
A Proposal for a Theory of Separation Logic
Theory in SMT-LIB

SMT-LIB 4 SL Working Group

Draft of December 19, 2014

Abstract. Dynamic data structures are used in most programs. Sep-
aration Logic is an established Hoare logic for imperative, heap-
manipulating programs. The program analysis tools dealing with pro-
grams annotated with Separation Logic specifications need to decide
verification conditions over Separation Logic formulas. We propose a
new theory for the SMT-Lib standard as the standard format for such
formulae.

Keywords: Separation Logic, SMT-LIB, SAT Modulo Theory

1 Motivation

Separation Logic (SL) is an established and fairly popular Hoare logic for im-
perative, heap-manipulating programs, introduced nearly fifteen years ago by
Reynolds [8,7,9]. Its high expressivity, its ability to generate compact proofs,
and its support for local reasoning motivated the development of tools for au-
tomatic reasoning about programs using SL. For a rather exhaustive list of the
past and present tools, see the web site [6].

These tools seek to establish memory safety properties and/or infer shape
properties of the heap at a scale of millions of lines of code. They intensively use
(semi-)decision procedures for checking satisfiability and entailment problems in
SL. In the last five years, several papers reported on the design and implemen-
tation of such (semi-)decision procedures and compared publicly available tools.
Moreover, the first competition of SL solvers, SL-COMP’14 [10], has been held
in 2014 as an “off” (unofficial) event 1 associated with the SMT-COMP 2014
competition [11], at the FLoC Olympic Games.

The benchmarks of SL-COMP’14 were collected in the input format sub-
mitted by the participants. This set of problems was translated into a common
format designed like a theory of the SMT-LIB format2. That is, they used the

1 That is, the competition was executed in conjunction with the games by the SMT-
COMP organizing committee, SMT-COMP being an official participant in the
games; the results of SL-COMP 2014 were reported at the SMT-2014 workshop
at FLoC; however, SL-COMP 2014 was organized too late and was too experimental
to be an official part of the FLoC Olympic Games.

2 www.smtlib.org

www.smtlib.org

syntax of SMT-LIBv2, although the SL theory underlying the syntax is not an
official SMT-LIB theory or, at this point, even compatible with the theory un-
derlying SMT-LIB. This format is presented and commented in this document
(Section 3).

The standardisation of formats in logic has played a major role in accelerating
research in the past. We think that having a standard format for SL will have
a similar effect. For this reason, we propose a way to integrate an SL theory in
the SMT-LIB format. The rationale for the choice of SMT-LIB as background
format is that SL is combined with or translated into first-order theories that
are or will be supported by the SMT-LIB format, e.g., [3]. Moreover, most of
the verification tools are based on a multi-sorted version of SL with inductively
defined predicates. SMT-LIB is multi-sorted and allows the definition of recursive
predicates (in version 2.5).

TODO: Discuss FO constraint of SMT-LIB.
TODO: Discuss pro and cons for using the set theory and reachability
constraints.

This document is structured as follows. Section 2 presents the abstract syn-
tax and the semantics of a fragment of Separation Logic that is standardized
by the new SMT-LIB theory. The theory used for SL-COMP’14 is presented
in Section 3; we also discuss its advantages and drawbacks. Finally, Section 4
proposes a new theory for SL and provides some examples.

2 The Target Theory

The program analysis tools based on SL use different fragments or extensions of
this logic. However, most of these fragments have as common factor for the spec-
ification of the heap the symbolic heaps fragment, also known as the Separation
Logic with Recursive Definitions (SLRD) [5] or the positive flat SL fragment [1].
In the following, we call this fragment SLRD.

The fragment specifies configurations of programs manipulating variables
that are references to record types. The records are defined by the user as a
set of fields typed as reference or data. Such configurations are modeled by (i)
a heap that is a set of records and (ii) a stack that maps program variables to
record addresses. When the program and the record types include variables resp.
fields in some numerical domain, the model is extended to represent such data.

The SLRD fragment includes four atoms to specify the heap, also called spa-
tial atoms: (i) the empty heap, (ii) any heap (unspecified), (iii) a heap consisting
of one allocated record, and (iv) an unbounded heap segment corresponding to
a data structure whose shape is defined inductively using a recursive definition.
Examples of such recursive definitions are provided in Table 1. These atoms are
connected via a separating conjunction primitive ∗. Only the existential quan-
tification is allowed and the use of disjunction and negation is restricted.

When data fields and variables are used in the program, the recursive def-
initions are extended with data parameters or collections (sets, multisets) over

such data. The data parameters are constrained inside the recursive definitions
using a catamorphic schema [12].

An important feature of this fragment is its flatness: a formula has the fol-
lowing form: Comment

[MS1]: DNF
Comment
[MS1]: DNF

∨
i

∃Xi. Σi ∧Πi ∧∆i

where the disjuncts are built from a the spatial part Σi, combining by ∗ the spa-
tial atoms, the pure part Πi, built as a conjunction of equalities and disqualities
between reference variables, and the data constraints ∆i. This flat form is not
mandatory, but it usually facilitates the decision procedures. Comment

[MS2]: Give exam-
ples of translation
to flat form.

Comment
[MS2]: Give exam-
ples of translation
to flat form.

Syntax: More formally, the syntax of formulas in the SLRD fragment of Sepa-
ration Logic is given by the following grammar:

Comment
[MS3]: Add loop?
Comment
[MS3]: Add loop?

f ∈ F field names P ∈ P recursive definition name

x, y ∈ Vars reference program vars X,Y ∈ LVars reference logical vars

d,D ∈ DVars data variables ∆ data constraints
E,F ::= x | X reference variables

ρ ::= {(f,E)} | {(f,D)} | ρ ∪ ρ set of field references

Π ::= E = F | E 6= F | Π ∧Π pure formulas

Σ ::= emp | junk | E 7→ ρ | P (E,D) | Σ ∗Σ spatial formulas

A,B , ∃X,D. Π ∧Σ ∧∆ formulas

The program variable nil ∈ Vars has a fixed meaning representing an undefined
(not allocated) reference.

The fragment is parameterized by a set P of recursive definitions defined
using the following syntax:

P (E,D) ,
∨
i

∃Xi,Di. Πi ∧Σi ∧∆i (1)

where the spatial formulasΣi may call P or other predicates from P. Table 1 gives
several common examples of recursive data structures (without data constraints)
definable using the syntax above. Comment

[MS4]: Defs with
data constraints.

Comment
[MS4]: Defs with
data constraints.Semantics: Let Loc be a set of locations and Val a set of data values. A stack

S : (Vars∪LVars → Loc)∪ (DVars → Val) maps reference variables to locations
and data variables to values. A heap H : Loc×F⇀ Loc∪Val is a partial function
that defines values of fields for some of the locations in Loc. The domain of H is
denoted by dom(H) and the set of locations in the domain of H is denoted by
ldom(H). As expected, nil is interpreted to a location S(nil) 6∈ ldom(H).

The set of configurations satisfying a formula ϕ is defined by the relation
(S,H) |= ϕ defined in Table 2 (] denotes the disjoint union of sets and S[X ← `]
denotes the function S′ s.t. S′(X) = ` and S′(Y) = S(Y) for any Y 6= X). Note
that a configuration (S,H) satisfies a predicate atom P (E) if it belongs to the

singly linked lists

ls(E,F) , (E = F ∧ emp) ∨ (E 6= F ∧ ∃X.E 7→ {(f,X)} ∗ ls(X,F)) (2)

nested linked lists

nll(E,F,B) , (E = F ∧ emp) ∨ (E 6= {F,B} ∧ (3)

∃X,Z.E 7→ {(s,X), (h, Z)} ∗ ls(Z,B) ∗ nll(X,F,B))

doubly linked lists

dll(E,L, P, F) , (E = F ∧ L = P ∧ emp) ∨
(
E 6= F ∧ L 6= P ∧ (4)

∃X.E 7→ {(n,X), (p, P)} ∗ dll(X,L,E, F)
)

binary tree

btree(E) , (E = nil ∧ emp) ∨
(
E 6= nil ∧ (5)

∃X,Y.E 7→ {(r,X), (l, Y)} ∗ btree(X) ∗ btree(X)
)

tree with linked leaves

tll(R,P,E, F) , (R = E ∧R 7→ {(l, nil), (r, nil), (p, P), (n, F)}) (6)

∨
(
R 6= E ∧ ∃X,Y, Z. R 7→ {(l,X), (r, Y), (p, P), (n,Z)} ∗

tll(X,R,E,Z) ∗ tll(Y,R, Z, F)
)

Table 1. Examples of recursive definitions used in the benchmark

least fixed point of the set of recursive definitions P for the actual parameters E
of P . The set of models of a formula ϕ is denoted by [[ϕ]]. Given two formulas
ϕ1 and ϕ2, we say that ϕ1 entails ϕ2, denoted by ϕ1 ⇒ ϕ2, iff [[ϕ1]] ⊆ [[ϕ2]].

Notice that this semantics is a precise semantics. It was chosen because it is
the most used in tools and in the verification of concurrent programs.

Decidability and complexity properties:Comment
[MS5]: Usually
not commented in
SMT-LIB theories.

Comment
[MS5]: Usually
not commented in
SMT-LIB theories. 3 The Theory at SL-COMP’14

The theory defined for SL-COMP’14 considers only the fragment of SLRD with-
out data.

Name for the theory: The name QF S has been used for the 2014 edition. It shall
be reconsidered in the presence of a SMT-LIB theory of sets.

Records: The user has to declare the sorts corresponding to types reference to
record. For example, consider the following C code defining a binary tree type:

typedef struct btree_s {

struct btree_s* lson;

struct btree_s* rson;

}* btree_t;

(S,H) |= E = F iff S(E) = S(F)

(S,H) |= E 6= F iff S(E) 6= S(F)

(S,H) |= ϕ ∧ ψ iff (S,H) |= ϕ and (S,H) |= ψ

(S,H) |= emp iff dom(H) = ∅
(S,H) |= junk always

(S,H) |= E 7→ {ρ} iff dom(H) = {(S(E), fi) | (fi, Ei) ∈ {ρ}} and

for every (fi, Ei) ∈ {ρ}, H(S(E), fi) = S(Ei)

(S,H) |= Σ1 ∗Σ2 iff ∃H1, H2 s.t. ldom(H) = ldom(H1)] ldom(H2),

(S,H1) |= Σ1, and (S,H2) |= Σ2

(S,H) |= P (E) iff (S,H) ∈ [[P]] (P (E))

(S,H) |= ∃X.ϕ iff there exists ` ∈ Loc s.t. (S[X ← `], H) |= ϕ

Table 2. Semantics of the Separation Logic fragment

The sort for this type is declared as follows:

(declare-sort Btree_t () 0)

The SL theory defines the sort Void to denote the reference to any user
record.

Remark 1. A solution that follows closely the C definition is (i) to consider that
user declared sorts correspond to record types, and (ii) to define a parameterized
sort in the theory corresponding to a reference type, e.g.:

(declare-sort Ref () 1)

This solution requires to use the Ref in most places where record sorts appear.

Fields: The set of field names, F, is defined using the Field sort of arity 2
defined in the theory. Each field is declared as a function symbol of arity 0
and result type Field A B where A is the sort corresponding to the record type
declaring the field and B is the sort typing the field. For example, the following
code declares the fields of a binary tree with an integer field data:

(declare-fun lson () (Field Btree_t Btree_t))

(declare-fun rson () (Field Btree_t Btree_t))

(declare-fun data () (Field Btree_t Int))

Variables: The set of reference variables (program or existentially quantified)
are declared in a classic way. For example:

(declare-fun root () Btree_t)

declares the variable root to be a reference to a binary tree.
The theory declares nil to be a special variable typed by the Void sort.

Flat formulas: The flatness of formulas is not ensured by the 2014 format. The
format discourages the nesting of spatial and pure formulas by requiring heavy
type casting. Indeed, the spatial atoms are typed in the theory by the Space sort
(arity 0) and their combination with a pure (boolean) formula requires to cast
Space to Bool. The space atoms are built using the following theory operators:

Abstr. syntax SMT-LIB notation SMT-LIB typing
emp emp Space

junk junk Space

Σ1 ∗ . . . ∗Σn (ssep 〈form〉+) (Space+ Space)

E 7→ ρ (pto 〈var〉 ρ) (par (A) (pto A (SetRef A)

Space)

none (tobool 〈form〉 〈form〉) (Space Bool)

none (tospace 〈form〉 〈form〉) (Bool Space)

{(f,E)} (ref 〈f〉 〈var〉) (par (A B) (ref (Field A B)

B (SetRef A)))

ρ ∪ ρ (sref 〈ρ〉+) (par (A) (sref (SetRef A)

(SetRef A) (SetRef A))

For example, the following SLRD formula:

X 7→ {(lson, Y), (rson, Z)} ∧X 6= Y (7)

is encoded in the SL theory in SMT-LIB as follows:

(and (tobool (pto (sref (ref lson Y) (ref rson Z))))

(distinct X Y)

)

Remark 2. A solution to simplify the syntax is to replace the Space sort by
the Bool sort in the above typing. This solution eliminates the cast operators
tobool and tospace. The flatness of formulas could be then ensured by some
transformations or by (sound) syntactic checks.

Recursive definitions: These definitions are introduced by the define-fun-rec

operator.

Remark 3. The version 2.0 of SMT-LIB forbids the recursive calls in the term
defining a function (efine-fun). The new version allows recursive calls intro-
duced by define-fun-rec which defines a set of (mutually recursive) functions.

Because recursive definitions are spatial atoms, their result type shall be
Space. The syntax of such definitions looks heavy because conversions are needed
between space and boolean formula to be able to use the built-in boolean oper-
ators in SMT-LIB (exists, and, or). For example, the binary tree definition from
Table 1 is encoded as follows:

(define-fun btree ((?root Btree_t)) Space (tospace

(or (and (= ?root nil) (tobool emp))

(exists ((?X Btree_t) (?Y Btree_t))

(and (distinct ?root nil)

(tobool (ssep (pto ?root (sref (ref lson ?Y) (ref rson ?Z)))

(btree ?X) (btree ?Y)

))))

)))

Remark 4. If the Space sort is eliminated, the recursive definitions are typed as
boolean predicates. The definition above becomes:

(define-fun-rec btree ((?root Btree_t)) Bool

(or (and (= ?root nil) emp)

(exists ((?X Btree_t) (?Y Btree_t))

(and (distinct ?root nil)

(ssep (pto ?root (sref (ref lson ?Y) (ref rson ?Z)))

(btree ?X) (btree ?Y)

)))

))

Notice the absence of two ‘)’ !

4 Proposal for a Simplified Theory

This section defines an SMT-LIB theory for SLRD which changes as follows the
SL-COMP’14 format:

– The unary sort Ref is introduced for reference types (cf. Remark 1).
– The sort Space is removed from the theory (cf. Remark 2).

Records: The user has to declare the sorts corresponding to record types. Then,
a sort encoding a reference to record type is declared using the Ref sort. For
example, the declaration of a binary tree variable is given by:

(declare-sort Btree_s () 0)

(declare-fun root () (Ref Btree_s))

The theory keeps the sort Void to denote the reference to any user record.

Fields: The set of field names, F, is defined using the Field sort of arity 2. A
field is declared as a 0-arity function of result typed by Field A B because A

and B will be some (Ref R). For example: Comment
[MS6]: Impact on
pto?

Comment
[MS6]: Impact on
pto?(declare-fun lson () (Field (Ref Btree_s) (Ref Btree_s)))

(declare-fun rson () (Field (Ref Btree_s) (Ref Btree_s)))

(declare-fun data () (Field (Ref Btree_s) Int))

Variables: The set of reference variable are declared as before but the type is
always (Ref A) where A is some sort.

Flat formulas: Formulas are typed by Bool. The following operators are pro-
posed:

Abstr. syntax SMT-LIB notation SMT-LIB typing
emp emp Bool

junk junk Bool

Σ1 ∗ . . . ∗Σn (ssep 〈form〉+) (Bool+ Bool)

E 7→ ρ (pto 〈var〉 ρ) (par (A) (pto A (SetRef A) Bool)

{(f,E)} (ref 〈f〉 〈var〉) (par (A B) (ref (Field A B) B

(SetRef A)))

ρ ∪ ρ (sref 〈ρ〉+) (par (A) (sref (SetRef A)

(SetRef A) (SetRef A))

For example, the formula (??) is encoded as follows:

(and (pto (sref (ref lson Y) (ref rson Z)))

(distinct X Y)

)

TODO: discuss extension with a data theory.

References

1. Timos Antonopoulos, Nikos Gorogiannis, Christoph Haase, Max I. Kanovich, and
Joël Ouaknine. Foundations for decision problems in separation logic with general
inductive predicates. In FOSSACS, volume 8412 of Lecture Notes in Computer
Science, pages 411–425. Springer, 2014.

2. James Brotherston, Carsten Fuhs, Nikos Gorogiannis, and Juan Navarro Pérez. A
decision procedure for satisfiability in separation logic with inductive predicates.
Technical Report RN/13/15, University College London, 2013.

3. Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Auto-
mated verification of shape, size and bag properties via user-defined predicates in
separation logic. Sci. Comput. Program., 77(9):1006–1036, 2012.

4. Byron Cook, Christoph Haase, Joël Ouaknine, Matthew J. Parkinson, and James
Worrell. Tractable reasoning in a fragment of separation logic. In CONCUR,
volume 6901 of Lecture Notes in Computer Science, pages 235–249. Springer, 2011.

5. Radu Iosif, Adam Rogalewicz, and Jiŕı Simácek. The tree width of separation logic
with recursive definitions. In CADE, volume 7898 of Lecture Notes in Computer
Science, pages 21–38. Springer, 2013.

6. Peter O’Hearn. Separation logic. www0.cs.ucl.ac.uk/staff/p.ohearn/

SeparationLogic/Separation_Logic/SL_Home.html.
7. Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about

programs that alter data structures. In CSL, volume 2142 of Lecture Notes in
Computer Science, pages 1–19. Springer, 2001.

8. John C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In
Oxford-Microsoft Symposium in Honour of Sir Tony Hoare. Palgrave Macmillan,
1999. Publication date November 2000.

9. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS, pages 55–74. IEEE Computer Society, 2002.

www0.cs.ucl.ac.uk/staff/p.ohearn/SeparationLogic/Separation_Logic/SL_Home.html
www0.cs.ucl.ac.uk/staff/p.ohearn/SeparationLogic/Separation_Logic/SL_Home.html

10. SL-COMP’14. www.liafa.univ-paris-diderot.fr/~sighirea/slcomp14/.
11. SMT-COMP. smtcomp.sourceforge.org.
12. Philippe Suter, Mirco Dotta, and Viktor Kuncak. Decision procedures for algebraic

data types with abstractions. In POPL, pages 199–210. ACM, 2010.

www.liafa.univ-paris-diderot.fr/~sighirea/slcomp14/
smtcomp.sourceforge.org

	A Proposal for a Theory of Separation Logic Theory in SMT-LIB

