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Mémoire d’habilitation à diriger des recherches de

Wolfgang Steiner

soutenu publiquement le 6 avril 2021 devant le jury constitué de
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CHAPTER 1

INTRODUCTION

The main object of this thesis are numeration systems, sometimes also called number
systems or numeral systems, which are different ways of representing numbers using
(finite or infinite) sequences of symbols (digits). These are important ingredients of
computers, in particular for computer arithmetic. For instance, Knuth starts the chapter
on Arithmetic of The art of computer programming [105, Chapter 4] by a section on
Positional number systems because “The way we do arithmetic is intimately related
to the way we represent the numbers we deal with, so it is appropriate to begin our
study of the subject with a discussion of the principal means for representing numbers”.
Fraenkel [93] writes that “The proper choice of a counting system may solve mathematical
problems or lead to improved algorithms”. For a history of numeration systems starting
from the Babylonian hexagesimal system (ca. 1750 BC), we refer to [105, Section 4.1].
Of course, integer base systems like the binary, decimal and hexadecimal systems are
the most important ones but real base systems have also found applications, e.g. in the
golden ratio encoder [84] or in β-encoders [106].

Another important application of numeration systems is Diophantine approximation,
i.e., approximation of real numbers by rational numbers. The most efficient way to ob-
tain such approximations is usually the continued fraction algorithm, which is related to
Euclid’s algorithm (Elements, ca. 300 BC). In their modern form, continued fractions go
back to Euler [89]. For a survey on Diophantine approximation, we refer to Bugeaud [75],
for multidimensional continued fraction algorithms to Schweiger [129]. Other applica-
tions of numeration systems that were considered by the author are in cryptography (see
e.g. Morain and Olivos [118]) and in the construction of low discrepancy sequences (see
Drmota and Tichy [86]).

They are connected to many areas of mathematics and theoretical computer science:
Besides the obvious connections to number theory, we are concerned with (symbolic) dy-
namical systems (since the representations of numbers are usually infinite sequences and
shifting a representation sequence gives the representation of another number), combina-
torics on words plays a role in the study of these sequences, the sets of representations
are often recognised by automata and arithmetic operations can be performed by trans-
ducers, ergodic theory often tells us expected properties of the dynamical system, and
fractal sets appear in a natural way, e.g. the triadic Cantor set or Rauzy fractals.

All these connections are covered by books [68, 69, 79, 91, 115, 116] but there
seems to be no monograph devoted exclusively to numeration systems. The present thesis
highlights some of these relations, and the bibliography positions the author’s research
within its context. A brief overview over β-expansions can also be found in the Ph.D.



thesis of Tomaš Hejda [99], which was supervised by the author together with Edita
Pelantová from the Czech Technical University in Prague.

The majority of the author’s publications deals with β-expansions, i.e., representations
of numbers with respect to a real base β, and associated expansions of integers; see [1]–
[28]. This subject, which was initiated by Rényi [125] and Parry [122], has been very
popular at least since the 1990 paper of Erdős, Jóo and Komornik [88]. We cover a wide
(although not exhaustive) range of problems on β-expansions. Another research focus lies
on (one- and multidimensional) continued fractions and S-adic sequences; see [29]–[39].
Other numeration systems like canonical and rational base number systems as well as
abstract numeration systems are treated in [40]–[45]. A few of the author’s publications
do not concern (and are not immediately motivated by) numeration systems. They deal
with m-ary search trees [46], return words [47], the similar dissection of sets [48], and
permutations [50]; we do not discuss them further.

Many results are not stated exactly as in the literature, but in a way that seems more
appropriate now, several years after their publication. Therefore, the thesis gives not only
an overview of the author’s work but also some slight ameliorations of existing results.
We choose to state only one theorem (and one open question) per subsection. Other
results and questions are mentioned in the text. The thesis concludes with an outlook on
possible research directions for the future.
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CHAPTER 2

EXPANSIONS IN POSITIVE REAL BASES

Expansions in positive real bases are natural generalisations of expansions in positive
integer bases, which have a lot of interesting properties and some applications. This chap-
ter deals with the publications [1]–[21], which cover various aspects of β-expansions such
as lexicographic characterisations, sofic shifts and shifts of finite type, natural extensions
and associated tilings, periodic and finite expansions, unique expansions, minimal weight
expansions, representations of integers, low discrepancy sequences, etc.

2.1. Definitions and basic results

In order to write a real number x ∈ [0, 1) in base β > 1 with a sequence of integer
digits dβ(x) = a1a2 · · · , one can use the greedy β-expansion, i.e.,

x =
a1
β

+
a2
β2

+ · · · with 0 ≤ ak
β

+
ak+1

β2
+ · · · < 1 for all k ≥ 1.

By multiplying by powers of β, this allows representing each real number x ≥ 0 in
base β; adding a sign provides representations of all real numbers. One way to obtain
this expansion is to use the β-transformation

Tβ : [0, 1)→ [0, 1), x 7→ βx− bβxc,
where the floor function bxc gives the largest integer not exceeding x. Indeed, one has

x =
a1
β

+
Tβ(x)

β
=
a1
β

+
a2
β2

+
T 2
β (x)

β2
= · · · = a1

β
+
a2
β2

+ · · · ,

with ak = bβT k−1β (x)c, thus ak ∈ {0, 1, . . . , dβe−1} for all k ≥ 1. When β ≥ 2 is an
integer, this gives the classical β-ary expansions, e.g., the binary expansions for β = 2
and the decimal expansions for β = 10. The prototype of a non-integer base is the golden

ratio β = 1+
√
5

2
, where ak = 1 implies that ak+1 = 0; see Figure 2.1.

The β-transformation was first studied by Rényi [125] (for its ergodic properties) and
Parry [122]. Parry showed that a1a2 · · · is a greedy β-expansion if and only if

00 · · · ≤ akak+1 · · · < dβ(1−) for all k ≥ 1,

where dβ(1−) is the limit of dβ(x) (w.r.t. the usual product topology on infinite words)
for x tending to 1 from below, and ≤ denotes the lexicographic order. For an integer
β ≥ 2, we have dβ(1−) = (β−1)ω, i.e., all sequences a1a2 · · · ∈ {0, 1, . . . , β−1}ω that do

not end with (β−1)ω are greedy β-expansions. For the golden ratio β = 1+
√
5

2
, we have



0 1

1

0

2x

1/2

2x−1

0 1

1

0

βx

1/β

βx−1

Figure 2.1. The greedy β-transformations for β = 2 and β = (1+
√

5)/2.

dβ(1−) = (10)ω, i.e., all sequences a1a2 · · · ∈ {0, 1}ω without the factor 11 and not ending
with (10)ω are greedy β-expansions.

There are many other transformations that generate β-expansions, e.g. the symmetric
β-transformations defined by Akiyama and Scheicher [58] as T (x) = βx−bβx+ 1/2c for
x ∈ [−1/2, 1/2) (see Figure 2.2), or the intermediate β-transformations βx + α mod 1.
These two examples (and many others) are of the following form.

Definition 2.1. — A right-continuous β-transformation is a surjective map

T : X → X, x 7→ βx− a(x),

where X ⊂ R admits a finite partitition X =
⋃
i∈I [`i, ri) and the digit function a : X → R

is constant on each interval [`i, ri), i ∈ I. The T -expansion of x ∈ X is the sequence

d(x) = a(x) a(T (x)) a(T 2(x)) · · · ,
and a sequence a1a2 · · · is T -admissible if and only if a1a2 · · · = d(x) for some x ∈ X.

With Kalle [13], we extended Parry’s characterisation to these transformations. Usu-
ally, we can choose a(x) = i for x ∈ [`i, ri), i.e., I is the digit set of the expansions, and a
is usually a non-decreasing map. Then [13, Theorem 2.5] states that a sequence a1a2 · · ·
is T -admissible if and only if

d(`ak) ≤ akak+1 · · · < d(r−ak) for all k ≥ 1.

In the general case of right-continuous β-transformations with non-decreasing digit func-
tion a, a sequence a1a2 · · · is T -admisssible if and only if

∀ k ≥ 1 ∃ i ∈ I : d(`i) ≤ akak+1 · · · < d(r−i ).

A sequence is weakly T -admissible if the right inequality is replaced by a weak inequality.
Throughout this section, we state many results for right-continuous β-transformation

even if they can be found in the literature only for the greedy β-transformation; the
generalisation of the proofs is straightforward. Symmetric results hold for left-continuous
β-transformations (where [`i, ri) is replaced by (`i, ri]), such as the lazy β-transformation

T̃β :
( dβe−β
β−1 ,

dβe−1
β−1

]
→
( dβe−β
β−1 ,

dβe−1
β−1

]
, x 7→ βx−

⌈
βx− dβe−1

β−1
⌉
.
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2β
1
2β

0

βx+1

βx

βx−1

−2
3

2
3

2
3

−2
3 −1

3
1
3

0

2x+1 2x 2x−1

Figure 2.2. The symmetric β-transformation for β = (1+
√

5)/2 and a trans-
formation producing 2-expansions with digits −1, 0, 1 where each non-zero digit
is followed by 0 (non-adjacent form).

While the greedy β-expansion of x ∈ [0, 1) is the lexicographically largest sequence
a1a2 · · · ∈ Aωβ satisfying x = a1

β
+ a2

β2 + · · · , with Aβ = {0, 1, . . . , dβe − 1}, the lazy

β-expansion of x ∈
( dβe−1
β−1 − 1, dβe−1

β−1
]

is the lexicographically smallest such sequence.

The β-shift is the set of sequences

Ωβ = {dβ(x) : x ∈ [0, 1)} ⊂ Aωβ ,

i.e., the closure of the set of greedy β-expansions (again w.r.t. the usual product topology
on infinite words), which is invariant under the left shift a1a2 · · · 7→ a2a3 · · · . We have
thus a1a2 · · · ∈ Ωβ if and only if 00 · · · ≤ akak+1 · · · ≤ dβ(1−) for all k ≥ 1, i.e., if a1a2 · · ·
is weakly Tβ-admissible. Therefore, Ωβ is a sofic shift (i.e., it consists of all infinite
paths in a finite labelled directed graph) if and only if dβ(1−) is eventually periodic.
Similarly, the weakly T -admissible sequences of a right-continuous β-transformation T
form a sofic shift if and only if d(`i) and d(ri) are eventually periodic for all i ∈ I; see
[13, Proposition 2.14]. The shift space Ωβ is a shift of finite type (i.e., it is obtained from
the full shift by forbidding a finite set of patterns) if and only if dβ(1−) is purely periodic.
For right-continuous β-transformations, we have the following theorem.

Theorem 2.1. — Let T be a right-continuous β-transformation with a(r−i ) 6= a(ri) for

all ri ∈ X. Then the closure of the set of T -admissible sequences {d(x) : x ∈ X} is a
shift of finite type if and only if for each i ∈ I there exist j, k ∈ I and m,n ≥ 1 such that
Tm(`i) = `j and T n(r−i ) = rk.

Since this theorem is not stated in the literature, we sketch its proof: If there is an
i ∈ I such that Tm(`i) /∈ {`j : j ∈ I} for all m ≥ 1, then for small ε > 0 the sequence
a(`i) d(T (`i)− ε) is a β-expansion of `i − ε/β that is not equal to its T -expansion, with
length of the shortest forbidden factor tending to infinity as ε → 0. In the same way,
we see that {d(x) : x ∈ X} is not a shift of finite type if there is some i ∈ I such that

7



T n(r−i ) /∈ {rk : k ∈ I} for all n ≥ 1. On the other hand, if for each i ∈ I there
exist j, k ∈ I and 1 ≤ m,n ≤ N such that Tm(`i) = `j and T n(r−i ) = rk, and N is
chosen sufficiently large such that a(x) · · · a(TN(x)) 6= a(y) · · · a(TN(y)) for all x ∈ [`i, ri),

y ∈ [`j, rj) with i 6= j, then {d(x) : x ∈ X} is a shift of finite type (in a(X)ω) with
forbidden set F = {w ∈ a(X)N+1 : w 6= a(x) · · · a(TN(x)) for all x ∈ X}.

If the β-shift is sofic, then β is called a Parry number ; if the β-shift is of finite type, then
β is a simple Parry number. Each Parry number is the Perron–Frobenius eigenvalue of a
primitive non-negative integer matrix and thus a Perron number [122], i.e., an algebraic
integer with all conjugates (besides itself) of absolute value less than β. If β is a Pisot
number, i.e., a Perron number with all conjugates of absolute value less than 1, then β
is a Parry number [70, 128]. There seems to be no simple algebraic characterisation of
Parry numbers, and the following question is a long standing open problem.

Open question 2.1. — Are all Salem numbers, i.e., algebraic integers with conjugates
on the unit circle and no conjugates (except themselves) outside the closed unit disk,
Parry numbers?

Boyd proved in [73] that Salem numbers of degree 4 are Parry numbers but he also
gives heuristics in [74] that this might not be true for degree larger than 6.

The following sections deal with properties of β-expansions, but it is usually simpler
to state (and prove) the results in terms of β-transformations. Note that x has a finite
(greedy) β-expansion if and only if T kβ (x) = 0 for some k ≥ 0, it has a purely periodic

β-expansion if and only if T kβ (x) = x for some k ≥ 1, and it has an eventually periodic

β-expansion if and only if {T kβ (x) : k ≥ 0} is a finite set.

2.2. Natural extensions

The β-transformation is clearly not bijective, and it is often convenient to extend it to
a bijective map, i.e., we consider a natural extension of it. More precisely, let (X,B, µ, T )
be a measure-preserving dynamical system, which means that (X,B, µ) is a probability
space and the map T : X → X preserves the measure µ, i.e., µ ◦ T−1 = µ. A measure-
preserving dynamical system (X̂, B̂, µ̂, T̂ ) is called a natural extension of (X,B, µ, T ) if

T̂ : X̂ → X̂ is bijective (up to µ̂-measure zero), there is a surjective map π : X̂ → X

such that π ◦ T̂ = T ◦π and µ = µ̂◦π−1, and
⋃∞
k=0 T̂

k(π−1(B)) generates the σ-algebra B̂.

In the following, B and B̂ will always be the Borel σ-algebras and we will omit them.
For a one-sided shift, a natural extension is given by the corresponding two-sided shift.

In this section, we are interested in geometric realisations of natural extensions, which
can be used e.g. for characterising the purely periodic β-expansions. Dajani, Kraaikamp
and Solomyak [81] constructed a planar natural extension of the β-transformation for all
β > 1, which is rather intricated and does not respect algebraic properties of numbers.
The following construction, which works only for Pisot numbers, turns out to be more
useful for our purposes.

If β is a Pisot number and (T,X) is a right-continuous β-transformation with digit set
a(X) ⊂ Z[β], then we can define a natural extension in the following way. If the algebraic
conjugates of β are β1, . . . , βr ∈ R, βr+1, . . . , βr+s ∈ C (with r + 2s being the degree of
β1 = β), then the representation space is

Kβ = Rr × Cs × Zβ,

8



where Zβ is the set of β-adic integers (not to be confused with the set of β-integers consid-
ered in Section 3.4), which is the closure of Z[β] w.r.t. to the topology where x, y ∈ Z[β] are
close if x−y ∈ βkZ[β] for large k. Similarly to the p-adic integers for integer p, the β-adic
integers can be considered as inverse limit lim←−Z[β]/βkZ[β], and Zβ is topologically con-
jugate to {0, 1, . . . , |N(β)|−1}ω, where N(β) denotes the norm of the algebraic integer β,
i.e., the constant coefficient p0 of the minimal polynomial xd + pd−1xd−1 + · · ·+ p0 ∈ Z[x]
of β. Indeed, the map ψ : {0, 1, . . . , |N(β)|−1}ω → Zβ, (ak)k≥0 7→

∑∞
k=0 akβ

k, is a bijec-
tion, with β ψ(a0, a1, . . . ) = ψ(0, a0, a1, . . . ). The Haar measure ν of the compact group
(Zβ,+) assigns measure |N(β)|−k to every cylinder of length k in {0, 1, . . . , |N(β)|−1}ω,
and we have ν(βE) = ν(E)/|N(β)| for every measurable set E ⊆ Zβ.

We embed Z[β] in Kβ and in K′β = Rr−1 × Cs × Zβ by

ϕβ : Z[β]→ Kβ, z 7→ (z(1), z(2), . . . , z(r+s), z).

ϕ′β : Z[β]→ K′β, z 7→ (z(2), . . . , z(r+s), z),

where z(i) ∈ Z[βi] denotes the conjugate of z ∈ Z[β] obtained by replacing β by βi. When
β is an algebraic unit, i.e., |N(β)| = 1, then βkZ[β] = Z[β] for all k ∈ N, hence Zβ
contains only one point and we can omit it in Kβ. In particular, when β is a quadratic

unit such as the golden ratio β = 1+
√
5

2
, the representation space is just Kβ = R2.

The past of a point x ∈ X under the transformation T can be represented by its Rauzy
fractal, which is the Hausdorff limit

R(x) = lim
k→∞

ϕ′β
(
x− βkT−k(x)

)
=

{
−
∞∑
k=0

ϕ′β(akβ
k) : a−ka−k+1 · · · a0d(x) is T -admissible for all k ≥ 0

}
.

Since ϕ′β(βk) tends to 0 exponentially, R(x) is compact. The natural extension domain is

X̂ =
⋃
x∈X
{x} ×R(x) ⊂ Kβ,

i.e., we associate each point x ∈ X with its past, and the natural extension map is

T̂ : X̂ → X̂, (x1, . . . , xr+s, y) 7→ (β1x1, . . . , βr+sxr+s, βy)− ϕβ(a(x1)).

We have π1 ◦ T̂ = T ◦ π1, where π1 : Kβ → R is the projection on the first coordinate.

Note that T̂ is piecewise expanding in the first coordinate (by the factor β1 = β) and
piecewise contracting in the other coordinates (by the factor β2 · · · βr+s/|N(β)| = 1/β).

Denote by X̂β and Rβ(x) the natural extension domain and the Rauzy fractals of the

greedy β-transformation Tβ. For an integer β ≥ 2, we have X̂β = [0, 1)×Zβ; examples for
quadratic Pisot numbers are given in Figure 2.3 and for cubic Pisot units in Figure 2.4.

Let µ̂ be the product measure of the Lebesgue measure on Rr×Cs and the Haar measure
on Zβ, normalised so that µ̂(X̂) = 1 (if X̂ has positive measure). Since µ̂(T̂ (B̂)) = µ̂(B̂)

for all measurable sets B̂ ⊂ X̂ with π1(B̂) ⊂ [`i, ri) for some i ∈ I, and T̂ (X̂) = X̂,

we obtain that T̂ is bijective on X̂ up to a set of measure zero. For the following
theorem, it mainly remains to show that X̂ has positive measure. This was done using the
(multiple) tilings of the following section in [13, Theorem 3.7] for Pisot units (where Zβ is
a singleton) and by Berthé and Siegel in [67, Theorem 2 (2)] for (non-unit) Pisot greedy
β-transformations Tβ; see also [16, Theorem 2] in a work with Minervino. The general
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0
−β

1/β

1

1
−1/β

(1, 0, 0)

(1, 1, 0)

(1, 1, 1 + β + β2 + · · · )

(1, 1, 1)

(0, 0, 1 + β + β2 + · · · )

Figure 2.3. Natural extension domain X̂β of the greedy β-transformation Tβ
for the golden ratio β2 = β + 1 and for β2 = 2β + 2. For β2 = β + 1, we have
β2 = −1/β and Zβ is a singleton, thus T̂ (x1, x2) = (βx1−bβx1c,−x2/β−bβx1c).
For β2 = 2β + 2, we have β2 = −2/β and elements

∑∞
k=0 akβ

k ∈ Zβ, with

ak ∈ {0, 1}, are represented as
∑∞

k=0 ak2
−k−1.

e1

eβ
e1

eβ

Figure 2.4. Natural extension X̂β of the greedy β-transformation Tβ for the
Tribonacci number (β3 = β2+β+1) and the smallest Pisot number (β3 = β2+1).
Here, e1 = ϕβ(1), eβ = (1, 0, . . . , 0), and Kβ is represented as in [13].

result follows by a combination of these proofs. Note that in [67, 16] the representation
space is not defined using Zβ but by finite places of the number field Q(β); this adds
some additional algebraic structure which is not needed here, and the equivalence of the
two representations for our purposes is proved with my student Tomaš Hejda in [19].

Theorem 2.2. — Let T be a right-continuous β-transformation with a Pisot number β
and a(X) ⊂ Z[β]. Then the dynamical system (X̂, µ̂, T̂ ) is a natural extension of the
dynamical system (X, µ̂ ◦ π−11 , T ).

Note that we do not determine first an invariant measure µ of (X,T ) and then show that

(X̂, µ̂, T̂ ) is a natural extension (X,µ, T ), but our construction of the natural extension
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also provides the invariant measure µ = µ̂◦π−11 , which is absolutely continuous w.r.t. the
Lebesgue measure. In many cases, the absolutely continuous invariant measure is unique.

Theorem 2.2 can certainly be extended to Salem numbers provided that X̂ is bounded.

Open question 2.2. — Is there a Salem number β such that X̂β is bounded? Is there

a Salem number β such that X̂β is not bounded?

2.3. Periodic β-expansions

We know from Bertrand [70] and Schmidt [128] that, when the base β is a Pisot
number, x ∈ [0, 1) has an eventually periodic β-expansion if and only if x ∈ Q(β). This
result easily extends to right-continuous β-transformations with digit set a(X) ⊂ Q(β).
One of the main features of the natural extension presented in the previous section is that
it characterises the purely periodic β-expansions. Similarly to Theorem 2.2, the following
result is a generalisation of [13, Theorem 3.2] and [67, Theorem 3]; for the greedy β-
transformation with a quadratic Pisot unit, this was proved by Hama and Imahashi [98].

Theorem 2.3. — Let T be a right-continuous β-transformation with a Pisot number β
and a(X) ⊂ Z[β]. Then T n(x) = x for some n ≥ 1 if and only if qx ∈ Z[β] for some

q ∈ Z with gcd(q,N(β)) = 1 and ϕβ(x) ∈ X̂.

Here, ϕβ is extended canonically to elements x ∈ Z[β]/q with gcd(q,N(β)) = 1; indeed,
we can regard such an x as an element of Zβ because there is a unique sequence a0a1 · · · ∈
{0, 1, . . . , |N(β)|−1}ω satisfying

∑∞
k=0 qakβ

k = qx (in Zβ).
For integers β ≥ 2 and the greedy β-transformation, Theorem 2.3 states the well-known

fact that the β-ary expansion of x ∈ [0, 1) is purely periodic if and only if x is a rational
number p/q with gcd(q, β) = 1, i.e., p/q ∈ Zβ.

Theorem 2.3 allows us to study the quantity

γ(β) = inf{p/q ∈ Q ∩ [0, 1) : gcd(q,N(β)) = 1, T nβ (p/q) 6= p/q for all n ≥ 1} ∪ {1},
in other words, the maximal interval starting at 0 where all rational numbers with de-
nominator coprime to the norm of β have purely periodic greedy β-expansion. If β ≥ 2 is
an integer, then γ(β) = 1. Schmidt [128] proved that γ(β) = 1 also holds for β2 = aβ+1,
a ≥ 1, while we know from Hama and Imahashi [98] that γ(β) = 0 if β2 = aβ− 1, a ≥ 3.
By Akiyama [52], we have γ(β) > 0 if β is a Pisot unit satisfying the finiteness property

(Fβ) for each x ∈ Z[β] ∩ [0, 1) we have T nβ (x) = 0 for some n ≥ 0;

this condition implies that the origin is an inner point of Rβ(0). For the smallest Pisot
number (β3 = β + 1), Akiyama and Scheicher [57] found the surprising value γ(β) =
0.666666666086 · · · , which is not equal to 2/3 or another rational number. Indeed, with
Adamczewski, Frougny and Siegel [11, Theorem 1.2] we proved that γ(β) is irrational
for all cubic Pisot units satisfying (Fβ) such that the number field Q(β) is not totally
real. We also proved in [11, Theorem 1.1] that γ(β) = 0 if β is a cubic Pisot unit not
satisfying (Fβ). This is due to the fact that, at each point ϕ′β(x) on the boundary of the
Rauzy fractal (with x ∈ Q(β)), this Rauzy fractal looks like a spiral.

For Pisot non-units that are not in Z (but that satisfy (Fβ)), the first values of γ(β)

were calculated by Akiyama, Barat, Berthé and Siegel [53]: γ(2+
√

7) = 0, γ(5+2
√

7) =
(7−
√

7)/12. With Hejda [19], we give a simple algorithm to determine or approximate
γ(β) for quadratic Pisot numbers. For β2 = aβ + b with a ≥ b ≥ 1 and b dividing a, we
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obtain in [19, Theorem 3] the surprising result that γ(β) = 1 if and only if a ≥ b2 or
(a, b) ∈ {(24, 6), (30, 6)}; moreover we have γ(β) = 0 if a = b ≥ 3.

Open question 2.3. — Is it possible that γ(β) > 0 when β does not satisfy (Fβ)?

By completely different methods (exponential sums over finite fields), we consider with
Shparlinski [15] expansions in integer bases that are purely periodic but contain all pos-
sible factors up to a certain length. In [15, Theorem 1], we show that, for any integer
base β ≥ 2, fixed ε > 0, for almost all primes p and all 1 ≤ m < p, the number of
different factors of length k in the expansion of m/p is (1 + o(1))βk as p→∞, provided
that k ≤ (17/72− ε) logβ p. This is motivated by applications to pseudorandom number
generators; see Blum, Blum and Shub [72].

2.4. Tilings

The natural extension defined in Section 2.2 gives rise to several (multiple) tilings.
A collection C of tiles in K is a multiple tiling of K with multiplicity m if every point
of K lies in at least m tiles and almost all points lie in exactly m tiles. (Often additional
conditions are imposed, e.g. that the tiles are compact, that they are the closures of their
interiors, that there are finitely many tiles up to translation, etc. While all our tiles are
compact, they sometimes contain only one point and hence are not the closures of their
interiors.) If m = 1, then we say that C is a tiling.

The first collection of tiles is

Cext = {ϕβ(z) + X̂ : z ∈ Z[β]};
note that ϕβ(Z[β]) is a lattice in Kβ. By intersecting these tiles with the “hyperplane”
π1(x) = 0 (and omitting the first coordinate), we obtain the aperiodic collection

Caper = {R(z)− ϕ′β(z) : z ∈ Z[β] ∩X};
see Figure 2.5.

A sufficient condition for having finitely many different Rauzy fractals is that all end-
points of the intervals [`i, ri), i ∈ I, are in Q(β) and have thus eventually periodic
T -expansion, i.e., {T k(`i) : k ≥ 0} and {T k(r−i ) : k ≥ 0} are finite sets. This holds in
particular for the greedy β-transformation. However, we can weaken this condition. For
a point x in the interior X◦ of X, we say that matching holds if T nx(x) = T nx(x−) for
some nx ≥ 1; we define nx as the smallest positive integer with this property and nx =∞
if we do have no matching. (Since nx = 1 when x is continuous, we are only interested
in the discontinuity points of T .) The pre-matching set is

P =
⋃
x∈X◦

{T k(x) : 1 ≤ k < nx} ∪ {T k(x−) : 1 ≤ k < nx}.

By [13, Proposition 3.9], we have R(x) = R(y) if (x, y] ∩ P = ∅. This implies that the
density of the invariant measure µ̂◦π−11 is constant between consecutive points of P (and
equal to the measure of R(x) up to a normalising constant). The following theorem is
again proved only for Pisot units in [13, Theorem 4.10 and Proposition 4.20], but can be
easily extended to non-units. Note that the finiteness of the pre-matching set P is needed
for having finitely many different Rauzy fractals, which are then given by a graph-directed
iterated function system, but the finiteness is probably not needed for the tiling theorem.
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−2

−1

0

1
−β

1−β

2−β
2−2β

3−2β

β−3

β−2

β−1

2β−3

Rβ(2−β)−ϕ′β(2−β)

Rβ(0)−ϕ′β(0)

Rβ(2β−3)−ϕ′β(2β−3)

Rβ(β−1)−ϕ′β(β−1)

Tβ(0)

Tβ(β2 − β − 1)

Tβ(−β2 + 2β)

Tβ(β − 1)

Tβ(−β + 2)

Tβ(β2 − 2β + 1)

Tβ(−β2 + β + 2)

Tβ(2β2 − 2β − 3)

Tβ(3β2 − 3β − 4)

Tβ(β2 − 3)

Tβ(2β2 − β − 4)

Tβ(2β2 − 3β − 1)

Tβ(3β2 − 4β − 2)

Tβ(−3β2 + 5β + 1)

Tβ(−2β2 + 4β)

Tβ(−3β2 + 4β + 3)

Tβ(−2β2 + 3β + 2)

Tβ(−β2 + 3β − 2)

Tβ(2β − 3)

Tβ(−2β2 + 5β − 2)

Tβ(−β2 + 4β − 3)

Tβ(−2β + 4)

Tβ(β2 − 3β + 3)

Tβ(2β2 − 4β + 1)

Tβ(3β2 − 5β)

Tβ(−2β2 + β + 5)

Tβ(−β2 + 4)

Tβ(−3β2 + 3β + 5)

Tβ(−2β2 + 2β + 4)

Figure 2.5. The tilings Cext and Caper for β2 = β+1 (left, ϕβ(z)+X̂β is labeled
by z) and the tiling Caper for β3 = β2+β+1 (right, Tβ(z) = ϕ′β(z)−Rβ(z)).

Theorem 2.4. — Let T be a right-continuous β-transformation with a Pisot number β
and digit set a(X) ⊂ Z[β] such that the pre-matching set P is finite. Then Cext and Caper
form multiple tilings of Kβ and K′β with the same multiplicity. If (W) holds, then the
multiplicity is 1.

The condition (W), which is a weakening of the finiteness condition (F), is given in
[13, p. 750]. We only state it here for Tβ:

(Wβ) ∀x ∈ Pβ ∃ y ∈ [0, 1− x), n ≥ 0 : T nβ (x+ y) = T nβ (y) = 0,

where Pβ denotes the set of purely periodic points in Z[β]∩ [0, 1). Recall from Section 2.3
that (Fβ) means that Pβ = {0}, which obviously implies (Wβ). Barge [63] proved that
condition (Wβ) holds for all Pisot numbers β; his proof is rather intricate. Previously, this
was known for large classes of Pisot numbers, in particular due to results with Akiyama
and Rao [5], which are proved combinatorially.

Surprisingly, the condition (W) does not hold for certain symmetric β-transformations,
and we showed in [13] that the multiplicity of the tilings for the Tribonacci number
(β3 = β2 + β + 1) and for the smallest Pisot number (β3 = β + 1) is 2. Hejda [100]
extended this result to multinacci numbers and proved that the multiplicity is d−1 for
βd = βd−1 + βd−2 + · · ·+ 1.

Open question 2.4. — Is it possible that (Wβ) holds for a Salem number?

The original motivation of the author for studying the collection of tiles Cext was to de-
termine digits in the β-expansion of a number without determining the whole expansion:
If a(X) ∈ Z[β], then we have T k(x)− βkx ∈ Z[β], thus

ϕβ(βkx) ∈ {T k(x)} ×R(T k(x)) + ϕβ(Z[β])
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provided that 0 ∈ R(x). If ϕ′β(βkx) is in the interior of R(T k(x)), in particular if 0 is

in the interior of R(x), and Cext is a tiling, then we obtain that ϕβ(βkx) mod ϕβ(Z[β])
determines T k(x) and thus the (k+1)-st digit of the T -expansion of x; see [13, Theo-
rem 4.23]. For quadratic Pisot units, this was already applied with Drmota in [1] and
in [2] to prove distribution results for digits of polynomial sequences.

In certain cases, the central tile Rβ(0) given by the greedy β-transformation Tβ also
induces a periodic tiling of K′β. More precisely, this holds when condition (QM) in [16]

is satisfied, i.e., when the Z-module generated by {T k+1
β (1−)−T kβ (1−) : k ≥ 0} has rank

deg(β)−1, in particular when the cardinality of {T kβ (1−) : k ≥ 0} is deg(β). This periodic
tiling is important for Rauzy fractals defined by substitutions (see Section 4.3 below),
but its relevance to β-expansions is less clear.

Finally, choosing only points (0, x2, . . . , xr+s, 0) ∈ ϕβ(z) + X̂β, z ∈ Z[β], where X̂β is
the natural extension domain of (Tβ, [0, 1)) gives an SRS tiling; see Section 5.2 below.

2.5. Fibonacci expansions

We now turn to (positional) representations of integers. Let U = (Uk)k≥0 be a strictly
increasing sequence of integers with U0 = 1. From Fraenkel [92], we know that each
integer N ≥ 0 has a (greedy) U -expansion,

N =
n∑
k=1

akUn−k with 0 ≤
j∑

k=1

akUj−k < Uj for all 1 ≤ j ≤ n.

If limk→∞ Uk+1/Uk = β, then the language of the U -expansions is essentially the language
of the (greedy) β-expansions, and for certain sequences U these two languages are equal.
A classical example of these numeration systems is given by the Zeckendorf expansions,
where U is the Fibonacci sequence U0 = 1, U1 = 2, Uk = Uk−1 +Uk−2 for k ≥ 2, and β is
the golden ratio. In this case, the sequences of digits are characterised by the fact that
each 1 is always followed by a 0.

Similarly, to lazy β-expansions, one can define lazy U -expansions. In [7], we compared
the sum of digits of the greedy Fibonacci expansion sg(N) to that of the lazy Fibonacci
expansion s`(N). Even if s` can be much larger than sg, e.g. sg(Uk) = 1 and s`(Uk) =
bk/2c+ 1, they are usually correlated. We proved a central limit theorem for their joint
distribution and showed that their correlation is about 0.90983.

Theorem 2.5. — We have, as N →∞,

1

N
#
{

0 ≤M < N :
sg(M)− µg logβ N

σ
√

logβ N
< xg,

s`(M)− µ` logβ N

σ
√

logβ N
< x`

}
→ 1

2π
√

1− C2

∫ x`

−∞

∫ xg

−∞
e
− 1

2(1−C2)
(t2g+t

2
`−2Ctgt`)dtgdt`

with β = 1+
√
5

2
, µg = 1

β2+1
, µ` = β2

β2+1
, σ = 5−3/4 and C = 9− 5β ≈ 0.90983.

The proof uses a Markov chain defined by the two expansions.

Open question 2.5. — Can we use natural extensions to study U -expansions defined
by other Pisot numbers β?
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2.6. Minimal weight expansions

In public key cryptosystems based on the Diffie–Hellman scheme, one has to calculate
scalar multiples Ng of a group element g, where N is a large integer and the group is often
an elliptic curve or the multiplicative group of a finite field. In order to calculate Ng, one
uses a U -expansion N =

∑n
k=1 akUn−k (with integer digits), usually with Uk = 2k. The

number of operations depends then heavily on the Hamming weight (number of non-zero
digits) of the expansion or on the sum of the absolute values of the digits,

∑n
k=1 |ak|. In

the most interesting case, ak ∈ {0,±1}, the two notions are equivalent.
Each integer N has a unique expansion N =

∑
k≥0 ak2

k with ak ∈ {−1, 0, 1} where each
non-zero digit is followed and preceded by zero digits; this is the non-adjacent form (NAF).
The weight of these expasions is minimal among all expansions in base 2, it is on average
(log2N)/3. Heuberger [101] determined all 2-expansions with the same (minimal) weight.
For U -expansions with the Fibonacci sequence U = F , he showed that each integer has an
expansion with ak ∈ {0,±1} with forbidden factors 11, 1(−1), 101, 10(−1), 1001 and their
inverses, and the weight of this expansion is minimal. With Frougny [9], we determined
all expansions of minimal weight, for U -expansions in Fibonacci base (Figure 2.6) as well

as for β-expansions with β = 1+
√
5

2
. The weight of these U -expansions is on average

(logβ N)/5 ≈ 0.288 log2N .

0

1

1̄

0

0 0

0

11̄

1̄

1

0
0

1

1̄

0
0

Figure 2.6. Automaton recognising the F -expansions of minimal weight in {−1, 0, 1}∗.

We obtained similar results for Uk = Uk−1 + Uk−2 + Uk−3 (Tribonacci) and the cor-
responding β-expansions (β3 = β2 + β + 1). An interesting case is Uk = Uk−2 + Uk−3.
The corresponding β is the smallest Pisot number (β3 = β + 1), and the weight of
these U -expansions is about 0.235 log2N . The main result of [9] is that the language
of β-expansions with minimal sum of absolute values of digits is regular when β is an
algebraic number without conjugates on the unit circle. More precisely, this is stated
in [9] only for Pisot numbers; its extension to the more general case is immediate from
Frougny, Pelantová and Svobodová [94, Theorem 5.7].

Open question 2.6. — Does the sequence U defined by Uk = Uk−2 + Uk−3 minimise
the average weight of minimal weight expansions?

In order to avoid side-channel attacks on cryptographic algorithms like analysis of
power consumption, one can use the redundancy of the U -expansions of minimal weight.
With Grabner [12], we proved that the language of such expansions is regular if U is
(eventually) recurrent with a characteristic polynomial that is the minimal polynomial of
a Pisot number β.

Theorem 2.6. — Let U = (Uk)k≥0 be a strictly increasing sequence of integers with
U0 = 1, satisfying eventually a linear recurrence with characteristic polynomial equal to
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the minimal polynomial of a Pisot number. Then the set of U-expansions of minimal
weight is recognised by a finite automaton.

Here, it is probably not possible to replace the Pisot condition by a hyperbolic one.
The average number of representations in these systems grows with N logβ α, where α

is the dominating eigenvalue of the corresponding automaton. Moreover, there exists a
transducer that outputs all U -expansions of minimal weight of a number given a certain
U -expansion of this number as input. The largest number of different U -expansions of
minimal weight of the same number is therefore given by the joint spectral radius of a
family of matices.

0|0 1|1
0|0

0|0
0|0

1̄|1̄
0|1̄

1̄|0
0|0

0|11̄|0

0|0

1̄|0
1̄|1

0|1

0|0

1̄|1̄0|0

0|0
0|0

1|10|1
1|0

0|0
0|1̄ 1|0

0|0

1|0
1|1̄

0|1̄

0|0

0|1̄

0|1

Figure 2.7. Transducer normalising F -expansions of minimal weight in {−1, 0, 1}∗.

2.7. Unique β-expansions

We have already seen that β-expansions are not unique. In fact, if β is not an integer,
then almost all numbers have uncountably many β-expansions with digits {0, 1, . . . , bβc}.
However, it is also interesting to study numbers with unique β-expansions for a given digit
set A. Let

Uβ(A) = {u ∈ A∞ : πβ(u) 6= πβ(v) for all v ∈ A∞ \ {u}},
where πβ(u1u2 · · · ) =

∑∞
k=1 ukβ

−k. We know from Daróczy and Kátai [83] that Uβ({0, 1})
is trivial if and only if β ≤ (1+

√
5)/2, where trivial means that Uβ({0, 1}) = {0, 1}, a

being the infinite repetition of a. Therefore, the number G(A) = inf{β > 1 : |Uβ(A)| > 2}
is called generalised golden ratio of A. Glendinning and Sidorov [95] showed that the set
Uβ({0, 1}) is uncountable if and only if β is larger than the Komornik–Loreti constant
βKL ≈ 1.787; we call K(A) = inf{β > 1 : Uβ(A) is uncountable} generalised Komornik–
Loreti constant of A. Since multiplying and translating the digit set by constants does
not change the structure of unique β-expansions, the only two-letter alphabet to consider
is {0, 1}, and we can restrict to {0, 1,m}, m ∈ (1, 2], for three-letter alphabets. By
Komornik, Lai and Pedicini [107] (see also my work with Baker [18]), the generalised
golden ratio G({0, 1,m}) is given by mechanical words, i.e., Sturmian words and their
periodic counterparts; in particular, we can restrict to sequences u ∈ {0, 1}∞. Calculating
K({0, 1,m}) seems to be much harder since this restriction is not possible. Therefore, we
studied in [21]

L({0, 1,m}) = inf{β > 1 : Uβ({0, 1,m}) ∩ {0, 1}∞ is uncountable},
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following Komornik and Pedicini [108], where this quantity was determined for certain
intervals.

We use words that are generated by the substitutions (or morphisms)

L : 0 7→ 0, M : 0 7→ 01, R : 0 7→ 01,

1 7→ 01, 1 7→ 10, 1 7→ 1.

More precisely, u is a limit word of a sequence of substitutions (σk)k≥0 if u is an image
of σ0σ1 · · ·σk for all k ≥ 0. The sequence (σn)n≥0 is primitive if for each k ≥ 0 there
exists n ≥ k such that the image of each letter by σkσk+1 · · ·σn contains all letters. (This
generalises the notion of primitivity for a single substitution.) If we denote by SS the set
of limit words of primitive sequences of substitutions in a set S, then S{L,R} consists of
Sturmian words, and S{M} consists of the Thue-Morse word 0u = 0110100110010110 · · · ,
which defines the Komornik–Loreti constant by πβKL

(u) = 1, and its reflection by 0↔ 1.
We call the elements of S{L,M,R}, which to our knowledge have not been studied yet, Thue–
Morse–Sturmian words. For u ∈ {0, 1}∞ and m ∈ (1, 2], define fu(m) (if u contains at
least two ones) and gu(m) as the unique positive solutions of

fu(m) πfu(m)(supO(u)) = m and (gu(m)− 1)(1 + πgu(m)(infO(u))) = m

respectively, whereO(u1u2 · · · ) = {ukuk+1 · · · : k ≥ 1} denotes the shift orbit, and infinite
words are ordered by the lexicographic order. Define µu by fu(µu) = gu(µu). Then the
following characterisation of G({0, 1,m}) and L({0, 1,m}) is due to [107, 18, 21].

Theorem 2.7. — For m ∈ (1, 2], the generalised golden ratio is

G({0, 1,m}) =


fσ(0)(m) if m ∈ [µσ(10), µσ(0)], σ ∈ {L,R}∗M,

gσ(0)(m) if m ∈ [µσ(0), µσ(01)], σ ∈ {L,R}∗M,

f1(m) if m ∈ [µ01, 2],

1 +
√
m if m = µu, u ∈ S{L,R},

and the modified Komornik-Loreti constant is

L({0, 1,m}) =


gσ(10)(m) if m ∈ [µσ(10), µσ(010)], σ ∈ {L,M,R}∗M,

fσ(01)(m) if m ∈ [µσ(101), µσ(01)], σ ∈ {L,M,R}∗M,

g01(m) if m ∈ [µ01, 2],

fu(m) if m = µu, u ∈ S{L,M,R}.

Here, S∗ denotes the set of finite products of substitutions in S. We know that

2 ≤ G({0, 1,m}) ≤ 1 +
√
m ≤ K({0, 1,m}) ≤ L({0, 1,m}) ≤ 1 +m

for all m ∈ (1, 2], with G({0, 1,m}) = L({0, 1,m}) if and only if m ∈ {µσ(10), µσ(01)},
σ ∈ {L,R}∗M , or m = µu, u ∈ S{L,R}. Otherwise, K({0, 1,m}) is known only for m = 2:

K({0, 1, 2}) ≈ 2.536 < 3+
√
5

2
= L({0, 1, 2}).

Note that G({0, 1,m}), K({0, 1,m}) and L({0, 1,m}) are continuous in m; see [108].

Open question 2.7. — When is K({0, 1,m}) < L({0, 1,m})? Determine K({0, 1,m}).
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Figure 2.8. The critical bases G({0, 1,m}) (blue) and L({0, 1,m}) (red).

2.8. Discrepancy and bounded remainder sets

For a sequence of real numbers xn ∈ [0, 1), n ≥ 0, the discrepancy function

D(N, [a, b)) =
1

N

∣∣#{n < N : xn ∈ [a, b)} −N(b− a)
∣∣

measures the distance to uniform distribution in the interval [0, 1). For a low discrep-
ancy sequence (or pseudo-random sequence), the discrepancy sup[a,b)∈[0,1)D(N, [a, b)) is
O(logN/N). These sequences can be used for numerical integration because the error is
bounded by the discrepancy (multiplied by the total variation); see the books of Kuipers
and Niederreiter [109] as well as Drmota and Tichy [86]. Van der Corput [78] constructed
such sequences by reversing β-expansions with integer β ≥ 2. Ninomiya [121] generalised
this construction to real β > 1, by ordering the β-expansions by the lexicographic order
least significant digit first. He proved that such a sequence has low discrepancy if β is a
Pisot number and the cardinality of the Tβ-orbit of 1− is equal to the degree of β. In [8],
we defined an inverse β-substitution that allows determining xn without knowledge of its
predecessors, thus giving precise results on the discrepancy function. In particular, we
determined the bounded remainder sets of the form [0, b).

Theorem 2.8. — Let β be a Pisot number with |{T kβ (1−) : k ≥ 0}| = deg(β). For the
β-adic van der Corput sequence, N D(N, [0, b)) of is bounded (in N) for b ∈ [0, 1) if and
only if T nβ (b−) = T kβ (1−) for some k, n ≥ 0.

Open question 2.8. — Which intervals (not starting at 0) are bounded remainder sets?

In [10], we extended these results to abstract numeration sytems (that are defined in
Section 5.3).

Halton sequences are d-dimensional sequences where each coordinate is given by a van
der Corput sequence in an integer base βi ≥ 2, such that the βi are pairwise coprime; these
sequences have discrepancy O((logN)d/N). Drmota [85] obtained discrepancy estimates
for generalised Halton sequences with βi = (1+

√
5)/2 for some i. Thuswaldner [133]
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considered Halton sequences with m-bonacci bases, using Rauzy fractals. For arbitrary
Pisot bases as above (satisfying some independence condition), the Rauzy fractals defined
by the inverse β-substitutions can probably be used to obtain similar results. It would
also be interesting to find bounded remainder sets for these sequences.

2.9. Intermediate β-shifts of finite type

Similarly to the greedy β-transformation, the transformation x 7→ βx + α mod 1,
more precisely x 7→ βx+ α− bβx+ αc, with a parameter α ∈ [0, 1) is a right continuous
β-transformation and provides β-expansions of real numbers with digits in Z−α. This
transformation is conjugate to the map x 7→ βx − bβx − α

β−1c on
[

α
β−1 ,

α+β−1
β−1

)
, which

gives β-expansions with integer digits; see Figure 2.9.
It is well known that the set of bases β > 1 such that the β-shift is of finite type is dense

in [1,∞). With Li, Sahlsten and Samuel [20], we extend this to parameters (β, α). For
simplicity, we considered only parameters (β, α) where the map x 7→ βx+ α− bβx+ αc
has only one discontinuity in [0, 1).

0 1

1

0

βx+α

1−α
β

βx+α−1

α
β−1

α+β−1
β−1

α+β−1
β−1

α
β−1

βx

α+β−1
β(β−1)

βx−1

Figure 2.9. The transformations βx+ α mod 1 and x 7→ βx− bβx− α
β−1c for

β = (1+
√

5)/2 and α = 1/5.

Theorem 2.9. — The set of parameters (β, α) for which Ωβ,α is a subshift of finite type
is dense in {(x, y) : 1 < x ≤ 2, 0 ≤ y ≤ 2−x}.
Open question 2.9. — For a Pisot number β, is the set of α for which Ωβ,α is a subshift
of finite type dense in [0, 2−β]? Is it not dense when β is not a Pisot number?

The proof of Theorem 2.9 relies on a result with Barnsley and Vince [26], where we
characterised the possible expansions of the point of discontinuity both for positive and
negative β. This leads us to the next chapter.
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CHAPTER 3

EXPANSIONS IN NEGATIVE REAL BASES

Once we are familiar with expansions in positive real bases, it is natural to consider
negative bases. Negative integer bases can be traced back at least to Grünwald [97]. As
expected, many of their properties are similar to positive ones. However, some properties
are also fundamentally different, which justifies considering them in detail. For instance,
the generalisation of Parry’s result on quasi-greedy expansions of 1 is a little bit involved,
the absolutely continuous invariant measure of the (−β)-transformation need not have full
support, the set of numbers with (−β)-expansions containing no negative powers of (−β)
need not be relatively dense, etc. This chapter deals with the publications [22]–[28].

3.1. (−β)-expansions

In order to represent real numbers in negative base, Ito and Sadahiro [102] defined the
(−β)-transformation

U−β :
[ −β
β+1

, 1
β+1

)
→
[ −β
β+1

, 1
β+1

)
, x 7→ −βx−

⌊
β
β+1
− βx

⌋
.

Setting ak =
⌊

β
β+1
− βUk−1

−β (x)
⌋
, we have

x =
a1
−β +

a2
(−β)2

+ · · · with
−β
β + 1

≤ ak
−β +

ak+1

(−β)2
+ · · · < 1

β + 1
for all k ≥ 1,

similarly to greedy β-expansions. By multiplying by powers of (−β), this allows repre-
senting each real number in base (−β) with digits in A−β = {0, 1, . . . , bβc}. This is the
first advantage of negative bases over positive ones: We can represent all real numbers
using nonnegative digits, not only the nonnegative numbers.

Instead of U−β, it is often more convenient to study the transformation

T−β : (0, 1]→ (0, 1], x 7→ −βx+ bβxc+ 1.

Since U−β( 1
β+1
− x) = 1

β+1
− T−β(x) for all x ∈ (0, 1], the maps T−β and U−β are topo-

logically conjugate; see [23] and Figure 3.1. For x ∈ (0, 1], set d−β(x) = a1a2 · · · with
ak = bβT k−1−β (x)c. We know from [102] that a1a2 · · · = d−β(x) for some x ∈ (0, 1] if and

only if d−β(0+) ≺ akak+1 · · · � d−β(1) for all k ≥ 1, where � denotes the alternating
lexicographical order. A result similar to the characterisation of T -admissible sequences
in Section 2.1 can also be proved, even if to our knowledge it has not been stated in the
literature.

The (−β)-shift Ω−β = {d−β(x) : x ∈ (0, 1]} is sofic if and only if d−β(1) is eventually
periodic [102]. In this case, we say that β is an Yrrap number. (We coined this notion



0 1

1

0

−βx+1

1/β

−βx+2

−β
β+1

1
β+1

1
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−β
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−βx−1

−1
β(β+1)

−βx

Figure 3.1. The transformations T−β and U−β for β = 1+
√
5

2 .

with Liao in [23]: Because T−β is order-reversing, we reversed the order of the letters in
Parry’s name.) As for Parry numbers, each Pisot number is an Yrrap number and each
Yrrap number is a Perron number. However, the set of Parry numbers and the set of
Yrrap numbers do not include each other, e.g. β > 1 with β4 = β + 1 is Yrrap but not
Parry, while β > 1 with β7 = β6 + 1 is Parry but not Yrrap [23].

Open question 3.1. — Which Salem numbers are Yrrap numbers?

For β-expansions, Parry [122] characterised the possible expansions of 1: One has
a1a2 · · · = dβ(1−) for some β > 1 if and only if 00 · · · < akak+1 · · · ≤ a1a2 · · · for all
k ≥ 1. An analogue of Parry’s characterisation to (−β)-expansions of 1 is given in [25,
Theorem 2], but it is more complicated than in the positive case. The sequence

u = 100111001001001110011 · · · = lim
β→1+

d−β(1),

which is the fixed point of the morphism 0 7→ 1 7→ 100, plays a role here. Note that in
the positive case we simply have limβ→1+ dβ(1−) = 1000 · · · .
Theorem 3.1. — For a sequence of positive integers a1a2 · · · , we have d−β(1) = a1a2 · · ·
for some β > 1 if and only if akak+1 · · · � a1a2 · · · for all k ≥ 2,

a1a2 · · · 6∈ {a1 · · · ak, a1 · · · ak−1(ak−1)1}ω \ {a1 · · · ak}ω

for all k ≥ 1 with (a1 · · · ak)ω � u, and

a1a2 · · · 6∈ {a1 · · · ak1, a1 · · · ak−1(ak+1)}ω

for all k ≥ 1 with (a1 · · · ak−1(ak+1))ω � u.

3.2. Gaps in the (−β)-transformation

The β-transformation is always transitive, meaning that each two block of digits u and
w can be joined to a block of digits uvw. (In certain cases, we even have specification,
i.e., the block v can chosen to be of fixed length.) For the (−β)-transformation, this is
no longer the case when β < (1+

√
5)/2. Ito and Sadahiro [102] showed that the unique

absolutely continuous invariant measure does not have full support in this case. For
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instance, setting G1 = (T−β(1), T 2
−β(1)), we have for each x ∈ G1 \ { 1

β+1
} some k ≥ 1

such that T k−β(x) /∈ G1, and we have T−β((0, 1] \ G1) ⊆ T−β((0, 1] \ G1). Therefore, the
invariant measure of G1 is zero, and we call G1 a gap. With Liao [23, Theorem 2.1], we
described the exact structure of the gaps. Their number increases as β → 1.

Theorem 3.2. — Let β > 1 be such that βd2
n/3e < β+ 1 ≤ βd2

n+1/3e, n ≥ 1. Then there
are b2n/3c gaps in the support of unique absolutely continuous invariant measure of T−β.

For intermediate β-transformations βx+α mod 1, we know from Flatto and Lagarias
[90, Proposition 4.1] when they have gaps. For intermediate (−β)-transformations, it is
probably harder to get such a characterisation.

Open question 3.2. — For which (β, α), the transformation −βx+α mod 1 has a gap?

In [23], we showed that T−β is locally eventually onto on (0, 1] with the gaps removed,
hence T−β is exact w.r.t. its unique absolutely continuous invariant measure. A for-
mula for this measure was given by Ito and Sadahiro [102]; it consists of a series of
weighted indicator functions. For β-expansions, the formula for the invariant measure
can be deduced from the planar natural extension constructed by Dajani, Kraaikamp
and Solomyak [81]. For (−β)-expansions, no natural extension of this form is known.
For Pisot bases, the construction of a natural extension from Section 2.2 can certainly be
extended to negative bases, although we cannot use half-open intervals, hence the tilings
and the characterisation of purely periodic (−β)-expansions might not be as nice as for
β-expansions.

3.3. Finite (−β)-expansions

In Sections 2.3 and 2.4, we have seen the importance of the finiteness condition (Fβ).
The corresponding condition for (−β)-expansions is

(F−β) for each x ∈ Z[β] ∩
[ −β
β+1

, 1
β+1

)
we have Uk

−β(x) = 0 for some k ≥ 0.

(Here, it makes no sense to replace U−β by T−β.) With Krčmáriková and Vávra [27], we
gave several necessary or sufficient conditions for β having property (F−β).

Theorem 3.3. — Let β > 1.

– If Un
−β( −β

β+1
) = 0) for some n ≥ 1, then β does not satisfy (F−β).

– If p(β) = 0 and |p(−1)| = 1 for some p(x) ∈ Z[x], then β does not satisfy (F−β).
– If βd = mβd−1 + · · ·mβ+m with positive integers d,m, then β satisfies (F−β) if and

only if d ∈ {1, 3, 5}.
– If βd = (−1)d+1

∑d
k=1 ak(−β)d−k with integers ak ≥ 0 and a1 ≥ 2 +

∑d
k=2 ak, then β

satisfies (F−β).

We also characterised the cubic Pisot units satisfying (F−β). For β3 = mβ2 +mβ+m,
we did not only show (F−β) but we also calculated the smallest n such that the length
of the (−β)-fractional part of x ± y with two (−β)-integers x, y is at most n. Here, the
(−β)-fractional part of x ∈ (−β)k

( −β
β+1

, 1
β+1

)
, k ≥ 0, is Uk

−β(x(−β)−k), its length is the

smallest n ≥ 0 such that Uk+n
−β (x(−β)−k) = 0, i.e., x has (−β)-expansion

x = a1(−β)k−1 + · · · − ak−1β + ak − ak+1β
−1 + · · ·+ ak+n(−β)−n,
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and x is a (−β)-integer if n = 0; see also the following section. The corresponding length
of the β-fractional parts for (positive) β-expansions was only determined for m = 1 by
Bernat [66].

Open question 3.3. — What is the maximal length of β-fractional parts of x± y for
β-integers x, y, when β3 = mβ2 +mβ +m, m ≥ 2?

3.4. (−β)-integers

Even when (F−β) does not hold, it is interesting to study the set of numbers with finite
(−β)-expansions. The set of β-integers Zβ =

⋃
k≥0 β

kT−k−β (0) (not to be confused with
the set of β-adic integers defined in Section 2.2) was introduced by Gazeau in the 90’s in
connections with quasicrystals and studied by Burd́ık, Frougny, Gazeau and Krejcar [76]
and many others. For negative bases, the set of (−β)-integers

Z−β =
⋃
k≥0

(−β)kU−k−β (0)

was first considered by Ambrož, Dombek, Masáková and Pelantová [59]. In [22], we show
that the sequence of distances between consecutive points in Z−β is the fixed-point of an
antimorphism (which is defined on a finite alphabet if and only if β is an Yrrap number),
see also [24], and we discuss the Delone property of Z−β. It is well known that Zβ is
always relatively dense, and it is uniformly discrete if and only if 0 is not an accumulation
point of {T kβ (1−) : k ≥ 0}. From [22], we see that the situation is more complicated for
(−β)-integers, and it is possible to find β > 1 where Z−β is not relatively dense.

Theorem 3.4. — If d−β(1) is the fixed point of 3 7→ 30032, 2 7→ 2, 0 7→ 00, start-
ing with 3, then Z−β is not relatively dense. If 0 is not an accumulation point of

{U2k−1
−β ( −β

β+1
) < 0 : k ≥ 1}, then the set Z−β is uniformly discrete.

Open question 3.4. — For which numbers β > 1, Z−β is not uniformly discrete or
relatively dense?

3.5. Permutations in (−β)-expansions

The complexity of a dynamical system is usually measured by its entropy. For symbolic
dynamical systems, the (topological) entropy is the logarithm of the exponential growth
rate of the number of distinct patterns of length n. Bandt, Keller and Pompe [62]
proved for piecewise monotonic maps that the entropy is also given by the number of
permutations defined by consecutive elements in the trajectory of a point. Note that
the entropy of Tβ and T−β (as well as all piecewise linear transformations with slope of
absolute value β) is log β. Elizalde [87] gave for each permutation π a characterisation of
the infimum B+(π) of those β where π occurs as the ordering of consecutive elements in
the trajectories of the β-shift. With Charlier [28], we do the same for the (−β)-shift and
show that all the B−(π) = inf{β′ > 1 : π occurs in the (−β′)-shift} are Yrrap numbers.

Theorem 3.5. — Let β > 1. There is some permutation π such that B−(π) = β if and
only if β is an Yrrap number.

Open question 3.5. — What is the number of permutations π ∈ Sn with B−(π) = 1?
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CHAPTER 4

CONTINUED FRACTIONS AND S-ADIC
SEQUENCES

In the two previous chapters, we have considered positional numeration systems. Con-
tinued fractions can be seen as a non-positional numeration system. Their main purpose
is to approximate real numbers by rational numbers. We discuss variants of the regular
continued fractions (in dimension one) as well as multidimensional continued fraction
algorithms. As for β-expansions, we construct natural extensions and Rauzy fractals.
However, here the Rauzy fractals are not building blocks of the natural extensions but
they provide natural codings of torus translations; each sequence of partial quotients de-
fines a symbolic (S-adic) dynamical system which is (almost always) conjugate to a torus
translation. The publications for this chapter are [29]–[39].

4.1. α-continued fractions

The (regular) continued fraction expansion of x ∈ [0, 1) is

x =
1

a1 +
1

a2 +
.. .

,

with positive integer digits ai (usually called partial quotients); arbitrary real numbers can
be represented by adding integers a0. Nakada [120] defined a variant of these continued
fractions by setting

x =
ε1

a1 +
ε2

a2 +
.. .

,

where, for given α ∈ [0, 1], εk = sgn(T k−1α (x)) and ak = b1/T k−1α (x)c, with the α-continued
fraction transformation

Tα : [α− 1, α)→ [α− 1, α), x 7→
∣∣∣1
x

∣∣∣− ⌊∣∣∣1
x

∣∣∣+ 1− α
⌋

if x 6= 0, 0 7→ 0;

see Figure 4.1. We can write Tα(x) =
(−a1 ε1

1 0

)
· x, where

(
a b
c d

)
· x = ax+b

cx+d
denotes a

Möbius transformation. A slightly different kind of α-expansions was defined by Tanaka
and Ito [132] by the map Tα : [α−1, α)→ [α−1, α), x 7→ 1

x
−
⌊
1
x
+1−α

⌋
. Generalisations

of these expansions were considered by Shallit [130].
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Figure 4.1. The Gauss map T1 and the α-continued fraction transformation T1/2.
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Figure 4.2. The natural extension domain Ωα for Nakada’s α-continued frac-

tions with α ∈ {g2, 1/2, 1}, g = 1+
√
5

2 .

For both kinds of α-expansions, we can define a natural extension domain by

X̂α =
⋃

x∈[α−1,α)
{x} × Dα(x),

similarly to β-expansions, with

Dα(x) = lim
k→∞
{tM−1 · 0 : M−1 · x ∈ T−kα (x)},

and the natural extension map

T̂α : X̂α → X̂α, (x, y) 7→ (M · x, tM−1 · y) if Tα(x) = M · x.
For Nakada’s α-continued fractions, we have Dα(x) ⊆ Dα(y) if α−1 ≤ x ≤ y < α,

X̂α is a union of at most three rectangles when
√

2−1 ≤ α ≤ 1, and X̂α is a union
of countably many rectangles when 0 ≤ α <

√
2−1; see Figure 4.2. With Kraaikamp

and Schmidt [30], we gave explicit formulas for X̂α for all parameters α ∈ [0, 1], ex-
tending works of Nakada [120] and Luzzi and Marmi [117]. Here, matching of the form
Tmα (α−1) = T nα (α−) (and pre-matching sets) play a big role. If matching occurs, then the
natural extension can be described by a regular language, and the entropy h(Tα) (which
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gives the convergence rate of the continued fractions) is increasing or decreasing (in α)
depending on the sign of m−n. Matching occurs for α in intervals covering [0, 1] save a
set of Lebesgue measure 0 but Hausdorff dimension 1. Instead of the entropy, we rather
study µ(X̂α) with the (not normalised) invariant measure dµ = dxdy/(1+xy)2 because
of the following result of [30].

Theorem 4.1. — We have h(Tα)µ(X̂α) = π2/6, µ(X̂α) is continuous on [0, 1], and X̂α

contains [α−1, α)× [0, 1/(d+1)] if α−1 ≤ 1/α−d < α.

For Tanaka–Ito α-continued fractions, we proved with Carminati and Langeveld [38]
that matching also occurs for α in intervals covering [0, 1] save a set of Lebesgue measure 0
but Hausdorff dimension 1. It seems to be more difficult to give a description of the
natural extension domain X̂α in terms of unions of rectangles than in Nakada’s case,
but we exhibited with Nakada [37] for each α ∈ [0, 1] some rectangle contained in X̂α.

Interestingly, in this setting, we do not have h(Tα)µ(X̂α) = π2/6, but h(Tα)µ(X̂α) is

a montonically increasing function for α ∈ [1/2, 1], with h(T1/2)µ(X̂1/2) = π2/3 and

h(T1)µ(X̂1) = π2/6.

Open question 4.1. — Is there a dynamical interpretation of h(Tα)µ(X̂α)?

Another generalisation of continued fractions consists in choosing integer multiples of
λ = 2 cos(π/q) as partial quotients, with a fixed integer q ≥ 3. This is related to Hecke
groups. Rosen [126] used the transformation T :

[
λ
2
, λ
2

)
→
[
λ
2
, λ
2

)
, x 7→

∣∣ 1
x

∣∣− λ⌊∣∣ 1
xλ

∣∣+ 1
2

⌋
to define continued fractions. Since λ = 1 when q = 3, these are generalisations of the
nearest integer continued fractions. With Dajani and Kraaikamp [29], we introduced α-
Rosen fractions with α ∈

[
λ−1
λ
, 1
λ

]
, generalising both Nakada’s α-continued fractions and

Rosen continued fractions. We determined natural extensions (which are finite unions of
rectangles) for α ∈

[
1
2
, 1
λ

]
and showed that the transformations are weakly Bernoulli.

4.2. Multidimensional continued fraction algorithms

A multidimensional continued fraction algorithm provides approximations to real vec-
tors by rational vectors. However, there is no algorithm that shares all the good properties
of the regular continued fraction algorithm (and the α-continued fractions). Instead, we
have a wide range of different algorithms with different properties.

In this section, we consider (semi-ordered) d-dimensional continued fraction algorithms
that are defined on a set ∆ ⊆ [0, 1]d by

T : ∆→ ∆, x 7→ κ
(
ι(x)A(x)−1

)
where ι(x1, . . . , xd) = (1, x1, . . . , xd), κ(x0, x1, . . . , xd) = (x1

x0
, . . . , xd

x0
), and

A : ∆→ GL(d+1,Z)

is a piecewise constant map assigning to each x ∈ ∆ an invertible integer matrix. Note
that T ◦ κ = κ ◦ L with the piecewise linear map L : κ−1(∆)→ κ−1(∆), y 7→ yA(κ(y)).
We usually assume that the algorithm is positive, i.e., that all A(x) are nonnegative
matrices; semi-ordered means that the first coordinate of ι(x) is the largest coordinate.
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For example, the regular (1-dimensional) continued fractions are given for x 6= 0 by

A(x) =

(⌊
1
x

⌋
1

1 0

)
, T (x) = κ

(
(1, x)

(
0 1
1 −

⌊
1
x

⌋)) = κ
(
x, 1− x

⌊
1
x

⌋)
= 1

x
−
⌊
1
x

⌋
.

The cocycle associated with A is

A(n)(x) = A(T n−1x) · · · A(Tx)A(x),

i.e., we have A(m+n)(x) = A(n)(Tmx)A(m)(x) for all m,n ≥ 0. The sequences of rational

convergents p
(n)
i /q

(n)
i to x, 0 ≤ i ≤ d, are then defined by

A(n)(x) =


q
(n)
0 p

(n)
0,1 · · · p

(n)
0,d

q
(n)
1 p

(n)
1,1 · · · p

(n)
1,d

...
...

. . .
...

q
(n)
d p

(n)
d,1 · · · p

(n)
d,d

 , p
(n)
i = (p

(n)
i,1 , . . . , p

(n)
i,d ).

Their convergence to x is said to be weak if limn→∞ p
(n)
i /q

(n)
i = x for all i with 0 ≤ i ≤ d,

and strong if limn→∞ |p(n)
i − q(n)i x| = 0 for all 0 ≤ i ≤ d. The matrices

D(n)(x1, x2, . . . , xd) =

p
(n)
1,1 − q(n)1 x1 · · · p

(n)
1,d − q

(n)
1 xd

...
. . .

...

p
(n)
d,1 − q

(n)
d x1 · · · p

(n)
d,d − q

(n)
d xd


also form a cocycle w.r.t. T . Under certain conditions (given by Lagarias [110]) that are
satisfied by all continued fraction algorithms which we consider, the second Lyapunov
exponent of A (with respect to a suitable invariant measure), which describes the rate

of convergence of p
(n)
i to q

(n)
i x, is given by the first Lyapunov exponent of D. Since it

is usually much easier to determine the first Lyapunov exponent, which describes the
growth rate, than the second one, we study D rather than A. For several continued
fraction algorithms in dimension d = 2 (Brun, Jacobi–Perron, Selmer, . . . ), it is known

that the second Lyapunov exponent of A is negative, i.e., that |p(n)
i − q(n)i x| tends to 0

exponentially. In [36], we give a simple proof of this fact for the Selmer algorithm and a
lower bound that is of the same order as the numerically estimated value −0.07072.

Theorem 4.2. — For d = 2, the second Lyapunov exponent of the Selmer algorithm is
less than −0.05039. In particular, the Selmer algorithm is strongly convergent for almost
all x.

For other dimensions and algorithms, we calculate D(230)(x) for “randomly” chosen x
in order to give heuristics for the first and second Lyapunov exponents. Table 4.1 contains
the obtained value for the uniform approximation exponent, which is given by the ratio
between the first and the second Lyapunov exponents. These heuristics indicate that the
second Lyapunov exponent is positive for all considered continued fraction algorithms in
dimension d ≥ 11, except for the Arnoux–Rauzy algorithm, which however is only defined
on a set ∆ of measure zero. This contradicts several conjectures in the literature. We
are currently not aware of any method that permits proving that the second Lyapunov
exponent of a continued fraction algorithm (in high dimension) is positive.

From the assumption that A is positive, it is usually not difficult to infer that the
cones Rd

+A
(n)(x) converge to R+x, i.e., that we have weak convergence. If we drop the
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d Selmer Brun Jacobi–Perron Intermediate
2 1.3871 1.3683 1.3735 1.3606
3 1.1444 1.2203 1.1922 1.2430
4 0.9866 1.1504 1.1114 1.1817
5 0.8577 1.1065 1.0676 1.1388
6 0.7442 1.0746 1.0413 1.1034
7 0.6437 1.0493 1.0243 1.0729
8 0.5561 1.0283 1.0127 1.0468
9 0.4810 1.0102 1.0044 1.0246
10 0.4173 0.9943 0.9981 1.0054
11 0.3636 0.9799 0.9933 0.9886

Table 4.1. Uniform approximation exponents 1 − θ2(A)
θ1(A)

for the Selmer, Brun

and Jacobi–Perron algorithms, and an intermediate algorithm defined in [36].

assumption of positivity, then weak convergence is more difficult to show (except when
the algorithm is designed in a way that guarantees this property, e.g., Lagarias’ geodesic
multidemensional continued fractions [111]). Nevertheless, many α-continued fractions
(as defined in Section 4.1) converge faster than the regular continued fractions; this is
true in particular for the nearest integer continued fractions (α = 1/2). It seems that
the nearest integer variant of the Jacobi–Perron algorithm not only converges faster but
also has strong convergence in higher dimensions than the usual algorithm, namely up to
d = 13 instead of d = 10.

Open question 4.2. — Is there a “simple” continued fraction algorithm (defined on a
subset of [0, 1]d of positive Lebesgue measure) such that the second Lyapunov is negative
for all d ≥ 2, in particular for d = 14?

4.3. S-adic sequences and Rauzy fractals

The regular continued fractions are intimately related to Sturmian words. There is a
wealth of equivalent definitions of Sturmian words, for example they are discretisations
of lines with irrational slope. Standard Sturmian words can be written as w = L(v) or
w = R̃(v), with the substitutions L : 0 7→ 0, 1 7→ 01, R̃ : 0 7→ 10, 1 7→ 1, v another
standard Sturmian word; L is as in Section 2.7 and R̃ is the reversal of R. (Each Sturmian
word has the same language as a standard Sturmian word.) Therefore, w is the limit word
of a sequence of substitutions (σn)n≥0 ∈ {L, R̃}ω. More precisely, we have σ0σ1 · · · =

La1R̃a2La3R̃a4 · · · , where a1a2 · · · is the sequence of partial potients of the slope of w.
(Standard) Arnoux–Rauzy words generalise this definition to larger alphabets. They

are limit words of primitive sequences of substitutions in {α0, α1, . . . , αd}ω, with αi : i 7→
i, j 7→ ij for j 6= i, i, j ∈ {0, 1, . . . , d}. If the limit word of (σn)n≥0 has the letter frequency
vector x, then x = Mσ0x

′, where Mσ0 is the incidence matrix of σ0 and x′/‖x′‖1 is the
frequency vector of (σn)n≥1. The cones Mσ0 · · ·MσnRd

+ converge to the half line R+x,
and we say that x is a generalised right eigenvector of (σn)n≥0. Therefore, (Mσn)n≥0 is
a d-dimensional continued fraction expansion of x, and the columns of Mσ0 · · ·Mσn are
integer approximations of Rx. However, the approximation properties are not as good
as in the onedimensional case. In particuar, one would like that the abelianised prefixes

29



of Arnoux–Rauzy words always stay within bounded distance of its direction, but this
balancedness property is not always true; see Section 4.4.

With a primitive sequence of substitutions σ, we associate the symbolic dynamical
system (Xσ,Σ), where Σ is the left shift and Xσ is the shift closure of a limit word
of σ. This dynamical system is called an S-adic shift. Under mild conditions, σ has
a generalised right eigenvector x. Therefore, shift-invariant sets of sequences of substi-
tutions define a multidimensional continued fraction algorithm (provided that different
sequences of substitutions have different generalised right eigenvectors); conversely, we
associate with a positive continued fraction algorithm a set of substitutions and thus a
set of S-adic shifts.

Instead of semi-ordered continued fraction algorithms as in Section 4.2, we often prefer
here symmetric algorithms, which means that they are invariant under permutations of
coordinates. We consider positive d-dimensional continued fraction algorithms defined
on ∆ ⊆ {x ∈ [0, 1]d+1 : ‖x‖1 = 1} by

A : ∆→ GL(d+1,Z), T : ∆→ ∆, x 7→
tA(x)−1x

‖tA(x)−1x‖1
;

since x is now a column vector, we need the transpose of A(x). By choosing a substitution
selection ϕ that assigns to each x ∈ ∆ a substition ϕ(x) with incidence matrix Mϕ(x) =
tA(x), the continued fraction algorithm provides thus a sequence of substitutions ϕ(x) =
(ϕ(T n(x)))n≥0 with generalised right eigenvector x.

For a primitive sequence of substitutions σ on the alphabet {0, 1, . . . , d} with gener-
alised right eigenvector u, we can define the Rauzy fractal Rσ by projecting the abelian-
isations of prefixes of a limit word of σ along u onto some hyperplane, and taking the
closure; this is illustrated in Figure 4.3. It has subtiles Rσ(i) defined by the prefixes that
are followed by the letter i in the limit word. The original Rauzy fractal was defined
by Rauzy [124] for the Tribonacci substitution τ : 0 7→ 01, 1 7→ 02, 2 7→ 0; note that
τ 3 = α0α1α2. One motivation for Rauzy’s construction was to show that (Xτω ,Σ) is
measure-theoretically isomorphic to a translation on the torus Td = Rd/Zd (with d = 2).
The Pisot substitution conjecture states that this is true for all Pisot unit substitutions,
i.e., substitutions with unimodular incidence matrix having one eigenvalue > 1 and all
other eigenvalues strictly inside the unit circle. This conjecture is still open, even if it
has been confirmed for a lot of cases; see e.g. [54].

Arnoux, Mizutani and Sellami [60] defined Rauzy fractals associated to S-adic systems
(by projecting the vertices of the broken line on a suitable hyperplance), but only when
all substitutions have the same (Pisot) incidence matrix. With Berthé and Thuswald-
ner [34], we considered the general case. Under a set of conditions which we called
PRICE (which stands for Primitivity, Recurrence and algebraic I rreducibility of the
sequence of substitutions, C-balancedness of the limit word and the existence of a gen-
eralised left E igenvector), the Rauzy fractals form a multiple tiling. The conditions are
not necessary, and we would like to remove in particular the recurrence condition from
PRICE. As in the case of a single substitution, there are geometric coincidence condi-
tions that guarantee a (simple) tiling, and we conjecture that they are always verified,
i.e., that the S-adic shift is measure-theoretically conjugate to a translation on the torus
if σ satisfies PRICE; this is our S-adic Pisot conjecture. With Berthé, Minervino and
Thuswaldner [33], we proved the S-adic Pisot conjecture for words on 2 letters.
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Figure 4.3. The construction of a Rauzy fractal Rσ.

For continued fraction algorithms, we prove the following result in [39]. Here, a contin-
ued fraction algorithm satisfies the Pisot condition if the second Lyapunov of its cocycle
is negative. If the Pisot condition holds, then we have a multiple tiling for almost all
sequences [34]. Moreover, it suffices to prove for a single x that we have a tiling to obain
the same property for almost all points. The following theorem is a special case of [39,
Theorem 3.1].

Theorem 4.3. — Let (∆, T, A, ν) be one of the following continued multidimensional
continued fraction algorithms: Brun with d ≤ 3, Cassaigne–Selmer or Jacobi–Perron
with d = 2, with invariant measure ν equivalent to Lebesgue. Let ϕ be the associated
substitution selection. Then, for almost all (x0, x1, . . . , xd) ∈ ∆, the S-adic dynamical
system (Xϕ(x0,x1,...,xd),Σ) is a natural coding by bounded Rauzy fractals of the (minimal)
translation by (x1, . . . , xd) on Rd/Zd.

In particular, when d ≤ 3, we have for almost all vectors t ∈ Rd partitions of the torus
Rd/Zd such that the coding of the translation by t is conjugate to an S-adic Brun shift.

The particularity of the natural codings in Theorem 4.3 is that length n subtiles are
also bounded remainder sets, for all n ≥ 1. (Other natural codings are given e.g. by
billiards, where refinements of the partititions do not provide bounded remainder sets.)

Open question 4.3. — Let {F1, . . . , Fd} be a partitition of Rd/Zd generating a nat-
ural coding of a translation such that each set

⋂n
k=0R

−k
t Fik , i0 · · · in ∈ {1, . . . , h}∗, is a

bounded remainder set. Is it possible that the sets Fi have smooth boundaries?

We have studied only S-adic systems with unimodular incidence matrices, coming
from usual (multidimensional) continued fraction alogirhtms. However, there also exist
(onedimensional) continued fraction algorithms with non-unimodular matrices; see e.g.
Dajani, Kraaikamp and van der Wekken [82] and Dajani, Kraaikamp and Langeveld [80].
These algorithms give S-adic words that generalise the Sturmian words. One can associate
Rauzy fractals to these shifts, by adding lim←−Zd/M0M1 · · ·MkZd to the representation
space (similarly to non-unit Pisot numbers or rational self-affine tiles). Most results from
[34] remain valid, and one gets tilings and rotations on compact groups, generalising those
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on the torus and also tilings for non-unit Pisot numbers. What are the combinatorial
properties (e.g. pattern complexity, balancedness) of these S-adic words?

4.4. Balancedness of S-adic words

A word is C-balanced if the difference between the number of occurrences of a letter
in factors u and v of the same length is bounded by C. The word is balanced if such a C
exists and unbalanced otherwise. (Sometimes, balancedness refers only to 1-balancedness,
but we use the broader definition here.) Balanced words have letter frequencies and stay
in bounded distance to the line of the frequency vector. Sturmian words are exactly the
aperiodic 1-balanced words.

Cassaigne, Ferenczi and Zamboni [77] gave examples of unbalanced Arnoux–Rauzy
sequences. On the other hand, we showed with Berthé and Cassaigne [31] that many
Arnoux–Rauzy sequences on three letters are balanced, in particular those with “bounded
partial quotients”. We also showed that a large class of Arnoux–Rauzy sequences is 2-
balanced. Using results of Avila and Delecroix [61], we showed with Delecroix and
Hejda [32] that almost all Arnoux–Rauzy sequences (on arbitrary alphabets) as well as
Brun sequences on 3 letters are balanced. Moreover, we gave the following result for
sequences with strong partial quotients.

Theorem 4.4. — There is a constant C(h) such that each Arnoux–Rauzy word (on
d ≥ 3 letters) and each Brun word on 3 letters with strong partial quotients bounded by h
is C(h)-balanced.

Here, the strong partial quotients are bounded by h if each block of h substitutions
contains all Arnoux–Rauzy and Brun substitutions respectively.

Open question 4.4. — Are there 2-balanced Brun words?

4.5. Recognisability for sequences of substitutions

Given a substitution σ and a long enough word w in the language generated by σ,
recognisability is a form of injectivity of σ that allows one to uniquely desubstitute most
of w to another word v, i.e., express w as a concatenation of substitution words dictated
by the letters in v, with v traditionally required to be in the substitution’s language.
With Berthé, Thuswaldner and Yassawi [35], we investigate different notions of recognis-
ability. Full recognisability occurs when each (aperiodic) point admits at most one tiling
with words in the image of σ. This is stronger than the classical notion of recognisability
of a substitution, where the tiling must be compatible with the language of the substi-
tution. We show that if the substitution is on two letters, or if its incidence matrix has
full rank, or if σ is permutative, then σ is fully recognisable. Next we investigate the
classical notion of recognisability and improve earlier results of Mossé [119] and Bezug-
lyi, Kwiatkowski and Medynets [71], by showing that any substitution is recognisable for
aperiodic points in its substitutive shift. Finally we define recognisability and also even-
tual recognisability for sequences of morphisms which define an S-adic shift. We prove
that a sequence of morphisms on alphabets of bounded size, such that compositions of
consecutive morphisms are growing on all letters, is eventually recognisable for aperiodic
points. We provide examples of eventually recognisable, but not recognisable, sequences
of morphisms, and sequences of morphisms which are not eventually recognisable. As
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an application, for a recognisable sequence of morphisms, we obtain an almost every-
where bijective correspondence between the S-adic shift it generates, and the measurable
Bratteli–Vershik dynamical system that it defines.

Theorem 4.5. — If a substitution σ is on two letters or left or right permutative, then
σ is fully recognisable on aperiodic points. If a sequence of substitutions σ is eventually
growing, then σ is eventually recognisable on aperiodic points.

Here, left permutative means that the first letters of σ(a) and σ(b) are different for all
distinct letters a, b; right permutative refers to the last letters. A sequence of substitutions
(σn)n≥0 is everywhere growing if the length of the words σ0σ1 · · ·σn(a) tends to infinity
for all letters a.

Open question 4.5. — Which sequences of substitutions (without aperiodic points)
are recognisable?

4.6. Sequence related to π and
√

2

With Bosma and Dekking [49], we prove that the following five ways to define entry
A086377 in the OEIS do lead to the same integer sequence.

(an) defined by a1 = 1 and for n ≥ 2:

an =


an−1 + 2 if n is in the sequence,

an−1 + 2 if n and n−1 are not in the sequence,

an−1 + 3 if n is not in the sequence, but n−1 is in the sequence;

(bn) defined by b1 = 1 and for n ≥ 2:

bn =

{
bn−1 + 2 if n−1 is not in the sequence,

bn−1 + 3 if n−1 is in the sequence;

(cn) for n ≥ 1 defined as the position of the n-th zero in the fixed point of the morphism

φ : 0 7→ 011, 1 7→ 01;

(dn) defined by dn = b(1 +
√

2)n− 1/
√

2c for n ≥ 1;

(en) defined by en = drnc = brn + 1
2
c, with r1 = 4

π
and rn+1 = n2

rn−(2n−1) , for n ≥ 1.

The paper shows therefore links between recursions, morphic sequences, Beatty sequences
(and Sturmian sequences) related to

√
2 and a continued fraction expansion of 4/π.

Open question 4.6. — Are there similar relations between other quadratic numbers
and continued fraction expansions?
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CHAPTER 5

OTHER NUMERATION SYSTEMS

In Chapters 2 and 3, we have studied one-dimensional positional numeration systems,
in Chapter 4 we have considered higher-dimensional non-positional numeration systems.
Now we turn first to higher-dimensional positional numeration systems, then to shift
radix systems, which encompass other systems, finally to abstract numeration systems
for integers. We discuss the publications [40]–[45].

5.1. Canonical and rational base number systems

A generalisation of integer base numeration systems consists in taking an expanding
matrix M ∈ Zd×d as base and a “digit set” A ⊂ Zd (with 0 ∈ A). This is more general
than taking an algebraic integer α (with all conjugates outside the unit circle) and a digit
set A ⊂ Z[α], which was first considered by Knuth [104] for α = 2i, A = {0, 1, 2, 3},
and by Penney [123] for α = −1+i, A = {0, 1}. Here, our main object of study is the
fundamental domain F = {∑∞k=1M

−kak : ak ∈ A}. Each point in Rd has an expansion∑∞
k=`M

−kak if and only if 0 is an inner point of F . A general characterisation of pairs
(M,A) satisfying this property seems to be difficult, even for simple digit sets; see also the
next section. Another problem is to know whether almost all points in Rd have at most one
expansion in this system, i.e., whether F induces a lattice tiling with the lattice generated
by
⋃∞
k=0M

kA. Note that F is the solution of the set equation MF =
⋃
a∈A(F+a), i.e.,

an integral self-affine tile. Lagarias and Wang [112] showed that the tiling property holds
for all M with irreducible characteristic polynomial and for all complete residue systems
A of Zd/MZd.

F0

F1

Figure 5.1. Knuth’s twindragon F =
∑∞

k=1{0, 1}(−1+i)−k and its subtiles
(−1+i)−1F and (−1+i)−1(F + 1).

With Thuswaldner [45], we have extended this theory to matrices M ∈ Qd×d, thus in
particular to rational bases. We suppose thatM has irreducible characteristic polynomial,



and can thus be identified with one of the eigenvalues α, i.e., we have F = {∑∞k=1 α
−kak :

ak ∈ A} with A ⊂ Z[α]. Similarly to the representation space for natural extensions of
non-unit Pisot numbers in Section 2.2, we extend the fundamental domain to Rd×Qα−1 ;
here we use Qα−1 =

⋃∞
n=0 α

nZα−1 . Employing methods from classical algebraic number
theory, Fourier analysis in number fields, and results on zero sets of transfer operators, we
establish a general tiling theorem for these tiles. We also associate a second kind of tiles
with a rational matrix. These tiles are defined as the intersection of a (translation of a)
rational self-affine tile with Rd×{0}. Although these intersection tiles have a complicated
structure and are no longer self-affine, we are able to prove a tiling theorem for these tiles
as well. For particular choices of the digit set A, intersection tiles are instances of tiles
defined in terms of shift radix systems and canonical number systems. This enables us
to gain new results for tilings associated with numeration systems.

Theorem 5.1. — Let α be an expanding algebraic number and A ⊂ Z[α] a complete
residue system of Z[α]/αZ[α]. Then {F + (x, x) : x ∈ Z[α]} forms a tiling of Rd×Qα−1.

Open question 5.1. — Can Theorem 5.1 be extended to fundamental domains defined
by matrices M ∈ Qd×d (with reducible characteristic polynomial)?

In the special case of A being the canonical digit set {0, 1, . . . , |p0| − 1}, where pdx
d +

· · · + p0x
0 is the minimal polynomial of α, we obtain SRS tilings associated with the

parameter r =
(
pd
p0
, . . . , p1

p0

)
; here SRS stands for shift radix systems and we refer to

the next section for details. When d = 1, i.e., α = −p0/pd, we have
∑∞

i=1 aiα
−i = 0

in Zα−1 if and only if 1
pd

∑∞
i=1 aiα

−i is the expansion of a real number in the sense of

Akiyama, Frougny and Sakarovitch [56]. They showed that the set of these expansions
has a complicated structure, in particular it does not come from a context-free language.
However, we have seen that it is the intersection of a simple structure (the self-affine
set F ) with a line. This point of view gives us results on rational base number systems.
With Morgenbesser and Thuswaldner [14], we proved that all |p0|k blocks of digits of
length k appear in the expansions of integers with probability |p0|−k.

5.2. Shift radix systems

Akiyama and his coauthors [55] showed that two important classes of numeration
systems, β-expansions and canonical number systems (CNS), can be placed under the
same umbrella: shift radix systems (SRS). For a real vector r = (r0, . . . , rd−1), the SRS
(Zd, τr) is defined by the transformation

τr : Zd → Zd, (z0, z1, . . . , zd−1) 7→ (z1, . . . , zd−1,−bz0r0 + · · ·+ zd−1rd−1c).

The parameter r associated to β-expansions with an algebraic integer β is obtained by
decomposing the minimal polynomial of β as (x−β)(xd+rd−1xd−1+· · ·+r0x0). Then CNS
associated to the polynomial pdx

d + · · ·+p0x
0 is given by the parameter r =

(
pd
p0
, . . . , p1

p0

)
.

Open question 5.2. — Can we give an interpretation to shift radix systems with
(x− β)(x− β)(xd + rd−1xd−1 + · · ·+ r0x

0) ∈ Z[x] for some β ∈ C \ R?
[UPDATE: Such an interpretation has been provided very recently by Surer [131].]
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When the companion matrix Mr is contracting (in particular when β is a Pisot number
or the CNS polynomial is expanding), one can define compact tiles in Rd by

R(x) = lim
k→∞

Mk
r τ
−k
r (x) (x ∈ Zd),

where the limit is taken with respect to the Hausdorff distance. With Berthé, Siegel,
Surer and Thuswaldner [43], we established connections between these tiles and Rauzy
fractals as well as self-affine lattice tiles, and proved the following.

Theorem 5.2. — Let r ∈ Rd be such that Mr is contracting. The collection {R(x) :
x ∈ Zd} forms a multiple tiling of Rd if r ∈ Qd or (x−β)(xd+rd−1xd−1+· · ·+r0x0) ∈ Z[x]
for some β > 1, or r0, . . . , rd−1 are algebraically independent over Q.

We have also seen in [16] and [45] that the boundary has zero measure for all SRS
tiles related to β-expansions and CNS, since otherwise the corresponding Rauzy fractals
and self-affine lattice tiles would have a boundary of positive measure. We do not know
whether the measure of the boundary of SRS tiles is always zero.

With Akiyama, Brunotte, Pethő and Thuswaldner [44], we have compiled a list of
open questions on SRS; see also the survey by Kirschenhofer and Thuswaldner [103]. In
particular, generalising problems for β-expansions with Salem numbers, it is difficult to
determine for those parameters r where Mr has an eigenvalue on the unit circle whether
all τr-orbits are eventually periodic. For r = (1, λ) with |λ| < 2, we conjecture that this
is always true, but we have been able to prove this conjecture only for certain quadratic
values of λ, with Akiyama, Brunotte and Pethő [40, 41].

5.3. Abstract numeration systems

In most of the considered numeration systems, the language of the digital expansions
is regular, i.e., recognised by a finite automaton. Lecomte and Rigo [113] took the
opposite approach and defined numeration systems by finite automata: A non-negative
integer n is represented by the (n+ 1)-st word in the recognised language, ordered by the
shortlex order. With Charlier and Rigo [42], we studied S-recognisable sets in abstract
numeration systems S defined by slender languages a∗1a

∗
2 · · · a∗` , i.e., sets of integers with

S-representations that are recognised by finite automata. We showed that usually S-
recognisability is not preserved by multiplication by integers.

Theorem 5.3. — For a numeration system S with slender language a∗1a
∗
2 · · · a∗` , multi-

pication by m ≥ 2 preserves S-recognisability if and only if ` = 1, or ` = 2 and m is an
odd square.

Open question 5.3. — For which languages is S-recognisability preserved by addition?

When the language grows exponentially, one can define representations of real numbers
that are close to β-expansions. With Rigo [6], we have extended well known results on
eventually periodic β-expansions to these numeration systems. In [10], we proved that
certain abstract van der Corput sequences are low discrepancy sequences and determined
bounded remainder sets for them (cf. Section 2.8).
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CHAPTER 6

OUTLOOK

We have already stated several open questions in the preceding chapters. In the final
chapter, we describe several questions that are common to most numeration systems, in
view of a unified approach to these questions.

6.1. Finite and periodic expansions, natural extensions

A common problem for all numeration systems is the characterisation of finite and peri-
odic expansions. Each numeration system requires its own method, but some procedures
work in several systems, such as the use of natural extensions. Our goal is on the one hand
to bring together many results of this kind, on the other hand to extend them to non-
standard numeration systems (negative or complex bases, canonical numeration systems,
continued fraction variants, continued logarithms, Möbius numeration sytems, . . . ).

Most numeration systems have a natural candidate for the set of finite expansions. For
β-expansions, this is the set Z[β−1], and it is sufficient to check whether each element of
Z[β] has a finite β-expansion; the properties (Fβ) or (F−β) can be decided for each β,
but the domains of the β’s satisfying these properties have a complicated structure. For
α-continued fractions, all rational numbers have finite expansions. For Rosen continued
fractions, the natural candidate for finite expansions is Q(λ), but it is true only for
q = 3 and q = 5 that each number in Q(λ) has a finite expansion. For multidimensional
continued fractions algorithms, the question is whether a rational dependency between
the coordinates of a vector implies that the algorithm terminates. This is true for many
2-dimensional algorithms but fails for 3-dimensional Farey algorithms; see Grabiner [96].

The natural candidate for the set of eventually periodic β-expansions is Q(β). We
know that each element of Q(β) has a periodic β-expansion if β is a Pisot nunber, while
this is not true when β has a conjugate strictly outside the unit circle. Determining the
structure of the eventually periodic expansions for Salem numbers is a difficult problem.
The numbers with eventually periodic continued fractions are the quadratic numbers.
For Rosen continued fractions, the eventually periodic elements must be quadratic over
Q(λ), but we do not know if the converse is true. It is a notoriously difficult problem to
characterise the eventually periodic expansions for multidimensional continued fractions,
for example for the Jacobi–Perron algorithm.

Once that we know the eventually periodic expansions, we can ask which of them are
purely periodic. For β-expansions with Pisot numbers, we have seen the connection be-
tween natural extensions and periodic expansions. A similar relation exists for regular



continued fractions; its extension to α-continued fraction expansions is rather straightfor-
ward but not written up yet. Since we have no characterisation of the eventually periodic
expansions for Rosen fractions of multidimensional continued fractions, we also have no
appropriate version of the natural extension detecting purely periodic expansions.

6.2. Normal numbers

Somewhat opposite to the countable set of finite and periodic expansions is the set of
normal expansions. A number is called normal to an integer base β ≥ 2 if its expansions
contains each of the βn blocks of length n with frequency β−n. For real bases β > 1, a
normal β-expansion contains each block of digits with the frequency given by the invariant
measure of the β-transformation. Similarly, a number is continued fraction normal if each
block of partial quotients occurs with the frequency given by the Gauss measure. Ergodic
theory tells us that almost all numbers are normal in this sense. The problem becomes
more difficult e.g. for rational base number systems described in Section 5.1. Also a notion
of normality for S-adic systems as in Section 4.3, generalising Cantor series expansions,
would be interesting.

While ergodic theory implies that almost all numbers are normal (with respect to
any countable number of bases), it is sometimes not easy to construct such numbers.
In integer bases, there are many variations of Champernowne’s construction, and it is
possible to construct absolutely normal numbers, i.e., numbers that are normal w.r.t. all
integer bases (and even w.r.t. all Pisot bases and continued fractions). For rational base
number systems, which have a complicated language, the construction of normal numbers
seems to be much harder.

A wide open question is to know whether a particular number is normal. It is conjec-
tured that the binary expansion of

√
2 or any other algebraic number or π is normal, but

we have only much weaker partial results in this direction.
Another problem is to find normal numbers with small discrepancy. For integer bases,

we do not know if a normal expansion can be a low-discrepancy sequence, with the best
known discrepancy being O((logN)2/N) by Levin [114]; see also Becher and Carton [65].
For absolutely normal numbers, all the known constructions provide sequences with rather
larger discrepancy; see Scheerer [127].

Finally, we would like to know which operations preserve normality. Wall [135] proved
that qx+ r is normal for each normal number x and rational numbers q, r (with q 6= 0).
Vandehey [134] showed that Möbius transformations preserve normality for continued
fractions. Other operations like the prefix selection by regular languages also preserve
normality (in integer bases); see Agafonov [51] and the chapter by Becher and Carton [64].
The corresponding problems for β-expansions or multidimensional continued fractions are
open.

6.3. Matching properties

A numeration system can often be modified to give a family of numeration systems de-
pending on a parameter α, for example the intermediate β-transformation βx+α mod 1
or the α-continued fractions. For at most countably parameters α, the orbits of the dis-
continuity points are finite and hence the associated subshifts satisfy a Markov property.
However, we have seen above that we also get nice properties when the limits from the
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left and the right at the discontinuity points meet again in the future. This “matching”
property holds for almost all α in the case of α-continued fractions and for the interme-
diate β-transformation with certain (Pisot) bases β; it also holds for α-Rosen continued
fractions at least in a certain range.

We conjecture that the intermediate β-transformations satisfy almost everywhere
matching for all Pisot numbers β (but not for other bases β > 1, except possibly for
Salem numbers); this would also give a positive answer to the first part of the Open
Question 2.9. Note that continued fractions satisfy the Pisot condition of Section 4.3.
For the moment, the only known method for checking the matching property is to make
a combinatorial analysis of each underlying system. It would be very interesting to find a
general argument. Another problem is to find matching properties in higher dimensions
(e.g., for β-expansions with complex bases, or for multidimensional continued fraction
algorithms with the Pisot condition, such as the Jacobi–Perron algorithm).
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[68] V. Berthé & M. Rigo (eds.) – Combinatorics, automata and number theory,
Encyclopedia of Mathematics and its Applications, vol. 135, Cambridge University
Press, Cambridge, 2010.

[69] (eds.) – Sequences, groups, and number theory, Trends in Mathematics,
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