Coq with Classes
Matthieu Sozeau

PLAS Seminar
November 7th 2011
Canterbury, UK
1 A quick overview of Coq and elaboration
2 Type Classes
In the design spaces of DTPs and ITPs...

- Full-spectrum dependent types
 - Single, unified term-type language, SN
 - Phase distinction issues (for runtime, see Brady, Barras)

- Core language design:
 - De Bruijn principle ("small" core, externally checkable terms)
 - Striving for minimality/purity and "accessibility" of models
 - Open-world, generative. Powerful module system

- External language design:
 - Unification is central (implicits, tactics) and incomplete
 - Definitional coercion systems for accessibility of the language
In the design spaces of DTPs and ITPs…

- Proof language design:
 - Separate tactic language \mathcal{L}_{tac}.
 - Proving tools: proof search, tactics.
 - Development tools: derived definitions (\textsc{Function}, Schemes…).

- User interface and interaction: not discussed here.
Elaboration: compiling high-level constructs to the core language, using the metalanguage.

- Advantages: metatheory done once and for all (just kidding!). Freedom in the transformations, extensibility and modularity.
- Concerns: “abstraction leaks”, efficiency, correctness.

Compare with:
- Reflexive methods: less freedom, more assurance, full correctness, smaller scope (but see Epigram 2).
- “Axiomatic” methods, e.g. Agda’s built-in pattern-matching. Less assurance, more freedom.

Acknowledgment McBride and McKinna’s work (OLEG, EPIGRAM), KISS.
Our focus

Defining functions with:

- Rich types while separating algorithms and proofs.
- Generic types, passing information implicitly.
- Rich data and control flow, keeping information transparently.
- Complex recursion behaviors and efficient evaluation.
- Support for reasoning after the fact: elimination principles and proof tools (search, rewriting).
Programming with subset types/refinement types

Well-founded recursion

Thesis We can program as usual and still use rich types

Program Fixpoint div \((a : \text{nat}) (b : \text{nat} \mid b \neq 0) \{ \text{wf} \ \text{lt} \ a \} : \{(q, r) : \text{nat} \times \text{nat} \mid a = b \times q + r \land r < b \} := \)
if less_than \(a \ b \) then \((O, a)\)
else
let \('(q', r) := \text{div} \ (a - b) \ b \) in
\((S \ q', r)\).
True dependent pattern-matching
Recursion on inductive families
Reasoning on function definitions

Derive Subterm for `vector`.

Equations `unzip \{ A B n \} (v : vector (A \times B) n)`

: `vector A n \times vector B n :=`

unzip `A B n v` by `rec v :=`

unzip `A B ?(O) Vnil := (Vnil, Vnil) ;`

unzip `A B ?(S n) (Vcons (pair x y) n v)` with `unzip v := \{`

| `(pair xs ys) := (Vcons x xs, Vcons y ys) \}`.
Type Classes

1. A brief tour of **Coq**, **Program** and **Equations**
 - **Program**
 - **Equations**

2. Type Classes
 - Type Classes from **Haskell**
 - Type Classes in **Coq**

3. Conclusion
Solutions for overloading

- **Intersection types**: closed overloading by declaring multiple signatures for a single constant (e.g. CDuce, Stardust).
- **Bounded quantification** and **class-based** overloading. Overloading circumscribed by a subtyping relation (e.g. structural subtyping à la OCaml).
Solutions for overloading

- **Intersection types**: closed overloading by declaring multiple signatures for a single constant (e.g. **CDuce**, **Stardust**).
- **Bounded quantification and class-based overloading.**
 Overloading circumscribed by a subtyping relation (e.g. structural subtyping à la **OCaml**).

Context:

- **Modularity**: separate definitions of the specializations.
- **Constrained by CoQ**: a fixed kernel language!
Solutions for overloading

- **Intersection types**: closed overloading by declaring multiple signatures for a single constant (e.g. **CDue**, **STARDUST**).
- **Bounded quantification** and **class-based** overloading. Overloading circumscribed by a subtyping relation (e.g. structural subtyping à la **OCAML**).

Context:
- **Modularity**: separate definitions of the specializations.
- **Constrained by **COQ**: a fixed kernel language!

Solution:
- **Elaborate** Type Classes, a kind of bounded quantification where the subtyping relation needs not be internalized.
In Haskell, Wadler & Blott, POPL’89. Also in Isabelle, Nipkow & Snelting, FPCA’91.

```haskell
class Eq a where
  (==) :: a -> a -> Bool

instance Eq Bool where
  x == y = if x then y else not y
```
Making *ad-hoc* polymorphism less *ad hoc*

In **Haskell**, Wadler & Blott, POPL’89.
Also in **Isabelle**, Nipkow & Snelting, FPCA’91.

```haskell
class Eq a where
    (==) :: a → a → Bool

instance Eq Bool where
    x == y = if x then y else not y

in :: Eq a ⇒ a → [a] → Bool
in x [] = False
in x (y : ys) = x == y || in x ys
```
Parametrized instances and super-classes

\[
\text{instance } (\text{Eq } a) \Rightarrow \text{Eq } [a] \text{ where }
\]
\[
\begin{align*}
\text{} \hspace{1cm} & [] == [] & = \text{True} \\
\text{} \hspace{1cm} & (x : xs) == (y : ys) & = x == y && xs == ys \\
\text{} \hspace{1cm} & _ == _ & = \text{False}
\end{align*}
\]
instance (Eq a) ⇒ Eq [a] where
 [] == [] = True
 (x : xs) == (y : ys) = x == y && xs == ys
 _ == _ = False

class Num a where
 (+) :: a → a → a

class (Num a) ⇒ Fractional a where
 (/) :: a → a → a

1. A brief tour of **Coq**, **Program** and **Equations**
 - **Program**
 - **Equations**

2. Type Classes
 - **Type Classes from Haskell**
 - Type Classes in **Coq**

3. Conclusion
▶ Overloading in programs, specifications and proofs.

Class \(\text{Eq} \) \(A \) :=
\[
\text{eqb} : A \to A \to \text{bool};
\text{eq} \text{eqb} : \forall x y : A, x = y \leftrightarrow \text{eqb} x y = \text{true}.
\]

Class \(\text{Reflexive} \) \(A (R : \text{relation } A) \) :=
\[
\text{reflexive} : \forall x, R x x.
\]
Motivations

- Overloading in programs, specifications and proofs.
- A safer Haskell Proofs are part of instances.

```
Class Eq A := 
  eqb : A → A → bool ;
  eq_eqb : ∀ x y : A, x = y ↔ eqb x y = true }.
```
Motivations

- **Overloading** in programs, specifications and proofs.
- **A safer Haskell** Proofs are part of instances.

```haskell
Class Eq A := {
    eqb : A → A → bool ;
    eq_eqb : ∀ x y : A, x = y ↔ eqb x y = true }.
```

- **Extension** Dependent types give new power to type classes.

```haskell
Class Reflexive A (R : relation A) :=
    reflexive : ∀ x, R x x.
```
Parametrized dependent records

\[
\text{Class } \text{Id} \ (\alpha_1 : \tau_1) \cdots (\alpha_n : \tau_n) := \\
\{ f_1 : \phi_1 ; \cdots ; f_m : \phi_m \}.
\]
A cheap implementation

- Parametrized dependent records

\[
\text{Record } \text{ld } (\alpha_1 : \tau_1) \cdots (\alpha_n : \tau_n) := \\
\{ f_1 : \phi_1 ; \cdots ; f_m : \phi_m \}.
\]
A cheap implementation

- Parametrized dependent records

\[
\text{Record } \text{Id } (\alpha_1 : \tau_1) \cdots (\alpha_n : \tau_n) := \\
\{ f_1 : \phi_1 ; \cdots ; f_m : \phi_m \}.
\]

Instances are just definitions of type \(\text{Id} \xrightarrow{} t_n \).
A cheap implementation

- Parametrized dependent records

\begin{align*}
\text{Record } \text{Id} \ (\alpha_1 : \tau_1) \cdots (\alpha_n : \tau_n) := \\
\{ f_1 : \phi_1 ; \cdots ; f_m : \phi_m \}.
\end{align*}

Instances are just definitions of type \(\text{Id} \rightarrow t_n \).

- Custom implicit arguments of projections

\[f_1 : \forall \ \alpha_n : \tau_n, \ \text{Id} \ \alpha_n \rightarrow \phi_1 \]
Parametrized dependent records

\[
\text{Record } \text{Id } (\alpha_1 : \tau_1) \cdots (\alpha_n : \tau_n) := \\
\{ f_1 : \phi_1 ; \cdots ; f_m : \phi_m \}.
\]

Instances are just definitions of type \(\text{Id} \xrightarrow{t_n} \).

Custom implicit arguments of projections

\[
f_1 : \forall \{ \alpha_n : \tau_n \} , \{ \text{Id} \xrightarrow{\alpha_n} \} \rightarrow \phi_1
\]
Elaboration with classes, an example

\((\lambda x \ y : \text{bool}. \ \text{eqb} \ x \ y)\)
Elaboration with classes, an example

\[(\lambda x \ y : \text{bool}. \ \text{eqb} \ x \ y)\]
\[\leadsto \{ \text{Implicit arguments} \}\]
\[(\lambda x \ y : \text{bool}. \ \text{@eqb} \ (?_A : \text{Type}) \ (?_{eq} : \text{Eq} \ ?_A) \ x \ y)\]
Elaboration with classes, an example

\[(\lambda x \ y : \text{bool}. \ \text{eqb} \ x \ y)\]
\[\rightsquigarrow \{ \text{Implicit arguments} \}\]

\[(\lambda x \ y : \text{bool}. \ \text{eqb} \ (?_A : \text{Type}) \ (_eq : \text{Eq} \ ?_A) \times y)\]
\[\rightsquigarrow \{ \text{Unification} \}\]

\[(\lambda x \ y : \text{bool}. \ \text{eqb} \ \text{bool} \ (?_eq : \text{Eq} \ \text{bool}) \times y)\]
Elaboration with classes, an example

\((\lambda x \ y : \text{bool. } \text{eqb } x \ y)\)
\(\leadsto \{ \text{Implicit arguments} \}\)
\((\lambda x \ y : \text{bool. } \text{eqb } (?_A : \text{Type}) (?_eq : \text{Eq } ?_A) \times y)\)
\(\leadsto \{ \text{Unification} \}\)
\((\lambda x \ y : \text{bool. } \text{eqb bool } (?_eq : \text{Eq bool}) \times y)\)
\(\leadsto \{ \text{Proof search for Eq bool returns Eq.bool} \}\)
\((\lambda x \ y : \text{bool. } \text{eqb bool Eq.bool } x \ y)\)
Proof-search tactic with instances as lemmas:

\[A : \text{Type}, \ eqa : \ Eq \ A \vdash ? : \ Eq \ (\text{list} \ A) \]

- Simple depth-first search with higher-order unification
 - Returns the first solution only
+ Extensible through \(\mathcal{L}_{\text{tac}} \)
Class Num $\alpha := \{ \text{zero} : \alpha ; \text{one} : \alpha ; \text{plus} : \alpha \rightarrow \alpha \rightarrow \alpha \}$.
Numeric overloading

Class Num $\alpha := \{ \text{zero} : \alpha ; \text{one} : \alpha ; \text{plus} : \alpha \rightarrow \alpha \rightarrow \alpha \}$.

Instance nat_num : Num nat :=
\{ zero := 0\%nat ; one := 1\%nat ; plus := Peano.plus \}.

Instance Z_num : Num Z :=
\{ zero := 0\%Z ; one := 1\%Z ; plus := Zplus \}.
Class $\text{Num} \, \alpha := \{ \text{zero} : \alpha ; \text{one} : \alpha ; \text{plus} : \alpha \to \alpha \to \alpha \}$.

Instance $\text{nat_num} : \text{Num} \, \text{nat} :=$
\{ \text{zero} := 0\%\text{nat} ; \text{one} := 1\%\text{nat} ; \text{plus} := \text{Peano_plus} \}.

Instance $\text{Z_num} : \text{Num} \, \text{Z} :=$
\{ \text{zero} := 0\%\text{Z} ; \text{one} := 1\%\text{Z} ; \text{plus} := \text{Zplus} \}.

Notation "$0" := \text{zero}.$

Notation "$1" := \text{one}.$

Infix "$+" := \text{plus}.$
Class \(\text{Num} \ \alpha := \{ \text{zero} : \alpha ; \text{one} : \alpha ; \text{plus} : \alpha \rightarrow \alpha \rightarrow \alpha \} \).

Instance \(\text{nat_num} : \text{Num} \ \text{nat} := \)
\[\{ \text{zero} := 0\%\text{nat} ; \text{one} := 1\%\text{nat} ; \text{plus} := \text{Peano}\.\text{plus} \} \].

Instance \(\text{Z_num} : \text{Num} \ \text{Z} := \)
\[\{ \text{zero} := 0\%\text{Z} ; \text{one} := 1\%\text{Z} ; \text{plus} := \text{Zplus} \} \].

Notation \("0" := \text{zero} \).
Notation \("1" := \text{one} \).
Infix \("+" := \text{plus} \).

Check \((\lambda x : \text{nat}, x + (1 + 0 + x)) \).
Check \((\lambda x : \text{Z}, x + (1 + 0 + x)) \).
Numeric overloading

Class **Num** \(\alpha := \{ \text{zero} : \alpha ; \text{one} : \alpha ; \text{plus} : \alpha \rightarrow \alpha \rightarrow \alpha \} \).

Instance **nat_num** : Num nat :=

\[
\{ \text{zero} := 0\%\text{nat} ; \text{one} := 1\%\text{nat} ; \text{plus} := \text{Peano}.\text{plus} \}.
\]

Instance **Z_num** : Num Z :=

\[
\{ \text{zero} := 0\%\text{Z} ; \text{one} := 1\%\text{Z} ; \text{plus} := \text{Zplus} \}.
\]

Notation "0" := zero.
Notation "1" := one.
Infix "+" := plus.

Check \((\lambda x : \text{nat}, x + (1 + 0 + x))\).
Check \((\lambda x : \text{Z}, x + (1 + 0 + x))\).

(* Defaulting *)
Check \((\lambda x, x + 1)\).
Class Reflexive \{A\} (R : relation A) :=
refl : \forall x, R x x.
Dependent classes

Class Reflexive \{ A \} (R : relation A) :=
 refl : \forall x, R x x.

Instance eq_refl A : Reflexive (@eq A) := @refl_equal A.
Instance iff_refl : Reflexive iff.
Proof. red. tauto. Qed.

Ltac reflexivity' := apply refl.
Lemma foo' {Reflexive nat R favorite} : R 0 0.
Proof. intros. reflexivity'. Qed.
Class Reflexive \{A\} (R : relation A) :=
refl : \forall x, R x x.

Instance eq_refl A : Reflexive (@eq A) := @refl_equal A.
Instance iff_refl : Reflexive iff.
Proof. red. tauto. Qed.

Goal \forall P, P \leftrightarrow P.
Proof. apply refl. Qed.

Goal \forall A (x : A), x = x.
Proof. intros A ; apply refl. Qed.
Dependent classes

Class Reflexive \{ A \} (R : relation A) :=
refl : \forall x, R x x.

Instance eq_refl A : Reflexive (@eq A) := @refl_equal A.

Instance iff_refl : Reflexive iff.
Proof. red. tauto. Qed.

Goal \forall P, P \leftrightarrow P.
Proof. apply refl. Qed.

Goal \forall A (x : A), x = x.
Proof. intros A ; apply refl. Qed.

Ltac reflexivity' := apply refl.

Lemma foo '{\{ Reflexive nat R \} : R 0 0.
Proof. intros. reflexivity'. Qed.
A structuring tool: super-classes and substructures

Building hierarchies of classes:

```coq
Class Fractional \{\text{Num } \alpha\} :=
\{ \text{div} : \alpha \rightarrow \{ y : \alpha \mid y \neq 0 \} \rightarrow \alpha \}.
```

```coq
Class Equivalence \alpha :=
\{ \text{equiv_refl} : \text{Reflexive } \alpha ;
   \text{equiv_sym} : \text{Symmetric } \alpha ;
   \text{equiv_trans} : \text{Transitive } \alpha \}
```

+ Special support for binding super-classes

Tried and tested by P. Letouzey, S. Lescuyer on FSets (JFLA’10), B. Spitters and E. van der Weegen (ITP’10)...
Related work

Type Classes implementations:

- In Haskell by Wadler et al. (POPL’89, FO, second class)
- In Isabelle by Nipkow et al. (POPL’93, same)
- In Agda by Devriese and Piessens (ICFP’11, non-recursive proof search)

In Coq and Matita:

- Coercive Subtyping and Canonical Structures (Saïbi, POPL’97). Used by Gonthier et al. (TPHOLs’09), Nanevski et al. (ICFP’11).
- Unification hints, a more general framework studied by Asperti et al. (TPHOLs’09).
Experiments and formalizations in Coq

- Sets, Maps etc... (Letouzey, Lescuyer ...)
- Domain theory, probability monad (Paulin, ...)
- Generalized rewriting (Sozeau, JFR’09)
- ACI rewriting (Braibant & Pous, ITP’11)
- Universal algebra, category theory and computable reals (Spitters et al., ITP’10)
Proof search efficiency and control issues...

Prerequisite Proper formalization of unification

Hope These are all researched in the logic programming community

- Undeterministic proof-search
Current issues and perspectives

Proof search efficiency and control issues...

Prerequisite Proper formalization of unification

Hope These are all researched in the logic programming community

- Undeterministic proof-search
 ⇒ Determinacy inference (**Krien**er and **King**, ICLP’11)
Proof search efficiency and control issues...

Prerequisite Proper formalization of unification

Hope These are all researched in the logic programming community

- Undeterministic proof-search
 - \Rightarrow Determinacy inference (Kriener and King, ICLP’11)
- No forward reasoning or reordering of constraints
Current issues and perspectives

Proof search efficiency and control issues...

Prerequisite Proper formalization of unification

Hope These are all researched in the logic programming community

- Undeterministic proof-search
 \[\Rightarrow\] Determinacy inference (**Kriener** and **King**, ICLP’11)

- No forward reasoning or reordering of constraints
 \[\Rightarrow\] Mode analysis (à la **Prolog**, **Twelf**)

Matthieu Sozeau - Coq with Classes
Proof search efficiency and control issues...

Prerequisite Proper formalization of unification

Hope These are all researched in the logic programming community

- Undeterministic proof-search
 \[\Rightarrow\] Determinacy inference (Kriener and King, ICLP'11)

- No forward reasoning or reordering of constraints
 \[\Rightarrow\] Mode analysis (à la Prolog, Twelf)

- Risk of non-termination
Current issues and perspectives

Proof search efficiency and control issues...

Prerequisite Proper formalization of unification

Hope These are all researched in the logic programming community

- Undeterministic proof-search
 - \Rightarrow Determinacy inference (Kriener and King, ICLP’11)

- No forward reasoning or reordering of constraints
 - \Rightarrow Mode analysis (à la Prolog, Twelf)

- Risk of non-termination
 - \Rightarrow Termination analysis, requires modes
Proof search efficiency and control issues...

Prerequisite Proper formalization of unification

Hope These are all researched in the logic programming community

- Undeterministic proof-search
 \[\Rightarrow\] Determinacy inference (Kriener and King, ICLP’11)

- No forward reasoning or reordering of constraints
 \[\Rightarrow\] Mode analysis (à la Prolog, Twelf)

- Risk of non-termination
 \[\Rightarrow\] Termination analysis, requires modes

- Little sharing and intelligence in the proof-search
Current issues and perspectives

Proof search efficiency and control issues...

Prerequisite Proper formalization of unification

Hope These are all researched in the logic programming community

- Undeterministic proof-search
 ⇒ Determinacy inference (*Kriener* and *King*, ICLP’11)

- No forward reasoning or reordering of constraints
 ⇒ Mode analysis (à la *Prolog*, *Twelf*)

- Risk of non-termination
 ⇒ Termination analysis, requires modes

- Little sharing and intelligence in the proof-search
 ⇒ Focusing, strategies.
Proof search efficiency and control issues...

Prerequisite Proper formalization of unification
Hope These are all researched in the logic programming community

- Undeterministic proof-search
 ⇒ Determinacy inference (*Kriener* and *King*, ICLP’11)
- No forward reasoning or reordering of constraints
 ⇒ Mode analysis (à la Prolog, Twelf)
- Risk of non-termination
 ⇒ Termination analysis, requires modes
- Little sharing and intelligence in the proof-search
 ⇒ Focusing, strategies.
- Scoping of instances... through modules only.
✓ A lightweight and general implementation of type classes, available in Coq v8.2.
✓ A type-theoretic explanation and extension of type classes concepts (TPHOLs’08, with Nicolas Oury).

Success of the elaboration point-of-view!
✓ Progress in accessibility and scalability of the tool.
✗ Youth! Efficiency and controllability concerns.
Coq with Classes

Matthieu Sozeau
INRIA Paris & PPS, Paris 7 University

PLAS Seminar
November 7th 2011
Canterbury, UK