EQUATIONS: a dependent pattern-matching compiler

MATTHIEU SOZEAU

Harvard University

GT Types & Réalisabilité
January 13th 2010
Paris, France
Overview

- **Epigram**-style pattern-matching definitions with `with` and `rec` nodes
- Propositional equations for definitional equalities
- Elimination principle and support for applying it

DEMO
1 Dependent pattern-matching compilation
 - Case analysis
 - with in detail

2 Recursion
 - The Below way
 - Subterm relations

3 Reasoning support
 - Equations
 - Elimination principle
 - Eliminating calls
Compilation setup

\textbf{Elaboration into CIC + K}

Three phases:

1. Generation of a splitting tree from the clauses
2. Translation from the splitting tree to \texttt{Coq} terms with holes
3. Proofs of the obligations using a mix of ML and \mathcal{L}_{tac} code
For $f \Delta : \tau$ we define $f_{\text{comp}} \Delta := \tau$, so $f : \Pi \Delta, f_{\text{comp}} \Delta$.
Goal

Find a covering of the context map $\Delta \vdash \overline{\Delta} : \Delta$. This will compile to a term of type $\Pi \Delta, f_{\text{comp}} \overline{\Delta}$
Proof search example

Overlapping clauses with first-match semantics.

Equations equal (n m : nat): { n = m } + { n ≠ m } :=
equal O O := left eq_refl ;
equal (S n) (S m) with equal n m := {
 equal (S n) (S ?(n)) (left eq_refl) := left eq_refl ;
 equal (S n) (S m) (right p) := right _ } ;
equal x y := right _ .

Split(n m : nat ⊢ n m : n m : nat, n, [
 Split(m : nat ⊢ O m : n m : nat, m, [
 Compute(⊢ O O : n m : nat, Program(left eq_refl)),
 Compute(m : nat ⊢ O (S m) : n m : nat, Program(right _))]),
 Compute(n : nat ⊢ (S n) O : n m : nat, _),
 Compute(n m : nat ⊢ (S n) (S m) : n m : nat,
 Refine(equal n m,
 idsubst(n m : nat, x : { n = m } + { n ≠ m }, l, ...)))])}]}
For each node with context map $\Delta \vdash ps : \Gamma$ we generate an obligation of type $\Pi \Delta, f_{\text{comp}} ps$.
For each node with context map $\Delta \vdash ps : \Gamma$ we generate an obligation of type $\Pi \Delta, f_{\text{comp}} ps$.

- **Split**(c, x, s): witnessed by applying a dependent elimination (dependent destruction, using JMeq) and using the compiled terms for s. Empty nodes are translated to empty splittings.
For each node with context map $\Delta \vdash ps : \Gamma$ we generate an obligation of type $\Pi \Delta, f_{\text{comp}} \; ps$.

- **Split(c, x, s):** witnessed by applying a dependent elimination (dependent destruction, using JMeq) and using the compiled terms for s. Empty nodes are translated to empty splittings.

- **Program(t):** witnessed by the term.
For each node with context map $\Delta \vdash ps : \Gamma$ we generate an obligation of type $\Pi \Delta, f_{\text{comp}} ps$.

- **Split(c, x, s):** witnessed by applying a dependent elimination (dependent destruction, using JMeq) and using the compiled terms for s. Empty nodes are translated to empty splittings.

- **Program(t):** witnessed by the term.

- **Refine(t, c, ℓ, s):** witnessed by inserting a let-definition in the context, strengthening, abstracting and clearing its body, then applying the compiled term for label ℓ.

Consider a current problem $\Delta \vdash \overrightarrow{p} : \Gamma$ and a user clause $f \overrightarrow{up}$ with $t_{pre} := \{ e \}$ matching it. We typecheck t_{pre} into $t : \tau$ and use strenghtening and abstraction to find a new context $\Delta^t, x_t : \tau, \Delta_t[t/x_t]$ such that $\Delta^t, \Delta_t \sim \Delta$.
Consider a current problem $\Delta \vdash \vec{p} : \Gamma$ and a user clause $f \rightleftharpoons \vec{w} \text{ with } t_{\text{pre}} := \{ e \} \text{ matching it. We typecheck } t_{\text{pre}} \text{ into } t : \tau \text{ and use strengthening and abstraction to find a new context}$

$$\Delta^t, x_t : \tau, \Delta_t[t/x_t] \text{ such that } \Delta^t, \Delta_t \sim \Delta$$

Using the clauses e we then build a subcovering s of the identity context map

$$c = \text{idsubst}(\Delta^t, x_t : \tau_\Delta, \Delta_t[t/x_t])$$

and return $\text{Refine}(t, c, \ell.n, s)$.
Consider a current problem $\Delta \vdash \overrightarrow{p} : \Gamma$ and a user clause $f \overrightarrow{up}$ with $t_{pre} := \{ e \}$ matching it. We typecheck t_{pre} into $t : \tau$ and use strengthening and abstraction to find a new context

$$
\Delta^t, x_t : \tau, \Delta_t[t/x_t] \text{ such that } \Delta^t, \Delta_t \sim \Delta
$$

Using the clauses e we then build a subcovering s of the identity context map

$$
c = \text{idsubst}(\Delta^t, x_t : \tau_{\Delta}, \Delta_t[t/x_t])
$$

and return $\text{Refine}(t, c, \ell.n, s)$.

Compilation produces $\ell.n : \Pi \Delta^t (x_t : \tau_{\Delta}) \Delta_t[t/x_t], (f_{\text{comp} \overrightarrow{p}})[t/x_t]$, we build

$$
(\lambda \Delta, \ell.n \overrightarrow{\Delta^t t \Delta_t}) : \Pi \Delta, f_{\text{comp} \overrightarrow{p}}
$$
Dependent pattern-matching compilation

- Case analysis
- With in detail

Recursion

- The Below way
- Subterm relations

Reasoning support

- Equations
- Elimination principle
- Eliminating calls
Recursion

- Syntactic guardness checks are too fragile (and buggy)
- Do not work well with abstraction/modularity
- Restricted to structural recursion on a single argument

Idea Use the logic instead!
Introduced by McBride and McKinna.

\[
\text{Fixpoint } \text{Below}_\text{nat} \ (P : \text{nat} \to \text{Type}) \ (n : \text{nat}) : \text{Type} :=
\begin{align*}
\text{match } n \ \text{with} \\
| \ 0 \Rightarrow () \\
| \ S \ n' \Rightarrow (P \ n' \times \text{Below}_\text{nat} \ P \ n')
\end{align*}
\text{end}\%^\text{type}.
\]
The Below way

Introduced by McBride and McKinna.

\[\text{Fixpoint Below_nat} \ (P : \text{nat} \rightarrow \text{Type}) \ (n : \text{nat}) : \text{Type} := \]
match \(n \) with
\[\mid 0 \Rightarrow () \]
\[\mid S \ n' \Rightarrow (P \ n' \times \text{Below_nat} \ P \ n') \]
end%type.

\[\text{below_nat} : \Pi \ (P : \text{nat} \rightarrow \text{Type}) \]
\[(\text{step} : \Pi \ n : \text{nat}, \text{Below_nat} \ P \ n \rightarrow P \ n) \]
\[(n : \text{nat}) : \text{Below_nat} \ P \ n \]
The Below way

Introduced by McBride and McKinna.

Fixpoint Below_nat \((P : \text{nat} \to \text{Type}) (n : \text{nat}) : \text{Type} := \)
\[
\begin{align*}
\text{match } n \text{ with} \\
\phantom{\text{match } n} | 0 & \Rightarrow () \\
\phantom{\text{match } n} | S \ n' & \Rightarrow (P \ n' \times \text{Below_nat} \ P \ n')
\end{align*}
\]
end%type.

below_nat : \(\Pi\) \((P : \text{nat} \to \text{Type}) \)
\((\text{step} : \Pi \ n : \text{nat}, \text{Below_nat} \ P \ n \to P \ n) \)
\((n : \text{nat}) : \text{Below_nat} \ P \ n \)

Definition rec_nat \((P : \text{nat} \to \text{Type}) \)
\((\text{step} : \Pi \ n : \text{nat}, \text{Below_nat} \ P \ n \to P \ n) \)
\((n : \text{nat}) : P \ n := \text{step} \ n \ (\text{below_nat} \ P \ \text{step} \ n). \)
Equations unzip \{A \times B\} (v : vector \(A \times B\) n) : vector A n × vector B n :=
unzip A B n v by rec v :=
unzip A B ?(O) Vnil := (Vnil, Vnil) ;
unzip A B ?(S n) (Vcons (pair x y) n v) with unzip v := {
 | (pair xs ys) := (Vcons x xs, Vcons y ys) }.

▶ by rec v applies the elimination principle associated to the type of v (found using typeclass resolution).
Equations unzip \{ A \times B \} \ (v : \text{vector} \ (A \times B) \ n) : \text{vector} \ A \ n \times \text{vector} \ B \ n :=
unzip A B n v by rec v :=
unzip A B ?(O) Vnil := (Vnil, Vnil) ;
unzip A B ?(S \ n) (Vcons (pair x y) n v) with unzip v := {
 | (pair xs ys) := (Vcons x xs, Vcons y ys) }.

- by rec \(v \) applies the elimination principle associated to the type of \(v \) (found using typeclass resolution).
- Introduce hidden variables in the problem to carry recursion hypotheses of the form \(\text{Below} \ (\Pi \ \Delta, f_{\text{comp}} \overrightarrow{t}) \ x \).
Integration into Equations

Equations unzip \{ A \ B \ n \} (v : vector (A \times B) n) : vector A n \times vector B n :=
unzip A B n v by rec v :=
unzip A B ?(O) Vnil := (Vnil, Vnil);
unzip A B ?(S n) (Vcons (pair x y) n v) with unzip v := {
| (pair xs ys) := (Vcons x xs, Vcons y ys) }.

- by rec v applies the elimination principle associated to the type of v (found using typeclass resolution).

- Introduce hidden variables in the problem to carry recursion hypotheses of the form Below (\Pi \Delta, f_{\text{comp}} \overrightarrow{t}) x.

- Each recursive occurrence of f is transformed to a trivial projection \(f_{\text{comp-proj}} : \Pi \Delta \{p : f_{\text{comp}} \overrightarrow{\Delta}\}, f_{\text{comp}} \overrightarrow{\Delta}.\)
Equations unzip \{A \ B \ n\} (v : vector (A \times B) \ n) : vector A \ n \times vector B \ n :=
unzip A B n v by rec v :=
unzip A B ?(O) Vnil := (Vnil, Vnil) ;
unzip A B ?(S n) (Vcons (pair x y) n v) with unzip v := {
| \ (pair xs ys) := (Vcons x xs, Vcons y ys) }.

▶ by rec v applies the elimination principle associated to the type
of v (found using typeclass resolution).

▶ Introduce hidden variables in the problem to carry recursion
hypotheses of the form Below (\Pi \Delta, f_{comp} \stackrel{t}{\rightarrow}) x.

▶ Each recursive occurrence of f is transformed to a trivial
projection \(f_{comp-proj} : \Pi \Delta \ \{p : f_{comp} \overline{\Delta}\}, f_{comp} \overline{\Delta} \).

▶ Proof search for \(f_{comp} \) goals appearing as obligations, unfolding
Below hypotheses.
The **Below** construction is inefficient!
Use **well-founded** recursion on the subterm relation for inductive families $I : \Pi \Delta, s$.
The **Below** construction is inefficient!

Use **well-founded** recursion on the subterm relation for inductive families \(I : \prod \Delta, s. \)

- Same setup, the recursor is now of type
 \[
 \prod \Delta (y : I \, \overline{\Delta}), \, R \, y \, x \to f_{\text{comp}} \, y.
 \]
The **Below** construction is inefficient!

Use **well-founded** recursion on the subterm relation for inductive families \(I : \Pi \Delta, s \).

- Same setup, the recursor is now of type
 \(\Pi \Delta \ (y : l \overline{\Delta}), R \ y \ x \rightarrow f_{\text{comp}} \ y. \)

- General definition of direct subterm:
 \(l_{\text{sub}} : \Pi \Delta_l \ Delta_r, l \overline{\Delta_l} \rightarrow l \overline{\Delta_r} \rightarrow \text{Prop} \)
The **Below** construction is inefficient!
Use **well-founded** recursion on the subterm relation for inductive families $l : \Pi \ \Delta, s$.

- Same setup, the recursor is now of type
 \[\Pi \ \Delta \ (y : l \ \overline{\Delta}), R \ y \ x \rightarrow f_{\text{comp}} \ y. \]
- General definition of direct subterm:
 \[l_{\text{sub}} : \Pi \ \Delta_l \ \Delta_r, l \ \overline{\Delta_l} \rightarrow l \ \overline{\Delta_r} \rightarrow \text{Prop} \]
- Wrap the inductive type in a sigma and define an homogeneous relation on the sigma type from the heterogeneous subterm relation.
The **Below** construction is inefficient! Use **well-founded** recursion on the subterm relation for inductive families $I : \Pi \Delta, s$.

- Same setup, the recursor is now of type
 $$\Pi \Delta \ (y : I \Delta), R \ y \ x \rightarrow f_{\text{comp}} \ y.$$

- General definition of direct subterm:
 $$I_{\text{sub}} : \Pi \Delta_l \Delta_r, I \Delta_l \rightarrow I \Delta_r \rightarrow \text{Prop}$$

- Wrap the inductive type in a sigma and define an homogeneous relation on the sigma type from the heterogeneous subterm relation.

- Extracts efficiently, but proof search a bit more complicated than **Below**.
Derive Subterm for vector.
Derive Subterm for vector.

Inductive vector_strict_subterm (A : Type)

: \(\forall H H0 : \text{nat}, \text{vector} A H \rightarrow \text{vector} A H0 \rightarrow \text{Prop} := \)

vector_strict_subterm_1_1 : \(\forall (a : A) (n : \text{nat}) (H : \text{vector} A n), \)

vector_strict_subterm A n (S n) H (\text{Vcons} a H).

Check vector_subterm : \(\forall A : \text{Type}, \text{relation} \{ \text{index} : \text{nat} \& \text{vector} A \text{index} \}. \)
Derive Subterm for vector.

Inductive \texttt{vector_strict_subterm} \((A : \text{Type})\)

\[\forall \, H \, H0 : \text{nat}, \, \text{vector} \, A \, H \rightarrow \text{vector} \, A \, H0 \rightarrow \text{Prop} \,:=\]

\texttt{vector_strict_subterm_1_1} : \forall \ (a : A) \ (n : \text{nat}) \ (H : \text{vector} \, A \, n),

\texttt{vector_strict_subterm} \, A \, n \, (S \, n) \, H \, (\text{Vcons} \, a \, H).

Check \texttt{vector_subterm} : \forall \, A : \text{Type}, \text{relation} \{ \text{index} : \text{nat} \, \& \, \text{vector} \, A \, \text{index} \}.

Equations \texttt{unzip} \{ \text{A} \, \text{B} \, \text{n} \} \ (\text{v} : \text{vector} \, (A \times B) \, n)

\[: \text{vector} \, A \, n \times \text{vector} \, B \, n \,:=\]

\texttt{unzip} \, A \, B \, n \, v \, \text{by rec} \, v \,:=

\texttt{unzip} \, A \, B \, ?(O) \, \text{Vnil} \,:=\, (\text{Vnil}, \, \text{Vnil}) ;

\texttt{unzip} \, A \, B \, ?(S \, n) \, (\text{Vcons} \, (\text{pair} \, x \, y) \, n \, v) \, \text{with} \, \text{unzip} \, v \,:=\, \{

| \, (\text{pair} \, xs \, ys) \,:=\, (\text{Vcons} \, x \, xs, \, \text{Vcons} \, y \, ys) \, \}.
1. Dependent pattern-matching compilation
 - Case analysis
 - with in detail

2. Recursion
 - The Below way
 - Subterm relations

3. Reasoning support
 - Equations
 - Elimination principle
 - Eliminating calls
Equations hold definitionally in CCI + K

Equations for \texttt{with} nodes are just proxies to the helper function $f.\ell$.

All put together in a rewrite database, f can now be opacified.

For well-founded definitions, we use the unfolding lemma to prove the equations.
For $f.\ell : \Pi \Delta, f_{\text{comp}} \overset{\rightarrow}{\tau}$ we generate $f.\ell_{\text{ind}} : \Pi \Delta, f_{\text{comp}} \overset{\rightarrow}{\tau} \rightarrow \text{Prop}$ and prove $\Pi \Delta, f.\ell_{\text{ind}} \overset{\Delta}{\rightarrow} (f.\ell \Delta)$.

$\text{AbsRec}(f, t)$ abstracts all the calls to $f_{\text{comp-proj}}$ from the term t, returning a new derivation $\Gamma' \vdash t'$ where Γ' contains bindings of the form $x : \Pi \Delta, f_{\text{comp}} \overset{\tau}{\rightarrow}$ for all the recursive calls.

Define $\text{HypS}(\Gamma)$ by a map to produce the corresponding inductive hyps of the form $H_x : \Pi \Delta, f_{\text{ind}} \overset{\tau}{\rightarrow} (x \Delta)$.
Inductive graph constructors

Direct translation from the splitting tree:

- **Split**\((c, x, s)\), **Rec**\((v, s)\) : collect the constructors for the subsplitting(s) \(s\), if any.
- **Compute**\((\Delta \vdash \overrightarrow{p} : \Gamma, \text{rhs})\) : By case on \(\text{rhs}\):
 - **Program**\((t)\) : Compute \(\Psi \vdash t' = \text{AbsRec}(f, t)\) and return the statement
 \[
 \Pi \Delta \Psi \text{HYPS}(\Psi), \ f.\ell_{\text{ind}} \overrightarrow{p} \ t'
 \]
 - **Refine**\((t, \Delta' \vdash \overrightarrow{u}^x, x, \overrightarrow{u}_x : \Delta^x, x : \tau, \Delta_x, \ell.n, s)\) : Compute \(\Psi \vdash t' = \text{AbsRec}(f, t)\) and return:
 \[
 \Pi \Delta \Psi \text{HYPS}(\Psi) \left(res : f_{\text{comp}} \overrightarrow{p} \right) \\
 f.\ell.n_{\text{ind}} \Delta^x t' \Delta_x res \rightarrow f.\ell_{\text{ind}} \overrightarrow{p} res
 \]

We continue with the generation of the \(f.\ell.n_{\text{ind}}\) graph.
Elimination principle

Equations \(\text{filter} \{ \! \! A \! \! \} (l : \text{list } A) (p : A \rightarrow \text{bool}) : \text{list } A := \)
\[
\text{filter } A \text{ nil } p := \text{ nil } ;
\]
\[
\text{filter } A (\text{cons } a l) p \text{ with } p a := \{ \text{ true } := a :: \text{filter } l p ; \}
\text{ false } := \text{filter } l p \}.
\]
Elimination principle

Equations filter \(\{ A \} \) \((l : \text{list } A) \) \((p : A \rightarrow \text{bool}) : \text{list } A := \)
\[
\text{filter } A \ \text{nil } p := \text{nil} ;
\]
\[
\text{filter } A \ (\text{cons } a \ l) \ p \ \text{with} \ p \ a := \{
\begin{align*}
| \text{true} & := a :: \text{filter } l \ p ; \\
| \text{false} & := \text{filter } l \ p \}
\end{align*}
\]

Check (filter_elim :
\[
\forall P : \forall (A : \text{Type}) (l : \text{list } A) (p : A \rightarrow \text{bool}), \text{filter_comp } l \ p \rightarrow \text{Prop},
\]
\[
\text{let } P0 := \text{fun } (A : \text{Type}) (a : A) (l : \text{list } A) (p : A \rightarrow \text{bool})
\]
\[
(\text{refine } : \text{bool}) (H : \text{filter_comp (a :: l) } p) \Rightarrow
\]
\[
p \ a = \text{refine} \rightarrow P A (a :: l) \ p \ H
\]
in
\[
(\forall (A : \text{Type}) (p : A \rightarrow \text{bool}), P A [] \ p []) \rightarrow
\]
\[
(\forall (A : \text{Type}) (a : A) (l : \text{list } A) (p : A \rightarrow \text{bool}), \ P A l \ p \ (\text{filter } l \ p) \rightarrow P0 A a l \ p \ \text{true} \ (a :: \text{filter } l \ p)) \rightarrow
\]
\[
(\forall (A : \text{Type}) (a : A) (l : \text{list } A) (p : A \rightarrow \text{bool}),
\]
\[
P A l \ p \ (\text{filter } l \ p) \rightarrow P0 A a l \ p \ \text{false} \ (\text{filter } l \ p)) \rightarrow
\]
\[
(\forall (A : \text{Type}) (l : \text{list } A) (p : A \rightarrow \text{bool}), P A l \ p \ (\text{filter } l \ p)).
\]
Generated mutual induction principle

\(\text{Check}(\text{filter_ind_mut} : \forall (P : \forall (A : \text{Type}) (l : \text{list} A) (p : A \rightarrow \text{bool}), \text{filter_comp} l p \rightarrow \text{Prop}) \quad (P0 : \forall (A : \text{Type}) (a : A) (l : \text{list} A) (p : A \rightarrow \text{bool}), \text{bool} \rightarrow \text{filter_comp} (a :: l) p \rightarrow \text{Prop}),\)

\((\forall A p, P A [] p []) \rightarrow \)

\((\forall A a l p, \text{filter_ind_1} A a l p (p a) (\text{filter_obligation_2} (@\text{filter}) A a l p (p a)) \rightarrow P0 A a l p (p a) (\text{filter_obligation_2} (@\text{filter}) A a l p (p a)) \rightarrow P A (a :: l) p (\text{filter_obligation_2} (@\text{filter}) A a l p (p a))) \rightarrow \)

\((\forall A a l p, \text{filter_ind} A l p (\text{filter} l p) \rightarrow P A l p (\text{filter} l p) \rightarrow P0 A a l p \text{ true} (a :: \text{filter} l p)) \rightarrow (\forall A a l p, \text{filter_ind} A l p (\text{filter} l p) \rightarrow P A l p (\text{filter} l p) \rightarrow P0 A a l p \text{ false} (\text{filter} l p)) \rightarrow \)

\(\forall A l p (f3 : \text{filter_comp} l p), \text{filter_ind} A l p f3 \rightarrow P A l p f3).\)
The elimination principle can only be applied usefully to calls with solely variable arguments.

\[\Pi A \ (l : \text{list} \ A), \ \text{app} \ l \ [] = l \]
The elimination principle can only be applied usefully to calls with solely variable arguments.

\[\Pi A \ (l : \text{list } A), \ \text{app } l \ [] = l \]

Use the same “abstraction by equalities” technique used in dependent elimination to solve this. We can abstract:

\[(\lambda (l \ l' : \text{list } A) \ (r : \text{app}_{\text{comp}} l \ l'), \ l' = [] \rightarrow \text{app } l \ l' = l) \]

\[l \ [] \ (\text{app } l \ []) \]

Directly apply the elimination principle and simplify the equations.
Conclusion

A function definition package handling:

- Full, nested dependent pattern-matching
- Structural and well-founded recursion on dependent types
- Generation of useful support lemmas for reasoning a posteriori

Tested on a bit-fiddling library: less boilerplate, shorter proofs.
Perspectives

- Treatment of non-constructor indices and constraints
- Mutual recursion, support for measures
- Efficiency, a primitive handling of dependent elimination internalizing K would help (hint !)
- Move to eq_dep instead of JMeq?
The End