GENERALIZED DE BRUIJN DIGRAPHS AND THE
DISTRIBUTION OF PATTERNS IN o-EXPANSIONS*

WOLFGANG STEINER**

ABSTRACT. A generalization of de Bruijn digraphs is defined for Parry’s
a-expansions and it is shown that the characteristic polynomial of these
graphs is in principle that of a. With the help of this result we prove that
certain functionals of a-expansions, e.g. the number of specific digital
patterns, satisfy a central limit theorem, which is an extension of a result
due to Drmota [3].

1. INTRODUCTION

Our starting points are the a-expansion of real numbers due to Parry [14]
and the induced linear recurrence (cf. Loraud [12]). Let @ > 1 be a real
number. Then the a-expansion of an arbitrary real number z is given by

;C:C1+9+%+...’
a o«
where (; = [z], the integer part of x, and the other digits are computed

with the transformation T'(z) = {az} (where {z} denotes the fractional
part of x): ¢, = [T 2(x)]. Then the digits (; satisfy

(Cny Cnt1y -+ ) < (a1,a2,...) for n > 2,

where the a; are the digits of the a-expansion of «, i.e.

and “<” denotes the lexicographic order. In particular we have

(1.1) (an,Gnt1,-..) < (a1,a2,...) for n > 2.
Conversely, if a sequence (a1, ag, ...) satisfies (1.1), we have a real number
a with a-expansion (aj,ag,...).

Those a which have recurrent “tails” in their a-expansions, i.e. aj1m = a;
for all j > n for some integers n and m, are called a-numbers. The a-numbers
which have a finite a-expansion are called simple a-numbers.
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A simple a-number (a, # 0, a;j = 0 for all j > r) is a root of the
polynomial

2 —ax = —a,x — a,

which is called characteristic polynomial of . If o is a non-simple a-number,
it is a root of the polynomial

(fn—&—m _ alxn—km—l _

. -—an+m,1x—an+m)—(m"—alx"_l—- S —Op 1T — ).
This polynomial is called characteristic polynomial, if n and m are minimal
with this property.

For the induced linear recurrence we distinguish between simple a-
numbers and other real numbers. For simple a-numbers we define

J
Z a;Gj_;+1 forj<r
(1.2) Go =1, Gj = 1:17"
> aiGj—; forj>r
i=1

and for the others

J

(13) Go =1, Gj = ZaiGj,i + 1 for j > 0.
i=1
With G = (Gy,), every non-negative integer n has a (unique) proper G-ary
digital expansion
n = Z €4 (n)GJ

j=0

with integer digits €;(n) > 0 such that

k
Zej(n)Gj < Gy for k> 0.
=0

J
The digits €; = €j(n) satisfy
1.4) (€ky€k—1,...) < (a1,az,...) for k>0
f.

(
(cf. [12]), where we have set ¢; = 0 for all j < 0. Conversely, a sequence
(€0, €1,...) is the digital expansion of an integer n if (1.4) holds and €¢; > 0
only for a finite number of j > 0.

We will study functions depending on subblocks of these digital expan-
sions. Let

B = {(eLfl(n),EL,Q(TL), ce ,Go(n)) n< GL}
be the set of blocks B € {0,1,...,a1}* of length L which actually occur in

G-ary digital expansions. Let F' : Br11 — R be any given function (for some
L > 0) with F(0,0,...,0) = 0. Furthermore, set

sp(n) =Y F(ejyr(n) gjrr-1(n),. .. €i(n)).

>0
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This means that we consider a weighted sum over all subsequent digital
patterns of length L + 1 of the digital expansion of n. For example, for
L =0 and F(e) = € we just obtain the sum-of-digits function, or if L = 1
and F(e,n) =1—0dcy (0, denoting the Kronecker delta) then sp(n) is just
counting the number of times that a digit is different from the preceding one
etc.

In order to get an insight into the distribution of sg(n), it is convenient
to consider a related sequence of random variables Xy, N > 1, defined by

Pr[Xy < 2] = %]{n < N:sp(n) <o)

In Section 3 we will show that Drmota’s methods in [3] can be ap-
plied to prove asymptotic normality of the distribution of Xp. Drmota
showed this for the special case of finite recurrences of the type (1.2) with
a1 > ag > --- > a, > 0. It should be noted that the case L = 0 for general
« is treated by Drmota and Gajdosik [4].

In the case of simple a-numbers we will use a generalization of de Bruijn
digraphs (Definition 2.1) and, in particular, the property that the character-
istic polynomial of these graphs is the characteristic polynomial of o mul-
tiplied with a factor ™. This property has been conjectured by Drmota [3]
and is shown in Section 2.

Remark 1.1. Sometimes different generalizations of de Bruijn digraphs can
be found in the literature. Imase and Itoh [9] and Reddy, Pradhan and
Kuhl [16] introduced independently the graph Gpg(n,d), where n > d, the
set of vertices is {0,1,...,n — 1} and the set of edges consists of

i—di+r (modn)for0<i<n, 0<r<d.

Later, Imase and Itoh [10] introduced also the graph Gj(n,d) whose set of
vertices is the same as that of Gp(n,d) and the set of edges consists of

i—dn—1—4)4+r (modn)for0<i<n, 0<r<d.

Du and Hwang [5] showed that these graphs have some of the properties
of de Bruijn digraphs. Their characteristic polynomial has been given by
Xueliang and Fuji [18].

2. GENERALIZED DE BRUIJN DIGRAPHS
For a g¢-ary expansion which is a special case of Parry’s expan-
sion with a =g¢ an integer, we have By, = {0,1,...,¢ — 1}*. Then

Br is the set of vertices of a directed de Bruijn digraph with edges
B=m,...,n.) = C=1(0y,...,01) where

(21) (7727-~-777L): (017---;0L—1)-

With this characterization of de Bruijn digraphs we can generalize them on
Parry’s a-expansions with simple a-numbers:
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Definition 2.1. Let (aj,as,...,a,) be a r-tuple which satisfies (1.1) (if we
set a,, := 0 for n > r) and By, be the set of blocks (11, ...,nz) which satisfy
Mk, Mot 1, - - ) < (a1,ag,...) for k>1

(if we set m, := 0 for n > L). Then the generalized de Bruijn digraph
of By, is defined by the set of vertices By and the edges B — C' where
B =(m,...,n) and C = (0y,...,0r) satisfy (2.1) and

(2.2) (m,--.,nL,01) € Br41.

Remark 2.1. Because of (1.4), this definition of By, is equivalent to the one
given in the Introduction.

Remark 2.2. If (2.1) holds and L > r, then (2.2) is automatically satisfied.
For L =r — 1, the only exceptions are

(My-eosmr—1) = (a1,...,ar-1), (01,...,60,—1) = (az,...,ar—-1,)
with a, <z < ay.
Remark 2.3. An important property of de Bruijn digraphs is that the line

graph of the graph of blocks of length L is the graph of blocks of length
L + 1. For our generalization, this property holds if we have L > r — 1.

Denote by Ay the adjacency matrix of the generalized de Bruijn digraph
of B L-

Example 2.1. For the g-ary expansion with ¢ = 2 (or equivalently the G-
ary expansion with » = 1, a; = 2), we have By = {(0,0), (0,1), (1,0),(1,1)}
and

1100
0011
A2=171 ¢ o
0011

Example 2.2. In the case of the Zeckendorf expansion (r = 2, a1 = ag =1,
the G are the Fibonacci numbers) we have By = {(0,0), (0,1),(1,0)} and

1 10
A,=10 0 1
110

The characteristic polynomial of these graphs is strongly connected to the
characteristic polynomial of the corresponding simple a-number:

Theorem 2.1. For L > r—1, the characteristic polynomial of the adjacency
matriz A of the generalized de Bruijn digraph of By, is

X(Ap)(x) = 2907 "p(x),
where G = (Gj);j>0 is defined by the finite linear recurrence (1.2) and

r—2

p(x) =2" — a1x" "t — asx Cee— Qp_ X —

is the characteristic polynomial of the linear recurrence and of the corre-
sponding simple a-number.
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Proof. First we remark that #(Br) = G, and for each B € By,
B = (EL_l(i - 1), EL_2<i — 1), ceay 60(i — 1))
forsomei € {1,2,..., G} where the €; are the digits in the G-ary expansion.
The conditions (2.1) and (2.2) can thus be written for 4, j € {1,2,...,Gr}
as
(2.3) (ep—2(i—1),...;60(i—1)) = (ep—1(j — 1),...,e1(j — 1))

and

(2.4) (EL_l(’i — 1),6L_1(j — 1), .. .,Eo(j — 1)) S BL+1
respectively.
Therefore the coefficients of Aj = (agf))lgz’,jch are

a;. )
v 0 otherwise.

(L _ { 1 if (2.3) and (2.4) hold
First assume L > r. Then we can omit (2.4) (cf. Remark 2.2) and have

(L) _ (D
YitkGr 1, — %ig

We define the matrix Py, := (pgf)hgi,jch for L > r by
1 ifi=j
p) =4 =1 <G, i=j+kGr, k>0
0  otherwise.

Hence le = (pgj_L))lgi,jSGL has the coefficients
1 ifi=y
pGM =81 i< Gra, i=j+kGro1, k>0

0 otherwise.

With P; we define a matrix similar to Ay, by

L _
L= (0 <ijec, = PLALPT

In the construction of A’L the rows 7 of Ay are subtracted from the rows

1+ kG r_1 and the columns i+ kG _1 are added to the columns . Therefore

a;gL) = 0 for all 7 € {GL—I + 17GL—1 +2a . 7GL}7j € {1a2a" . 7GL}

and it suffices to continue with the matrix

(L1 (12 ... G
A1 =(a;; N<ij<c,, =AL (1 5 . G
(this notation means that we take only the rows and columns 1,2,..., G

of A’) because of

X(AL)(z) = x(A])(z) = a7 “Lix(Ap1)(2).
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The so defined Aj_; is the adjacency matrix of the generalized de Bruijn

digraph of Br_1, because we have all™Y = 1 not only if (2.3) holds, but

ij
also for

(eL—2(i—1),....e0(i—1)) = (ex-1(j +kGr-1—1),...,e1(j +kGL-1 — 1))
= (kyer—2(j—1),...,e1(j — 1))
with a k € {0,1,...,a1} (and j + kGr—1 < GL), and therefore

af.f‘” =[(er—3(i —1),...,e0(i — 1)) = (ex—2(j — 1),...,e1(j — 1))],

where we use the Iversonian notation [ezpression] = 1 if expresssion is true

and 0 otherwise. For L = r we have to check additionally al(;_l) =0 for
(ET,Q(i — 1), e ,Eo(i — 1)) = (al, as, ... ,CLTfl),

(67“72(]' - 1)a cees EO(j - 1)) = (a25 sy Qr—1, .T)
with a, < x < a; (cf. Remark 2.2). This is true, because for these 7 and j,

al(.;_l) = 1 would imply that we have a j' = j + kG,_1 with ag,) =

(ET—I(j/ - 1)7 B 760(j/ - 1)) = (CLl,QQ, ceey a7‘—17£)7
but this violates (1.4) and is therefore impossible.
Hence we iterate the construction until we get A,_; and obtain

(2.5) X(AL)(z) = 29" Fr—1x (A, ) ().
We continue with L = r — 1.
For i < G,_1, j < G,_1 (but not for i = G,_1) we have

ali ™V = [(ers(i— 1), eo(i = 1) = (62 = 1), (G = 1)]

1, i.e.

and (r-1) (r-1)
T— T—
aj’i“l’kG’r‘f?v‘j = ai:j '
For 1 < s <r —1, we define the matrix Py := (pz(;))lgi,jSGrfl by
1 ifi=
pg) = =1 fj<Geq, i=j+kGs 1, k>0andi<G,
0  otherwise.
With A’ :=P, 1A, P, ! we get
/(r—1)
tj

and build the matrix A,_o := A]_, G g - g::; g::i), where the numeration
of the rows and columns is kept, i.e. A, o = (ag_Z))z’,je{l,z...,GT,g,Gr,l}-

This matrix satisfies

X(Ar 1) (@) = X(A]_))(2) = 2517271 (A, o) (x)
and for i < G,_2, 1 < G,

ali ™ =[(erali=1),. . (i — 1) = (r3( = 1),...,e1(j — 1))

=0 forall i € {Gr—2+17Gr—2+27 e Gr_l—l},j S {1, 2,... 7G'r—1}-



GENERALIZED DE BRUIJN DIGRAPHS AND PATTERNS IN a-EXPANSIONS 7

(but A,_5 is not the adjacency matrix of a generalized de Bruijn digraph).
Hence we iterate this procedure by defining

12 ... G Gy ... Gry
12 ... G Gy ... Gry

for 1 < s <r—2and get, for i < Gg, j < Gs.

D = [(esmali— 1), (i — 1) = (es-1(j — 1),...,e1(j — 1))].
Therefore we have

(2:6) X(Ar-1)(2) = 2917 x(Ag) (2).

The definitions of Ps and Ag; 1 imply for 1 < s <r—1, j < Gs_1 and
1€ {1,2,. . Gs—1,G, . ,GTfl},

A, = (PSASP;1)<

Gs—1
0l = 3 [ei") 2 e(i)ll(ea2(i)s - - 0(1) = (eaza(h). - - - c0(G))]aly)
j'=1
Gr_1—1
== Y el 2 @), e0(i) = (es2(). - eoli))]als
§'=1
and thus
(2.7) a?;)s :a(G) = Z ag_l).

1<j<Gro1:es(5)>1,
(€5-1(5)sense0(3))=(0,0,...,0)

Now we can easily calculate Ay = (‘%(?))i,je{Go7G1,...7GT_1}- For i = G with
0<t<7r—1we have
(GT_Q(Gt - 1), e ,Eo(Gt — 1)) = (0, e ,O, O,al,ag, e ,at).
(r—1)

Therefore we have aG;j
(2.8) (6r—2(j —1)y...,e0(j — 1)) =(0,...,0,a1,a2,...,a;,x)
with 0 < x < ay41 for t <r — 1 and if and only if

(2.9) (er—2(j —1),...,€0(j — 1)) = (az,as,...,ar-1,7)

with 0 < x < a, for t = r — 1 respectively.
For the first column, i.e. s = 0, the sum in (2.7) runs over all j with
e0(j) > 1. ¢ = ary1 in (2.8) implies 7 = Gyy1 and €y(j) = 0, otherwise

=1 if and only if

e0(j) = x4+ 1 > 1. For i = G; we have therefore a;y; terms ag_l) =1 and

0
G(Gt)go = Qg41.
For 1 <s<r—1 and ¢ = G¢, the conditions on j in (2.7) imply

(es—1(j —1),...,e0(j — 1)) = (a1,...,as)
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and, with (2.8) and (2.9), we have agtgl) = 1 for at most one j. Together with
(1.1) we get x = ay41. We have ag:_ll)j = 0 for this j and hence a(GOT)_lGS =0.

For 0 <t < r — 1, the G-ary expansion of this j is

(e41(), - - -, €0(§)) = (1,0,0,...,0).

Thus we obtain a(GOt)Gs =[t+1=s]for s> 0.

Recapitulating, Ag has the form

ai 1 0 --- 0
ag 0 1 :
AO = : 01
1
a, 0 0

and its characteristic polynomial is clearly p(z). With (2.5) and (2.6), the
theorem is proved. O

Remark 2.4. For de Bruijn digraphs we have x(Ap)(z) = qu_l(a; —q).

Remark 2.5. For general digraphs D, the characteristic polynomial of the
line graph £(D) is a multiple of that of D:
X(L(D))(z) = x(D)(z)z“ )P,

where e(D) denotes the number of edges and v(D) the number of vertices.
This property could be used in the first part of the proof of Theorem 2.1
but anyway our construction is needed for the second part of the proof.

3. ASYMPTOTIC PROPERTIES OF F'UNCTIONS DEPENDING ON
SUBBLOCKS OF a-EXPANSIONS

Now we study the random variables X defined in the introduction. Ex-
pected value and variance of Xy are given by

1 1 5
(31) BEXy=L T;VSF(n) and by VXy =+ %(SF(n) —EXy)

We introduce the function
en(z) = Z 25 ()
n<N
and consider for any block B = (n1,...,n) € Br, the functions
a]B(z) = Z 25F ("),
n<Gj,(€j—1(n),..¢j—1(n))=B
Then
Z af(z) =cn(2).

BeBp,



GENERALIZED DE BRUIJN DIGRAPHS AND PATTERNS IN a-EXPANSIONS 9

In order to obtain recurrent relations for the functions a? we need the

following notation: ’

For B = (m,...,n.) € By let B® = (n2,...,nm1) denote the block
consisting of the last L — 1 elements of B and np the first element
m, i.e. B = (np,B’). (Similarly 'B = (n,...,n-1).) Furthermore, for
(e,B) = (e&;m1,...,mL) € Br41 set

L—1

K(e,B) = > (F(0,...,0,&m1,...,n0-i) = F(0,...,0,0,m1,...,m1-)) +
=0
F(0,...,0,0,¢).

Note that (0, B) = 0.

3.1. Simple a-numbers. In the case of simple a-numbers, we may assume,
without loss of generality, that L > r — 1. (If we are only interested in
L + 1 subsequent digits with L < r — 1, then we consider a new function
F : B, — R that does not depend on the first (r — L — 1) digits.)

Lemma 3.1. The functions af(z), 7 >0, are recursively given by

a?(z) = a]ql(z)z"("B’C).
CeByr: 'C=B/, (nB,C)GBL+1

Proof. The set

{n < Gj:(ej-1(n),...,¢j—r(n)) = B}

is divided into subsets of the form
{n <Gj:e1(n) =nB, (ej-2(n),ej-3(n),...,e;r1(n)) = (B,e) =C} =

{n < Gj_1: (6]’,2(71), Ejfg(n), c ,ej_L_l(n)) =C, (nB,C) € BL+1}—|—T]BGJ',1.
Because of {(np,C) : B,C € B,’C = B’} D Br4+1 we cover all possible
cases.

Furthermore, for n < G;_; with (¢j_2(n),€j_3(n),...,€j——1(n)) = C
and (np,C) € Br41, we have

sp(n+npGj-1) = sp(n) + k(np, C).
]
Corollary 3.1. The vector aj(z) = (af(z))BegL satisfies the matriz recur-
sion
aj(z) = AL(z)aj1(2) (1 >0),

where the G, x G-matriz Ar(z) = (ap,c(2))B,cen, s given by

#8,C)  if 'C' = B’ and (ng,C) € B
_J z L ana \NB, L+1
aB’C(Z) o { 0 otherwise.
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A (1) is the adjacency matrix of the generalized de Bruijn digraph of By,
its characteristic polynomial is therefore (Theorem 2.1)

Y(AL(D)(z) =297 (2" —a1a" —aga" 2 — - —a,_q1x — ay)

and « is an eigenvalue of Ay (1). Lemma 3.2 shows that the other eigenvalues
of Az (1) have absolute value less than a.

Lemma 3.2. The conjugates of a simple a-number o with respect to the
characteristic polynomial have absolute value less than c.

Proof. Set
glz) :=1—a"pa!) = Zaj:nj.
j=1

If |z| > «, then |g(z71)] < g(lz7]) < g(a™!) =1 and p(x) # 0.

If |z] = a, z # «, then we either have |g(z™1)| < g(Jz7!|) = 1 or all
powers 2/ with a; > 0 have the same argument, which must be different
from 0 because of a; > 0. In both cases we have g(z~!) # 1 and p(x) # 0.

Because of ¢g'(a™!) > 0, a is a simple root of p(x) and the lemma is
proved. O

Now we have all prerequesites for Drmota’s proofs of the following lemma
and theorems:

Lemma 3.3 (cf. [3], Lemma 3.3). Let G(t,z) = det(tI — AL(z)) be the
characteristic polynomial of the matriz Ar(z). Then there exists a (complex)
neighbourhood of z = 1 such that G(t,z) = 0 has a unique solution t =
a(z) of mazimal modulus. Furthermore, the function «(z) is analytic in this
neighbourhood.

Theorem 3.1 (cf. [3], Theorem 2.1).

EXy = = 3 sp(n) = 12 1 o1)

= p
Nn<N log o
and
1 log N
VXy=— —EXy)?=02""+0(1
V= 2 (sr(n) ~BXw) = 0+ O(1),
n<nN
where
/1 //1
H:a()andazza()+ﬂfﬁb2_

Theorem 3.2 (cf. [3], Theorem 2.2). If 0% # 0, then for every e > 0
1 1 x 1,2
—H{n < N :sp(n) < EXny+2VX = / e 2t dt+O((log N)~1/2+e

uniformly for all real x as N — oo.
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Theorem 3.3 (cf. [3], Theorem 2.2). If 0% # 0, F just attains integer values
and

d=gcd{k(e,B): (¢,B) € Bry1} =1,
then for every e > 0

_ 2
{n < N :sp(n) =k} = \/27::;7)(]\[ <exp <_(k2VE)§\],V)> + O((log N)—1/2+5)>

uniformly for all non-negative integers k as N — oo.

3.2. Non-simple a-numbers. Now we treat the case of non-simple a-
numbers, i.e.
(an+m+17 An4+m+25 - - - ) - (an—l—l? Ap425 -« - )

for some integers m, n and m, n minimal with this property.
Let F' be a function F' : Biy; — R as above. We may assume that
= km > n+m—1 for some k € N. (If we are interested in [ + 1 subsequent
digits with [ < km then we consider a new function F: Bim+1 — R that
does not depend on the first (km —[) digits.)

Lemma 3.4. For alll € N we can find an integer L > 1 such that
(3.2) (aj, Ajilye -y ar+1) < (a1, as,... ,aL_j+2) forallje{2,...,L+1}

Proof. If (3.2) holds for L := [, we are finished. Otherwise we have a j < 1+1
such that

(aja Aj+1s--- ,(1[+1) = (a‘la az, ... 7al—j+2)
and an integer g > [ + 1 such that
(aj,ajﬂ, ce ,ag,l) = (al, as, ... ,ag,j) and ag < Gg—j41-

If (3.2) holds for L := g — 1, we are finished. Otherwise we have a j' < g
such that

(aj/, Ajrg 1y ,(Lg) = (al, ag, ... ,ag,jurl).
For 7' > j, we had
((Ij/, Ajrg 1y ag) < (aj/_j+1, Ajr— 5425 -« ag_j_H) < (al, ag, ... ,ag_j/+1).
Therefore j* < j. We can find ¢’ > g such that
(ajr,ajyrs .. ag-1) = (ai,a2,...,a9_j), Gy < Gg_j41

and repeat this procedure.
Since j > j' > j” > --- > 1, we find a L that satisfies (3.2) after a finite
number of steps. O

Remark 3.1. If (3.2) holds for L, it holds for L + m since
(aj,...,aL+m+1) = (aj_m,...,aLH) for all j € {L—|—2,,L—|—m+ 1}
and, by induction, for L + km.
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Now we consider the functions

af(z) = Z 2°r () (B € Bp).

n<Gj,(€j-1(n),..€j—L(n))=B

Lemma 3.5. Let L satisfy (3.2) and L > km > n +m — 1. Then the
functions af, j > L, B € By, are recursively given by

FE= Y )

(3.3)
ag.al""’aL)(Z) _ Z aJC_l(Z) Zﬁ(al,C)_ Z bjD—L—l(Z) ZA(al,...,aL+1,D)’
C=(az2,...,ar,,Mr), DeCim
nr<ar41
where
Cim ={D € By : D > (ar4+2,a043, - -, GLtkm+1) }
D o sp(i
bj (2) := Z 55F (1)
i<GJ": (ejfll’i),...,€j_km(i)):D7
(€j—1(2)-€0(4))>(aL 42y ,0L+j+1)
and
(01,02, ...,0011, D) := sp(n1) — sp(n2)
with

D = (C1,G2, -+ Ckm); €i(n1) =e€i(n2) =0 foralli > km+ L +1

(€km+r(n1), €kmar—1(n1), ..., €0(n1)) = (01,02,...,0041,C1,C25 - -, Com)s

(€km+r(n2), €kmrr—1(n2),...,e0(n2)) = (0,...,0,(1,C2, - -, Chm)-
The functions b]D(z), j > km, D € Cpp, are recursively given by

af(2) if D> (ap+2,. 0L 1km+1)
bD(Z) _ BeBr: (M, Mkem)=D

5 O (2O Dernntkn )i D = (ag i, aramen)
EeCim

Proof. The proof of the first equation is the same as that of Lemma 3.1. We
just have to check

(3.4) (B, €j—2(n),...,€0(n),0,...) < (a1,az,...)
for C = (ej_2(n),...,¢j—r-1(n)), 'C = B', (n,C) € Br41.
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(3.4) can only be violated, if (np,C) = (ai,...,ar+1) which implies
B = (ay,...,ar). We have

agm,...,aL)(Z) _ Z st(cpj,l,...,gog) -

(Pj—15-50):
(j—1,-pj—r)=(a1,...,aL), pj_r—1<ap41,
(pj—2,-sp0)EB; -1

(3.5) Z 55F (95 -1,-%0)

(Pj—1,--5%0):
(Pj—15Pj—L—1)=(a1,.ar41),
(Pj—2,-0)EB; 1,
(Pj—L—25-p0)>(ary2,-,a;)

where sp(@j—1,...,¢0) := sp(n) for the (unique) integer n with G-ary ex-
pansion (¢j—1,...,%0) (and ¢; = 0 for all 7 > 7).

The first sum of (3.5) is equal to the first sum of (3.3) (cf. Lemma 3.1 and
consider (3.2)). The patterns of the second sum of (3.5) are exactly those
of the first sum which do not satisfy (¢;_1,...,¢0) € Bj. Because of (3.2)

the choice of patterns (¢j_r—2,...,%0) in the second sum of (3.5) is not
influenced by the patterns (¢;_1,...,¢j—r—1). Therefore this sum is equal
to the second sum of (3.3).

The equation for b;?(z), D > (ap42,-..,004+km+1) is clear. For
D = (ar+t2,...,aL+km+1) we have to consider Remark 3.1 and that
(ALtkm+2; - -+ QL+2km+1) = (AL42, - - - OLtkmt1)- O

Corollary 3.2. The vector
B
aj(z) = (afl(z), . “L(2), bf_ll(z), ey bf_’”{(z), . ,bij(z), . ,bﬁML(z))T
with
Bi:=(ep-1(i—1),...,e0(i — 1)), M = #(Ckm),

Dy :=(ap+2,---san1kmst1)s -5 Dari=(a1,...,axm)

satisfies the matrix recursion
aj(z) = Ar(z)aj1(2)  (j>1L)

where Ar(2) = (ai;(2))1<ij<G+LM 15 given by

(05, B)) ifi, j < Gr, 'Bj = B,
(anBj) € BL+1
_Z)\(al7...,aL+1,Dj7GL7(L—1)]W) ’LfZ E GL7 ] > GL —+ (L — 1)M
AO0ars2 st ikminDimcy —km-0M) it = Gy + 1, § < G + kmM,
aij(z) = j>Gr+ (km—1)M
DZ;GL = (771; s ankm)(Bj)
ori>Gr+M, j=i—M
0 otherwise.
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Hence, if L > km, Ar(1) has the form

0 0
AL 0 0 5
0 0
1 1
0 0 T I
0 110 0 0 0
_ 0 0 0
0 0 . 0 0
0 Eyv | 0 0
0 0 | Eay 0

where A is the matrix Ay of the generalized de Bruijn digraph of the
(L + 1)-tuple (ay,a2,...,ar,ar+1 + 1) and Ejs is the identity matrix of
size M.

A (1) has the form

0 0
Ay, ol---|-.-] 0 :
0 0
1 ... -1
0 0 1 .- 1
0 1 1 0 0 0 0
. 0 N 0 .
0 0 .0 0 :
0 e 0 1 1 0 0
0 Eyv| O 0
0 1 T0 [Ey 0

Theorem 3.4. The characteristic polynomial of Ar(1) is
(3.6) x(AL(1)(x) = pla) (@F7Dm 4 B2 g g 1) gGrrEMhmen
where

1

p(fﬁ) = (xn—i-m o alx"+m_1 . an+m) _ (:L,'ﬂ o alxn— L an)

is the characteristic polynomial of «.
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Proof. First we construct a matrix A’ = (a;j)lgi’jSGLJrL with
X(AL(1))(z) = x(A)(z) "M F.
To get A’, we define Py, = (pl(?))lgi’jSG’LJ'_LM, 0 < h < L, with
pg;) :=1forall i < Gp+ LM,

pglz+hM+1,j :=1for all j with G, + hM < j < Gp+ (h+1)M.
Then

A,,_A<12 o GL+1Gp+M+1 ... GL+(L—1)M+1)

12 ...Gr+1G,+M+1 ... G+ (L—-1)M +1

where

A :=P¢P,...P, AP} P PL
A’ has the form

0
AL 0 :
0
-1
0 01 110 01 0 0| 0
0
0 Er :
0
if L > km and
0
A, 0 :
0
-1
0 01 110 0] 1
0 Er 4 :
0

if L = km respectively.
Since Ap is the matrix Ay of the generalized de Bruijn digraph of the

(L + 1)-tuple (a1,as2,...,ar,ar+1 + 1), it can be transformed to
a1 1 0 --- 0
a 0 1
. ) 0
ay, : 1

arg1+1 0 -« - 0
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(see proof of Theorem 2.1). In the transformation, the last row is never
added to or subtracted from another row. Because of this and the fact that
agj =0 for all ¢ < G, j > G, we can apply this transformation to the
whole matrix A’ and get the (2L + 1) x (2L + 1)-matrix A” which has the
form

aq 1 0 AP 0
as 0 1 :
ar, : 1 0 0
arq1+1 0 oo oo 0 0 e 0 =1
Yo yiooc 0 Y- 0 0 1 0 0
0 0 1 0 0
0 0 1 0
and
a9 0 1 .
ary, 1 0 0
arv+1+1 0 - .- 0 0 0 -1
yo yl “ e P ylfl 0 O 1
0 . 0 1 0 --- 0
0 0 1 0
respectively.

X(A)(x) = x(A")(x) 2927+
and the y;, 0 < j < L, are given by y; := #(D;) with
Dj={B=(m,.-.,n.) €Br: (M- Mem) > (aLt2;- -, ALtkm+1),
(NL—j+1,---»m0) = (a1,...,a5), ML41-n,---,0L) # (a1,...,ay) for all h > j}
Lemma 3.6. The yr_;, 0 < j < L, are recursively given by

j AL4j+1 if1<j <km
YL =1, Yo = D _Yr—jrhtn — § GLyitkm+ 1 if §=km
h=1 0 if j > km
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Proof. yr, = 1 is obvious.

If B=(m,...,nL) € Dr—j, let h > 1 be maximal with the property

B = (7717 ceesNj—h, Q15 .-, Gp—1,15,0A1, . - - 7aL7j)
Then
(M- sMj—hs @1, aL—jrn) € D_jih-

If we take a L-tuple (01,...,0;_p,a1,...,ar—j4n) € Dr—jin, 1 < h < j,

then
(771, .. 777L) = (91, ... ,Qj,h,al, ey Qp—1,Mj,01, .- - . ,aL_j) € ,lej

if and only if n; < ap and (M1,...,Mkm) > (@42, .., CLtkm+1)-
If j > km, the definition of (11, ...,n) guarantees that the last condition
holds. If j < km, it provides

(771) cee 7T]j—1) Z (CLL+2, cee ,(1L+j).
Therefore (91, ..., Mkm) > (arL+2,- -, aL1+km+1) 18 violated if and only if
J<km, (m,...,nj—1) = (ar+2, ..., ar+j), Mj < artj+1
or
j - kma (7717 cee )nj—l) - (aL+27 cee ,CLL+]'), Nkm S ar+km+1-

O

We calculate x(A”) by expanding det(zI — A”) at the columns (2L + 1)
and (L + km + 1):

VAN @) = d (T gt - apr = a1+
(— 1) "~ )L+km+1+L+2( L+t ale — s — ALt — QL4+1 — 1)) +
(1)1 (= 1)2LH1+ L4 et (A )
- pl—km e km_l)(xL+1 _ale_..._aLx_aLH —1)—det(AL)
—  gpl—km ™ (g (k=1)m 4 p(k=2)m o 4 D™ —1)
x(xLH _ ale —v—apr —apy — 1) — det(AL)

where Aj, 1 < j < L, is the matrix

r—a; -1 0 o .- 0
—asg T -1 :

A= 0
0

—ay 0 0 r —1

_yo _yl “ e oo “ . _yj
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—yrz® + (ayr — yr—1)z" ' + (a2yr + aryr—1 — yr—2)z"

+---+(aryrL + -+ a1y1 — yo)

= —zF 4+ aL+2xL71 + -+ aL+kme7km+1 + (ap4km+1 + 1)wL7km

= —;[;L_km(ka — aL+2ka_1 — = ALtkm® — QLtkm+1 — 1)
—ghRm = m D)@ = apge™ ! = — apimat — 1)
Hence
VAN (z) = gl hmgh—m Ly 1)((;3“’”“ —apr" T = —ap g — 1)
_(xL—f—l . ale — e —apy — 1))
_ $2L+1_km—n(x(k‘—1)m 4 gpk=2m o )p(z)
Therefore

X(AL(D)(z) = a@r b NI (AT (2)
:EGL—I—LM—km—n(:E(k—l)m + :L,(k—Z)m 4t 1)p(fL‘)
and the theorem is proved. O
Hence « is an eigenvalue of A (1) and the other eigenvalues are 0, the
roots of (z(F=1m 4 z(k=2)m ... 1 1) which are km-th roots of unity and the

roots of the characteristic polynomial of . As for simple a-numbers, « is
the eigenvalue with the largest absolute value, which is shown in Lemma 3.7.

Lemma 3.7. The conjugates of a non-simple a-number o with respect to
the characteristic polynomial have absolute value less than a.

Proof. Set, for |z| > 1,

fla)=1-—— 55—
and, for |z| <1,
g(z):=1—fz ) = Zajxj.
j=1

Then, for the same reasons as in the proof of Lemma 3.2, the roots of
f(x) have absolute value less than « for x # a.

If we set
pe(2) == p(x)(1 + 2™ + 22" 4 - 4 gE=Dmy,
then
p(@) = (@ — gl gy —aa = —ay).
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With g (z) := 27" *"py(x) we have

Qk(SU) = ( - .. l‘n+km o — ka+1 —_— e — W

ai Aptk 1 al a
T, )

and, for |z| > 1, qx(x) — f(x) as k — oc.

Therefore f(z) = 0 is a necessary condition for p(z) = 0, |z| > 1, and the
roots of p(x) have absolute value less than « for x # a.

Since g;.(a) > 0 for some sufficiently big k, « is a simple root of p(x) and
the lemma is proved. O

Hence Lemma 3.3, Theorem 3.1 and Theorem 3.2 are also valid for non-
simple a-numbers, whereas the proof of Theorem 3.3 cannot be directly
applied since it uses properties of non-negative matrices and Ay (1) contains
negative elements in this case.
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