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The classical case

It is well-known that every real number x can be written as a finite (in case
x € Q) or infinite (regular) continued fraction expansion (RCF) of the form

1

X =ap+ 1 5

1
an+...

ai +

a -+ -+

where ag € Z is such that x — ag € [0,1), i.e. a9 = [x], and a, € N for
n>1.
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The classical case

The partial quotients a, are given by

an = an(x) = {T”—;l(x)J : if T"71(x) #0,

where T :[0,1) — [0,1) is the continued fraction (or: Gauss) map,
defined by
1 1 .
T(X):)—(—{—J, if x #0,

X

and T(0) = 0.
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The classical case

1 1

11
51 3

ol

3 1
The continued fraction map 7.
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D-continued fraction or the Flipped CF

Let D C [0,1] be a Borel measurable subset of the unit interval, then we
define the map Tp : [0,1) — [0,1) by

12! dxen

Tp(x) == lx_ FJ, X

g if x €[0,1)\ D.
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D-continued fraction
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D-continued fraction

~1, ifxeD

and
+1, ifxe€[0,1)\ D,

Setting €1 = £1(x) = {
11/x| +1, ifxeD

11/x], if x € [0,1)\ D,

it follows from definition of Tp that
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D-continued fraction

Setting for n > 1 for which T !(x) # 0,
dn = di(Tp (X)) en = (T (X)),

we find that
1 1

X =
di +e1Tp(x) di + €1
dr+--

=
dn +enTH(X)
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D-continued fraction

For each n > 1,

€1

P
dn +en TA(X)
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D-continued fraction

For each n > 1,

1
€1
En—1
dn +en TA(X)

@ One needs to show that as n — oo, the above converges to

1
€1

dr+ -+

X =

di +

En-1

d, + .
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D-continued fraction

We have

€1

R R 1)
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D-continued fraction

We have
1

€1

X =

d- +...+”—_1
2 dn+ en TA(X)

@ The nth D-convergent of x is

Pn _ 1

qn di +

do+ -+

Karma Dajani Joint work with C. Kraaikamp The Flipped Continued Fraction April 3, 2010 11 /51



D-continued fraction

Using similar methods as in the regular CF, one can show that
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D-continued fraction

Using similar methods as in the regular CF, one can show that

o
= Pn + Pn-1 TB(X)S,,

dn+ gn-1 TB(X)&,, ’
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D-continued fraction

Using similar methods as in the regular CF, one can show that

= Pn + Pn-1 TB(X)S,,
dn+ gn-1 TB(X)&,,‘

o gcd(pn, qn) = 1.
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D-continued fraction

Using similar methods as in the regular CF, one can show that

_ Pn + Pn—1 TB(X)S,,
Gn + qn-1TA(X)en
o ged(pn, gn) = 1.
® Pp-1Gn — Pngn-1 = (=1)" Hk 16k = £L.
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D-continued fraction

Using similar methods as in the regular CF, one can show that

_ Pn + Pn—1 TB(X)S,,
Gn + qn-1TH(X)en

o ged(pn, gn) = 1.
® Pp-1Gn — Pngn-1 = (=1)" Hk 16k = £L.

) _po_ (D (ker e T5()
dn Gn(gn + Gn—16nTH(X))
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D-continued fraction

From
e ()" (I Tkeren) TH(X)

an Qn(Qn + qn—15nTB(X))7
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D-continued fraction

From
e ()" (I Tkeren) TH(X)

an Qn(Qn + qn—15nTB(X))7

o it follows that
B | 1
dn(9n + Gn-1€n TB(X)) |Gn(qn + qn-1£n TB(X))|

— 0.
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Example- Folded a-expansion

In 1997, Marmi, Moussa and Yoccoz modified Nakada's a-expansions to
the folded or Japanese continued fractions, with underlying map

, for0<x<a, x#0; To(0) =0,

where |x]o =min{p€Z: x < a+ p}.
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Example- Folded a-expansion

Folded a-expansions can also be described as D-expansions with

o0
1 1
o- 0 e vl
nL;Jl n+1 ' n+a«
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Example- Folded a-expansion
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Example- Backward CF

Let D =[0,1), and let x € [0,1). In this case [0,1) \ D = 0, so we always

use the map
1 1
Tp=1+ {_J -
X X

)
and we will get an expansion for x of the form

1
x=————— =[01/ch,~1/cb,...];

d
1+d2+...
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Example- Backward CF

It is a classical result that every x € [0,1) \ Q has a unique backward
continued fraction expansion of the form
1
x=1- —1 = [0;-1/c1,—1/co,...],

q———-
Co — ...
where the ¢;s are all integers greater than 1. This continued fraction is
generated by the map

Tb(X):liX—LiXJ,

that we obtain from Tp via the isomorphism ¢ : x — 1 — x, i.e.,,
YoTp=Tpoy
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Example- Backward CF
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Example- Odd and Even CF

Setting
1 1
D := Doda = U [—,—> )
n even n+ 1 n

one easily finds that the D-expansion for every x € [0, 1) only has odd

partial quotients dy. In case D := Deyen = D4y, the partial quotients are
always even.
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Example- CF without a particular digit

Fix a positive integer ¢, and suppose that we want an expansion in which
the digit ¢ never appears, that is a, # ¢ for all n > 1. Now just take
D= (,Jr17 1] in order to get an expansion with no digits equal to ¢.
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Example- CF without a particular digit

An expansion with no digit equals 3.
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From regular CF to flipped CF- Singularizations

Let a, b be positive integers, ¢ = +1, and let £ € [0,1). A singularization
is based on the identity

—&
=ate+

a+ —_—.
b+1+¢

I
14—
b+¢
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Singularizations

To see the effect of a singularization on a continued fraction expansion, let
x € [0,1), with continued fraction expansion

x = [ao; €0/ a1,€1/a2,€2/a3,...].
and suppose that for some n > 0 one has
a1 =1, epp1 =41, an+e, #0
Singularization then changes the above continued fraction expansion into

[a0;€0/a1, .- en—1/(an+€n), —en/(ant2 +1),...].
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Insertions

An insertion is based upon the identity

-1
—atld g,

1 J—
Tho1+¢

+—
2T bt

where £ € [0,1) and a, b are positive integers with b > 2.
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Insertions

let x € [0,1), with continued fraction expansion
x = [ao; €0/ a1,€1/a2,€2/a3,...].
Suppose that for some n > 0 one has
an+1>1;, ep=1.
An insertion ‘between’ a, and a,y; will change the above CF into

[ao;€0/a1, .- en—1/(an +1),—1/1,1/(apsy1 — 1),...].
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Insertions/Singularizations

Every time we insert between a, and a,y1 we decrease a,y1 by 1, i.e. the
new (n + 2)th digit equals a,+1 — 1. This implies that for every n we can
insert between a, and a,41 at most (a1 — 1) times.

On the other hand, suppose that a,11 = 1 and that we singularize it.
Then both a, and a,;2 will be increased by 1, so we can singularize at
most one out of two consecutive digits

April 3, 2010 27 /51
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From Regular CF to Flipped CF

ForneN, let x € [, := (n_lﬂ, ,—11] so that the RCF-expansion of x looks
like
1
1 bl
n+ —

X =

and suppose that x € [, N D # (.
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From regular to flipped

Karma Dajani Joint work with C. Kraaikamp The Flipped Continued Fraction April 3, 2010 29 / 51



From Regular CF to Flipped CF via insertions

Suppose x € ( ] N D, then the regular CF is

n+1° 2n+1
o

=[0;n,1,a3,...]
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From Regular CF to Flipped CF via insertions

Suppose x € (n+1’ 2n+1] N D, then the regular CF is

° 1
x = I =[0;n,1,a3,...]
n—+ +—1
az+¢
@ Singularizing the second digit, equal to 1, in the previous expansion
we find
1
X = — =[0;1/(n+1),-1/(a3 +1),...].
n+l4—F—
a+1+¢
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From Regular CF to Flipped CF via insertions

We now look at the D-CF of x.

o We have

1
TD(X)=H+1—;=1—T(X)=1— = ,
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From Regular CF to Flipped CF via insertions

We now look at the D-CF of x.

o We have
1 1 1
T == _ — = — = — —
p(x)=n+1 . 1-T(x)=1 T prg
1+
az+§
@ Thus the D-expansion of x is
1
X = —
n+14+ ——
a3 +1+4+¢
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From Regular CF to Flipped CF via insertions

We now look at the D-CF of x.

o We have
1 1 1
Tp(x)=n+1-==1-T(x)=1- -
1 Y
X 14 a+1+¢
az +¢
@ Thus the D-expansion of x is
1
X = —
n+1+——
az+1 —i—f
@ Tp acts as a singularization on (n+1’ 2n+1} NnD.
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From Regular CF to Flipped CF via insertions

2
2n+1>

3=

Suppose x € ( } ND.
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From Regular CF to Flipped CF via insertions

Suppose x € (ﬁ, ﬂ ND.

@ RCF-expansion of x is given by

X=—————7F—,

_|_
a+¢
where £ € [0, 1] and with a; > 2 because T(x) < 1/2.
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From Regular CF to Flipped CF via insertions

Suppose x € (ﬁ, ﬂ ND.

@ RCF-expansion of x is given by

X=—————7F—,

_'_
a+ &

where £ € [0, 1] and with a; > 2 because T(x) < 1/2.
@ An insertion after the first partial quotient yields

X =
-1
n+1+
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From Regular CF to Flipped CF via insertions

Since x € (1/(n+1),1/n] N D, the D-expansion of x is given by
_ 1
S on+1+-YTp(x))
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From Regular CF to Flipped CF via insertions

Since x € (1/(n+1),1/n] N D, the D-expansion of x is given by
_ 1
S on+1+-YTp(x))

e Computing Tp(x) we find
1 1
an+E& 1
14—
a—1+¢

Tp(x)=1-T(x)=1-
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From Regular CF to Flipped CF via insertions

Since x € (1/(n+1),1/n] N D, the D-expansion of x is given by
_ 1
S on+1+-YTp(x))

e Computing Tp(x) we find

1 1
TD(X):l—T(X):1—32+£:1+ 1 ;
a—1+¢
@ so that the D-expansion of x is
— 1
n+1+ _11
bt T 1re
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From Regular CF to Flipped CF via insertions

Since x € (1/(n+1),1/n] N D, the D-expansion of x is given by
_ 1
S on+1+-YTp(x))

e Computing Tp(x) we find

1 1
TD(X):l—T(X):1—32+£:1+ 1 ;
a—1+¢
@ so that the D-expansion of x is
— 1
n+1+ _11
1+é’2——1+§

@ Thus we see that Tp acts as an insertion on (—2,12+1, %] N D.

Karma Dajani Joint work with C. Kraaikamp The Flipped Continued Fraction April 3, 2010



From regular to flipped
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From regular to flipped CF

Theorem: Let x be a real irrational number with RCF-expansion

1
X = ag +

1 I
1

an _|_ [P
and with tails t, = [0;1/ap+1,1/ant2,...]. Let D be a measurable subset
of [0,1). Then the following algorithm yields the D-expansion of x:
(1) Let m:=inf{me NU{oco}: tyn € D and e, = 1}. In case m = o0,

the RCF-expansion of x is also the D-expansion of x. In case m € N:

(i) If ami2 =1, singularize the digit anm2 in order to get
X = [30; ) 1/(am+1 + 1)7 _1/am+37 . ]
(ii) If amia2 # 1, insert —1/1 after a1 to get
X = [80;...71/am+1 + 17—1/171/(am+2 - 1),]

(2) Replace the RCF-expansion of x with the continued fraction obtained
in [(1)], and let t, denote the new tails. Repeat the above procedure,

a +

a ot
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Quadratic Irrationals

A number x is called quadratic irrational if it is a root of a polynomial
ax? + bx + c with a, b,c € Z, a# 0, and b®> — 4ac not a perfect square
(i.e., if x is an irrational root of a quadratic equation).
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Quadratic irrationals and regular CF

Theorem: A number x is a quadratic irrational number if and only if x
has an eventually periodic regular continued fraction expansion.
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Quadratic irrationals and flipped CF

we say that a D-expansion of x is purely periodic of period-length m, if
the initial block of m partial quotients is repeated throughout the
expansion, that is, if akm+1 = a1,...,3(k11)m = am, and

Ekm+1 = €15+ -+, E(k+1)m = Em for every k > 1. The notation for such a
continued fraction is

x = [ao; €0/a1,€1/a2, - .- Em—1/am, Em]-
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Quadratic irrationals and flipped CF

An (eventually) periodic continued fraction consists of an initial block of
length n > 0 followed by a repeating block of length m and it is written as

X = [ao; 60/31,81/82, . ,sn_l/a,,,a,,/a,,H, N ,€n+m_1/an+m,5n+m].
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Quadratic irrationals and flipped CF

Theorem: Let D be a measurable subset in the unit interval. Then a

number x is a quadratic irrational number if and only if x has an
eventually periodic D-expansion.

Karma Dajani Joint work with C. Kraaikamp

The Flipped Continued Fraction

April 3, 2010 40 / 51



Quadratic irrationals and flipped CF

Theorem: Let D be a measurable subset in the unit interval. Then a

number x is a quadratic irrational number if and only if x has an
eventually periodic D-expansion.

@ The proof is based on the result for the regular CF, together with the

fact that a D-expansion is obtained from the regular CF by
singularizations and insertions.
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Invariant measures

Theorem: Suppose D is a countable union of disjoint intervals, then Tp
admits at most a finite number of ergodic exact Tp-invariant measures
absolutely continuous with respect to Lebesgue measure.
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Invariant measures

Theorem: Suppose D is a countable union of disjoint intervals, then Tp
admits at most a finite number of ergodic exact Tp-invariant measures
absolutely continuous with respect to Lebesgue measure.

@ The proof of this result relies on a Theorem by Rychlik where he
characterized ergodic measures of a certain family of piecewise
continuous maps.
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Some examples

2 00 1 2
Let D =(35,1)UlUnZs (m m}
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Some examples

There are two ergodic components absolutely continuous with respect to
Lebesgue measure. One is finite with support [0,1/2] (this continued
fraction is in fact the folded nearest integer continued fraction), and the
other is o-finite with support (1/2,1) (this one is in essence Ito's mediant
map)
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Some examples

Suppose D = 2, (ﬁrl, nl] where (n;)i>o is a sequence of positive
integers.
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Some examples

Suppose D = 2, (ﬁ, nl,:| where (n;);>o is a sequence of positive
integers.
@ [0,1) is the only Tp forward invariant set. Hence, Tp admits a
unique ergodic invariant measure equivalent to Lebesgue measure on

[0,1). Furthermore, it is finite if and only if D doesn’t contain 1, and
o-finite infinite if 1 € D.
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Some examples

Let o € (0,1), and suppose D = |72 ; (%, ,,J%a]
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Some examples

Tp has one ergodic component absolutely continuous with respect to
Lebesgue measure, which is finite and with support the interval
[0, max{a,1 — a}).
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Simulations of invariant densities

o Finding the density of an invariant measure is in general an extremely
hard problem.

Karma Dajani Joint work with C. Kraaikamp The Flipped Continued Fraction April 3, 2010 47 / 51



Simulations of invariant densities

@ Finding the density of an invariant measure is in general an extremely
hard problem.

@ To get an idea of the density, we use Birkhoff's Ergodic Theorem: for
a measurable set A, and for a.e. x

(A Zn'L“;o;ZlA

where 14 is the characteristic function of A.
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Simulations of invariant densities

o Finding the density of an invariant measure is in general an extremely
hard problem.

@ To get an idea of the density, we use Birkhoff's Ergodic Theorem: for
a measurable set A, and for a.e. x

(A Zn'L“;o;ZlA

where 14 is the characteristic function of A.

@ We make histograms by counting the number of times that the orbit
of a point lies in a particular interval.
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Invariant Density

D =[1/4,1/3)
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Invariant Density

D =[1/2,1)

Density
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Invariant Density

D = [0.3,0.45)
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The End
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