A Gentle Introduction to Equations
Or How to Match Regexps with
Dependently-Typed Continuations

Matthieu Sozeau & Cyprien Mangin
Inria Paris & IRIF, Université Paris 7 Diderot
OUTLINE

1. Dependent Pattern-Matching 101
 a. History & Examples
 b. Unification
 c. Axiomatic vs Definitional Extensions
 d. Uniqueness of Identity Proofs

2. Equations Tutorial: Regexp Matching
 a. Tool presentation
 b. A simply-typed version
 c. Indexing to the rescue
 d. Boilerplate-free proofs on dependently-typed programs
“Pattern-Matching with Dependent Types”, Coquand, 1992

The type-value dependency circle:

\[
\text{Inductive vector } A : \text{nat} \rightarrow \text{Type} := \\
| \text{Vnil} : \text{vector } A \ 0 \\
| \text{Vcons} : \forall (h: A) \ (n: \text{nat}), \text{vector } A \ n \rightarrow \text{vector } A \ (S \ n).
\]

\[
\text{Equations vtail } \{A \ n\} \ (v : \text{vector } A \ (S \ n)) : \text{vector } A \ n := \\
v\text{tail } (\text{Vcons } a \ n \ v') := v'.
\]
DPM 101

“The view from the left”, McBride, McKinna - JFP, 2004

The “with” rule:

Equations equal (n m : nat) : { n = m } + { n ≠ m } :=
equal O O := left eq_refl ;
equal (S n) (S m) with equal n m := {
 equal (S n) (S ?(n)) (left eq_refl) := left eq_refl ;
 equal (S n) (S m) (right p) := right _ } ;
equal x y := right _.

⇒ Later adopted in Agda 2/Epigram
When checking that a definition with clauses

\[f \ j \ p_j 1 \ \ldots \ p_j n := \ldots \]

covers the typing:

\[f : \forall (x_1 : I u_1 \ldots u_n) (x_2 : \tau_2) \ldots (x_n : \tau_n), \tau \]

We match \((p_1 \ldots p_n, x_1 \ldots x_n)\)

\[
\text{match}(p_1 \ldots p_n, t_1 \ldots t_n) \sim \text{Unif } \sigma \quad (\sigma \text{ substitution})
\]

\[
| \text{Fail} | \text{Stuck } x \quad (x \text{ variable})
\]

- Standard first-match semantics
- Stuck \(x_i\) tells which variable to split next, refining \(x_i\) to constructors
When checking that a clause

\[f \ (C_i \ p_1 \ldots \ p_n) \ q_2 \ldots \ q_m \ := \ldots \]

matches the prototype:

\[f : \forall \ (x_1 : I \ u_1 \ldots \ u_n) \ (x_2 : \tau_2)\ldots(x_n : \tau_n), \tau \]

we unify: \(I \ t_1 \ldots \ t_n \) and \(I \ u_1 \ldots \ u_n \)

\[t =? u \sim \text{Unif} \ \sigma \quad (\sigma \text{ substitution}) \]

| Fail | Stuck |

Let’s write the rules on the whiteboard!
DPM 101 - Axiomatic vs Definitional Extension

- **Axiomatic** extension: matching and unification part of the kernel (Alfa, Agda 2), trusted

- **Definitional** extension: compile pattern-matching to primitive eliminators (Epigram, Equations, Lean, GHC)
 E.g. in Coq:

  ```coq
definition vtail (x : vector A (S n)) : vector A n :=
    match x in vec y return match y with
    | 0 => unit | S n => vector A n end with
    | Vnil => tt
    | Vcons a n v => v
  end
```

This kind of “small” inversions is however limited
(linearity, pure pattern structure, limited dependencies)
“Eliminating Dependent Pattern-Matching”
Goguen, McBride & McKinna, 2006

Main Idea: unification

\[t =? u \leadsto \text{Unif } \sigma \]

is witnessed by a proof of:

\[t = u \rightarrow |\sigma| \]

where \[|x:=t;\sigma| = \Sigma p : x = t, |\sigma[p]| \]
DPM 101 - Eliminating a variable

Start with: \[\Gamma_0 \ (x : \text{t}) \ \Gamma_1 \]

Generalize:

\[\Gamma_0 \ (x : \text{t}) \ \Gamma_1 \ (u : \text{a}) \ (y : \text{u}) \ (e : (\text{t}, x) = (u, y)) \]

Eliminate:

\[\Gamma_0 \ (x : \text{t}) \ \Gamma_1 \ (a : \text{a}) \ (e : (\text{t}, x) = (u_i, C_i \ a)) \]

Simplify equalities
Supporting definitions: J-rule, NoConfusion, NoCycle, K

Specialization by Unification (McBride, PhD’99, Cockx, ICFP’14). Gradually refine/simplify:

\[t = _(\Sigma \delta : \Delta. I \delta) u \rightarrow \tau \]

Theorem (computational soundness):
Each clause \(f \ cl \ .. \ cn := t \) turns into a **reduction** \(f \ cl \ .. \ cn \rightarrow t \), even on open terms.

(When there are no overlapping patterns)
Sigma:

\[\forall (e : (x, p) = (y, q)), P\ e \implies \forall (e' : x = y)\ (e : \text{rew}\ e'\ p = q), P\ (\text{sigma}_\text{eq}\ e'\ e) \]

Solution:

\[\forall \Gamma, \forall (e : x = t), P\ x\ e \implies \forall \Gamma', P\ t\ \text{eq}_\text{refl} \]

Deletion:

\[\forall (e : t = t), P\ e \implies P\ \text{eq}_\text{refl} \]
DPM 101 - Constructor Simplification

Pack:
\[\forall (e : C \bar{t} = D \bar{u}), P e \Rightarrow \forall (e : (idx_t, C \bar{t}) = (idx_u, D \bar{u})), \text{ind_pack_inv} P e \]

NoConfusion:
\[\forall (e : (idx_t, C \bar{t}) = (idx_u, D \bar{u})), P e \]
\[\Rightarrow - \forall (e : \bar{t} = \bar{u}), P (\text{noConf_inv} e) \text{ if C and D are the same constructor} \]
\[- \text{solved if C and D are distinct constructors} \]

Unpack:
\[\text{ind_pack_inv} P \text{ eq_refl} \Rightarrow P \text{ eq_refl} \]

True and False:
\[\forall (e : \text{True}), P e \Rightarrow P \text{ I} \]
\[\forall (e : \text{False}), P e \Rightarrow \text{solved} \]
DPM 101 - Uniqueness of Identity Proofs

- Supported by the unification
- Incompatible with Homotopy Type Theory models
- Can remove the “deletion” rule to disallow it.
- More refined solutions possible (Cockx et al, ICFP’14, CPP’17)
- Equations allow configuration of behavior
OUTLINE

1. Dependent Pattern-Matching 101
 a. History & Examples
 b. Unification
 c. Axiomatic vs Definitional Extensions
 d. Uniqueness of Identity Proofs

2. Equations Tutorial: Regexp Matching
 a. Tool presentation
 b. A simply-typed version
 c. Indexing to the rescue
 d. Boilerplate-free proofs on dependently-typed programs
Equations Reloaded

- Dependent Pattern-Matching à la Epigram, Agda
- Compiled-down to CIC using **telescope** simplification (à la Cockx circa 2016)
- Optional typeclass instances of K/decidable equality
- **Smart** case compilation: small proof terms, avoiding UIP
- Structural, nested and well-founded recursion (i.e. more than what Function/Program can handle)
- Derive Signature NoConfusion Subterm EqDec for I
- Generates graph, unfolding lemma, **elimination** principles
Playtime: Regexp matching

Implement regexp matching using continuations instead of derivatives or automata.

“Proof-directed debugging”, Harper, JFP’99

Tutorial
More examples

• Hereditary substitution for Predicative System F
 (Mangin & Sozeau, LFMTP’15)
 Nested recursion, well-founded multiset ordering on types.

• Ordinal measures (Castéran)

• Reflexive ring-like tactic on polynomials. WF subterm order on indexed polynomials

• Prototyping without verifying termination using functional eliminator

mattam82.github.io/Coq-Equations/examples
Equations Summary

• Write **just what’s needed** when programming with dependently-typed structures.
• **Definitional** extension of the Coq kernel
• Gives the **right** reasoning **principles** on your (mutual, nested, dependent) function.
• Good **target** for verification of total, purely functional **Haskell** programs (e.g. hs-to-coq, UPenn).
opam install coq-equations

http://mattam82.github.io/Coq-Equations/