Indistinguishability:
Friend and Foe

of Concurrent

Data Structures

Hagit Attiya
CS, Technion

What if things are pretending
to be what thew reallv are. ¥

Copyright & 1996 by Gerald Grow

Uncertainty is a main obstacle for desighing
correct applications in concurrent systems

Formally captured by indistinguishabilty,
SO arguing about it gives us important insights

Three examples
The good (helpful) ©
The bad (limiting) ®
& The ???..©

Traces of a Concurrent System

— = s = = = — = —p =

Projecting on Thread-Local Views

read X write X CAS

read X write Y

—p == N
failed

CAS

Indistiguishability: Same Local Views

read X write X CAS
—p —p —p
read X write Y
—p == =
failed

CAS

Indistiguishable Traces:
Same Local Views

— = —

Indistiguishable Traces:
Same Local Views

— = s = = = — = —p =

~N
~N

— e = = = = = = = =—

1. Reductions for Serializability ©

Static analysis of concurrent data
structures, by sequential reductions:

Consider only sequential traces,
and deduce properties in all traces

Attiya, Ramalingam, Rinetzky: Sequential
verification of serializability. POPL 2010

Serializability

[Papadimitriou '79]
interleaved trace

%
—p = p e e s s P =

P /
I , ;
/ /
~N) ~S ~N .
~NoNv~N @ local views
/ ‘ % N
I / /
f / /
/ /

P = = = = =] =—]

complete non-interleaved trace

Serializability = Sequential Reduction

Concurrent serializable code M, local property ¢

— Holds in a trace iff holds in all indistinguishable
traces

[Papadimitriou '79] easily imply

¢ holds in all traces of M iff ¢ holds in all
traces of M

) . . i
How to check M is serializable, ST
w/o considering all traces? BETIF

Disciplined Programming with Locks

Locking protocol ensures conflict serializability

— two-phase locking (2PL), tree locking (TL),
(dynamic) DAG locking

Verify that M respects a local locking protocol

— Depending only on thread’s local variables
& global variables locked by it

— Not centralized concurrency control monitor!

Considering only non-interleaved traces

Our Contribution: First Step

cemptete- non-interleaved traces of M

A local conflict serializable locking policy is
respected in all traces iff it is respected
in all non-interleaved traces

A local property holds in all traces
iff it holds in all non-interleaved traces

Reduction to Non-Interleaved Traces: Idea

Let o be the shortest trace that violates the locking
protocol LP

= o’ follows LP, guarantees conflict-serializability

(t,e)

Reduction to Non-Interleaved Traces: Idea

Let o be the shortest trace that violates the locking
protocol LP

= o’ follows LP, guarantees conflict-serializability
= 3 non-interleaved trace indistinguishable from o’

(t,e)

Reduction to Non-Interleaved Traces: Idea

Let o be the shortest trace that violates the locking
protocol LP

= o’ follows LP, guarantees conflict-serializability
= 3 non-interleaved trace indistinguishable from o’

(t,e)

o)

)

G > > >
(t,e) .
O ') j

= 3 non interleaved trace (indistinguishable from o)
where LP is violated

Further reduction

Almost-complete non-interleaved traces

— = = = = = =—]

A local conflict serializable locking policy is
respected in all traces iff it is respected in
all almost-complete non-interleaved traces

Need to argue about termination

2. When are barriers necessary? ®

Expensive memory ordering should be
enforced in order to ensure correctness
of certain concurrent data structures

Attiya, Guerraoui, Hendler, Kuznetsov, Michael,
Vechev: Laws of order: expensive synchronization in
concurrent algorithms cannot be eliminated. POPL 2011

The Result & Its Scope

e Concurrent data types:

— Strongly non-commutative operations
e Operations A and B s.t. A influences B, and B influences A
e E.g., two deq operations, counters, hash tables, trees,...

— Serializable solo-terminating implementations

e Mutual exclusion

Any concurrent program for these problems

must use unless it has

What this Means?

Multicores issue memory accesses out of order
to compensate for slow writes

In particular (and very common)

’

: : CPU O CPU 1
Issue a read before an earlier write,
if they access different locations | |
cache cache
| interconnect I

} memory]

Avoiding Out-of-Order Execution

Insert read-after-write (RAW) fence

Use atomic-write-after-read (AWAR)
E.g., CAS, test&set, fetch&add,...

RAW fences / AWAR are ~60 slower
than (remote) memory accesses

Write (X,1)
FENCE

Read (Y)

atomic{
read (Y)

write(X,1)
}

Proof: Must Write

If a deq does not write,
it does not influence other operations

deq 1

> = 7

no shared wrlte \\ deq ?
S |=> = = —p =]

deq’s commute

Proof: Must Write

If a deq does not write,
it does not influence other operations

deq 1
‘l
deq 1 no shared write

= = —>—> —]

Indistinguishable from a trace where deq’s
are exchanged (and 1 is returned twice)

Proof: Must Also Read

It a deq does not read, |
it is not influenced by other operations

deq 1
= — —»—{:ﬂ deq 5
~~~~~~~~~~ > ===
~~~~~~~~~~~~~ no shared‘.read

Indistinguishable from a trace where deq’s
are exchanged

Close-Up on the 15t Dequeue

deq 1

|—>—>7>—>—>|

1
é

first shared write

Close-Up on the 15t Dequeue

deq 1
I—; _yvm:; _>|
X |
é
no read from Y # X

Covering Leads to Indistinguishability

deq 1
I—; —p m:; _>|
X |
deq ¢
no read from Y # X
I—; —p == =P _>|

No legal serialization (1 is dequed twice)

3. Substituting TM for atomic blocks

Opaque transactional memory is
equivalent to atomic blocks in
concurrent programs

Attiya, Hans, Gotsman, Rinetzky: Abstractions for
Transactional memory. To appear in PODC 2013

Programming with Atomic Blocks

g :=0; s := abort

r := atomic{ while (s # commit) do
X := A.write(2); s := atomic{
y := B.write(4)}; u := A.read();

If (r = commit) then v := B.read()};
g :=1 z := g,

else e = x if (z = 1) then

three := 6 / (v - u)

Programming with Atomic Blocks

s := abort
while (s # commit) do
s :

g :
r -

If (r = commit) then
=1 zZ := g,
e e :=x if (z = 1) then
three := 6 / (v - u)

n Q

el

Design for an abstract Transactional Memory,
assuming code blocks that execute atomically

T™M,

Programming with Atomic Blocks

s := abort
while (s # commit) do
s :

g :
r -

If (r = commit) then
=1 zZ := g,
e e :=x if (z = 1) then
three := 6 / (v - u)

n Q

el

Execute with a concrete TM implementation,
replacing atomic blocks with transactions

TM,

Concrete TMs

TM_ is a library for read, write, commit, ...

History: invocations and responses between
the program and the TM_

(t1,begintx)(t1,0k) ... (t2,call.f(3))(t1,tryCommit)(t2,ret(3)) (t1,abort) ...

v o4 v A v

TM Consistency Conditions

Restrict the possible histories, e.g.
* Opacity [Guerraoui & Kapalka, '08]
e Virtual World Consistency [Imbs et al. '09]

* TMS [Doherty et al. '09]

But which of them is THE RIGHT ONE?

(t1,begintx)(t1,0k) ... (t2,call.f(3))(t1,tryCommit)(t2,ret(3)) (t1,abort) ...

v o4 v A v

TM Consistency Conditions

Restrict the possible histories, e.g.

* Opacity [Guerraoui & Kapalka, '08]

e Virtual World Consistency [Imbs et al. '09]
* TMS [Doherty et al. '09]

But which of them is THE RIGHT ONE?
e Ensures TM. replaces TM, correctly (soundness)
e Enforces minimal restrictions (completeness)

Programs (in some

have the same under TM_and TM,

Opacity Relation HEpS

History S preserves per-thread order and
order of non-overlapping transactions in history H

/ w,(x,1) \
Ty I °Cy ry(x,1
Ty —H oC)
r3(x,0) W;(x,3)
kTsl I I 'j

P

r

T

w,(x,1)

T, | —ec,

(x, O) W;(x,3)

]
I 0C3

Soundness: HEqpS =
Observational Refinement

History S preserves per-thread order and
order of non-overlapping transactions in history H

/ w,(x,1) \ / w,(x,1) \
T — °C1 r(x,1 T e, r,(x1)
T2 I) I oG T oC,
T r3(:(,0) w;(x,3) r;(x,0) ws(x,3) ?
A S | Ta—f—ec;
- VAN /

* no nesting
* no privatization
* finite histories

Soundness: Proof Outline

[Fix a program and an initial state...]

Consider a trace o of TM. with history H,
and assume HEypS for some history S of TM,

Construct a trace U = T of TM,

= Every view observed when running the program
with TMc. is also observed with TM,

How to Construct t From t?

From the trace t of TM. & the history S of TM,
construct a trace U = tof TM,

Can gather together events of each atomic block
(between start & end of a transaction) since

— No access to global variables inside atomic blocks,
only to transactional variables

— Changes to transactional variables impact other
threads only at the end of a block

Completeness: Ep is Necessary

e Construct a program P, for every history H

* Real-time order in every trace of P,

must agree with the real-time order of the
transactions in H

Summary

Indistinguishability partitions computations into
classes

Reduce the difficulty of designing / verifying
concurrent programs by picking / constructing a
representative computation from each class

to verify, or

to show it violates desired properties

You can do it too...

