Coq support for HoTT

Matthieu Sozeau
Inria Paris & PPS, Université Paris 7 Diderot

HoTT/UF Workshop
June 29th 2015
Warsaw, Poland
Embracing proof-relevant equality

Much work on DTT in Coq focused on propositional equality, assumed proof-irrelevant.

Two examples which rely deeply on equality:

- A generalized rewriting tactic
- A toolbox for handling definitions by dependent pattern-matching and well-founded recursion

Today: Adapting these tools to the new setting
1 Proof-relevant rewriting strategies
 ■ Generalized rewriting
 ■ Rewriting with Type-valued relations

2 Equations
 ■ Intro
 ■ Dependent pattern-matching compilation
 ■ Recursion
 ■ Reasoning support
Why generalized rewriting when we have \texttt{Id}-elimination?

- \texttt{Id} is not the only interesting relation...
- Even with a univalent equality, \texttt{Id}-elim is not enough: \textit{capturing} rewrites under binders.
Higher-order morphisms

\[
\text{Inductive } \text{ex} \ (\{A : \text{Type}\} \ (P : A \to \text{Prop}) : \text{Prop} := \\
\text{ex}_\text{intro} : \forall x : A, \ P x \to \text{ex} \ P. \\
\text{Instance } \text{ex}_\text{iff} P A : \\
\text{Proper} \ (\text{pointwise_relation} \ A \iff \leftrightarrow \text{iff}) (\@ \text{ex} A).
\]
Inductive \(\text{ex} \ \{ A : \text{Type} \} \ (P : A \rightarrow \text{Prop}) : \text{Prop} := \)
\[
\text{ex_intro} : \forall \ x : A, \ P \ x \rightarrow \text{ex} \ P.
\]

Instance \(\text{ex_iff_P} \ A : \)
\[
\text{Proper} \ (\text{pointwise_relation} \ A \ \text{iff} \leftrightarrow \text{iff}) \ (@\text{ex} \ A).
\]

Goal \(\forall \ A \ P \ Q, \ (\forall \ x : A, \ P \ x \leftrightarrow Q \ x) \rightarrow \)
\[
(\exists \ x, \neg P \ x) \rightarrow (\exists \ x, \neg Q \ x).
\]

Proof.
\[
\text{intros} \ A \ P \ Q \ H \ HnP.
\text{setoid} \ \text{rewrite} \ \leftarrow H.
\text{exact} \ HnP.
\text{Qed}.
\]
Inductive \text{ex} \{ A : \text{Type} \} (P : A \to \text{Prop}) : \text{Prop} :=
\begin{align*}
\text{ex_intro} : & \forall x : A, P \ x \ \to \ \text{ex} \ P. \\
\end{align*}

Instance \text{ex_iff_P} A :
\begin{align*}
\text{Proper} & \ (\text{pointwise_relation} \ A \ \text{iff} \ \leftrightarrow \ \text{iff}) \ (@\text{ex} \ A).
\end{align*}

Goal \forall A \ P \ Q , (\forall x : A, P \ x \leftrightarrow Q \ x) \to
(\exists x, \neg P \ x) \to (\exists x, \neg Q \ x).

Proof. intros A P Q H HnP.

setoid_rewrite \leftarrow H. exact HnP.
Qed.
Rewriting in Type Theory

Moving from substitution to congruence.

- Built-in substitution: Leibniz equality.
 \[\Pi A (P : A \rightarrow \text{Type}) (x y : A), \ P x \rightarrow x = y \rightarrow P y. \]
 ✓ Applies to any context
 ✗ Iterated rewrites result in large proof terms: repeats the context that depends on \(x \)
 ✗ Restricted to equality, one rewrite at a time
Rewriting in Type Theory

Moving from substitution to congruence.

- **Built-in substitution: Leibniz equality.**

\[\Pi A \ (P : A \rightarrow \text{Type}) \ (x \ y : A), \ P \ x \rightarrow x = y \rightarrow P \ y. \]

- Applies to any context
- Iterated rewrites result in large proof terms: repeats the context that depends on \(x\)
- Restricted to equality, one rewrite at a time

- **Congruence.**

\[\text{ap} : \Pi A \ B \ (f : A \rightarrow B) \ (x \ y : A), \ x = y \rightarrow f \ x = f \ y \]

- Applies at the toplevel only
- Smaller proof term: mentions the changed terms only
- Generalizes to n-ary, parallel rewriting
- Still restricted to equality
Rewriting in Type Theory

Moving from substitution to congruence.

- **Built-in substitution: Leibniz equality.**
 \[\Pi A \ (P : A \to \text{Type}) \ (x \ y : A), \ P \ x \to x = y \to P \ y. \]
 - ✓ Applies to any context
 - ✗ Iterated rewrites result in large proof terms: repeats the context that depends on \(x \)
 - ✗ Restricted to equality, one rewrite at a time

- **Congruence.**
 \[\text{ap} : \Pi A \ B \ (f : A \to B) \ (x \ y : A), \ x = y \to f \ x = f \ y \]
 - ✗ Applies at the toplevel only
 - ✓ Smaller proof term: mentions the changed terms only
 - ✓ Generalizes to n-ary, parallel rewriting
 - ✗ Still restricted to equality

One can build a set of combinators to rewrite in depth: HOL conversions [Paulson 83], ELAN strategies.
Generalized Rewriting in Type Theory

D. Basin [NuPRL, 94], C. Sacerdoti Coen [CoQ, 04], Sozeau [CoQ, 09]

- Generalized to any relation
 \[\text{Proper } (\text{iff } \leftrightarrow \text{ iff}) \not\equiv \Pi P Q, P \leftrightarrow Q \rightarrow \neg P \leftrightarrow \neg Q \]

- Multiple signatures for a given constant
 \[\text{Proper } (\text{impl } \rightarrow \text{ impl}) \not\equiv \]
Generalized Rewriting in Type Theory

D. Basin [NuPRL, 94], C. Sacerdoti Coen [CoQ, 04], Sozeau [CoQ, 09]

- Generalized to **any** relation
 \[\text{Proper (iff } \leftrightarrow \text{ iff)} \text{ not } \triangleq \Pi P Q, P \leftrightarrow Q \rightarrow \neg P \leftrightarrow \neg Q \]

- Multiple signatures for a given constant
 \[\text{Proper (impl } \rightarrow \text{ impl)} \text{ not} \]

Requires **proof search**:

- Heuristic in NuPRL based on subrelations (impl \(\subseteq \) iff)
- Complete procedure in CoQ.
Our Algorithm

Two phases:

1. Constraint generation in ML.
 Recursive descent on the term to find the rewrites to perform, building a proof skeleton.

2. Constraint solving using resolution.
 Depth-first search to solve the constraints with the declared hints / typeclass instances.
The two main rules

\[\Gamma \mid \psi \vdash \tau \xrightarrow{R} \tau' \vdash \psi' \]
The two main rules

\[
\Gamma \mid \psi \vdash \tau \rightsquigarrow^R_p \tau' - \psi'
\]

UNIFY

\[
\text{unify}_\rho(\Gamma, \psi, t) \uparrow \psi', \rho' : R\ t\ u
\]

\[
\Gamma \mid \psi \vdash t \rightsquigarrow^R_{\rho'} u - \psi'
\]
The two main rules

\[\Gamma | \psi \vdash \tau \rightsquigarrow^R_p \tau' \vdash \psi' \]

Unify

\[
\text{unify}_\rho(\Gamma, \psi, t) \uparrow \psi', \rho' : R \ t \ u
\]

\[
\Gamma | \psi \vdash t \rightsquigarrow^R_{\rho'} u \vdash \psi'
\]

Atom

\[
\text{unify}_\rho^*(\Gamma, \psi, t) \downarrow \quad \tau \triangleq \text{type}(\Gamma, \psi, t)
\]

\[
\psi' \triangleq \{ ?_S : \Gamma \vdash \text{relation} \ \tau, ?_m : \Gamma \vdash \text{Proper} \ \tau \ ?_S t \}
\]

\[
\Gamma | \psi \vdash t \rightsquigarrow^{?_S}_{?_m} t \vdash \psi \cup \psi'
\]
Proper instances

- Extensible signatures (shallow embedding)

 \[
 \text{all} : \forall A : \text{Type}, (A \to \text{Prop}) \to \text{Prop} \\
 \Pi A, \text{Proper} (\text{pointwise_relation} A \text{ iff } \leftrightarrow \text{iff}) (@\text{all} A)
 \]
Proper instances

- Extensible signatures (shallow embedding)
 \[\forall A : \text{Type}, \ (A \rightarrow \text{Prop}) \rightarrow \text{Prop} \]
 \[\Pi A, \ \text{Proper} \ (\text{pointwise_relation} \ A \ i i f f \ \leftrightarrow \ i f f) \ (@\text{all} \ A) \]

- Algebraic presentation, supporting higher-order functions and polymorphism:
 \[\Pi A \ B \ C \ R_0 \ R_1 \ R_2, \]
 \[\text{Proper} \ ((R_1 \leftrightarrow R_2) \leftrightarrow (R_0 \leftrightarrow R_1) \leftrightarrow (R_0 \leftrightarrow R_2)) \]
 \[(@\text{compose} \ A \ B \ C) \]
Proper instances

- Extensible signatures (shallow embedding)
 \[
 \text{all : } \forall A : \text{Type}, (A \to \text{Prop}) \to \text{Prop} \\
 \Pi A, \text{Proper} (\text{pointwise_relation } A \iff \leftrightarrow \iff) (@all A)
 \]

- Algebraic presentation, supporting higher-order functions and polymorphism:
 \[
 \Pi A B C R_0 R_1 R_2, \\
 \text{Proper} ((R_1 \leftrightarrow R_2) \leftrightarrow (R_0 \leftrightarrow R_1) \leftrightarrow (R_0 \leftrightarrow R_2)) \\
 (@\text{compose } A B C)
 \]

- Generic morphism declarations.
Proper instances

- Extensible signatures (shallow embedding)
 \[\forall A : \text{Type}, (A \to \text{Prop}) \to \text{Prop} \]
 \[\Pi A, \text{Proper} \ (\text{pointwise_relation} A \iff \leftrightarrow \iff) \ (@all A) \]

- Algebraic presentation, supporting higher-order functions and polymorphism:
 \[\Pi A B C R_0 R_1 R_2, \]
 \[\text{Proper} \ ((R_1 \leftrightarrow R_2) \leftrightarrow (R_0 \leftrightarrow R_1) \leftrightarrow (R_0 \leftrightarrow R_2)) \]
 \[(@\text{compose} A B C) \]

- Generic morphism declarations.

- Subrelations, quotienting the signatures.
Proper instances

- Extensible signatures (shallow embedding)

\[\forall A : \text{Type}, (A \to \text{Prop}) \to \text{Prop} \]

\[\Pi A, \text{Proper} \left(\text{pointwise_relation} \ A \iff \leftrightarrow \iff \right) (@\text{all} \ A) \]

- Algebraic presentation, supporting higher-order functions and polymorphism:

\[\Pi A B C R_0 R_1 R_2, \]

\[\text{Proper} \left((R_1 \leftrightarrow R_2) \leftrightarrow (R_0 \leftrightarrow R_1) \leftrightarrow (R_0 \leftrightarrow R_2) \right) \]

\[(@\text{compose} \ A \ B \ C) \]

- Generic morphism declarations.

- Subrelations, quotienting the signatures.

- Rewriting on operators/functions, parallel rewrites...
1. Proof-relevant rewriting strategies
 - Generalized rewriting
 - Rewriting with Type-valued relations

2. Equations
 - Intro
 - Dependent pattern-matching compilation
 - Recursion
 - Reasoning support
 - Equations
 - Elimination principle
 - Eliminating calls
All fine with relations in Prop, how about Type-valued relations?

Proper: $\Pi A : \text{Type}_i, (A \to A \to \text{Type}_j) \to A \to \text{Type}_j$.

Need to show, under $A : \text{Type}_i$:

Proper $((A \to A \to \text{Type}_j) \to A \to \text{Type}_j)$

(iso$_\text{rel}$ $A \to$ eq $A \to$ iso)

(Proper A)

Requires: $\text{Type}_{\text{max}(i,j+1)} \leq \text{Type}_i$ i.e. $j < i$.

But then $\text{iso} A : \text{Type}_i \not\leq \text{Type}_j \Rightarrow$ inconsistency.
With universe polymorphism (Sozeau & Tabareau [ITP’14]):

$$\text{Proper}_{i,j} : \Pi A : \text{Type}_i, (A \to A \to \text{Type}_j) \to A \to \text{Type}_j$$

We can show, under $$A : \text{Type}_i$$:

$$\text{Proper}_{i',j'} \quad ((A \to A \to \text{Type}_j) \to A \to \text{Type}_j)$$

$$(\text{iso}_\text{rel} A \to \text{eq} A \to \text{iso})$$

$$(\text{Proper}_{i,j} A)$$

The constraint $$\max(i, j + 1) \leq i'$$ is satisfiable.

Actually, $$\text{crelation}(A : \text{Type}_i) := A \to A \to \text{Type}_j$$ is already problematic: no relation equivalence or subrelation definition possible.
Generalized rewriting will now handle:

- The general function space morphism between types.
- Type-level identity, isomorphisms and equivalences of types.
- Computationally relevant relations like CoRN’s appartness relation on reals.
- Hom-types of categories which are not Prop-based setoids, e.g. groupoids...
User-definable strategies: rewrite_strat.

- A tactic/strategy language: bottom-up, innermost, with composition, disjunction, rewrite hint databases...
- Much faster than autorewrite.
- More control on the shape of proof terms.
Suppose the theory of monoids on T.
A goal: $x\ y : T \vdash x \cdot ((\epsilon \cdot y) \cdot \epsilon)$.

- **autorewrite with monoids** will do two rewrites with both unit laws, the proof term will be roughly twice the goal size.
- **rewrite_strat (topdown (repeat (hints monoids)))** will first rewrite $\epsilon \cdot y$ to y and directly after, $y \cdot \epsilon$ to y, resulting in a proof term of size roughly that of the initial goal, and will be twice as fast as well.
1. **Proof-relevant rewriting strategies**
 - Generalized rewriting
 - Rewriting with Type-valued relations

2. **Equations**
 - Intro
 - Dependent pattern-matching compilation
 - Recursion
 - Reasoning support
 - Equations
 - Elimination principle
 - Eliminating calls
A word of caution:

- **Strong elimination:**
  ```coq
definition match x return if x then unit else nat with |
  true => tt |
  false => 0 |
end
```

⇒ *intensional* character of inductive values.

- **Dependent Pattern-Matching:**
  ```coq
definition match (v : vector bool (S 0)) return bool with |
  Vcons a ?(0) v => a |
end
```

⇒ extends to the *propositional* equational theory of inductive types.
Dependent Pattern-Matching and Equality

1992 Pattern Matching With Dependent Types – Coquand
1999 Dependently Typed Functional Programs and Their Proofs – McBride
2004 The View From The Left – McBride and McKinna
≈ 2010 GADTs in the programming languages community.
2014 Pattern Matching without K – Cockx, Devriese and Piessens
http://github.com/mattam82/Coq-Equations
(opam package coq:equations)

- **Agda/Epigram**-style definitions (including `with`)
- Purely logical handling of recursion.
- Propositional equations for definitional equalities and rewriting.
- Function graph and elimination principle derivation (w/ support for applying it).

Entirely elaborated to the vanilla kernel!
DEMO
Elaboration into \(\text{CIC} + \text{K} \) (as an axiom or a user-provided proof)

1. Generation of a splitting tree from the clauses

Elaboration into $\text{CIC} + K$ (as an axiom or a user-provided proof)

1. Generation of a splitting tree from the clauses
2. Translation from the splitting tree to Coq terms with holes
Elaboration into $\text{CIC} + K$ (as an axiom or a user-provided proof)

1. Generation of a splitting tree from the clauses
2. Translation from the splitting tree to Coq terms with holes
3. Proofs of the obligations using a mix of ML and \mathcal{L}_tac code

Elaboration into CIC + K (as an axiom or a user-provided proof)

1. Generation of a splitting tree from the clauses
2. Translation from the splitting tree to COQ terms with holes
3. Proofs of the obligations using a mix of ML and \(L_{\text{tac}} \) code
4. Derivation of auxiliary structures from the completed splitting tree

Searching for a splitting tree

pattern $p ::= x | C \overrightarrow{p} | ?(t)$
context map $c ::= \Delta \vdash \overrightarrow{p} : \Gamma$
splitting $spl ::= \text{Split}(c, x, (spl?)^n) | \text{Compute}(c, rhs)$
node $rhs ::= \text{Program}(t) | \text{Refine}(c, t, spl)$

Goal
Starting with $f \Delta : \tau ::= \overrightarrow{p} \ldots$, find a covering of the context map $\Delta \vdash \overrightarrow{\Delta} : \Delta$ by \overrightarrow{p}.
Proof search example

Overlapping clauses with first-match semantics.

Equations equal (n m : nat) : { n = m } + { n ≠ m } :=
equal O O := left eq_refl ;
equal (S n) (S m) with equal n m := {
equal (S n) (S ?(n)) (left eq_refl) := left eq_refl ;
equal (S n) (S m) (right p) := right _ } ;
equal x y := right _ .

Split(n m : nat ⊢ n m : n m : nat, n, [Split(m : nat ⊢ O m : n m : nat, m, [
 Compute(⊢ O O : n m : nat, Program(left eq_refl)),
 Compute(m : nat ⊢ O (S m) : n m : nat, Program(right _))])],
Split(n m : nat ⊢ (S n) m : n m : nat, m, [
 Compute(n : nat ⊢ (S n) O : n m : nat, . . .),
 Compute(n m : nat ⊢ (S n) (S m) : n m : nat,
 Refine(equal n m,
 idsubst(n m : nat, x : {n = m} + {n ≠ m}), l) . . .))))
For each node $\Delta \vdash ps : \Gamma \rightsquigarrow \Pi \Delta$, $f_{\text{comp}} ps$.

Translation from the splitting to Coq
For each node $\Delta \vdash ps : \Gamma \rightsquigarrow \Pi \Delta, f_{\text{comp}} ps$.

- Split(c, x, s): witnessed by dependent elimination. dependent destruction, using JMeq or user-given K/hSet proofs.
For each node $\Delta \vdash ps : \Gamma \rightsquigarrow \Pi \Delta, f_{\text{comp}} ps$.

- Split(c, x, s): witnessed by dependent elimination. Dependent destruction, using JMeq or user-given K/hSet proofs.
- Program(t): witnessed by t (w/ some substitution).
For each node $\Delta \vdash ps : \Gamma \rightsquigarrow \Pi \Delta, f_{\text{comp}} ps$.

- **Split**(c, x, s): witnessed by dependent elimination.
 dependent destruction, using JMeq or user-given $K/h\text{Set}$
 proofs.
- **Program**(t): witnessed by t (w/ some substitution).
- **Refine**(t, c, s): witnessed by:
 1. inserting a let-definition in the context,
 2. strengthening it,
 3. abstracting it and clearing its body,
 4. applying the compiled term for the subprogram with one
 additional variable.
1 Proof-relevant rewriting strategies
 ■ Generalized rewriting
 ■ Rewriting with Type-valued relations

2 Equations
 ■ Intro
 ■ Dependent pattern-matching compilation
 ■ Recursion
 ■ Reasoning support
 ■ Equations
 ■ Elimination principle
 ■ Eliminating calls
Recursion

- Syntactic guardness checks are fragile (and buggy)
- Incompatible with abstraction/modularity
- In Coq’s case, restricted to structural recursion on a single argument

Idea Use the logic and well-founded recursion instead!
Syntactic guardness checks are fragile (and buggy)
Incompatible with abstraction/modularity
In Coq’s case, restricted to structural recursion on a single argument

Idea Use the logic and well-founded recursion instead!

In comparison with sized types (e.g. Agda’s size annotations):

- More general.
- Avoid extending the type system and the metatheory.
- Relies on the reduction of a well-foundedness proof, necessary for SN. In turn, relies on *logical* information on the *computational* behavior to be available.
Well-founded recursion on the subterm relation for inductive families $I : \Pi \Delta, \text{Type}$.
Well-founded recursion on the subterm relation for inductive families $I : \Pi \Delta, \text{Type}$.

- General definition of direct subterm:
 \[
 I_{\text{subfull}} : \Pi \Delta_l \Delta_r, I \Delta_l \rightarrow I \Delta_r \rightarrow \text{Prop}
 \]

Moving to \text{Type} is easy (though I_{subfull} is not always a proposition).
Well-founded recursion on the subterm relation for inductive families $I : \Pi \Delta, \text{Type}$.

- General definition of direct subterm:
 $$I_{sub full} : \Pi \Delta_l \Delta_r, I \Delta_l \rightarrow I \Delta_r \rightarrow \text{Prop}$$

- Wrap the inductive type in a sigma and define an homogeneous relation on the sigma type:
 $$I_{sub} : \text{relation} (\Sigma \Delta, I \Delta)$$

Moving to Type is easy (though $I_{sub full}$ is not always a proposition).
Well-founded recursion on the subterm relation for inductive families $\Delta : \Pi \Delta, \text{Type}$.

- General definition of direct subterm:
 \[l_{\text{subfull}} : \Pi \Delta_l \Delta_r, l \Delta_l \rightarrow l \Delta_r \rightarrow \text{Prop} \]

- Wrap the inductive type in a sigma and define an homogeneous relation on the sigma type:
 \[l_{\text{sub}} : \text{relation} (\Sigma \Delta, l \Delta) \]

- Extracts efficiently to a general fixpoint (assuming accessibility is defined in Prop).

Moving to Type is easy (though l_{subfull} is not always a proposition).
Example: vectors

Derive Signature for vector.
Derive Subterm for vector.
Derive Signature for vector.
Derive Subterm for vector.

Inductive vector_direct_subterm (A : Type)
 : ∀ n n' : nat, vector A n → vector A n' → Prop :=
 vector_direct_subterm_1_1 : ∀ (h : A) (n : nat) (v : vector A n),
 vector_direct_subterm A n (S n) v (Vcons h v)

Check vector_subterm : ∀ A : Type, relation {n : nat & vector A n}.
Example: vectors

Derive Signature for vector.
Derive Subterm for vector.

Inductive `vector_direct_subterm (A : Type)`

: `∀ n n' : nat, vector A n → vector A n' → Prop :=
 vector_direct_subterm_1_1 : ∀ (h : A) (n : nat) (v : vector A n),
 vector_direct_subterm A n (S n) v (Vcons h v)

Check vector_subterm : ∀ A : Type, relation \{n : nat & vector A n\}.

**Equations unzip \{A B\} \{n\} (v : vector (A × B) n) : vector A n × vector B n :=
 unzip A B n v by rec v :=
 unzip A B ?(O) nil := (nil, nil) ;
 unzip A B ?(S n) (cons (pair x y) n v) with unzip v := {
 | (pair xs ys) := (cons x xs, cons y ys) }

Using dependent elimination on \textit{decidable} indices.

\textbf{Equations} unzip_dec \{A \ B\} \{'\{\text{EqDec A}\} \{'\{\text{EqDec B}\} \}
\{n\} (v : \text{vector} \ (A \times B) \ n) : \text{vector} \ A \ n \times \text{vector} \ B \ n :=
\text{unzip_dec} \ A \ B \ _ \ _ \ n \ v \ \text{by rec} \ v :=
\text{unzip_dec} \ A \ B \ _ \ _ \ ?(O) \ \text{nil} := (\text{nil, nil});
\text{unzip_dec} \ A \ B \ _ \ _ \ ?(S \ n) \ (\text{cons} \ (\text{pair} \ x \ y) \ n \ v) \ \text{with unzip_dec} \ v := \{\}
| \text{pair} \ xs \ ys := (\text{cons} \ x \ xs, \text{cons} \ y \ ys) \}.

\textit{Print Assumptions} unzip_dec.

\textbf{Closed under the global context}
1 Proof-relevant rewriting strategies
 - Generalized rewriting
 - Rewriting with Type-valued relations

2 Equations
 - Intro
 - Dependent pattern-matching compilation
 - Recursion
 - Reasoning support
 - Equations
 - Elimination principle
 - Eliminating calls
Equations derived from the splitting tree hold definitionally in CCI (assuming no use of K).

Equations for with nodes are just proxies to helper functions.

All put together in a rewrite database, f can be opacified.

For well-founded definitions, fixpoint unfolding lemma. This requires funext and showing that accessibility is an hProp.
Equations filter \{A\} (l : list A) (p : A \to bool) : list A :=
filter A nil p := nil ;
filter A (cons a l) p with p a := {
 | true := a :: filter l p ;
 | false := filter l p }.

Matthieu Sozeau - Coq support for HoTT
Generated mutual induction principle

\[\text{Check}(\text{filter_ind_mut} : \forall (P : \forall (A : \text{Type}) (l : \text{list} A) (p : A \rightarrow \text{bool}), \text{filter_comp} l p \rightarrow \text{Prop}) (P0 : \forall (A : \text{Type}) (a : A) (l : \text{list} A) (p : A \rightarrow \text{bool}), \text{bool} \rightarrow \text{filter_comp} (a :: l) p \rightarrow \text{Prop}), \]

\[(\forall A p, P A [] p []) \rightarrow \]

\[(\forall A a l p, \text{filter_ind_1} A a l p (p a) (\text{filter_obligation_2} (@\text{filter}) A a l p (p a)) \rightarrow P0 A a l p (p a) (\text{filter_obligation_2} (@\text{filter}) A a l p (p a)) \rightarrow P A (a :: l) p (\text{filter_obligation_2} (@\text{filter}) A a l p (p a))) \rightarrow \]

\[(\forall A a l p, \text{filter_ind} A l p (\text{filter} l p) \rightarrow P A l p (\text{filter} l p) \rightarrow P0 A a l p \text{true} (a :: \text{filter} l p)) \rightarrow (\forall A a l p, \text{filter_ind} A l p (\text{filter} l p) \rightarrow P A l p (\text{filter} l p) \rightarrow P0 A a l p \text{false} (\text{filter} l p)) \rightarrow \]

\[\forall A l p (f3 : \text{filter_comp} l p), \text{filter_ind} A l p f3 \rightarrow P A l p f3).\]
We prove `filter` respects the generated graph and derive:

Check (filter_elim :
\[\forall P : \forall (A : \text{Type}) (l : \text{list } A) (p : A \to \text{bool}), \, \text{filter_comp } l \, p \to \text{Prop}, \]
let \(P0 \) := \text{fun } (A : \text{Type}) (a : A) (l : \text{list } A) (p : A \to \text{bool})
\[\text{(refine : bool)} (H : \text{filter_comp } (a :: l) \, p) \Rightarrow \]
\[p \, a = \text{refine} \to P \, A \, (a :: l) \, p \, H \]
in
\[(\forall (A : \text{Type}) (p : A \to \text{bool}), \, P \, A \, [] \, p \, []) \to \]
\[(\forall (A : \text{Type}) (a : A) (l : \text{list } A) (p : A \to \text{bool}), \]
\[P \, A \, l \, p \, (\text{filter } l \, p) \to P0 \, A \, a \, l \, p \, \text{true} \, (a :: \text{filter } l \, p)) \to \]
\[(\forall (A : \text{Type}) (a : A) (l : \text{list } A) (p : A \to \text{bool}), \]
\[P \, A \, l \, p \, (\text{filter } l \, p) \to P0 \, A \, a \, l \, p \, \text{false} \, (\text{filter } l \, p)) \to \]
\[\forall (A : \text{Type}) (l : \text{list } A) (p : A \to \text{bool}), \, P \, A \, l \, p \, (\text{filter } l \, p)). \]
The elimination principle can only be applied usefully to calls with \textit{solely} variable arguments.

\[
\Pi A \ (l : \text{list } A), \ \text{app} \ l \ [] = l
\]
Eliminating calls

The elimination principle can only be applied usefully to calls with \textit{solely} variable arguments.

\[
\Pi A \ (l : \text{list} \ A), \ \text{app} \ l \ [] = l
\]

Using the “abstraction by equalities” technique again, we can abstract:

\[
(\lambda (l \ l' : \text{list} \ A) \ (r : \text{app}_{\text{comp}} \ l \ l'), \l' = [] \rightarrow r = \text{app} \ l \ [] \rightarrow \text{app} \ l \ [] = l) \quad l \ [] \ (\text{app} \ l \ [])
\]

Directly apply the elimination principle and simplify the equations.
A function definition package handling:

- Full, nested dependent pattern-matching
- Structural and well-founded recursion on dependent types
- Generation of useful support lemmas for reasoning a posteriori
- No axioms if you provide the right proofs.

Benchmarked on a bit-fiddling library and a proof of (relative) consistency for Predicative System F (de Bruijn style, Mangin & Sozeau [LFMTP’15]).
We moved to dependent equality (i.e. equality in sigma types) instead of \texttt{JMeq}. This is necessary to use \texttt{hProp/hSet} hypotheses (\texttt{JMeq} requires K on type equalities).

Efficiency of computation? Consequences of moving to type-valued equality.
Perspectives

- Non-constructor indices and unsolved constraints, e.g.:
 \[0 = x + y, \] with a subsequent splitting on \(x \).
- Support for views/arbitrary eliminators (e.g. McBride’s \textit{by}).
- Structural and well-founded mutual recursion.
- Better support for the encode-decode method?
- HITs: low-level and high-level syntax for pattern-matching and solving higher equality obligations (Barras & Mangin).
Thanks!
Consider a current problem $\Delta \vdash \overline{\rho} : \Gamma$ and a user clause $f \overline{\rho}$ with $t_{pre} := \{ e \}$ matching it. We typecheck t_{pre} into $t : \tau$ and use strengthening and abstraction to find a new context

$$\Delta^t, x_t : \tau, \Delta_t[t/x_t]$$

such that $\Delta^t, \Delta_t \sim \Delta$
Consider a current problem $\Delta \vdash \overrightarrow{p} : \Gamma$ and a user clause $f \overrightarrow{w} \text{ with } t_{\text{pre}} := \{ e \}$ matching it. We typecheck t_{pre} into $t : \tau$ and use strengthening and abstraction to find a new context

$$\Delta^t, x_t : \tau, \Delta_t[t/x_t]$$

such that $\Delta^t, \Delta_t \sim \Delta$

Using the clauses e we then build a subcovering s of the identity context map

$$c = \text{idsubst}(\Delta^t, x_t : \tau_\Delta, \Delta_t[t/x_t])$$

and return $\text{Refine}(t, c, s)$.
Consider a current problem \(\Delta \vdash \overline{p} : \Gamma \) and a user clause \(f \overline{u} \) with \(t_{pre} := \{ e \} \) matching it. We typecheck \(t_{pre} \) into \(t : \tau \) and use strengthening and abstraction to find a new context \(\Delta, x : \tau, \Delta[t/x] \) such that \(\Delta' = \Delta[t/x] \).

Using the clauses \(e \) we then build a subcovering \(s \) of the identity context map

\[
c = \text{idsubst}(\Delta, x : \tau, \Delta[t/x])
\]

and return \(\text{Refine}(t, c, s) \).

Compilation produces

\[
\ell.n : \Pi \Delta \Delta_0 (x,t : \tau_\Delta) \Delta[t/x], (f_{\text{comp}} \overline{p})[t/x], \text{we build}
\]

\[
(\lambda \Delta, \ell.n \overline{\Delta} t \overline{\Delta} : \Pi \Delta, f_{\text{comp}} \overline{p})
\]
Elimination principle: inductive graph

For \(f \cdot \ell : \Pi \Delta, f_{\text{comp}} \xrightarrow{t} \) we generate \(f \cdot \ell_{\text{ind}} : \Pi \Delta, f_{\text{comp}} \xrightarrow{t} \rightarrow \text{Prop} \) and prove \(\Pi \Delta, f \cdot \ell_{\text{ind}} \Delta (f \cdot \ell \Delta) \).

\text{AbsRec}(f, t)\) abstracts all the calls to \(f_{\text{comp-proj}} \) from the term \(t \), returning a new derivation \(\Gamma' \vdash t' \) where \(\Gamma' \) contains bindings of the form \(x : \Pi \Delta, f_{\text{comp}} \xrightarrow{t} \) for all the recursive calls.

Define \(\text{HypS}(\Gamma) \) by a map to produce the corresponding inductive hyps of the form \(H_x : \Pi \Delta, f_{\text{ind}} \xrightarrow{t} (x \Delta) \).
Inductive graph constructors

Direct translation from the splitting tree:

- **Split** \((c, x, s)\), **Rec** \((v, s)\) : collect the constructors for the subsplitting(s) \(s\), if any.
- **Compute** \((\Delta \vdash \overrightarrow{p} : \Gamma, rhs)\) : By case on \(rhs\):
 - **Program** \((t)\) : Compute \(\Psi \vdash t' = \text{ABSREC}(f, t)\) and return the statement
 \[
 \Pi \Delta \Psi \text{HYPS}(\Psi), \ f.\ell_{\text{ind}} \overrightarrow{p} \ t'
 \]
 - **Refine** \((t, \Delta' \vdash \overrightarrow{v}^x, x, \overrightarrow{v}_x : \Delta^x, x : \tau, \Delta_x, \ell.n)\) :
 Compute \(\Psi \vdash t' = \text{ABSREC}(f, t)\) and return:
 \[
 \Pi \Delta \Psi \text{HYPS}(\Psi) (\text{res} : f_{\text{comp}} \overrightarrow{p})
 \]
 \[
 f.\ell.n_{\text{ind}} \Delta^x t' \Delta_x \text{res} \rightarrow f.\ell_{\text{ind}} \overrightarrow{p} \text{res}
 \]
 We continue with the generation of the \(f.\ell.n_{\text{ind}}\) graph.