
CINV
The CINV tool

Edition 0.1, January 2010

by Cezara Dragoi and Mihaela Sighireanu

i

Table of Contents

1 CINV Copying Conditions (LGPL) . 1

2 Introduction to CINV . 9
2.0.1 C code . 9
2.0.2 Spl encoding. 9
2.0.3 Specification logic . 10
2.0.4 Parameters of the analysis . 11
2.0.5 Results. 11

2.1 Examples by class . 11
2.2 Introduction . 11

2.2.1 C code . 12
2.2.2 Spl encoding . 12
2.2.3 Specification logic . 13
2.2.4 Parameters of the analysis . 13
2.2.5 Results. 14

2.3 Examples by class . 14
2.3.1 Computing on data . 14

2.3.1.1 First not null . 14
2.3.1.2 Get maximum . 15
2.3.1.3 Sentinel . 15
2.3.1.4 List equality . 16
2.3.1.5 Sum of elements . 17

2.3.2 Initializing data . 18
2.3.2.1 Initialization modulo 2 . 18
2.3.2.2 Initialization with first integers . 19
2.3.2.3 Initialization with first even numbers . 20
2.3.2.4 Initialization in sequence . 21
2.3.2.5 Initialization with Fibonacci . 21
2.3.2.6 Partial reset . 22
2.3.2.7 Sum of lists . 23

2.3.3 Changing data . 24
2.3.3.1 Copy a list (1) . 24
2.3.3.2 Copy the list data to a different length list (correct) . 25
2.3.3.3 Copy the list data to a different length list (incorrect) 26
2.3.3.4 Add some constant . 27
2.3.3.5 Copy a list and add some constant (equal length) . 28
2.3.3.6 Copy a list and add some constant for different length lists (correct). 28
2.3.3.7 Set the flag . 29
2.3.3.8 Insertion sort array . 30

2.3.4 Changing structure . 31
2.3.4.1 New copy of a list . 31
2.3.4.2 New copy and add of a list . 32
2.3.4.3 New copy on condition . 33
2.3.4.4 Delete on condition . 34
2.3.4.5 Insertion sort list . 35
2.3.4.6 Bubble sort . 37
2.3.4.7 Dispatch lists . 37
2.3.4.8 Copy and reverse . 38

Chapter 1: CINV Copying Conditions (LGPL) 1

1 CINV Copying Conditions (LGPL)

The CINV tool is copyright c© by the CINV project, and its partners.
This license applies to all files distributed in the CINV tool, including all source code, libraries,

binaries, and documentation.
Version 2.1, February 1999

Copyright c© 1991, 1999 Free Software Foundation, Inc.
51 Franklin St – Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence the
version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated
software—typically libraries—of the Free Software Foundation and other authors who decide
to use it. You can use it too, but we suggest you first think carefully about whether this license
or the ordinary General Public License is the better strategy to use in any particular case, based
on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish); that you receive source code or can get it if
you want it; that you can change the software and use pieces of it in new free programs; and
that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you
these rights or to ask you to surrender these rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give
the recipients all the rights that we gave you. You must make sure that they, too, receive or can
get the source code. If you link other code with the library, you must provide complete object
files to the recipients, so that they can relink them with the library after making changes to the
library and recompiling it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer
you this license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the
free library. Also, if the library is modified by someone else and passed on, the recipients should
know that what they have is not the original version, so that the original author’s reputation
will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We
wish to make sure that a company cannot effectively restrict the users of a free program by

Draft! Version: 19 January 2010

http://www.liafa.jussieu.fr/cinv/

obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license
obtained for a version of the library must be consistent with the full freedom of use specified in
this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public
License. This license, the GNU Lesser General Public License, applies to certain designated
libraries, and is quite different from the ordinary General Public License. We use this license
for certain libraries in order to permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the
combination of the two is legally speaking a combined work, a derivative of the original library.
The ordinary General Public License therefore permits such linking only if the entire combination
fits its criteria of freedom. The Lesser General Public License permits more lax criteria for linking
other code with the library.

We call this license the Lesser General Public License because it does Less to protect the
user’s freedom than the ordinary General Public License. It also provides other free software
developers Less of an advantage over competing non-free programs. These disadvantages are
the reason we use the ordinary General Public License for many libraries. However, the Lesser
license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible
use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free programs
must be allowed to use the library. A more frequent case is that a free library does the same job
as widely used non-free libraries. In this case, there is little to gain by limiting the free library
to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater
number of people to use a large body of free software. For example, permission to use the GNU
C Library in non-free programs enables many more people to use the whole GNU operating
system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does
ensure that the user of a program that is linked with the Library has the freedom and the
wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a “work based on the library” and a “work that uses
the library”. The former contains code derived from the library, whereas the latter must be
combined with the library in order to run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a
notice placed by the copyright holder or other authorized party saying it may be distributed
under the terms of this Lesser General Public License (also called “this License”). Each
licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and data)
to form executables.

The “Library”, below, refers to any such software library or work which has been dis-
tributed under these terms. A “work based on the Library” means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or

Draft! Version: 19 January 2010

Chapter 1: CINV Copying Conditions (LGPL) 3

a portion of it, either verbatim or with modifications and/or translated straightforwardly
into another language. (Hereinafter, translation is included without limitation in the term
“modification”.)

“Source code” for a work means the preferred form of the work for making modifications to
it. For a library, complete source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running a program using the Library is not restricted,
and output from such a program is covered only if its contents constitute a work based on
the Library (independent of the use of the Library in a tool for writing it). Whether that is
true depends on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and distribute a copy
of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a
work based on the Library, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a. The modified work must itself be a software library.

b. You must cause the files modified to carry prominent notices stating that you changed
the files and the date of any change.

c. You must cause the whole of the work to be licensed at no charge to all third parties
under the terms of this License.

d. If a facility in the modified Library refers to a function or a table of data to be supplied
by an application program that uses the facility, other than as an argument passed
when the facility is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or table, the facility still
operates, and performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d requires
that any application-supplied function or table used by this function must be optional:
if the application does not supply it, the square root function must still compute square
roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Library, the distribution of the whole must
be on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Draft! Version: 19 January 2010

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.
In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this
License to a given copy of the Library. To do this, you must alter all the notices that refer
to this License, so that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the ordinary GNU General
Public License has appeared, then you can specify that version instead if you wish.) Do not
make any other change in these notices.
Once this change is made in a given copy, it is irreversible for that copy, so the ordinary
GNU General Public License applies to all subsequent copies and derivative works made
from that copy.
This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided that
you accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange.
If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled to
copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to
work with the Library by being compiled or linked with it, is called a “work that uses the
Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore
falls outside the scope of this License.
However, linking a “work that uses the Library” with the Library creates an executable
that is a derivative of the Library (because it contains portions of the Library), rather than
a “work that uses the library”. The executable is therefore covered by this License. Section
6 states terms for distribution of such executables.
When a “work that uses the Library” uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is
not precisely defined by law.
If such an object file uses only numerical parameters, data structure layouts and accessors,
and small macros and small inline functions (ten lines or less in length), then the use of the
object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

Draft! Version: 19 January 2010

Chapter 1: CINV Copying Conditions (LGPL) 5

6. As an exception to the Sections above, you may also combine or link a “work that uses
the Library” with the Library to produce a work containing portions of the Library, and
distribute that work under terms of your choice, provided that the terms permit modifi-
cation of the work for the customer’s own use and reverse engineering for debugging such
modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference directing the user to
the copy of this License. Also, you must do one of these things:

a. Accompany the work with the complete corresponding machine-readable source code
for the Library including whatever changes were used in the work (which must be
distributed under Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable “work that uses the Library”, as
object code and/or source code, so that the user can modify the Library and then relink
to produce a modified executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the Library will not
necessarily be able to recompile the application to use the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (1) uses at run time a copy of the library already present on
the user’s computer system, rather than copying library functions into the executable,
and (2) will operate properly with a modified version of the library, if the user installs
one, as long as the modified version is interface-compatible with the version that the
work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more than
the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a designated place,
offer equivalent access to copy the above specified materials from the same place.

e. Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the materials to be distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary
libraries that do not normally accompany the operating system. Such a contradiction means
you cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single
library together with other library facilities not covered by this License, and distribute such
a combined library, provided that the separate distribution of the work based on the Library
and of the other library facilities is otherwise permitted, and provided that you do these
two things:

Draft! Version: 19 January 2010

a. Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms
of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined form
of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, link with,
or distribute the Library is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Library or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Library (or any work based on the Library), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or
modify the Library subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then
as a consequence you may not distribute the Library at all. For example, if a patent license
would not permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply, and the section as a whole is intended
to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Library
under this License may add an explicit geographical distribution limitation excluding those

Draft! Version: 19 January 2010

Chapter 1: CINV Copying Conditions (LGPL) 7

countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser Gen-
eral Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Library does not specify a license version number,
you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution
conditions are incompatible with these, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE
LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH
ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Draft! Version: 19 January 2010

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public, we
recommend making it free software that everyone can redistribute and change. You can do so by
permitting redistribution under these terms (or, alternatively, under the terms of the ordinary
General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them
to the start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the library’s name and an idea of what it does.

Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or (at

your option) any later version.

This library is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,

USA.

Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your school, if any, to

sign a “copyright disclaimer” for the library, if necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the library

‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

Draft! Version: 19 January 2010

Chapter 2: Introduction to CINV 9

2 Introduction to CINV

The CINV tool provides several abstract domains for abstract reachability analysis of programs
manipulating singly linked lists with numerical contents.

CINV generates for each control point specifications which constrain both the shape of the list
and the data inside the list. In the present version, two kinds of specifications can be generated:
(1) specifications relating data, lenghts, and sums of the data of the list and (2) specifications
relating lenghts, data, and universal properties on the list segments.

The input of CINV is an SPL program containing an initial condition on the lists used by the
program. Another input of CINV is the cinv.txt file giving the maximum number of simple
nodes on the heap graph.

The output is the program annotated by program specifications given on files with extension
.shp. These files contain a list of constrained heap graphs, i.e., in constraint is given in the
form of a graph and a numerical or logical constraint relating the data, the sum of data, and
the length of list segments in the graph.

We provide in the following more details on the inputs and output of CINV as well as the
presentation of the results obtained when applying CINV on our benchmark.

2.0.1 C code
Each example is given as a C function. The function has at least one list parameter of type
intlist. The C definition of type intlist corresponds to a singly linked list with an integer
data field as follows:

#include <stdio.h>

typedef struct intlist_ * intlist;

struct intlist_ {

int data;

intlist next;

};

The C code given for examples corresponds to a desired future input of the tool. However,
it cannot be used for the moment as it is because the statements and the expressions allowed
are not elementary. For instance, composed terms (e.g., x->next->data) and statements (e.g.,
x=y with x not pointing to NULL) are used.

The C functions are specified using the logic presented in Section 2.2.3 [Specification logic],
page 13.

2.0.2 Spl encoding

The Spl language is the input language of the Interproc tool Jeannet. Since Spl deals only with
numeric (integer or real) variables, we encode our programs on lists as follows:

• Variables of type intlist are coded by real variables.

• Data variables are encoded by integer variables. By convention, length variables are the
first two integer variables. (This is a constant fixed in the code.) The other integer variables
are considered data variables. This separation of length and data variables is used only by
the domains which deal differently with these variables, e.g., the LSUM-PRD domain [LSUM-
PRD], page 13.

• The following real variables shall be present in any Spl encoding program in the first posi-
tions of the declaration list for real variables: _data, _free, _len, _new, _next, and _null.
They are used to encode operations on list variables, e.g., the data field access for a list
variable x, x->data, is encoded by the expression x*_data. Similarly, the _next variable is

Draft! Version: 19 January 2010

used to encode the next field access. The _free (resp. _new) variable is used to encode the
free (resp. new) statement for the memory deallocation (resp. allocation) of pointers. The
_len variable cannot be used for the moment. The _null variable encodes the predefined
NULL constant in C.

• All statements are elementary, i.e., the only terms used on pointer variables are x, x->data,
and x->next, and the statements have as left hand side one of the terms above and when
terms x and x->next are assigned, they have to be NULL.

• Since Spl considers only numerical variables, the left hand side of an assignment shall be
a variable. Or, to assign fields of list variables we need left hand sides of assignments to
be expressions, e.g., x->data encoded by x*_data. To encode such assignments we use the
divisibility operation on reals, i.e., x->field=expr is encode by x=expr/field.

• The specification properties (see Section 2.2.3 [Specification logic], page 13) of the code
is encoded into an initial assume statement of the form assume(x==<code>); with the
following semantics:

x==0 acyclic(x) and l[x]= l and data(x), e.g. data(x)=‘S[x]=S’

x==1 acyclic(x) and l[x]+l[y]= l and l>=1 and data(x,y) and reach(x,y), e.g.,
data(x,y)=‘S[x]+S[y]=S’

x==2 acyclic(x) and l[x]= l and data(x) and acyclic(y) and l[y]= l and data(y) and
l>=1 and disjoint(x,y)

x==3 acyclic(x) and l[x]= l and data(x) and acyclic(y) and l[y]+1<= l and data(y)
and l>=1 and disjoint(x,y)

x==4 acyclic(x) and l[x]= l and data(x) and acyclic(y) and l[y]= l and data(y) and
acyclic(z) and l[z]= l and data(z) and l>= 1 and disjoint(x,y,z)

2.0.3 Specification logic

The properties of the inputs of the code analysed are given in a logic which is a restriction of the
CSL logic defined in [Bouajjani and al. CONCUR-09]. This logic is a multi-sorted first order
logic with reachability predicates. More precisely, in this logic one can use the following terms:
it can express the following properties:

l[n] the length of the heap segment stating from node n, i.e., the number of edges of the
segment.

d[n] the data stored in the node n.

S(n) the sum of the data stored in the heap segment starting from node n except n itself
is constrained by expr. We denote by S[n]=S(n)+d[n].

M[n] the multiset of data stored in the heap segment starting from node n.

The atomic constraints of the logic are the following:

x(n) variable x is labeling a node of a heap called n.

expr op 0 where op in \=, ! =, <=, >=, ! =, <, > \
linear constraints on terms

acyclic(x)

variable x labels a node from which starts a segment which is acyclic.

Draft! Version: 19 January 2010

Chapter 2: Introduction to CINV 11

reach(x,y)

variable x labels a node from which starts a segment which reaches another node
labeled by y.

2.0.4 Parameters of the analysis

The analysis done by the CINV tool is parametrized by the following inputs:

• Domain: The abstract domain used to represent heap segments. This domain is used by
the global domain of Shapes. The following domains are implemented in CINV:

LSUM-PRD the domain of sums over heap segments which is a Cartesian product of a
domain for lengths of segments and a domain for data of segments.

LSUM-REL the domain of sums over heap segments where lengths and data are put together.

UCONS the domain of universally constrained heap segments; this domain is
parametrized by the set of patterns used by the universally quantified
constraints. These patterns have the following codes:

P11 \forall y in n

P12 \forall y1 in n, y2 in m, y1=y2

P21 \forall y1,y2 in n, y1<y2

P211 \forall y1,y2 in n, y1 <1 y2

• Anonymous number: The computation of the post abstract transformer is parameterized by
the maximum number of anonymous in the heap graph. In CINV, this number is obtained
from the following two parameters:

max_anon the maximum number of anonymous nodes in a heap segment, and

segm_anon

the number of segments shall divide the number of anonymous nodes.

These two parameters shall be given (in this order) by the file cinv.txt in the directory
chosen for the execution of CINV.

2.0.5 Results

The results are given for each domain and each parameter using:

• log : is a directory in sample/log containing a log file and the files storing the shapes
generated

• constraint : is the most interesting constraint synthesized by the analysis; this constraint is
given in the specification language (see Section 2.2.3 [Specification logic], page 13).

2.1 Examples by class

2.2 Introduction

This section presents the examples dealt by the CINV tool. We give here some general details
concerning the presentation of these examples.

Draft! Version: 19 January 2010

2.2.1 C code
Each example is given as a C function. The function has at least one list parameter of type
intlist. The C definition of type intlist corresponds to a singly linked list with an integer
data field as follows:

#include <stdio.h>

typedef struct intlist_ * intlist;

struct intlist_ {

int data;

intlist next;

};

The C code given for examples corresponds to a desired future input of the tool. However,
it cannot be used for the moment as it is because the statements and the expressions allowed
are not elementary. For instance, composed terms (e.g., x->next->data) and statements (e.g.,
x=y with x not pointing to NULL) are used.

The C functions are specified using the logic presented in Section 2.2.3 [Specification logic],
page 13.

2.2.2 Spl encoding

The Spl language is the input language of the Interproc tool Jeannet. Since Spl deals only with
numeric (integer or real) variables, we encode our programs on lists as follows:

• Variables of type intlist are coded by real variables.

• Data variables are encoded by integer variables. By convention, length variables are the
first two integer variables. (This is a constant fixed in the code.) The other integer variables
are considered data variables. This separation of length and data variables is used only by
the domains which deal differently with these variables, e.g., the LSUM-PRD domain [LSUM-
PRD], page 13.

• The following real variables shall be present in any Spl encoding program in the first posi-
tions of the declaration list for real variables: _data, _free, _len, _new, _next, and _null.
They are used to encode operations on list variables, e.g., the data field access for a list
variable x, x->data, is encoded by the expression x*_data. Similarly, the _next variable is
used to encode the next field access. The _free (resp. _new) variable is used to encode the
free (resp. new) statement for the memory deallocation (resp. allocation) of pointers. The
_len variable cannot be used for the moment. The _null variable encodes the predefined
NULL constant in C.

• All statements are elementary, i.e., the only terms used on pointer variables are x, x->data,
and x->next, and the statements have as left hand side one of the terms above and when
terms x and x->next are assigned, they have to be NULL.

• Since Spl considers only numerical variables, the left hand side of an assignment shall be
a variable. Or, to assign fields of list variables we need left hand sides of assignments to
be expressions, e.g., x->data encoded by x*_data. To encode such assignments we use the
divisibility operation on reals, i.e., x->field=expr is encode by x=expr/field.

• The specification properties (see Section 2.2.3 [Specification logic], page 13) of the code
is encoded into an initial assume statement of the form assume(x==<code>); with the
following semantics:

x==0 acyclic(x) and l[x]= l and data(x), e.g. data(x)=‘S[x]=S’

x==1 acyclic(x) and l[x]+l[y]= l and l>=1 and data(x,y) and reach(x,y), e.g.,
data(x,y)=‘S[x]+S[y]=S’

Draft! Version: 19 January 2010

Chapter 2: Introduction to CINV 13

x==2 acyclic(x) and l[x]= l and data(x) and acyclic(y) and l[y]= l and data(y) and
l>=1 and disjoint(x,y)

x==3 acyclic(x) and l[x]= l and data(x) and acyclic(y) and l[y]+1<= l and data(y)
and l>=1 and disjoint(x,y)

x==4 acyclic(x) and l[x]= l and data(x) and acyclic(y) and l[y]= l and data(y) and
acyclic(z) and l[z]= l and data(z) and l>= 1 and disjoint(x,y,z)

2.2.3 Specification logic

The properties of the inputs of the code analysed are given in a logic which is a restriction of the
CSL logic defined in [Bouajjani and al. CONCUR-09]. This logic is a multi-sorted first order
logic with reachability predicates. More precisely, in this logic one can use the following terms:
it can express the following properties:

l[n] the length of the heap segment stating from node n, i.e., the number of edges of the
segment.

d[n] the data stored in the node n.

S(n) the sum of the data stored in the heap segment starting from node n except n itself
is constrained by expr. We denote by S[n]=S(n)+d[n].

M[n] the multiset of data stored in the heap segment starting from node n.

The atomic constraints of the logic are the following:

x(n) variable x is labeling a node of a heap called n.

expr op 0 where op in \=, ! =, <=, >=, ! =, <, > \
linear constraints on terms

acyclic(x)

variable x labels a node from which starts a segment which is acyclic.

reach(x,y)

variable x labels a node from which starts a segment which reaches another node
labeled by y.

2.2.4 Parameters of the analysis

The analysis done by the CINV tool is parametrized by the following inputs:

• Domain: The abstract domain used to represent heap segments. This domain is used by
the global domain of Shapes. The following domains are implemented in CINV:

LSUM-PRD the domain of sums over heap segments which is a Cartesian product of a
domain for lengths of segments and a domain for data of segments.

LSUM-REL the domain of sums over heap segments where lengths and data are put together.

UCONS the domain of universally constrained heap segments; this domain is
parametrized by the set of patterns used by the universally quantified
constraints. These patterns have the following codes:

P11 \forall y in n

P12 \forall y1 in n, y2 in m, y1=y2

Draft! Version: 19 January 2010

P21 \forall y1,y2 in n, y1<y2

P211 \forall y1,y2 in n, y1 <1 y2

• Anonymous number: The computation of the post abstract transformer is parameterized by
the maximum number of anonymous in the heap graph. In CINV, this number is obtained
from the following two parameters:

max_anon the maximum number of anonymous nodes in a heap segment, and

segm_anon

the number of segments shall divide the number of anonymous nodes.

These two parameters shall be given (in this order) by the file cinv.txt in the directory
chosen for the execution of CINV.

2.2.5 Results

The results are given for each domain and each parameter using:

• log : is a directory in sample/log containing a log file and the files storing the shapes
generated

• constraint : is the most interesting constraint synthesized by the analysis; this constraint is
given in the specification language (see Section 2.2.3 [Specification logic], page 13).

2.3 Examples by class

2.3.1 Computing on data

Examples in this class iterate over a list to return some information (data value, pointer inside
the list, etc.) on the current list.

2.3.1.1 First not null

C code Spl encoding

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

intlist fstNot0(intlist x) {

intlist xi = x;

while (xi != NULL && xi->data==0) {

xi = xi->next;

}

return xi;

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real, yi:real,

_l:int, _k:int, S:int;

begin

assume (x == 0);

xi = _null; y = _null;

xi = x;

while xi != _null and (xi* _data == 0) do

y = xi*_next;

xi = _null;

xi = y;

y = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

Draft! Version: 19 January 2010

Chapter 2: Introduction to CINV 15

LSUM-PRD Anon=(0,1) log/intlist-fstNot0-
lsum-prd-01

x(n1) and xi(n2) and d(n1)=0
and S(n1)=0 and d(n2)+S(n2)=S
and l=l[n1]+l[n2]

LSUM-REL Anon=(0,1) log/intlist-fstNot0-
lsum-rel-01

same as above

MSET TODO TODO x(n1) and xi(n2) and d(n1)=0
and M [n1] = {0} and M[n1]+M[n2]=M
and l=l[n1]+l[n2]

UCONS Anon=(0,1), P11 TODO x(n1) and xi(n2) and d(n1)=0
and \forall y \in n1 \implies d(y)=0

Because the numerical domain used now (polygons) is not able to represent the inequality
constraints, the invariant obtained at the control point corresponding to the end of the loop
does not contain the constraint xi->data!=0.

2.3.1.2 Get maximum

C code Spl encoding

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

int listMax(intlist x) {

intlist xi = x;

int max = x->data;

while (xi != NULL) {

if (max < xi->data)

max = xi->data;

xi = xi->next;

}

return max;

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real,

_l:int, _k:int, S:int, max:int;

begin

assume (x == 0);

xi = _null; y = _null;

xi = x;

max = x * _data;

while xi != _null do

if (max+1 <= xi* _data) then

max = xi * _data;

endif;

y = xi*_next;

xi = _null;

xi = y;

y = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-getMax-
lsum-prd-01

x(n1) and xi(n2) and d(n1)<=max
and l=l[n1]+l[n2]

LSUM-REL Anon=(0,1) log/intlist-getMax-
lsum-rel-01

same as above

MSET none

UCONS Anon=(0,1), P11 TODO x(n1) and d(n1)<=max
and \forall y \in n1 \implies d(y)<=max

Draft! Version: 19 January 2010

2.3.1.3 Sentinel

In its original version Halbwach-Peron-08, this program uses a test xi->data!=m. We changed it
into xi->data<=m because we are not using a numerical domain fairly representing non equality
constraints.

C code Spl encoding

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

intlist sentinel(intlist x, int m) {

intlist xi = x;

while (xi != NULL && xi->data <= m) {

xi = xi->next;

}

return xi;

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real,

_l:int, _k:int, S:int, m:int;

begin

assume (x == 0);

xi = _null; y = _null;

xi = x;

while (xi != _null and xi * _data <= m) do

y = xi*_next;

xi = _null;

xi = y;

y = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-sentinel-
lsum-prd

x(n1) and xi(n2) and d(n1)<=m and d(n2)>=m+1
and l=l[n1]+l[n2]

LSUM-PRD Anon=(0,1), m=2 log/intlist-sentinel-
lsum-prd-2

x(n1) and xi(n2) and d(n1)<=2 and d(n2)>=3
and l=l[n1]+l[n2]

LSUM-REL Anon=(0,1) log/intlist-sentinel-
lsum-rel

x(n1) and xi(n2) and d(n1)<=m and d(n2)>=m+1
and l=l[n1]+l[n2]

LSUM-REL Anon=(0,1), m=2 log/intlist-sentinel-
lsum-rel-2

x(n1) and xi(n2) and d(n1)<=2
and 2l[n1]>=S[n1] and d(n2)>=3
and l=l[n1]+l[n2]

MSET none

UCONS Anon=(0,1), P11 TODO x(n1) and xi(n2) and d(n1)<=m and d(n2)>=m+1
and \forall y \in n1 \implies d(y)<=m

2.3.1.4 List equality

C code Spl encoding

Draft! Version: 19 January 2010

Chapter 2: Introduction to CINV 17

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) and

* acyclic(y) and l[y]==_l and data(y) and

* disjoint(x,y) */

int equal(intlist x, intlist y) {

intlist xi = x;

intlist yi = y;

while (xi != NULL && yi != NULL &&

xi->data == yi->data) {

xi = xi->next;

yi = yi->next;

}

if (xi==NULL && yi==NULL)

return 1;

else

return 0;

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real, yi:real, z:real,

_l:int, _k:int, S:int;

begin

assume (x == 2);

xi = _null; yi = _null; z= _null;

xi = x;

yi = y;

while (xi != _null and yi != _null and

xi * _data == yi * _data) do

z = xi * _next;

xi = _null;

xi = z;

z = _null;

z = yi * _next;

yi = _null;

yi = z;

z = _null;

done;

if (xi == _null and yi == _null) then

_k = 1;

else

_k = 0;

endif;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-equal-lsum-
prd-01/

x(n1) and y(n3) and d(n1)=d(n3)
and S(n1)=S(n3)
and l=l[n1]=l[n3]

LSUM-REL Anon=(0,1) log/intlist-equal-lsum-
rel-01/

same as above

MSET TODO x(n1) and y(n2) and M[n1]=M[n2] and l=l[n1]=l[n2]

UCONS Anon=(0,1), P13 TODO x(n1) and y(n2) and d(n1)=d(n2)
and \forall y1 \in n1, y2\in n2 y1=y2 \im-

plies d(y1)=d(y2)

2.3.1.5 Sum of elements

C code Spl encoding

Draft! Version: 19 January 2010

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

int listSum(intlist x) {

intlist xi = x;

int sum = 0;

while (xi != NULL) {

sum = sum + xi->data;

xi = xi->next;

}

return sum;

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real,

_l:int, _k:int, S:int, sum:int;

begin

assume (x == 0);

xi = _null; y = _null;

xi = x;

sum = 0;

while xi != _null do

sum = sum + xi * _data;

y = xi*_next;

xi = _null;

xi = y;

y = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-sum-lsum-
prd-01/

x(n1) and l=l[n1] and S=S[n1]=v

LSUM-REL Anon=(0,1) log/intlist-sum-lsum-
rel-01/

same as above

MSET TODO x(n1) and l=l[n1] and M[n1]=M

UCONS Anon=(0,1) TODO x(n1) and l=l[n1]

2.3.2 Initializing data

Examples in this class iterate over a list from its begining and initialize the data fields of the
same list or of an other list without using the initial values of the list.

2.3.2.1 Initialization modulo 2

The encoding of this example in Spl has been changed in order to replace the boolean variable
by an integer variable. The test used in the if statement is has been changed to avoid non
equality constraints.

C code Spl encoding

Draft! Version: 19 January 2010

Chapter 2: Introduction to CINV 19

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

void initMod2(intlist x) {

intlist xi = x;

bool k = true;

while (xi != NULL) {

if (k) xi->data = 1;

else xi->data = 0;

xi = xi->next;

k = not(k);

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real,

_l:int, _k: int;

begin

assume (x == 0);

xi = _null; y = _null;

_k = 0;

xi = x;

while xi != _null do

if (_k<=0) then

xi = 0 / _data;

_k = 1;

else

xi = 1 / _data;

_k = 0;

endif;

y = xi*_next;

xi = _null;

xi = y;

y = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-initMod2-
lsum-prd-01

x(n1) and 0<= d(n1)<= 1 and S(n1)>=0

LSUM-REL Anon=(0,1) log/intlist-initMod2-
lsum-rel-11

x(n1) and xi(n2) and d(n1)=0 and 0<=k<=1
and 2*S(n1)+ k>= l and l>=S(n1)+1

LSUM-REL Anon=(1,1) log/intlist-initMod2-
lsum-rel-11

x(n1) and xi(n2) and d(n1)=0 and 0<=k<=1
and 2*S(n1)+1=l[n1]

MSET none

UCONS Anon=(1,1),
P12

TODO x(n1) and xi(n2) and d(n1)=0 and 0<=k<=1
and \forall y1 < 1 y2 \in n1 \implies d(y1)+d(y2)=1
and l=l[n1]+l[n2]

2.3.2.2 Initialization with first integers

C code Spl encoding

Draft! Version: 19 January 2010

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

void initN(intlist x) {

intlist xi = x;

int m = 0;

while (xi != NULL) {

xi->data = m;

xi = xi->next;

m = m+1;

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real,

_l:int, _k: int, m:int;

begin

assume (x == 0);

xi = _null; y = _null;

m = 0;

xi = x;

while xi != _null do

xi = m / _data;

y = xi*_next;

xi = _null;

xi = y;

y = _null;

m = m+1;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-initN-lsum-
prd

x(n1) And d(n1)=0

LSUM-REL Anon=(0,1) log/intlist-initN-lsum-
rel

x(n1) and xi(n2) and d(n1)=0
and l(n1)=m and l=l[n1]+l[n2]

MSET none

UCONS Anon=(0,1) or (2,1),
P11 or P211

TODO x(n1)
and \forall y \in n1 \implies d(y)=y
and \forall y1 < 1 y2 \in n1 \implies d(y2)=d(y1)+1

2.3.2.3 Initialization with first even numbers

C code Spl encoding

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

void init2N(intlist x) {

intlist xi = x;

int m = 0;

while (xi != NULL) {

xi->data = m;

xi = xi->next;

m = m+2;

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, z:real,

_l:int, _k: int, m:int;

begin

assume (x == 0);

xi = _null; z = _null;

m = 2;

xi = x;

while xi != _null do

xi = m / _data;

z = xi*_next;

xi = _null;

xi = z;

z = _null;

m = m+2;

done;

end

Draft! Version: 19 January 2010

Chapter 2: Introduction to CINV 21

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-init2N-
lsum-prd-01

x(n1) and d(n1)=0

LSUM-REL Anon=(0,1) log/intlist-init2N-
lsum-rel-01

x(n1) and 2l(n1)=m and d(n1)=0 and l=l[n1]

LSUM-REL Anon=(0,1) TODO with grid constraints

MSET none

UCONS Anon=(0,1) or (2,1),
P11 or P211

TODO x(n1)
and \forall y \in n1 \implies d(y)=2y
and \forall y1 < 1 y2 \in n1 \implies d(y2)=d(y1)+2

2.3.2.4 Initialization in sequence

C code Spl encoding

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

void seqInit(intlist x, int m) {

int mp = m;

intlist xi = x;

while (xi != NULL) {

xi->data = mp;

mp = mp+1;

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, z:real,

_l:int, _k: int, m:int, mp:int;

begin

assume (x == 0);

xi = _null; z = _null;

mp = m;

xi = x;

while xi != _null do

xi = mp / _data;

z = xi*_next;

xi = _null;

xi = z;

z = _null;

mp = mp+1;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-initSeq-
lsum-prd-01

x(n1) and d(n1)=m and mp>=m+1

LSUM-REL Anon=(0,1) log/intlist-initSeq-
lsum-rel-01

x(n1) and d(n1)=m and l=l[n1]=mp-m

MSET none (not interesting)

UCONS Anon=(0,1) or (2,1),
P11 or P211

TODO x(n1) and d(n1)=m
and \forall y \in n1 \implies d(y)=y+m
and \forall y1 < 1 y2 \in n1 \implies d(y2)=d(y1)+1

Draft! Version: 19 January 2010

2.3.2.5 Initialization with Fibonacci

C code Spl encoding

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

void initFibo(intlist x) {

int m1 = 1;

int m2 = 0;

intlist xi = x;

while (xi != NULL) {

xi->data = m1+m2;

m1 = m2;

m2 = xi->data;

xi = xi->next;

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real,

_l:int, _k:int, m1:int, m2: int;

begin

assume (x == 0);

m1 = 1;

m2 = 0;

y = _null; xi = _null;

xi = x;

while xi != _null do

xi = (m1 + m2)/ _data;

m1 = m2;

m2 = xi * _data;

y = xi * _next;

xi = _null;

xi = y;

y = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-initFibo-
lsum-prd-01

x(n1) and d(n1)=1
and S(n1)+2=m1+2m2
and m2>=m1 and 2m1+1>=m2>=1

LSUM-PRD Anon=(2,1) log/intlist-initFibo-
lsum-prd-21

x(n1) and d(n1)=1
and S(n1)+2=m1+2m2
and m2>=m1 and 2m1+1>=m2>=15
and 5m1-3m2+3>=0

LSUM-REL Anon=(0,1) log/intlist-initFibo-
lsum-rel-01

x(n1) and d(n1)=1
and S(n1)+2=m1+2m2
and m2>=m1 and 2m1+1>=m2>=1

MSET none

UCONS Anon=(0,1) or (2,1),
P11 or P21 or P311

TODO x(n1) and d(n1)=1
and \forall y\in n1 \implies d(y)>=y
and \forall y1,y2\in n1 y1< 1 y2 \implies d(y2)>=d(y1)+1
and \forall y1,y2,y3\in n1 y1< 1 y2< 1 y3 \im-

plies d(y3)=d(y2)+d(y1)

2.3.2.6 Partial reset

C code Spl encoding

Draft! Version: 19 January 2010

Chapter 2: Introduction to CINV 23

#include "intlist.h"

/* acyclic(x) and

* l[x]+l[y]==_l and data(xy) and

* reach(x,y) */

void partialInit(intlist x,

intlist y) {

intlist yi = y;

while (yi != NULL) {

yi->data = 0;

yi = yi->next;

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real, yi:real,

_l:int, _k:int, S: int;

begin

assume (x == 1);

xi = _null; yi = _null;

yi = y;

while yi != _null do

yi = 0 / _data;

xi = yi*_next;

yi = _null;

yi = xi;

xi = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-pInit-lsum-
prd-01

x(n1) and y(n2) and l[n1]+l[n2]== l
and S(n2)=0 and d(n2)=0

LSUM-REL Anon=(0,1) log/intlist-pInit-lsum-
rel-01

x(n1) and y(n2) and l[n1]+l[n2]== l
and S(n2)=0 and d(n2)=0

MSET TODO TODO TODO

UCONS TODO TODO x(n1) and y(n2)
and \forall y1\in n2 \implies d(y1)=0

2.3.2.7 Sum of lists

C code Spl encoding

Draft! Version: 19 January 2010

#include "intlist.h"

/* acyclic(x) and _l==l[x] and data(x) and

* acyclic(y) and _l==l[y] and data(y) and

* acyclic(z) and _l==l[z] and data(z) and

* disjoint(x,y,z) */

void initSum(intlist x,

intlist y,

intlist z) {

intlist xi = x;

intlist yi = y;

intlist zi = z;

while (xi != NULL && yi != NULL && zi != NULL) {

zi->data = xi->data + yi->data;

xi = xi->next;

yi = yi->next;

zi = zi->next;

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real, yi:real, z:real, zi:real, zii:real,

_l:int, _k:int, S: int, T:int;

begin

assume (x == 4);

xi = _null; yi = _null; zi = _null; zii = _null;

xi = x;

yi = y;

zi = z;

while xi != _null and yi != _null and

zi != _null do

zi = (xi * _data + yi * _data) / _data;

zii = xi * _next;

xi = _null;

xi = zii;

zii = _null;

zii = yi * _next;

yi = _null;

yi = zii;

zii = _null;

zii = zi * _next;

zi = _null;

zi = zii;

zii = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-initSum-
lsum-prd-01

x(n1) and y(n2) and z(n3)
and d(n3)=d(n1)+d(n2) and S(n3)=S(n1)+S(n2)

LSUM-REL Anon=(0,1) log/intlist-initSum-
lsum-rel-01

x(n1) and y(n2) and z(n3)
and d(n3)=d(n1)+d(n2) and S(n3)=S(n1)+S(n2)

MSET TODO TODO TODO

UCONS Anon=(0,3) TODO x(n1) and y(n2) and z(n3) and
and \forall y1\in n1, y2\in n2, y3\in n3 y1=y2=y3 \im-

plies d(y3)=d(y1)+d(y2)

2.3.3 Changing data

Examples in this class iterate over one or several lists and update the data field based on its old
value.

2.3.3.1 Copy a list (1)

Copy the data in the list into an equal length list.

C code Spl encoding

Draft! Version: 19 January 2010

Chapter 2: Introduction to CINV 25

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) and

* acyclic(y) and l[y]==_l and data(y) and

* disjoint(x,y) */

void listCopy(intlist x, intlist y) {

intlist xi = x;

intlist yi = y;

while (xi != NULL) {

yi->data = xi->data;

xi = xi->next;

yi = yi->next;

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real, yi:real, z:real,

_l:int, _k:int, S: int;

begin

assume (x == 2);

xi = _null; yi = _null; z = _null;

xi = x; yi = y;

while xi != _null do

yi = (xi* _data) / _data;

z = xi*_next;

xi = _null;

xi = z;

z = _null;

z = yi*_next;

yi = _null;

yi = z;

z = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,2) log/intlist-copy-eq-
prd-02

x(n1) and y(n2) and d(n1)=d(n2)
and d(n1)+S(n1) = d(n2)+S(n2) = S

LSUM-REL Anon=(0,2) log/intlist-copy-eq-
rel-02

x(n1) and y(n2) and d(n1)=d(n2)
and d(n1)+S(n1) = d(n2)+S(n2) = S

MSET Anon=(0,2) TODO TODO

UCONS TODO Anon=(0,2),
P21

x(n1) and y(n2) and d(n1)=d(n2)
and \forall y1\in n1, y2\in n2 y1=y2 \im-

plies d(y1)=d(y2)

2.3.3.2 Copy the list data to a different length list (correct)

This example is the correct version of copying lists of different lengths. The only interesting
part is that the bug detected for the next example is not found here.

C code Spl encoding

Draft! Version: 19 January 2010

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) and

* acyclic(y) and l[y]+1<=_l and data(y) and

* disjoint(x,y) */

void listCopy(intlist x, intlist y) {

intlist xi = x;

intlist yi = y;

while (xi != NULL && yi != NULL) {

yi->data = xi->data;

xi = xi->next;

yi = yi->next;

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real, yi:real, z:real,

_l:int, _k:int, S: int;

begin

assume (x == 3);

xi = _null; yi = _null; z = _null;

xi = x; yi = y;

while xi != _null and yi != _null do

yi = (xi* _data) / _data;

z = xi*_next;

xi = _null;

xi = z;

z = _null;

z = yi*_next;

yi = _null;

yi = z;

z = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-copy-neq-
lsum-prd-01

x(n1) and xi(n2) and y(n3) and yi=null
and d(n1)=d(n3) and S(n1) = S(n3)

LSUM-REL Anon=(0,1) log/intlist-copy-neq-
lsum-rel-01

x(n1) and xi(n2) and y(n3) and yi=null
and d(n1)=d(n3) and S(n1) = S(n3)

MSET TODO TODO TODO

UCONS TODO TODO x(n1) and xi(n2) and y(n3) and yi=null and
and d(n1)=d(n3) and \forall y1\in n1, y2\in n2. y1=y2 \im-

plies d(y1)=d(y2)

2.3.3.3 Copy the list data to a different length list (incorrect)

C code Spl encoding

Draft! Version: 19 January 2010

Chapter 2: Introduction to CINV 27

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) and

* acyclic(y) and l[y]+1<=_l and data(y) and

* disjoint(x,y) */

void listCopy(intlist x, intlist y) {

intlist xi = x;

intlist yi = y;

while (xi != NULL /* error */) {

yi->data = xi->data;

xi = xi->next;

yi = yi->next;

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real, yi:real, z:real,

_l:int, _k:int, S: int;

begin

assume (x == 3);

xi = _null; yi = _null; z = _null;

xi = x; yi = y;

while xi != _null do

yi = (xi* _data) / _data;

z = xi*_next;

xi = _null;

xi = z;

z = _null;

z = yi*_next;

yi = _null;

yi = z;

z = _null;

done;

end

Results

At the execution of CINV a dereference of a NULL pointer is reported. The invariant generated
at the end of the loop is bottom.

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-copy-neq-
err-lsum-prd-01

null pointer dereference at line z = yi* next

LSUM-REL Anon=(0,1) log/intlist-copy-neq-
err-lsum-rel-01

null pointer dereference at line z = yi* next

2.3.3.4 Add some constant

C code Spl encoding

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

void add2(intlist x) {

intlist xi = x;

while (xi != NULL) {

xi->data = xi->data + 2;

xi = xi->next;

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real,

_l: int, _k: int, S: int;

begin

assume (x == 0);

xi = _null; y = _null;

xi = x;

while xi != _null do

xi = (xi * _data + 2)/ _data;

y = xi * _next;

xi = _null;

xi = y;

y = _null;

done;

end

Draft! Version: 19 January 2010

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-add2-lsum-
prd-01

x(n1) and S[n1]>=S+2

LSUM-REL Anon=(0,1) log/intlist-add2-lsum-
rel-01

x(n1) and S[n1]=S+2*l[n1]

MSET none

UCONS Anon=(0,1) TODO x(n1)

2.3.3.5 Copy a list and add some constant (equal length)

C code Spl encoding

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) and

* acyclic(y) and l[y]==_l and data(y) and

* disjoint(x,y) */

void add2copy_eq(intlist x, intlist y) {

intlist xi = x;

intlist yi = y;

while (xi != NULL) {

yi->data = xi->data + 2;

xi = xi->next;

yi = yi->next;

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real, yi:real, z:real,

_l:int, _k: int, S: int;

begin

assume (x == 2);

xi = _null; yi = _null; z = _null;

xi = x;

yi = y;

while xi != _null do

yi = (xi * _data + 2)/ _data;

z = xi* _next;

xi = _null;

xi = z;

z = _null;

z = yi * _next;

yi = _null;

yi = z;

z = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-add2copy-
eq-lsum-prd-01

x(n1) and y(n2) and l[n1]=l[n2] and
d(n1)+2=d(n2) and S(n1)<=S(n2)

LSUM-REL Anon=(0,1) log/intlist-add2copy-
eq-lsum-rel-01

x(n1) and xi(n2) and y(n3) and yi(n4) and
l[n1]=l[n3] and l(n2]=l[n4] and
d(n1)+2=d(n3) and S(n1)+2l(n1)=S(n3)+2

MSET none

UCONS Anon=(0,2) TODO x(n1) and y(n2) and
\forall y1\in n1, y2\in n2 y1=y2 \implies d(y2)=d(y1)+2

2.3.3.6 Copy a list and add some constant for different length lists
(correct)

Draft! Version: 19 January 2010

Chapter 2: Introduction to CINV 29

C code Spl encoding

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) and

* acyclic(y) and l[y]+1<=_l and data(y) and

* disjoint(x,y) */

void add2copy_neq(intlist x, intlist y) {

intlist xi = x;

intlist yi = y;

while (xi != NULL && yi != NULL) {

yi->data = xi->data + 2;

xi = xi->next;

yi = yi->next;

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real, yi:real, z1:real, z2:real,

_l:int, _k: int, S: int;

begin

assume (x == 3);

xi = _null; yi = _null; z1 = _null; z2 = _null;

xi = x;

yi = y;

while xi != _null and yi != _null do

yi = (xi * _data + 2)/ _data;

z1 = xi* _next;

z2 = yi* _next;

xi = _null; yi = _null;

xi = z1; yi = z2;

z1 = _null; z2 = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-add2copy-
neq-lsum-prd-01

x(n1) and y(n2) and l[n1]=l[n2] and
d(n1)+2=d(n2) and S(n1)<=S(n2)

LSUM-REL Anon=(0,1) log/intlist-add2copy-
neq-lsum-rel-01

x(n1) and xi(n2) and y(n3) and yi(n4) and
l[n1]=l[n3] and l[n4]<=l[n2]-1 and
d(n1)+2=d(n3) and S(n1)+2l(n1)=S(n3)+2

MSET none

UCONS Anon=(0,2) TODO x(n1) and y(n2) and
\forall y1\in n1, y2\in n2 y1=y2 \implies d(y2)=d(y1)+2

2.3.3.7 Set the flag

C code Spl encoding

Draft! Version: 19 January 2010

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

void setFlag(intlist x) {

intlist xi = x;

while (xi != NULL) {

if (!xi->data) {

xi->data = 1;

}

xi = xi->next;

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, z:real,

_l:int, _k:int, S: int;

begin

assume (x == 0);

xi = _null; z = _null;

xi = x;

while xi != _null do

if (xi* _data == 0) then

xi = 1 / _data;

endif;

z = xi *_next;

xi = _null;

xi = z;

z = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-setFlag-
lsum-prd-01

x(n1) and
S(n1)+d(n1) >= S

LSUM-REL Anon=(0,1) log/intlist-setFlag-
lsum-rel-01

x(n1) and
S(n1)+d(n1) >= S and S(n1)+d(n1) <= S+l[n1]

MSET TODO TODO x(n1) and M [n1] = M − {0}+ {1}

UCONS Anon=(0,1) TODO x(n1) and \forall y1\in n1 \implies d(y1)!=0

2.3.3.8 Insertion sort array

This version of insertion sort does not move cells of the list but only moves data between cells.
Then, it simulates the insertion sort on arrays.

C code Spl encoding

Draft! Version: 19 January 2010

Chapter 2: Introduction to CINV 31

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

void insertSortArr(intlist x) {

intlist xi, y;

int m, n;

xi = y = NULL;

xi = x->next;

while (xi != NULL) {

y = x;

while (y != xi && y->data <= xi->data) {

y = y->next;

}

m = xi->data;

while (y != xi) {

n = y->data;

y->data = m;

m = n;

y = y->next;

}

xi->data = m;

xi = xi->next;

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real, yi:real,

_l:int, _k:int, S:int, m:int, n:int;

begin

assume (x == 0);

xi = _null;

y = _null; yi = _null;

xi = x * _next;

while xi != _null do

y = x;

while y != xi and y * _data <= xi * _data do

yi = y * _next;

y = _null;

y = yi;

yi = _null;

done;

m = xi * _data;

while y != xi do

n = y * _data;

y = m / _data;

m = n;

yi = y * _next;

y = _null;

y = yi;

yi = _null;

done;

y = _null;

xi = m / _data;

yi = xi * _next;

xi = _null;

xi = yi;

yi = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-insertSortArr-
lsum-prd-01

x(n1) and S(n1)+d(n1)=S and l[n1]=l

LSUM-REL Anon=(0,1) log/intlist-insertSortArr-
lsum-rel-01

x(n1) and S(n1)+d(n1)=S and l[n1]=l

MSET TODO TODO TODO

UCONS TODO TODO x(n1) and \forall y1\in n1 \implies d(n1) <= d(y1) and
\forall y1, y2\in n1 \implies d(y1) <= d(y2)

2.3.4 Changing structure

Examples in this class create, destroy or change the position of cells of the list.

2.3.4.1 New copy of a list

C code Spl encoding

Draft! Version: 19 January 2010

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

intlist listCopy(intlist x) {

intlist xi = x;

intlist y = NULL;

intlist yi = NULL;;

intlist z = NULL;

while (xi != NULL) {

z = new();

z->data = xi->data;

z->next = NULL;

if (y == NULL)

y = z;

else

yi->next = z;

yi = z;

xi = xi->next;

}

return y;

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real, yi:real, z:real,

_l:int, _k:int, S: int;

begin

assume (x == 0);

xi = _null; z = _null;

yi = _null; y = _null;

xi = x;

while xi != _null do

z = _new;

z = (xi* _data)/ _data;

z = (_null)/_next;

if (y == _null) then

y = z;

else

yi = z / _next;

endif;

yi = _null;

yi = z;

z = _null;

z = xi * _next;

xi = _null;

xi = z;

z = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-newCopy-lsum-prd-
01

x(n1) and y(n2) and yi(n3) and
l=l[n1]=l[n2]+1 and l[n3]=1 and
d(n1)=d(n2) and S(n3)=0 and S[n1]=S[n2]+d(n3)

LSUM-REL Anon=(0,1) log/intlist-newCopy-lsum-rel-
01

x(n1) and y(n2) and yi(n3) and
l=l[n1]=l[n2]+1 and l[n3]=1 and
d(n1)=d(n2) and S(n3)=0 and S[n1]=S[n2]+d(n3)

MSET TODO TODO x(n1) and y(n2) and yi(n3) and
M[n1]=M[n2]+M[n3]

UCONS Anon=(0,2) TODO x(n1) and y(n2) and yi(n3) and
l=l[n1]=l[n2]+1 and l[n3]=1 and
d(n1)=d(n2) and \forall y1\in n1, y2\in n2. y1=y2 \im-

plies d(y1)=d(y2)

2.3.4.2 New copy and add of a list

C code Spl encoding

Draft! Version: 19 January 2010

Chapter 2: Introduction to CINV 33

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

intlist add2new(intlist x) {

intlist xi = x;

intlist yi, y, z;

yi = y = z = NULL;

while (xi != NULL) {

z = new();

z->data = xi->data + 2;

if (yi == NULL)

y = z;

else {

yi->next = z;

yi = NULL;

}

yi = z;

z = NULL;

xi = xi->next;

}

return y;

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real, yi:real, z:real,

_l:int , _k: int, S:int;

begin

assume (x == 0);

y = _null;

yi = _null;

z = _null;

xi = _null;

xi = x;

while xi != _null do

z = _new;

z = (xi * _data + 2) / _data;

z = _null / _next;

if (yi == _null) then

y = z;

else

yi = _null/_next;

yi = z/_next;

endif;

yi = _null;

yi = z;

z = _null;

z = xi * _next;

xi = _null;

xi = z;

z = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-add2new-
lsum-prd-01

x(n1) and y(n2) and yi(n3) and
l[n1]=l[n2]+1 and l[n3]=1 and
d(n2)=d(n1)+2 and
S[n3]=0 and S[n2]+d(n3)>=S+2 and S=S[n1]

LSUM-REL Anon=(0,1) log/intlist-add2new-
lsum-rel-01

x(n1) and y(n2) and yi(n3) and
l=l[n1]=l[n2]+1 and l[n3]=1 and
d(n2)=d(n1)+2 and
S[n3]=0 and S[n2]+d(n3)+2=S+2l and S[n1]=S

MSET none

UCONS Anon=(0,2) TODO x(n1) and y(n2) and yi(n3) and
l=l[n1]=l[n2]+1 and l[n3]=1 and
d(n1)=d(n2) and
\forall y1\in n1, y2\in n2. y1=y2 \implies d(y1)=d(y2)

2.3.4.3 New copy on condition

C code Spl encoding

Draft! Version: 19 January 2010

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

void copyAllGeV(intlist x, int v) {

intlist z;

intlist y = null;

intlist xi = x;

while (xi != NULL) {

if (xi->data >= v) {

z = new();

z->data = xi->data;

z->next = y;

y = z;

}

xi = xi->next;

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real, yi:real, z:real,

_l:int, _k:int, S:int, v: int;

begin

assume (x == 0);

xi = _null; y = _null; yi = _null; z = _null;

xi = x;

while xi != _null do

if (xi* _data >= v) then

yi = _new;

yi = (xi * _data) / _data;

yi = y / _next;

y = _null;

y = yi;

yi = _null;

endif;

z = xi * _next;

xi = _null;

xi = z;

z = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-copyAllGeV-
lsum-prd-01

x(n1) and xi(n2) and l[n2]=1 and l>=l[n1]+1 and
S(n2)=0 and d(n1)+1<=v and d(n2)+1<=v

LSUM-PRD Anon=(0,1), v=5 log/intlist-copyAllGe5-
lsum-prd-01

x(n1) and xi(n2) and l[n2]=1 and l>=l[n1]+1 and
S(n2)=0 and d(n1)+1<=5 and d(n2)+1<=5 and
S >= d(n1)+d(n2)+S(n1)

LSUM-REL Anon=(0,1) log/intlist-copyAllGeV-
lsum-rel-01

x(n1) and xi(n2) and l[n2]=1 and l>=l[n1]+1 and
S(n2)=0 and d(n1)+1<=v and d(n2)+1<=v

LSUM-REL Anon=(0,1), v=5 log/intlist-copyAllGe5-
lsum-rel-01

x(n1) and xi(n2) and l[n2]=1 and l>=l[n1]+1 and
S(n2)=0 and d(n1)+1<=5 and d(n2)+1<=5 and
4l[n1] >= S(n1)+4

MSET none

UCONS Anon=(0,1) TODO x(n1) and xi(n2) and l[n2]=1 and l>=l[n1]+1 and
d(n1)+1<=v and d(n2)+1<=v and
\forall y1\in n1 \implies d(y1)+1<=v

2.3.4.4 Delete on condition

C code Spl encoding

Draft! Version: 19 January 2010

Chapter 2: Introduction to CINV 35

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

void delAllGeV(intlist x, int v) {

intlist z;

intlist y = null;

intlist xi = x;

while (xi != NULL) {

if (xi->data >= v) {

z = xi;

xi = xi->next;

free (z);

if (y==NULL)

x = xi;

else

y->next = xi;

}

else {

y = xi;

xi = xi->next;

}

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real, z:real,

_l:int, _k:int, S:int, v: int;

begin

assume (x == 0);

y = _null; xi = _null; z = _null;

xi = x;

while xi != _null do

if (xi* _data >= v) then

z = xi;

xi = _null;

xi = z * _next;

if (y == _null) then

x = _null;

x = xi;

else

y = _null / _next;

y = xi / _next;

endif;

z = _free;

z = _null;

else

y = _null;

y = xi;

z = xi * _next;

xi = _null;

xi = z;

z = _null;

endif;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-delAllGeV-
lsum-prd-01

x(n1) and xi(n2) and l[n2]=1 and l>=l[n1]+1 and
S(n2)=0 and d(n1)+1<=v and d(n2)+1<=v

LSUM-PRD Anon=(0,1), v=5 log/intlist-delAllGe5-
lsum-prd-01

x(n1) and xi(n2) and l[n2]=1 and l>=l[n1]+1 and
S(n2)=0 and d(n1)+1<=5 and d(n2)+1<=5 and
S >= d(n1)+d(n2)+S(n1)

LSUM-REL Anon=(0,1) log/intlist-delAllGeV-
lsum-rel-01

x(n1) and xi(n2) and l[n2]=1 and l>=l[n1]+1 and
S(n2)=0 and d(n1)+1<=v and d(n2)+1<=v

LSUM-REL Anon=(0,1), v=5 log/intlist-delAllGe5-
lsum-rel-01

x(n1) and xi(n2) and l[n2]=1 and l>=l[n1]+1 and
S(n2)=0 and d(n1)+1<=5 and d(n2)+1<=5 and
4l[n1] >= S(n1)+4

MSET none

UCONS Anon=(0,1) TODO x(n1) and xi(n2) and l[n2]=1 and l>=l[n1]+1 and
d(n1)+1<=v and d(n2)+1<=v and
\forall y1\in n1 \implies d(y1)+1<=v

2.3.4.5 Insertion sort list

This version of insertion sort changes position of cells.

C code Spl encoding

Draft! Version: 19 January 2010

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

intlist insertSortLst(intlist x) {

intlist xi, y, yi, z, r;

z = xi = yi = y = NULL;

r = z = x;

xi = x->next;

while (xi != NULL) {

yi = NULL;

y = r;

while (y != xi && y->data < xi->data) {

yi = y;

y = y->next;

}

if (yi == NULL) {

z->next = xi->next;

xi->next = r;

r = xi;

}

else {

z->next = xi->next;

yi->next = xi;

xi->next = y;

}

xi = NULL;

xi = z->next;

}

return r;

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, xip:real, y:real, yp:real, z:real,

_l:int, _k:int, S:int;

begin

assume (x == 0);

xi = _null; y = _null;

xip = _null; yp = _null; z = _null;

xip = x;

xi = x * _next;

while xi != _null do

y = x;

while y != xi and y * _data <= xi * _data do

yp = _null;

yp = y;

z = y * _next;

y = _null;

y = z;

z = _null;

done;

if y != xi then

xip = _null / _next;

z = xi * _next;

xip = z / _next;

z = _null;

if yp == _null then

xi = _null / _next;

xi = x / _next;

x = _null;

x = xi;

else

yp = _null / _next;

yp = xi / _next;

xi = _null / _next;

xi = y / _next;

yp = _null;

endif;

y = _null;

xi = _null;

else

xip = _null;

xip = xi;

yp = _null;

y = _null;

xi = _null;

endif;

xi = xip * _next;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD TODO TODO TODO

LSUM-REL TODO TODO TODO

MSET TODO TODO TODO

UCONS TODO TODO TODO

Draft! Version: 19 January 2010

Chapter 2: Introduction to CINV 37

2.3.4.6 Bubble sort

C code Spl encoding

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

void bubbleSortArr(intlist x) {

intlist xi, xin;

int v;

int k = 1;

while (k==1) {

k = 0;

xi = x;

xin = x->next;

while (xi != NULL && xin != NULL) {

if (xi->data >= xin->data+1) {

v = xi->data;

xi->data = xin->data;

xin->data = v;

k = 1;

}

xi = xin;

xin = xin->next;

}

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, xin:real,

_l:int, _k:int, S:int, v:int;

begin

assume (x == 0);

xi = _null; xin = _null;

_k = 1;

while _k==1 do

_k = 0;

xi = x;

xin = x * _next;

while xi != _null and xin != _null do

if (xi * _data >= xin * _data +1) then

v = xi * _data;

xi = (xin * _data) / _data;

xin = v / _data;

_k = 1;

endif;

xi = _null;

xi = xin;

xin = _null;

xin = xi * _next;

done;

xi = _null;

xin = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-bubbleSortArr-
lsum-prd-01

x(n1) and xi(n2) and xin(n3) and
l=l[n1]+l[n3]+1 and l[n2]=1 and

S=S[n1]+S[n2]+S[n3]

LSUM-REL Anon=(0,1) log/intlist-bubbleSortArr-
lsum-rel-01

x(n1) and xi(n2) and xin(n3) and
l=l[n1]+l[n3]+1 and l[n2]=1 and

S=S[n1]+S[n2]+S[n3]

MSET TODO TODO TODO

UCONS TODO TODO x(n1) and xi(n2) and xin(n3)
and \forall y1,y2\in n3 \implies d(y1)<=d(y2)

2.3.4.7 Dispatch lists

C code Spl encoding

Draft! Version: 19 January 2010

#include "intlist.h"

/* acyclic(x) and _l==l[x] and data(x) */

void dispatch(intlist x,

intlist xgtv,

intlist xlev,

int v) {

intlist xi = x;

intlist y;

xgtv=NULL; xlev=NULL;

while (xi != NULL) {

y=xi;

xi=xi->next;

if (y->data<=v) {

y->next = xlev;

xlev = y;

}else {

y->next = xgtv;

xgtv = y;

}

}

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xgtv:real, xi:real, xlev:real, y:real, z:real,

_l:int, _k:int, S: int, v:int;

begin

assume (x == 0);

xgtv = _null; xi = _null; xlev = _null; y = _null; z = _null;

xi = x;

x = _null;

while xi != _null do

y = xi;

z = xi * _next;

xi = _null;

xi = z;

z = _null;

y = _null/_next;

if (y * _data <= v) then

y = xlev / _next;

z = xlev;

xlev = _null;

xlev = y;

else

y = xgtv / _next;

z = xgtv;

xgtv = _null;

xgtv = y;

endif;

z = _null;

y = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,1) log/intlist-dispatch-
lsum-prd-01

x(null) and y(n1) and z(n2) and
l=l[n1]+l[n2] and l[n1]>=1 and l[n2]>=1 and

S=S[n1]+S[n2] and v>=d(n2) and v+1<=d(n1)

LSUM-REL Anon=(0,1) log/intlist-dispatch-
lsum-rel-01

x(null) and y(n1) and z(n2) and
l=l[n1]+l[n2] and l[n1]>=1 and l[n2]>=1 and

S=S[n1]+S[n2] and v>=d(n2) and v+1<=d(n1)

LSUM-PRD Anon=(0,1), v=5 log/intlist-dispatch-
lsum-prd-01

x(null) and y(n1) and z(n2) and
l=l[n1]+l[n2] and l[n1]>=1 and l[n2]>=1 and

S=S[n1]+S[n2] and 5>=d(n2) and 6<=d(n1)

LSUM-REL Anon=(0,1), v=5 log/intlist-dispatch-
lsum-rel-01

x(null) and y(n1) and z(n2) and
l=l[n1]+l[n2] and l[n1]>=1 and l[n2]>=1 and

S=S[n1]+S[n2] and 5>=d(n2) and 6<=d(n1) and
S[n1]>=6l[n1] and S[n2]<=5l[n2]

MSET TODO TODO x(null) and y(n1) and z(n2) and
l=l[n1]+l[n2] and l[n1]>=1 and l[n2]>=1 and

M[n1]+M[n2]=M

UCONS TODO TODO x(null) and y(n1) and z(n2) and
l=l[n1]+l[n2] and l[n1]>=1 and l[n2]>=1 and
\forall y1\in n1 \implies d(y1)>=v+1 and
\forall y1\in n2 \implies d(y1)<=v

2.3.4.8 Copy and reverse

Draft! Version: 19 January 2010

Chapter 2: Introduction to CINV 39

C code Spl encoding

#include "intlist.h"

/* acyclic(x) and l[x]==_l and data(x) */

intlist copyRevList(intlist x) {

intlist xi = x;

intlist y, z = NULL;

while (xi != NULL) {

z = new();

z->data = xi->data;

z->next = y;

y = z;

xi = xi->next;

}

return y;

}

var _data:real, _free:real, _len:real,

_new:real, _next:real, _null:real,

x:real, xi:real, y:real, z:real,

_l:int, _k:int, S: int;

begin

assume (x == 0);

xi = _null; y = _null; z = _null;

xi = x;

while xi != _null do

z = _new;

z = (xi * _data) / _data;

z = y / _next ;

y = _null;

y = z;

z = _null;

z = xi * _next;

xi = _null;

xi = z;

z = _null;

done;

end

Results

Domain Param. Log file Interesting constraint

LSUM-PRD Anon=(0,2) log/intlist-copyRev-
lsum-prd-02

x(n1) and y(n2) and l[n1]=l=l[n2]>=1
and S=S[n1]=S[n2]

LSUM-REL Anon=(0,2) log/intlist-copyRev-
lsum-rel-02

x(n1) and y(n2) and l[n1]=l=l[n2]>=1
and S=S[n1]=S[n2]

MSET Anon=(0,2) TODO x(n1) and y(n2) and l[n1]=l=l[n2]>=1
and M=M[n1]=M[n2]

UCONS Anon=(0,2) TODO x(n1) and y(n2) and l[n1]=l=l[n2]>=1
and \forall y1\in n1, y2\in n2 y1=l-y2 \im-

plies d(y1)=d(y2)

Draft! Version: 19 January 2010

	CINV Copying Conditions (LGPL)
	Introduction to CINV
	C code
	Spl encoding
	Specification logic

	Parameters of the analysis
	Results
	Examples by class
	Introduction
	C code
	Spl encoding
	Specification logic
	Parameters of the analysis
	Results

	Examples by class
	Computing on data
	First not null
	Get maximum
	Sentinel
	List equality
	Sum of elements

	Initializing data
	Initialization modulo 2
	Initialization with first integers
	Initialization with first even numbers
	Initialization in sequence
	Initialization with Fibonacci
	Partial reset
	Sum of lists

	Changing data
	Copy a list (1)
	Copy the list data to a different length list (correct)
	Copy the list data to a different length list (incorrect)
	Add some constant
	Copy a list and add some constant (equal length)
	Copy a list and add some constant for different length lists (correct)
	Set the flag
	Insertion sort array

	Changing structure
	New copy of a list
	New copy and add of a list
	New copy on condition
	Delete on condition
	Insertion sort list
	Bubble sort
	Dispatch lists
	Copy and reverse

