/u;g

u1f liug, UN‘ %ﬂhuzriﬂi/%

u1r3|1u2rjlli/u;),
then, for all p1,p2: v — w € (¢ W Y)], we have p1 = pa.

Proof. We prove this by induction on |p1|. By Lemma B.6, we have |p1| = |p2|. In particular, if
p1 = id,, then ps =id,. Otherwise, p; = ¢; %o r; with ¢;: v — v; and r;: v; — w and |g;| =1 for
i € {1,2}. If g1 = g2, then we conclude with the induction hypothesis on 1 and ry. Otherwise,
up to symmetry, we have ¢ = Xu17u2|i,rj,u3 and ¢o = XUllirjUQ,US for some uy,us,uz € EZW’
i, € {1,...,|¢|} and 7,5 € {1,...,|¢|}. Let

/ /

/
q1 = Xu1rj|iu2,ug7 qo = Xul,ugrjﬂi/ug? U =Uuy rinUer/Ii’u3'

Since we have a path v < v; =% w, by Lemma B.5, we have l-index,(s) < l-index,,(s) for
se{l,...,|¢|}. Moreover,

l-index, (i) < l-index,, (i) < l-index,,(i) and |-index,(i') < l-index,, (i') < l-index,,(i).
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Also, for s € {1,...,|6|},

l-index,(s) +1 if s € {i,i'},

l-index, (s) otherwise.

l-index,/ (s) = {

From the preceding properties, we deduce that l-index,/(s) < l-index,(s) for s € {1,...,|¢|}.
Thus, by Lemma B.5, there is a path r': v/ — w € (¢ L)} as in

V2

Since |r;| = |pi| — 1 for i € {1,2}, by induction hypothesis, we have r; = ¢} xo 1’ for i € {1,2},
which can be extended to ¢; o 7 & g; *o ¢, *o 7', since ~ is a congruence. By hypothesis, we have
q1 *0 4] = G2 *0 ¢, which can be extended to q; xg ¢} *0 1’ & q2 *0 ¢5 *o r'. By transitivity of =,
we get that g1 g r1 & g2 *g r2, that is, p1 ~ po. ]
We then apply this coherence property to [—]— _ and get that “all exchange methods are
equivalent”, as in:
Proposition B.8. Given 0-composable ¢,v € Pa, for all p1,pa: u — v € (¢ W)}, we have, in
P3}

[P1]e.w = [P2low-
Proof. By Lemma B.2, for all words ui, ug,us € X4, 1,7 € {1,...,|¢} and 4,7" € {1,...,[¢|}
such that uil;rjuslyrjus € (¢ W)y, we have

[urlirjuslirjus]s
[XU17u2|,L-/Fj/U3]¢,¢ [Xullirqu,u:;}d),w

[u1 rj|iu2|i/rj/U3]¢,¢ = [U1|irjUer/|i/U3]¢;¢,

[Xulfj|iu2vu3]¢N Mubuzrj/li/%]é,w

[u1 rj|l'u2rj/|i/u;3]¢7¢

Moreover, the relation ~ defined on parallel pi, p2 € (¢ LW )] by p1 = p2 when [p1]gy = [P2]g.4
is clearly a congruence. Hence, by Lemma B.7, we have that [pi]y = [p2]. for all parallel

plvp?6 ((ZsLUl/))T Il

The preceding property says in particular that Xy = [ple for all 0-composable ¢, € P35 and
paths p € (¢ L 1)) parallel to X .

Let ¢, 1 € P4 be 0-composable 2-cells, and ¢', ¢’ € P5 be 0-composable 2-cells such that ¢, ¢’
and v, are 1-composable. To obtain the last required properties on X_ _, we need to relate
¢ and ¢ WY to (¢ 1 @) W (P 1 ). Given w € (¢ U)o, there is a functor

w-(=): (¢ W) = (¢ ¢) W (¥ 1 ¢))"
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which is uniquely defined by the mappings
u = wi(u)
Xu1,u2 = XwT(ul),T(uz)

for u € (¢'W1)')o and Xy, ,u, € (¢'WeP')1 and where, for v = v ... v € X3, 1, T(v) € B, 4y
is defined by

o) ligj+i  if v = 1; for some i € {1,...,|¢'|}
V) =
My|+; if ve = r; for some j € {1,... [/}

for r € {1,...,k}. Similarly, given w € (¢' LW ¢')g, there is a functor
(=) w: (W) = (¢*1) W (Y1 ¢))"
which is uniquely defined by the mappings

u— u(w)

Xul,uz = Xul,uzT(w)
for u € (p W )o and Xy, 4y € (¢ W 1Y); and where T(—) is defined as above.

The functors w-(—) and (—)-w satisfy the following compatibility property:

Lemma B.9. Let ¢,1) € P5 be 0-composable 2-cells, and ¢, 1)’ € P% be 0-composable 2-cells such
that ¢, ¢" and 1,4’ are 1-composable. Given w € (¢ L))o, we have the following equalities in P%:

(1) [w-(W)]pero v = (Wl *1 [ulgr g for u e (¢" W )o,

(i) [w-(p)ger gt womrw = [Wlg,p %1 [plgy g for p € (¢" W)
Similarly, given w € (¢' W), we have:

(1) [(w)w]gurgr o = (U)o %1 [wlgr e for u € (¢ e)o,

(1) [(P)w]ger ¢t sy = [Pl *1 [W]gr g forp € (G WP)T.
Proof. We only prove the first part, since the second part is similar. We start by (i). We have
[w- ()] gy ¢/ psr gy = [wT(u)];ﬁi%w*W" By a simple induction on w, we obtain

(WMt i = B0 e 21 PG

and, by other simple inductions on w and u, we get

1,1 1,1 : 1,1
[w]qﬁ*lqy,wlw = [w]dmp = [w]g,y [T(“)]ﬁllﬂw*lw = [u]qb’,q/)’ = [u]g,y

so that (i) holds.
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For (ii), by induction on p, it is sufficient to prove the equality for p = Xy, u, € (¢ LI1)1. Let
m = |¢[, n = [¢], and

(e1 %0 a1 % f1) *1 -+ %1 (€m *0 Qm %0 fim) (g1 %0 B1 *0 h1) *1 -+ *1 (Gm *0 Bm *0 hm)

be the unique decomposition of ¢ and v respectively, for some e;, f;, gj, hj € PT and oy, 8; € P2
forie {1,...,m} and j € {1,...,n}. We then have

[w- (Xuyjuo)] g o vt = Kt (un) puz)ge1er,e107
1,1 ki,kr
= [wh(u1)] g, ¢ ey g ¥1 (€0 %0 Xy firagy 85 %0 ) 1 [T(U2)] 6 G s

where 4, j are such that u;l;rjus € (¢' LW y')o and
ki=lgl+i+1 kr =Y +j+1.
By simple inductions, we obtain
1,1 1,1 :
(W) = 16yt DI
- ¢ "1 gy g
1,1
= [w]pp *1 [U1]¢/,¢/

and
Kok i+1,j+1
[M(2)] g g g = (U2l g
so that
11 +1,5+1
[ (Kuy us )]s i = (W] *1 [ua] gy %1 (€3 %0 Xy, firog; 85 %0 ) *1 [ualyr g7/
= [w]dkw *1 [XUhuz]Qﬁ’,W' -

We can now conclude the last required properties on X_ _:

Lemma B.10. Given 1-composable ¢, ¢’ € P, 1-composable 1,1’ € Py such that ¢, are
0-composable, we have the following equalities in P3:

Xpmgrap = (90 07 (1)) ¥1 Xgr ) %2 (X %1 (¢ %0 07 (1))
and

X perpr = (X %1 (97 (0) %0 9")) *2 (97 () *0 ) *1 X, p0)-

Proof. We only prove the first equality, since the second one is similar. By definition of Xy, ¢ 4,
Weilave X¢*1¢/’w = [X¢>*1¢’,¢]¢*1¢’,¢' Moreover, by PrOpOSitiOIl B.8, [X¢*1¢/’w]¢*1¢/’w = [p]¢,*l¢/7w
in P3 for all path p € ((¢ %1 ¢') W 1)), parallel to Xy, ¢ . In particular,

X lgmrar = [(w-(Xgr ) %0 (X)) o

where
— ,_
wfll...||¢| wfll...l|¢/|
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are the only 0-cells of ¢’ LU ida,( #) and ¢ Widyy () respectively. Thus,

KXo wlomrsrw = [(W-(Xgr ) %0 (Xg ) W) gy 7,0
= [(w (Xgr )] pwrarw *2 [(Ko) W) gy 0
(by functoriality of [—]s« ¢/ )
*1 X wlorw) 2 (Ko plow ¥1 [Wlgria, )
(by Lemma B.9)
= ((¢ %0 0y (¥)) %1 Xyt ) *2 (Xgp %1 (¢ %0 O ()
(by definition of [—-]_ _ and X_ _).

= ([w]g,ia

o= () at(y)

Hence,
Koo = (6 %0 07 () %1 Xy ) %2 (X 1 (¢ %0 07 (1)) O

We now prove the compatibility between 3-cells and interchangers. We start by proving the
compatibility with 3-generators:

Lemma B.11. Given A: ¢ = ¢': f = f' € P3 and ¥: g = ¢ € Py such that A% are
0-composable, we have, in Ps,

(Ao g) 1 (f %0 1)) %2 Xy p = Xy %2 ((f 0 ¥) *1 (A %0 g')).

Similarly, given ¢: f = f' € Py and B: ¢ = ¢': g = ¢ such that ¢, B are 0-composable, we
have, in P,
Xowx2 (g0 B) #1 (¢ %0 f')) = ((¢ %0 9) %1 (f %0 B)) 2 Xg,r-

Proof. We only prove the first part of the property, since the other one is symmetric, and we
do so by an induction on [¢|. If [p] = 0, 9 is an identity and the result follows. Otherwise,
Y = w %1 1) where w = (I%g kg r) with [, € Py, a: h = b/ € Py and 4 € Py with || = || — 1.
Let § = 9; (w). By Lemma B.10, we have

Ko = X1 (f %0 9)) %2 ((f %o w) +1 X ) (9)
Xorp = (X %1 (f 0 9)) %2 ((f %o w) %1 Xy ) (10)

Also, by Lemma B.4(iv), we have
Xd),w == X¢,l*0a *0 T X(b’,'w = X(b’,l*ooc *o T (11)

so that
(A0 g) %1 (f %0 w)) *2 Xpy
[ A *Q l *Q h *1 (f *Q l *Q a)) *9 X¢/ l*oa] x0T

[X¢) lxga *2 f *Q l *Q a) *1 (A *Q l *Q hl))] *o T (12)
(by interchange naturality generator)

= Xy %2 ((f %0 w) %1 (A% g')).
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Thus,

(Axo g) 1 (f %0 ¥)) %2 Xgy g
= ((Ax0g)*1 ("o w) 1 (f" %0 1))

*2 (Xgrw 1 (f %0 ¥)) %2 ((f %0 w) +1 Xy ) (by (10))
= [(((A #0.9) %1 (' %o w)) 2 Xgr) #1 (f %0 0)]
*2 ((f *o w) 1 Xy )
= {(Xas,w *2 ((f xow) *1 (A %0 §))) *1 (f' %o 1/;)}
*2 ((f xow) x1 Xy 7) (by (12))
= (Xpw*1 (f %0 1))

ko ((f 0 w) 1 (A0 §) 51 (F %0 9)) 52 ((f %0 w) 1 Xy )
= (Xpw *1 (f' %0 )
vz |(f #0w) #1 (A0 §) 1 (f %0 9)) %2 Xy 5)]
= (Xpw *1 (f %0 9))
r2 [(f x0w) %1 (X g2 ((f %0 9) #1 (A %0 ¢)] (by induction)
= (Xgw 1 (f %0 ) *2 ((f xow) %1 (X, 5))
xg ((f %0 w) 1 (f %0 ) %1 (Axo g'))
=Xy %2 (f*o9) %1 (Ao g')) (by (9)). [

Next, we prove the compatibility between interchangers and rewriting steps:

Lemma B.12. Given a rewriting step R: ¢ = ¢': [ = f' € P§ with R = \xq (Ixg Axqr) 1 p for
some l,r € Py, \,p e P5, A: u= ' € P3, and ¢: g = ¢’ € P} such that R, are 0-composable,
we have, in Ps,

(R0 g) 1 (f %0 1)) %2 Xor s = Ko 2 ((f #090) #1 (R*0 ). (13)

Similarly, given ¢ € P5 and a rewriting step S: 1 = ' g = ¢’ € P§ with S = A1 (IxgBxg 7")7*1,0
for some A\,p € P5, I,r € P{, B: v =1 € P such that ¢, S are 0-composable, we have, in Pg,

X *2 ((f 0 B) *1 (¢ %0 9')) = (¢ %0 9) *1 (f' %0 B)) *2 X -

Proof. By symmetry, we only prove the first part. Let

0 pkO T h =0y (k) h =0y (1)
xo p x0T n =07 (i) B =0 (i)

We have

Rxgg = (Axgg)*1 (I %0 Axo 7 x0g)*1 (p*09)
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and, by Lemma B.10,

Xop = ((A#1 /1) %0 g) %1 Xp )
x2 (A %0 9) %1 Xy #1 (p*0 9'))) (14)
*2 (Xouy *1 (%1 p) %0 9)))
Xy = (A1 i) %0 g) %1 Xp )
*2 (A *0 9) %1 Xy %1 (p*0 9'))) (15)
*2 (X *1 (7' *1 p) %0 ¢)))-
We start the calculation of the left-hand side of (13), using (15). We get

(R0 g) %1 (f *09)) %2 (A1 ) %0 9) *1 Xpp)

= (A*09)

*1 [((l w0 A ko1 %0 g) *1 (p*0 g) *1 (f *0 1)) *2 (1 *0 g) *1 Xp,’t/)):|
=(A*09)

1 (170 9) #1 Xpp) %2 (10 Axo 0 9) #1 (W 50 1) 1 (pr0 9)]  (by Lemnma B.2)
= ((Ax0g) =1 (B *0 g) ¥1 Xpy)

2 (Ax0 g) %1 (I %0 Axo 7 %0 g) %1 (B %0 9) %1 (p*0g')).

Also, we do a step of calculation for the right-hand side of (13), using (14). We get
(X *1 (%1 p) %0 9')) *2 ((f %0 ) %1 (R*0 ¢))

= ((Ax0g) *1 (hxo ) *1 (Lo Axgr %0 g') %1 (p*0 ¢))
xg (Xay 1 (' %0 g') %1 (p*0 g')).

Finally, we do the last step of calculation between the left-hand side and the right-hand side
of (13). Note that

((Lxo Axo 7 %0 g) *1 (B %0 1)) %2 Xz
= Lx0 (((Axo7 %0 g) *1 (W' %07 %0 1)) %2 Xprugr) (by Lemma B.4(ii))
= Lxg (((Axo7 %0 g) %1 (W %07 %0 1)) %2 X regu) (by Lemma B.4(iii))
=l %0 (X,u,'r*o'gb o ((h*o 1 %0 1) *1 (A %o 7 %0 g/))) (by Lemma B.11)

= 1% (Xpnoryp *2 (o 7 %0 1) %1 (Ax0 7 %0 g'))) (by Lemma B.4(iii))
= Xp *2 (B0 ¥) =1 (Ix0 Ao 7 %0 g)) (by Lemma B.4(ii))

so that

((Ax0 g) *1 (I 0 Axg 1 %0 g) *1 (ﬁl 0 ) *1 (p *0 9’)) *2 (A *0 g) *1 X *1 (p *o 9/))
= ()\ *Q g) *1 |:((l *Q A *0 T *Q g) *1 (iLl *Q ’(/})) *9 Xﬁ/7¢:| *1 (p *Q g/)
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= (A*0g) *1 [Xg,w w0 ((h o 1) %1 (10 Axo 1 %0 g/))} 1 (p*0g')
= (A0 9) %1 Xaw 1 (p*0g)) %2 (A% g) %1 (hxo ¥0) %1 (Lo Axgrx0g') %1 (p*0 ).

By combining the previous equations, we obtain

(R *0 g) %1 (f %0 1)) %2 Xy 4
= ((Ax0g)*1 (Ix0 Axo 7 %0 g) *1 (p*0 g) *1 (f *0¥))
(N1 ") %0 g) %1 Xy )
(A *0g) %1 Xy %1 (p*0 g)))

x9 (X +1 (A #10) %0 9)))

= (((A*1 1) %0 g) *1 Xp )
*2 (A0 9) %1 Xy *1 (p*0 g)))
*2 (Xaw #1 (%1 p) %0 9')))
2 ((f *0 1) *1 (A %0 g) *1 (L0 A *0 7 %0 g) *1 (p*0 9))
= Xpypx2 ((f*01) 1 (R*0g"))

which is what we wanted. O

*9

*9

We can deduce the complete compatibility between interchangers and 3-cells:

Lemma B.13. Given F: ¢ = ¢': f = f' € P3 and ¢¥: g = ¢ € Py such that F,v are
0-composable, we have

((F 0 g) *1 (f %0 1)) %2 X = X *2 ((f %0 ¥) %1 (F %0 ¢')).

Similarly, given ¢: f = f' € Py and G: ¢ = ¢': g = ¢’ € P3 such that ¢,G are 0-composable,
we have

Xgp %2 ((f 0 G) *1 (9 x09") = (¢ %0 g) %1 (f' %0 G)) *2 Xpyr-

Proof. Remember that each 3-cell P can be written as a sequence of rewriting steps of P. By
induction on the length of such a sequence defining F' or GG as in the statement, we conclude
using Lemma B.12. O

We can conclude that:

Theorem 2.3.2. Given a Gray presentation P, the presented precategory P is canonically a lax
Gray category.

Proof. The axioms of lax Gray category follow from Lemma B.4, Lemma B.10, Lemma B.2 and
Lemma B.13. 0
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C Finiteness of critical branchings

In this section, we give a proof of Theorem 3.4.6, i.e., that Gray presentations, under some
reasonable conditions, have a finite number of critical branchings. Our proof is constructive, so
that we can extract a program to compute the critical branchings of such Gray presentations.
First, we aim at showing that there is no critical branching (S1,S2) of a Gray presentation P
where both inner 3-generators of S; and Sy are interchange generators. We begin with a technical
lemma for minimal and independent branchings:

Lemma C.1. Given a minimal local branching (S1,S2) of a Gray presentation P, with
Si = Xi*1 (li %0 Ai %0 1i) *1 pi
and l;,m; € Py, Ai,pi € P35, A; € Ps fori € {1,2}, the followings hold:
(i) either A1 or A2 is an identity,
(ii) either p1 or py is an identity,
(#ii) (S1,S2) is independent if and only if

|05 (A1) + 105 (A2)[ < [0y (S))| and — |Ma[pa] = [A2]lp2| = 0.

If (S1, S2) is moreover not independent:
(iv) either 1y orly is an identity,
(v) either ri or ry is an identity.

Proof. Suppose that neither A; nor Ay are identities. Then, since
Al *1 (ll *Q 82_(A1) *Q 7'1) *1 p1 = AQ *1 (ZQ *Q BQ_(AQ) *Q T'Q) *1 P2,

we have \; = w *; A} for some w € P and X, € P5 for ¢ € {1,2}, such that |w| > 1, contradicting
the minimality of (S1,S2). So either A\; or Ay is an identity and similarly for p; and p2, which
concludes (i) and (ii).

By the definition of independent branching, the first implication of (iii) is trivial. For the
converse, suppose that (S7, S2) is such that

|05 (A1) + 105 (A2)[ < [0y (S1)| and  [Ai]lpa| = [Azllp2| = 0.

We can suppose by symmetry that A is a unit. Since |05 (S1)| = |A\1] + |05 (A1)] + |p1], we have
that 95 (42)] < |pi.
If |p1| = 0, then
S1=lix9 A1 *xor1 and |0, (A2)| =0,

thus, since |A2||p2| = 0, we have

either SQ = 82_ (Sl) *1 (lg *9 A2 *9 7"2) or S2 = (ZQ *9 A2 *9 7‘2) *1 82_ (Sl)
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In both cases, (S1,S2) is independent.
Otherwise, |p1| > 0 and, by (ii), we have |p2| = 0 so that

S1=(li*xo A1 %071) %1 p1 and Sy = Ag*1 (la %0 A2 %0 72).

Since |0, (A2)| < |p1], we have p1 = x 1 (l2 %9 05 (A2) *¢ r2) for some x € P3 and, since
05 (81) = 05 (52), we gt

(11 *Q BQ_(Al) *Q 7“1) *1 X *1 (lg *Q 82_(142) *Q 7’2) = AQ *1 (lg *Q 82_(142) *Q 7’2).

So A2 = (I3 %0 05 (A1) *¢ 1) *1 x and hence (57, S2) is an independent branching, which concludes
the proof of (iii).
Finally, suppose that (S1,S2) is not independent. By (iii), it implies that

either [0, (A1)| + 105 (A2)] > [0, (S1)[ or [Ai[|p1[ >0 or [Az[p2| > 0.
If [\1]|p1| > 0, then |Ag| = |p2| = 0 by (i) and (ii), so that
Av 1 (I kg A1 %o 1) %1 p1 = l2 %0 A %o 12
thus there exists A}, pj € P3 such that
A =loxg N %02 and  py = ls %o p % T2,

and we have

lQ *Q aii_()\/l) X0 o = 8{“()\1) = ll *Q 61_(141) *0 1.
Thus, {1 and Iz have the same prefix [ of size k = min(|l1|, |l2|) and we can write
Slzl*OSi SQZZ*OSé

for some rewriting steps S, S2 € P%. Since (S1, S2) is minimal, we have k = 0, so |l1]|l2] = 0. We
show similarly that |r1||r2] = 0. The case where |A\a||p2| > 0 is handled similarly.
So suppose that

[Atllpi] =0 and  |Aoflp2| =0 and |9y (A1)] + |9y (A2)] > |85 (S1)- (16)

In particular, we get that |05 (A4;)] > 0 for ¢ € {1,2}. Let u;,v; € P{and o; € Pofori e {1,...,r}
with 7 = |05 (S1)| such that

05 (S1) = (w1 %0 aq %0 v1) *1 -+ - %1 (Up *0 Q%0 V).

The condition last part of (16) implies that there is iy such that [; and Iy are both prefix of w;,.
So, 11 and [y have the same prefix [ of length k = min(|l;, |l2]).
Now, we prove that A\; = [ %o ] for some \] € P5. If |\{| = 0, then

)\1 = ll *0 6{(51) *0 71,

so A =l g A} for some N € P5. Otherwise, if [A\;| > 0, since |A1]|p1]| = 0, we have |p;| = 0 and,
by (i), |A2| = 0. Also, by the last part of (16), we have |\1| < |05 (A2)|. Thus,
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A1 is a prefix of lg xg 05 (A2) *q 72,
so A1 = %9 A} for some \; € P5. Similarly, there are p/, \,, p5, € P3 such that
p1=1%p] and Xo =1%o, and po=1%g\,.

Hence S = 1 %9 S} and Sz = [ % S} for some rewriting steps 57,55 € P5. Since (S1,S52) is
minimal, we have |l1||lz| = |I| = 0, which proves (iv). The proof of (v) is similar. O

We now have enough material to show that:

Proposition C.2. Given a Gray presentation P, there are no critical branching (S1,S2) of P
such that both the inner 3-generators of S1 and So are interchange generators.

Proof. Let (S1,S52) be a local minimal branching such that the inner 3-generators of S; and S
are interchange generators, with

Si = Ni x1 (li 0 Xy 9,8 *¥0 Ti) *1 Pi

for some l;,7i,9; € PY, A\i,pi, i, B; € P5 and A; € P3 an interchange generator, and let ¢
be 05 (S1). Since |05 (Xay,1,8:)| = 2, we have |¢p| > 2.
If |¢| = 2, then |\;| = |pi| = 0 for i € {1,2}. Thus, since 9, (S1) = 95 (S2), we get

(11 %0 a1 %0 g1 %0 07 (B1) *0 1) *1 (I1 %0 07 (1) *0 g1 *0 B1 *0 71)
= (g %0 a2 %0 g2 *0 07 (B2) *0 12) *1 (I2 %0 07 (q2) *0 g2 *0 B2 *0 T2).
By the unique decomposition property given by Theorem 1.8.3, we obtain
li=ly, ri=mry ar=a Pi=PF and g1 *90; (B1)*07r1 = g2 *0 ) (B2) *o T2

So g1 %0 07 (B1) *0 1 = g2 *0 01 (B1) *o 71, which implies that g1 = g2. Hence, (51, S2) is trivial.
If |¢| = 3, then |\;| + |pi| =1 for i € {1,2}, and, by Lemma C.1,

either |[p1| = [Aa| =1 or [\1| = |p2| = 1.
By symmetry, we can suppose that |p1| = |\2| = 1, which implies that |A\1| = |p2| = 0. Since
05 (S1) = 05 (S2) and by unique decomposition of whiskers, we get

ll *0 (X1 *0 g1 *0 (91_(,81) x0T = )\2
Ih %0 07 (a1) %0 g1 *0 1 %0 71 = la %0 a2 %0 g2 *0 05 (B2) *0 T2

p1 = la %0 0F (a2) %0 g2 *0 B2 *0 T2

and the second line implies that 1 *q 8#(041) %0 g1 = la, B1 = ag and r1 = g2 *¢ 0] (B2) *0 T2.
Since (S, S2) is minimal, we have |l1] = |r2] = 0. So

S1 = (Xay,g1,8 *0 92 %0 07 (B2)) *1 (0 (Xayg1,8,) *0 g2 *0 B2)
Sy = (a1 %0 g1 %0 97 (B1) *0 g2 *0 97 (B2)) *1 (97 (1) *0 g1 %0 X3y,92,8,)

thus (S7, S2) is a natural branching, hence not a critical one.
If || > 4, then, since |N;| + |pi| = || — 2 > 2 for i € {1,2}, by Lemma C.1, we have that
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cither [M| = pal = 6] =2 or ;| = [Pl = 6] — 2.
In either case,
[Atllpr] = [Aallpal = 0 and |85 (Xay g1,8)| + 102 (Xazg:.8.)| = 4 < [9]
so, by Lemma C.1 (iii), (S1,S2) is independent, hence not critical. O

Until the end of this section, we denote by P a Gray presentation such that Py and P3 are
finite and |05 (A)| > 0 for every A € P3, i.e., a Gray presentation satisfying the hypothesis
of Theorem 3.4.6. Moreover, we say that A € P3 is an operational generator if it is not an
interchange generator. We state below several technical lemma for local branchings of P that we
will use for showing Theorem 3.4.6.

Lemma C.3. Given a minimal branching (S1,S2) of P with
Si = Aix1 (li x0 A 0 73) *1 pi

for some l;,r; € PY, N\i, pi € P5 and A; € P3 fori € {1,2}, we have that (S1,S2) is independent
if and only if

either [A1| > 105 (A2)| or |p1| > 105 (A2)| (resp. [Aa| = (05 (A1)] or |p2| =05 (A1)]).
Proof. 1f (S1,S2) is independent, then, by Lemma C.1(iii),
|05 (A1) + 105 (A2)| < [A1] + 105 (A1)| + |p1| = | A2l + [0 (A2)[ + |p2l,

that is,
0y (A1)| < [Ae] + |p2| and |0y (A2)| < [Aa] + |pal.

By hypothesis, we have |05 (A1)| > 0, so that |A2| + |p2| > 0. If [A2] > 0, then, by Lemma C.1(i),
|A1] = 0 so |05 (A2)| < |p1]. Similarly, if |p2| > 0, then |05 (A2)| < |A1], which proves the first
implication.

Conversely, if |A\1| > |05 (A2)|, then, since 0, (A2) > 0 by our hypothesis on P, we have
|A1] > 0. By Lemma C.1(i), we get that |[A2] = 0. Also,

A1l + 105 (A + |pa| = 105 (A2)] + [p2| < [Aaf + |p2l;
so |p2| > |05 (A1)| + |p1], thus |p1| < |p2|. By Lemma C.1(ii), we have |p;| = 0. Moreover,
[0y (A1)| + 105 (A2)[ <105 (A1)] + [M] = (95 (S1)]
hence, by Lemma C.1(iii), (S1,S2) is independent. O
Lemma C.4. Given a minimal non-independent branching (S1,S2) of P with
Si = Aix1 (li x0 Ay *0 73) *1 pi

for some l;,mi € Py, N\i,pi € P5 and A; € P for i € {1,2}, we have that (S1,S2) is uniquely
determined by A1, Aa, |\1| and |A2].
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Proof. Let the unique ki, k2 > 0, u;, u;, v;,v; € P} and o, B; € P2 such that

82_(/11) = (u1 *0 (1 *( u/l) IO R | (ukl *Q akl *( U;Cl)
and

05 (A2) = (v1 %0 B1 *0 v]) *1 - - *1 (Vky *0 Bky *0 v,’Q).
Let i1 = 1+ |\1] and i3 = 1 4 |A2|. Since

A1 *1 (I1 %0 Oy (A1) 0 71) *1 p1 = A2 *1 (I2 %0 05 (A2) *o 12) *1 pa2, (17)

and, by Lemma C.3, |A\1] < |05 (A2)| and |Xa| < |05 (A1), we get

Iy %0 w4y *0 @iy ¥ u;2 *0 T1 =l %0 Vi, *0 Bi; *0 Uzl‘l *0 T'9

so that
!/ /
l1 %o usy = laxo vy and  wy, 0 11 = vy, * T2.

By Lemma C.1(iv), either I} or Iz is an identity. Thus, if |u;,| < |vj, |, then |I1| > |l2| so Iz is a unit
and [y is the prefix of u;, of size |uj,| — |v;,|. Otherwise, if |u;,| < |v;, |, we obtain similarly that
Iy is the prefix of v;, of size |v;, | — |u;,| and I3 is a unit. In both cases, I; and Iy are completely
determined by Ap, Ag, |A1| and |Ag|. A similar argument holds for r; and ra.

Now, if |A1] > 0, by Lemma C.1(i), |A2| = 0. By (17) and since |\1| < |05 (A2)|, A1 is the
prefix of lg %g 0, (A2) %o 72 of length |A;|. Otherwise, if |A\;| = 0, then \; = idll*oaf(Al)*on' In

both cases, A1 is completely determined by A;, Ag, |A1|. A similar argument holds for \y. Note
that, if we prove that |p;| and |p2| are completely determined by Ay, A, |A1] and |Az|, the above
argument also applies to p; and p2 and the lemma is proved. But

(Al + 105 (A)| + |pa| = [Ao| + 105 (A2)| + |p2l,
so that if [\ + |05 (A1)| > [A2| + (05 (A2)], then, by Lemma C.1(ii), [p1| = 0 and
|p2] = | Aa] + 105 (A1) = [A2| = [0 (Az)].
Otherwise, if |A1| 4+ |05 (A1)] < [A2| 4+ |05 (A2)|, we get similarly that
1] = [A2] + 10 (A2)| — |Ma] = [0 (A1)

and |p2] = 0. In both cases, |pi| and |p2| are completely determined by Ay, Az, |A1] and |A2],
which concludes the proof. O

Lemma C.5. Given an operational Ay € P3, there are a finite number interchange generator
Ay € Ps so that there is a critical branching (S1,S2) of P with

Si = Xi#1 (li 0 Ai *0 13) *1 pi

for some l;,r; € PY, \i, pi € P5 fori e {1,2}.
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Proof. Let an operational Ay € Ps, a, 8 € Py, u € P, l;,1; € P, A\, p; € P5 for i € {1,2}, so
that (S1,52) is a critical branching of P with

Si = Xi %1 (Li %0 Aj %o ;) %1 p; for i € {1,2}
and Ay = X, 4. Let the unique k > 2, v;,v; € P{, 7; € Py for i € {1,...,k} such that
Oy (A1) = (v1 %0 71 *0 V1) *1 -+ *1 (Vg %0 Yk *0 VL)
By Lemma C.3, since (S7, S2) is non-independent,
2 = 105 (Xawg)| > max(|al 1))

Note that we can not have |\1| = |p1| = 1. Indeed, otherwise, by Lemma C.1, we would have
[A2| = |p2| = 0, so that

2 =10y (Xawp)l = M) + 105 (A1)| + [pa]-

and thus |05 (A1)| = 0, contradicting our hypothesis on P3. That leaves three cases to handle.
Suppose that |A1| = |p1| = 0. Then,

l1 %0 0y (A1) %0 11 = A2 %q (l2 *0 Oy (Xa,u,g) *0 T2) *1 p2.

Thus,
/ _
[1 %0 V14 2] %0 V14 |Ag| *0 Vliin,| *¥0 T1 = l2 %0 @ %0 U *q 0, (B) *0 72
+| A2
/ _ +
11 %0 V24 |xg| %0 V2+[Ag| *0 Vay || *0 71 = l2 %0 Oy () %0 w ko B *0 T2
=)
=« = lo =11 %90 ro = v, x0T
RAREDYY ) Y2+ Az ) 2 1 *0 V14|q|s 2 2+|A2| ¥0 71
and u is the suffix of Iy xg vy |y, of length |I1 %0 vop|x,| — |l2 %0 07 (a)]. In particular, X, g is

completely determined by A; and |\2|. And since
(A2l =105 (A1) = 10y (Xawp)| — o2l €40,...,105 (A1) — 2},

there is a finite number of possible X, ,, g which induce a critical branching (S1, S2).
Suppose now that |[A\;| =1 and |p;| = 0. Then, by Lemma C.1, |\2] = 0. So

Alzlg*oa*ou*oal_(ﬁ)*()?ﬁ

and
/ _ +
L1 %0 V1 *0 Y1 *0 V] *0 1 = l2 %0 O] () %0 w %o 5 *o 2.

In particular, we have § = 1 and 79 = v] *¢r1, so |r1]| < |rz]. By Lemma C.1(v), we have |ri| =0
and ro = v]. Note that we have |u| < |v1|. Indeed, otherwise u = u' xg v1 for some ' and, since

]+ [vi| = liz] + 107 ()] + [ul,
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we get that |ls] < |l1|. By Lemma C.1(iv), it implies that |ls] = 0 and I; = 0] («) %o v/, which
gives
S1 = (axou' %0 Oy (A1) 1 (9] (o) *0 u' 0 As)

and

Sy = (Xaurovi,m *0 V1) %0 (87 () %0 ') %o ((v2 %0 72 %0 vy) *1 -+ - *1 (Vg *0 Yk *0 V)

so that (S7, S2) is a natural branching, contradicting the fact that (S7,.S2) is a critical branching.

So |u| < |v1] and w is a strict suffix of vy, thus there are |v;| such possible u. Moreover, since
P, is finite, there are a finite number of possible o € Po. Hence, there are a finite number of
possible X, , 3 € P2 that induces a critical branching (51, S2) such that |A;| =1 and |p1]| = 0.
And this holds too for the symmetric situation where |A;| = 0 and |p1| = 1, which concludes the
proof. O

We now have enough elements to prove our finiteness property for critical branchings of Gray
presentations, as in:

Theorem 3.4.6. Given a Gray presentation P where Py and Ps3 are finite and |05 (A)| > 0 for
every A € Ps, there is a finite number of local branchings (S1, S2) with rewriting steps S1, S2 € P}
such that (S1,S2) is a critical branching.

Proof. Let P; = \; %1 (ll x0 A; *o 7’1') *1 p; with [;,r; € PT, Ai, pi € P; and A; € P3 fori € {1, 2} and
such that (Pp, P) is a critical branching. By Lemma C.4, such a critical branching is uniquely
determined by Ay, Ag, |A1| and |A2|. By Lemma C.3,

(A1l <105 (A2)] and  [Ag] <05 (Ay)].

Hence, for a given pair (Aj, As), there are a finite number of tuples (I1, 2,71, 72, A1, A2, p1, p2)
such that (P;, P») is a critical branching.

By Proposition C.2, either A; or Ao is an operational generator. By symmetry, we can
suppose that A; is operational. Since Pj is finite, there is a finite number of such A;. Moreover,
there are a finite number of pairs (A1, A2) where Ay is operational too. If Ay is an interchange
generator, then, by Lemma C.5, there are a finite number of possible A, for a given A; that can
induce a critical branching (P, P»), which concludes the finiteness analysis. O

80



	Precategories
	Globular sets
	n-precategories
	Truncation functors
	The funny tensor product
	Prepolygraphs
	Presentations
	Freely generated cells
	Normal form for cells
	(3,2)-precategories

	Gray categories
	The Gray tensor products
	Gray categories
	Gray presentations

	Rewriting
	Coherence in Gray categories
	Rewriting on 3-prepolygraphs
	Termination
	Critical branchings

	Applications
	Pseudomonoids
	Pseudoadjunctions
	Self-dualities
	Frobenius monoid

	Equivalence between precategory definitions
	Gray presentations induce Gray categories
	Finiteness of critical branchings

