Playing with Time and Space in Circuits and Programs

Gérard Berry
Collège de France
Chaire Algorithmes, machines et langages

PPS, 24/04/2013
Agenda

1. 2-adic numbers and space / time exchange in synchronous circuits

2. Never determinize non-deterministic automata !

3. Use hierarchical automata for another exponential gain in space and timing optimization
Agenda

1. 2-adic numbers and space / time exchange in synchronous circuits

2. Never determinize non-deterministic automata!

3. Use hierarchical automata for another exponential gain in space and timing optimization
Source of the 2-adic Part

2-adic Numbers (Hensel, ~1900)

• R is a completion de Q. Is it the only one?
 No: p-adic numbers for p prime
 infinite numbers written low-order bits first

• Beautiful, but physical? cf. Matière à Pensée, p. 32
 Alain Connes / JP Changeux

• Jean Vuillemin: 2-adiques integers are the right model
 of arithmetic digital circuits
 Let us create their physics!

2-adic numbers unify computable arithmetic
with Boolean logic
$2\mathbb{Z}$: the Ring of 2-adic Numbers

$x = 2x_0x_1x_2 \ldots$ low-order bits first

operations $+$ and \times from left to right

\[
\begin{align*}
0 &= 2000000... = 2(0) \\
1 &= 2100000... = 21(0) \\
2 &= 2010000... = 201(0)
\end{align*}
\]

\[
\begin{align*}
-1 &= 2111111... = 2(1) \\
-2 &= 2011111... = 20(1)
\end{align*}
\]

\[
\begin{align*}
x &= 2101010... = 2(10) \\
&= 2100000... + 2001010... \\
&= 1 + 4x
\end{align*}
\]

\[
\begin{align*}
x &= -1/3 \\
y &= 2x \\
or \quad x + y &= -1
\end{align*}
\]

\[
\begin{align*}
y &= -2/3
\end{align*}
\]
\(\mathbb{Z}_2 : \text{the Ring of } 2\text{-adic Numbers} \)

\[\pm \frac{p}{q} \text{ exists for all integer } p, q \text{ iff } q \text{ est odd (cf. Euclide)} \]

1/2 does not exist because \(x_0 + x_0 \) cannot have value 1

No order compatible with the operations

\[\not\exists -1 \leq 0 \leq 1 \]
\(\mathbb{Z}_2 \) as a Boolean Algebra

- 2-adic \(x \) seen as the set \(\{ i \mid x_i = 1 \} \)

 Example: \(-1/3 = 2^{101010...} = \{ i \mid i \text{ even} \} \)

- Pointwise Boolean operations:
 \[
 x \land y \quad x \lor y \quad \neg x \\
 (x \land y)_n = x_n \land y_n \quad \text{etc.}
 \]

- Fundamental arithmetico-logical equality:
 \[
 x + \neg x = -1
 \]
 \[
 2_1^{100011...} \quad 2_2^{011100...} \\
 \underline{+} \quad \underline{+} \\
 2_1^{111111...}
 \]
Cantor Metric Space

\[d(x,x) = 0 \]
\[d(x,y) = 2^{-n} \quad n \text{ minimal s.t. } x_n \neq y_n \]

Example: \(d(201111..., 201101...) = 1/8 \)

Lemma: \(2Z \) is ultrametric:

\[d(x,z) \leq \max(d(x,y), d(y,z)) \]

\[d(x,z) = \min(d(x,y), d(y,z)) \]
Cantor Metric Space

- Open set basis: finite prefixes
 \[x_0 x_1 \ldots x_n \rightarrow \{ 2^0 x_0 x_1 \ldots x_n y_0 y_1 \ldots y_n \ldots \mid y \in 2\mathbb{Z} \} \]

ex.: open set for \(2^{10010}\)

- Compact – very different from reals!
Lemma: \(f: \mathbb{Z}_2 \rightarrow \mathbb{Z}_2 \) continuous iff \(f(x)_n \) depends on a finite number of \(x_m \)

Continuity = preservation of information finiteness
Synchronous Functions

$x \rightarrow f(x)$

$x_0x_1\ldots x_n \rightarrow 0x_0x_1\ldots x_n$
Synchronous and Contracting Functions

- **Theorem**: \(f : 2\mathbb{Z} \to 2\mathbb{Z} \) is synchronous iff \(f(x) \) only depends on \(x_0 x_1 \ldots x_n \), i.e., iff \(f \) is contracting

\[\forall x, y. \; d(f(x), f(y)) \leq d(x, y) \]

- **Definition**: \(f : 2\mathbb{Z} \to 2\mathbb{Z} \) synchronous iff computable by a synchronous circuit (with finite or infinite memory)

Preuve: « only if » trivial,
for « if » see SDD construction later on
Moore Circuits and Strict Contraction

• A **Moore** synchronous circuit is such that any wire between an input and an output traverses a register.

- **Theorem**: A function \(f : 2\mathbb{Z} \to 2\mathbb{Z} \) is **strictly contracting** iff \(f(x)_n \) only depends on \(x_0x_1\ldots x_{n-1} \)

\[\forall \ x, y. \ d(f(x), f(y)) < d(x, y) \]

• A function \(f : 2\mathbb{Z} \to 2\mathbb{Z} \) is strictly contracting iff \(f(x)_n \) only depends on \(x_0x_1\ldots x_{n-1} \)

\[\forall \ x, y. \ d(f(x), f(y)) < d(x, y) \]
Feedbacks in Moore Circuits are Legal

\[x \rightarrow \text{Moore Circuit} \rightarrow f(x) \]
Feedbacks in Moore Circuits are Legal

\[
\forall x,y. \quad d(f(x), f(y)) < d(x, y)
\]

\[
\iff
\]

\[
\forall x,y. \quad d(f(x), f(y)) < 0.6 \cdot d(x, y)
\]

Banach theorem: any Lipschitzian function over a compact set has a unique fixpoint
Full Adder

\[s = a \text{ xor } b \text{ xor } c \]
\[r = (a \text{ and } b) \text{ or } (b \text{ and } c) \text{ or } (c \text{ and } a) \]
Addition in Space

\[r_0 = 0 \]

\[a_0 \]
\[b_0 \]
\[a_1 \]
\[b_1 \]
\[a_2 \]
\[b_2 \]
\[\infty \]

\[s_0 = a_0 + b_0 \]
\[s_1 = a_1 + b_1 \]
\[s_2 = a_2 + b_2 \]

but within infinite time!

continuity:
cut at \(n \) bits
for \(n \) output bits

\[x \cdot 2^n = x \mod 2^n \]

\[s \cdot 2^{n+1} = a \cdot 2^n + b \cdot 2^n \]
Full Adder

\[s = a \ xor \ b \ xor \ c \]
\[r = (a \ and \ b) \ or \ (b \ and \ c) \ or \ (c \ and \ a) \]

\[a + b + c = s + 2r \]
Basic 2-adic Operators

\[a + b + c = s + 2r \]

\[\begin{array}{c}
2x_0x_1...x_n... \\
\Downarrow \\
2^0x_0x_1...x_n... \\
\hline \\
2^1x_0x_1...x_n... \\
\Downarrow \\
1 + 2x \\
\end{array} \]

\[\begin{array}{c}
x \\
\Downarrow \\
2x \\
\hline \\
1 + 2x \\
\end{array} \]
Addition and Subtraction Over Time

\[a + b + 2r = s + 2r \]
\[s = a + b \]

same equation as over space!

\[a + \overline{b} + 1 + 2r = s + 2r \]
\[b + \overline{b} = -1 \]
\[\overline{b} + 1 = -b \]
\[a - b = s \]
\[s = a - b \]
Mixed Space / Time Addition

\[\begin{align*}
 x \circ y &= 2x_0y_0x_1y_1 \\
 a &= a_e \circ a_o \\
 b &= b_e \circ b_o \\
 s &= s_e \circ s_o \\
 s &= a + b
\end{align*} \]

still the same equation!

Same source code for any space / time tradeoff
Stereo Addition

Alternates 2 additions over time (even / odd bits)

\[s_e \circ s_o = (a_e + b_e) \circ (a_o + b_o) \]

Stereo = left / right channels
Addition and Subtraction Over Time

\[
\begin{align*}
 & a \quad \text{+} \quad s \\
 & b
\end{align*}
\]

\[
\begin{align*}
 & a \quad \text{+} \quad s \\
 & b
\end{align*}
\]

\[
\begin{align*}
 & a \quad \text{+} \quad s \\
 & b
\end{align*}
\]

\[
\begin{align*}
 & a \quad \text{+} \quad s \\
 & b
\end{align*}
\]
Multiplication and division by a constant

proof: \(x + 2x = 3x \)

proof: \(y = x - 2y \)

division only by odd integers!
Quasi-inverse

\[y = \frac{1}{1 - 2x} \]

\[y - 2xy = 1 \]

\[y = 1 + 2xy \]

contracting \(\Rightarrow\) synchronous but infinite memory

(cf. SDD construction)
Quasi Square Root

\[y = \sqrt{1+8x} \]

\[y = 1 + 4z \]
\[y^2 = 1 + 8z + 16z^2 \]
\[z = x - 2z^2 \]
\[y^2 = 1 + 8x - 16z^2 + 16z^2 \]

... but tells us nothing about bit transformations!
Spatio-Temporal Decomposition of f Synchronous

$f \cdot 0 = \text{first bit output by } f \text{ for inputs } 0...$

$f \cdot 1 = ... 1...$

$f \cdot w = \text{last bit output by } f \text{ for the finite word } w$

$f^0 = 0\text{-predictor} : f^0 \cdot w = f \cdot (w0) \text{ for any word } w$

$f^1 = 1\text{-predictor} : f^1 \cdot w = f \cdot (w1)$

$f^u = u\text{-predictor} : f^u \cdot w = f \cdot (wu) \text{ for any words } w, u$
Automaton of $x \rightarrow 3x$
Predictor 0 of $x \rightarrow 3x$
SDD Decomposition Step

\[f(x) = \text{mux}(x, f \cdot 1 + 2f^1(x), f \cdot 0 + 2f^0(x)) \]
SDD Space/Time Normal Form of f

Truth-table in space and time
ultra-fast : critical path = one mux
Half of the bits disappear at each cycle
Shared SDD of f with Finite Memory

f finite memory \Rightarrow finitely many distinct predictors f^u

f with n registers \Rightarrow SDD(f) may have 2^n registers
From continuous functions to circuits

f continuous but not synchronous:
• over space: trivial if infinite space
• over time: expand the time

2-adic number: \(<\text{value}, \text{validity}>\)

\[\begin{align*}
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & \ldots \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & \ldots \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & \ldots \\
\end{align*}\]

Theorem: every continuous function can be realized by a synchronous circuit with validity
Trace of a Synchronous Function

\[\text{Tr}(f) = _2 f \cdot 0 f \cdot 1 f \cdot 00 f \cdot 01 f \cdot 10 f \cdot 11 f \cdot 000 f \cdot 001 \ldots \]
\[= f \cdot 0 + 2 f \cdot 1 + 4 (\text{Tr}(f^0) \odot \text{Tr}(f^1)) \]

Application of a trace \(\text{Tr}(f) \) to an argument \(x \)
is continuous \(\Rightarrow \) \(\lambda \)-calculus?

Power series over \(\mathbb{Z}/2\mathbb{Z} \) :
\[S(f) = \sum_n \text{Tr}(f)_n z^n \]

Theorem: \(f : \mathbb{Z}_2 \rightarrow \mathbb{Z}_2 \) synchronous has finite memory
iff \(S(f) \) is algebraic over \(\mathbb{Z}/2\mathbb{Z} \)
Theorem (Van der Porten) : if f has finite memory, then the real number

$$0, f\cdot0 f\cdot1 f\cdot00 f\cdot01 f\cdot10 f\cdot11 f\cdot000 f\cdot001 \ldots$$

is either rational or transcendental

Almost any finite automaton generates a transcendental number!

Automatic Sequences: Theory, Applications, Generalizations

Jean-Paul Allouche et Jeffrey Shallit

Cambridge University Press (21 juillet 2003)
Conclusion

Thanks to Jean Vuillemin

• 2-adic numbers are the good model of arithmetic synchronous circuits (only?)

• the 2-adic metric, continuity, and synchronism are fundamental notions to explore further

• The structure of the predictor space is largely unknown

• The relation between continuous functions and validity-circuits remains to be studied (λ-calculus?)
Agenda

1. 2-adic numbers and space / time exchange in synchronous circuits

2. Never determinize non-deterministic automata!

3. Use hierarchical automata for another exponential gain in space and timing optimization
From Deterministic Automata to Circuits

\[(ab+b)^*ba\]

1-hot encoding (only one \(r_i\) to 1)

size explosion!
The Non-Deterministic Case

\((ab+b)^*ba\)

no size explosion \(\Rightarrow\) much better!
Electrical Subset Construction

\[(ab+b)^*ba\]
Electrical Subset Construction

\[(ab+b)^*ba\]

\[\text{(tick!)}\]
Electrical Subset Construction

\[(ab+b)^*ba\]
Electrical Subset Construction

$$(ab+b)^*ba$$

Graph with states s_0, s_1, s_2, and s_3, with transitions labeled by b and a.

Tick!
(ab+b)*ba

Electrical Subset Construction
Electrical Subset Construction
Electrical Subset Construction

\[(ab+b)^*ba\]
Electrical Subset Construction

\[(ab+b)^*ba\]

Diagram:

- States: \(s_0, s_1, s_2, s_3\)
- Transitions:
 - \(s_0 \rightarrow s_1\) on \(b\)
 - \(s_1 \rightarrow s_0\) on \(a\)
 - \(s_0 \rightarrow s_2\) on \(b\)
 - \(s_2 \rightarrow s_3\) on \(a\)
 - \(s_3 \rightarrow s_0\) on \(a\)

- Output:
 - \(\text{tick!}\)
 - \(\text{abba}\)
 - \(\text{ok}\)
Esterel v7 implementation

module Autom :
input a, b ;
output ok ;
local {r0, r1, r2, r3} : reg ;
refine r0 : init true ;
sustain {
 next r0 <= (r0 or r1) and b ,
 next r1 <= r0 and a ,
 next r2 <= r0 and b ,
 next r3 <= r2 and a ,
 ok <= next r3 }
end module

Compiled into C, C++, VHDL, Verilog, etc.
1. 2-adic numbers and space / time exchange in synchronous circuits

2. Never determinize non-deterministic automata!

3. Use hierarchical automata for another exponential gain in space and timing optimization
The ABRO Example

Emit O as soon as A and B have arrived
Reset behavior each time R is received

Memory write
R : Request
A : Address
B : Data
O : Write
Esterel : Linear Program

loop
 abort
 \{ await A || await B \};
 emit O;
 halt
when R
end loop

copies = residuals !
Esterel = sharing residuals
Hierarchical synchronous concurrent automata
(Synchronous Statecharts)

```
loop
  abort
    { await A || await B };
  emit O;
  halt
when R
end loop
```
The ABCRO example

Flat automaton
Hierarchical automaton

source: l'oreille cassée, Hergé
From Esterel to Circuits

Circuit = constructive proof network
loop
 { await A || await B } ;
emit O
each R

parallel threads => independent groups
sequence => group-hot
1-hot: 4 bits
log: 2 bits
group-hot: 3 bits – better scaling