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1 Introduction

This extended abstract is the first announcement of a paper with A. Glen (Adelaide) in
preparation.

A few months ago JPA came across a paper of Y. Bugeaud and A. Dubickas [5] where the
authors were interested in describing all irrational numbers ξ > 0 such that the fractional
parts {ξbn}, n ≥ 0, all belong to an interval of length 1/b, where b ≥ 2 is a given integer.
Furthermore they prove that 1/b is the minimal length having this property. An interesting
and unexpected result in their paper is that, when the interval is closed and its length
is exactly 1/b, the irrational numbers are exactly the positive real numbers whose base b
expansion is a characteristic Sturmian sequence on {k, k + 1}, where k ∈ {0, 1, . . . , b − 2}.

2 More on Bugeaud-Dubickas’ result

Looking at the proofs in [5] one sees that the core of the result is the following property:

Theorem 1 A binary sequence u := (un)n≥0 is a characteristic Sturmian sequence if and

only if, for all k ≥ 0,
0u ≤ T ku ≤ 1u

where T is the shift defined by T ((un)n≥0) = (un+1)n≥0 and the order is the lexicographical

order.

Actually this theorem was known. It was indicated to JPA by G. Pirillo (who published
it in [9]): JPA suggested that this could well be already in a paper by S. Gan [7] under a
slightly disguised form (which is indeed the case). Also J.-P. Borel and F. Laubie proved
one direction of the above theorem, namely that characteristic Sturmian sequences satisfy
the inequalities 0u ≤ T ku ≤ 1u [4].
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3 Generalizations

Two directions for generalizations are possible. One is purely combinatorial and looks at
generalizations of Sturmian sequences: in particular episturmian sequences have some aspects
of Sturmian sequences and they have similar extremal properties [8, 10]. The other is number-
theoretic and looks at distribution modulo 1 from a combinatorial point of view: several
recent papers of Dubickas go in this direction, we cite one of them [6] since the Thue-Morse
sequence appears in it.

4 The Thue-Morse sequence shows up

In the paper of Dubickas [6] the Thue-Morse sequence appears wheen studying the “small”
and “large” limit points of ‖ξ(p/q)n‖ the distance to the nearest integer of the product of
any nonzero real number ξ by the powers of a rational.

Interestingly enough this sequence appeared in 1983 in another question of distribution as
a by-product of the combinatorial study of a set of sequences related to iterating continuous
maps of the interval [1, 2, 3].

Theorem 2 Define the set Γ by

Γ := {x ∈ [0, 1], 1 − x ≤ {2kx} ≤ x}.

Then the smallest limit point of Γ is the number α :=
∑

an/2n, where (an)n≥0 is the Thue-

Morse sequence. The set Γ contains only countably many elements less than α and they are

all rational. Furthermore any segment on the right of α contains uncountably many elements

of Γ. This structure around α repeats: Γ is a fractal set.

The reader will have guessed that the above theorem is a by-product of the combinatorial
study of the set

Γ := {u ∈ {0, 1}N, ∀k ≥ 0, u ≤ T ku ≤ u}

where u is the sequence obtained by switching 0’s and 1’s in u.
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