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the idea is to not write the rules directly
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energy landscape

then,only, do we generate the rules
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Why?

super-concise way of building models 
in applications

captures a certain physicky way to do things 
in a syntax

thermodynamic consistency guaranteed 
(whereas undecidable in general)

natural parsimonious parameterizations
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l’IDEE definir la dynamique de reecriture a partir de la statique - comme dans la mecanique
Hamiltonienne:

x → x+ v dt
v → v − c ∂xV

(c = 1/m = compliance with potential) (the − is just that people want to minimize energy for
whatever reason)

a close mechanism is the Metropolis algorithm assume a discrete finite degree transition
graph + a V function (with real value say), to define an MC structure, draw y randomly from
the successors of x:

x → y with prob 1 when ∆V ≤ 0
x → y with prob exp(−∆V ) when ∆V ≥ 0 (else repeat)

we have that h(x, y)/h(y, x) = exp(−∆V )
in our world (for the time being!) x = site graph space is discrete and → is a transition

system which is given; the question is to generate refined rules and rates which will preserve the
TS and partition finer than ∆V s (so that Metropolis has become a static game).

4.1 INGREDIENTS of construction
(le fait de detailler la construction va faire qu’on passe en revue pas mal de la theorie de ce fait,
donc a fait deux coups d’une preze)

4.2 CAT
- categorie des graphes a sites avec morphismes laxes (on peut creer des aretes sur des sites libres)
objets = slice sur le type C cf la construction de Jon Hayman et Tobias Hendel - sous categories:
matchings et graphes realisables

- regles, le fragment node-invariant ⇒ tous les TS sont finis; pas de probleme de gestion de
creation de nom - CTMC (every event gets a rate, this gives a CTMC if finite degree)

4.3 MC
d/dtp(x, t) =

∑
y p(y, t)h(y, x)−

∑
y !=x p(x, t)h(x, y)

p(x) =
∑

y p(y)[h(y, x)/
∑

y !=x h(x, y)]
p(x) = 1/a(x)

∑
x p(y)h(y, x)

P = diag(1/A)H!P

nb: it is the same fixpoint equation in discrete time

p(x, t+ 1) =
∑

y p(y, t)h(y, x)
P (t+ 1) = H!P (t)
P = H!P

- point fixe stable par post composition avec MC morphism (Lawvere)
- finitude ⇒ compacite de Prob(finite set) ⇒ existence de points fixes
- notion d’equilibre P (y)h(y, x) = P (x)h(x, y) point fixe
- suppose TS symmetric as a graph, ⇒ unicity of fixed point

There is the question of how expressive one can be with this.
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3 The Metropolis-Hastings dtMC structure

We assume:
- an energy function E : X → R on a countable state space X
- an a priori symmetric irreflexive (α(x, x) = 0) Markov kernel α on X

With this data, we can define a discrete-time Markov chain (dtMC) as a process
that mostly but not always follows lines of decreasing energy (gradient-driven). The idea
is that α will select a priori a candidate transition which we then might accept with
a certain probability. If energy diminishes along that transition (modulo an α-related
correction, see below) we take it certainly; if it increases we take it with a decreasing
probability (as we are reluctant to climb up the energy landscape).

Note that the α kernel defines the transition graph.

Define for α(x, y) > 0 (equivalently α(y, x) > 0):

β(x, y) = min(1, eE(x)α(x, y)−1 · e−E(y)α(y, x)) acceptance probability
p(x, y) = α(x, y)β(x, y) total motion probability

In case of a rejection, we stay at x, which completes the definition of the transition
function:

p(x, x) = 1−
∑

y "=x α(x, y)β(x, y) null event probability

So - supposing wlog β(x, y) ≤ 1 - we do get discrete detailed balance1 wrt E:

p(y, x)/p(x, y) = α(y, x)/α(x, y) · β(y, x)/β(x, y)
= α(y, x)/α(x, y) · e−E(x)α(x, y) · eE(y)α(y, x)−1

= eE(y) · e−E(x)

Note that this probability equipment preserves the underlying transition graph de-
fined by α - as β(x, y) is never zero. In particular, it is still symmetric (hence irreducible;
it also preserves aperiodicity). Only the transition probabilities are altered (and loops
introduced). Unless x is a local max for E,

∑
y "=x p(x, y) < 1, and the remaining mass is

converted into p(x, x) the probability of staying put at x.

If α is uniform and the underlying transition graph is regular (with finite and non-
zero out-degree, as in for instance our 1d model above where every node has degree
2), then β(x, y) accepts certainly if ∆E := E(y) − E(x) ≤ 0 - or else with probability
exp(−∆E) ≤ 1. This case is called Metropolis. We could extend that to α(y, x)/α(x, y) =
1.

One can extend the above to ∆E = +∞ - then β(x, y) = 0 for infinite ys, ie rejection
is certain. The underlying transition graph gets restricted (eg one can refuse to jump off
a domain in the plane).

One can also extend this to non-symmetric α, in which case one needs to reject
certainly if α(y, x) = 0 (meaning β corrects the lack of symmetry by cancelling assymetric
jumps).

One can also deal with non irreflexive α, ie α(x, x) > 0 for some x, but when is this
useful?

One can use α to localize the moves, optimize the price of computing ∆E, and favour
a priori ys with a lower energy if possible. One can think of α as a heuristics -if say the
goal is to sample from the equilibrium probability.

§a common mistake - go ostinato

Suppose one repeats the αβ protocol without incrementing time. Eg write until(ωi, 0 ≤
wi ≤ 1) for the obstinate 2-step postselection (as a for loop as it almost surely termi-

1meaning for all x, y p(x)P (x, y) = p(y)P (y, x), which implies pP = p the invariance of p

6

3 The Metropolis-Hastings dtMC structure

We assume:
- an energy function E : X → R on a countable state space X
- an a priori symmetric irreflexive (α(x, x) = 0) Markov kernel α on X

With this data, we can define a discrete-time Markov chain (dtMC) as a process
that mostly but not always follows lines of decreasing energy (gradient-driven). The idea
is that α will select a priori a candidate transition which we then might accept with
a certain probability. If energy diminishes along that transition (modulo an α-related
correction, see below) we take it certainly; if it increases we take it with a decreasing
probability (as we are reluctant to climb up the energy landscape).

Note that the α kernel defines the transition graph.

Define for α(x, y) > 0 (equivalently α(y, x) > 0):

β(x, y) = min(1, eV (x)α(x, y)−1 · e−V (y)α(y, x)) acceptance probability
p(x, y) = α(x, y)β(x, y) total motion probability

In case of a rejection, we stay at x, which completes the definition of the transition
function:

p(x, x) = 1−
∑

y "=x α(x, y)β(x, y) null event probability

So - supposing wlog β(x, y) ≤ 1 - we do get discrete detailed balance1 wrt E:

p(y, x)/p(x, y) = α(y, x)/α(x, y) · β(y, x)/β(x, y)
= α(y, x)/α(x, y) · e−E(x)α(x, y) · eE(y)α(y, x)−1

= eE(y) · e−E(x)

Note that this probability equipment preserves the underlying transition graph de-
fined by α - as β(x, y) is never zero. In particular, it is still symmetric (hence irreducible;
it also preserves aperiodicity). Only the transition probabilities are altered (and loops
introduced). Unless x is a local max for E,

∑
y "=x p(x, y) < 1, and the remaining mass is

converted into p(x, x) the probability of staying put at x.

If α is uniform and the underlying transition graph is regular (with finite and non-
zero out-degree, as in for instance our 1d model above where every node has degree
2), then β(x, y) accepts certainly if ∆E := E(y) − E(x) ≤ 0 - or else with probability
exp(−∆E) ≤ 1. This case is called Metropolis. We could extend that to α(y, x)/α(x, y) =
1.

One can extend the above to ∆E = +∞ - then β(x, y) = 0 for infinite ys, ie rejection
is certain. The underlying transition graph gets restricted (eg one can refuse to jump off
a domain in the plane).

One can also extend this to non-symmetric α, in which case one needs to reject
certainly if α(y, x) = 0 (meaning β corrects the lack of symmetry by cancelling assymetric
jumps).

One can also deal with non irreflexive α, ie α(x, x) > 0 for some x, but when is this
useful?

One can use α to localize the moves, optimize the price of computing ∆E, and favour
a priori ys with a lower energy if possible. One can think of α as a heuristics -if say the
goal is to sample from the equilibrium probability.

§a common mistake - go ostinato

Suppose one repeats the αβ protocol without incrementing time. Eg write until(ωi, 0 ≤
wi ≤ 1) for the obstinate 2-step postselection (as a for loop as it almost surely termi-

1meaning for all x, y p(x)P (x, y) = p(y)P (y, x), which implies pP = p the invariance of p

6

Abstract

Notes on the eponym paper.

1 preparation: Leicester GT day Jan 25, PPS days Apr 22,
Cournot Apr 25

l’IDEE definir la dynamique de reecriture a partir de la statique - comme dans la mecanique
Hamiltonienne:

x → x+ v dt v = 0
v → v − c ∂xV ∇V = 0 local extremum, somewhat self-inconsistent

(c = 1/m = compliance with potential; the − is just that people want to minimize energy for
whatever reason; probably because gravity goes ‘down’)

a close mechanism is the Metropolis algorithm: assume a discrete finite degree transition
graph + a V function (with real value say), to define an MC structure, draw y randomly from
the successors of x:

x → y with prob 1 when ∆V ≤ 0
x → y with prob exp(−∆V )

when ∆V ≥ 0

we have that h(x, y)/h(y, x) = exp(−∆V )
in our world (for the time being!) x = site graph space is discrete and → is a transition

system which is given; the question is to generate refined rules and rates which will preserve the
TS and partition finer than ∆V s (so that Metropolis has become a static game).

1.1 INGREDIENTS of construction
(le fait de detailler la construction va faire qu’on passe en revue pas mal de la theorie de ce fait,
donc a fait deux coups d’une preze)

1.2 CAT
- categorie des graphes a sites avec morphismes laxes (on peut creer des aretes sur des sites libres)
objets = slice sur le type C cf la construction de Jon Hayman et Tobias Hendel - sous categories:
matchings et graphes realisables

- regles, le fragment node-invariant ⇒ tous les TS sont finis; pas de probleme de gestion de
creation de nom - CTMC (every event gets a rate, this gives a CTMC if finite degree)

1.3 MC
d/dtp(x, t) =

∑
y p(y, t)h(y, x)−

∑
y !=x p(x, t)h(x, y)

p(x) =
∑

y p(y)[h(y, x)/
∑

y !=x h(x, y)]
p(x) = 1/a(x)

∑
x p(y)h(y, x)

P = diag(1/A)H!P

nb: it is the same fixpoint equation in discrete time

p(x, t+ 1) =
∑

y p(y, t)h(y, x)
P (t+ 1) = H!P (t)
P = H!P

- point fixe stable par post composition avec MC morphism (Lawvere)
- finitude ⇒ compacite de Prob(finite set) ⇒ existence de points fixes

1

From statics to dynamics

x

y

\alpha(x,y)

?
\beta(x,y)

discrete transition graph



S discrete
V, M

3 The Metropolis-Hastings dtMC structure

We assume:
- an energy function E : X → R on a countable state space X
- an a priori symmetric irreflexive (α(x, x) = 0) Markov kernel α on X

With this data, we can define a discrete-time Markov chain (dtMC) as a process
that mostly but not always follows lines of decreasing energy (gradient-driven). The idea
is that α will select a priori a candidate transition which we then might accept with
a certain probability. If energy diminishes along that transition (modulo an α-related
correction, see below) we take it certainly; if it increases we take it with a decreasing
probability (as we are reluctant to climb up the energy landscape).

Note that the α kernel defines the transition graph.

Define for α(x, y) > 0 (equivalently α(y, x) > 0):

β(x, y) = min(1, eV (x)α(x, y)−1 · e−V (y)α(y, x)) acceptance probability
p(x, y) = α(x, y)β(x, y) total motion probability

In case of a rejection, we stay at x, which completes the definition of the transition
function:

p(x, x) = 1−
∑

y "=x α(x, y)β(x, y) null event probability

So - supposing wlog β(x, y) ≤ 1 - we do get discrete detailed balance1 wrt E:

p(y, x)/p(x, y) = α(y, x)/α(x, y) · β(y, x)/β(x, y)
= α(y, x)/α(x, y) · e−E(x)α(x, y) · eE(y)α(y, x)−1

= eE(y) · e−E(x)

Note that this probability equipment preserves the underlying transition graph de-
fined by α - as β(x, y) is never zero. In particular, it is still symmetric (hence irreducible;
it also preserves aperiodicity). Only the transition probabilities are altered (and loops
introduced). Unless x is a local max for E,

∑
y "=x p(x, y) < 1, and the remaining mass is

converted into p(x, x) the probability of staying put at x.

If α is uniform and the underlying transition graph is regular (with finite and non-
zero out-degree, as in for instance our 1d model above where every node has degree
2), then β(x, y) accepts certainly if ∆E := E(y) − E(x) ≤ 0 - or else with probability
exp(−∆E) ≤ 1. This case is called Metropolis. We could extend that to α(y, x)/α(x, y) =
1.

One can extend the above to ∆E = +∞ - then β(x, y) = 0 for infinite ys, ie rejection
is certain. The underlying transition graph gets restricted (eg one can refuse to jump off
a domain in the plane).

One can also extend this to non-symmetric α, in which case one needs to reject
certainly if α(y, x) = 0 (meaning β corrects the lack of symmetry by cancelling assymetric
jumps).

One can also deal with non irreflexive α, ie α(x, x) > 0 for some x, but when is this
useful?

One can use α to localize the moves, optimize the price of computing ∆E, and favour
a priori ys with a lower energy if possible. One can think of α as a heuristics -if say the
goal is to sample from the equilibrium probability.

§a common mistake - go ostinato

Suppose one repeats the αβ protocol without incrementing time. Eg write until(ωi, 0 ≤
wi ≤ 1) for the obstinate 2-step postselection (as a for loop as it almost surely termi-

1meaning for all x, y p(x)P (x, y) = p(y)P (y, x), which implies pP = p the invariance of p

6

3 The Metropolis-Hastings dtMC structure

We assume:
- an energy function E : X → R on a countable state space X
- an a priori symmetric irreflexive (α(x, x) = 0) Markov kernel α on X

With this data, we can define a discrete-time Markov chain (dtMC) as a process
that mostly but not always follows lines of decreasing energy (gradient-driven). The idea
is that α will select a priori a candidate transition which we then might accept with
a certain probability. If energy diminishes along that transition (modulo an α-related
correction, see below) we take it certainly; if it increases we take it with a decreasing
probability (as we are reluctant to climb up the energy landscape).

Note that the α kernel defines the transition graph.

Define for α(x, y) > 0 (equivalently α(y, x) > 0):

β(x, y) = min(1, eV (x)α(x, y)−1 · e−V (y)α(y, x)) acceptance probability
p(x, y) = α(x, y)β(x, y) total motion probability

In case of a rejection, we stay at x, which completes the definition of the transition
function:

p(x, x) = 1−
∑

y "=x α(x, y)β(x, y) null event probability

So - supposing wlog β(x, y) ≤ 1 - we do get discrete detailed balance1 wrt E:

p(y, x)/p(x, y) = α(y, x)/α(x, y) · β(y, x)/β(x, y)
= α(y, x)/α(x, y) · e−V (x)α(x, y) · eV (y)α(y, x)−1

= eV (y) · e−V (x)

p(y, x)e−V (y) = p(x, y)e−V (x)

Note that this probability equipment preserves the underlying transition graph de-
fined by α - as β(x, y) is never zero. In particular, it is still symmetric (hence irreducible;
it also preserves aperiodicity). Only the transition probabilities are altered (and loops
introduced). Unless x is a local max for E,

∑
y "=x p(x, y) < 1, and the remaining mass is

converted into p(x, x) the probability of staying put at x.

If α is uniform and the underlying transition graph is regular (with finite and non-
zero out-degree, as in for instance our 1d model above where every node has degree
2), then β(x, y) accepts certainly if ∆E := E(y) − E(x) ≤ 0 - or else with probability
exp(−∆E) ≤ 1. This case is called Metropolis. We could extend that to α(y, x)/α(x, y) =
1.

One can extend the above to ∆E = +∞ - then β(x, y) = 0 for infinite ys, ie rejection
is certain. The underlying transition graph gets restricted (eg one can refuse to jump off
a domain in the plane).

One can also extend this to non-symmetric α, in which case one needs to reject
certainly if α(y, x) = 0 (meaning β corrects the lack of symmetry by cancelling assymetric
jumps).

One can also deal with non irreflexive α, ie α(x, x) > 0 for some x, but when is this
useful?

One can use α to localize the moves, optimize the price of computing ∆E, and favour
a priori ys with a lower energy if possible. One can think of α as a heuristics -if say the
goal is to sample from the equilibrium probability.

1meaning for all x, y p(x)P (x, y) = p(y)P (y, x), which implies pP = p the invariance of p

6

3 The Metropolis-Hastings dtMC structure

We assume:
- an energy function E : X → R on a countable state space X
- an a priori symmetric irreflexive (α(x, x) = 0) Markov kernel α on X

With this data, we can define a discrete-time Markov chain (dtMC) as a process
that mostly but not always follows lines of decreasing energy (gradient-driven). The idea
is that α will select a priori a candidate transition which we then might accept with
a certain probability. If energy diminishes along that transition (modulo an α-related
correction, see below) we take it certainly; if it increases we take it with a decreasing
probability (as we are reluctant to climb up the energy landscape).

Note that the α kernel defines the transition graph.

Define for α(x, y) > 0 (equivalently α(y, x) > 0):

β(x, y) = min(1, eV (x)α(x, y)−1 · e−V (y)α(y, x)) acceptance probability
p(x, y) = α(x, y)β(x, y) total motion probability

In case of a rejection, we stay at x, which completes the definition of the transition
function:

p(x, x) = 1−
∑

y "=x α(x, y)β(x, y) null event probability

So - supposing wlog β(x, y) ≤ 1 - we do get discrete detailed balance1 wrt E:

p(y, x)/p(x, y) = α(y, x)/α(x, y) · β(y, x)/β(x, y)
= α(y, x)/α(x, y) · e−V (x)α(x, y) · eV (y)α(y, x)−1

= eV (y) · e−V (x)

p(y, x)e−V (y) = p(x, y)e−V (x)

Note that this probability equipment preserves the underlying transition graph de-
fined by α - as β(x, y) is never zero. In particular, it is still symmetric (hence irreducible;
it also preserves aperiodicity). Only the transition probabilities are altered (and loops
introduced). Unless x is a local max for E,

∑
y "=x p(x, y) < 1, and the remaining mass is

converted into p(x, x) the probability of staying put at x.

If α is uniform and the underlying transition graph is regular (with finite and non-
zero out-degree, as in for instance our 1d model above where every node has degree
2), then β(x, y) accepts certainly if ∆E := E(y) − E(x) ≤ 0 - or else with probability
exp(−∆E) ≤ 1. This case is called Metropolis. We could extend that to α(y, x)/α(x, y) =
1.

One can extend the above to ∆E = +∞ - then β(x, y) = 0 for infinite ys, ie rejection
is certain. The underlying transition graph gets restricted (eg one can refuse to jump off
a domain in the plane).

One can also extend this to non-symmetric α, in which case one needs to reject
certainly if α(y, x) = 0 (meaning β corrects the lack of symmetry by cancelling assymetric
jumps).

One can also deal with non irreflexive α, ie α(x, x) > 0 for some x, but when is this
useful?

One can use α to localize the moves, optimize the price of computing ∆E, and favour
a priori ys with a lower energy if possible. One can think of α as a heuristics -if say the
goal is to sample from the equilibrium probability.

1meaning for all x, y p(x)P (x, y) = p(y)P (y, x), which implies pP = p the invariance of p

6

dt detailed balance

under suitable conditions: the dynamics converges to
the probabilistic fixed point 



Metropolis on
Rosenbrock's banana

source: wikipedia



R6d
V potential energy ODE

Newton

S discrete
V, M move set DTMC

Metropolis

SG site 
graphs

V, G CTMC

Thermo GT

4 preparation: Leicester GT day Jan 25, PPS days Apr 22,
Cournot Apr 25

l’IDEE definir la dynamique de reecriture a partir de la statique - comme dans la mecanique
Hamiltonienne:

x → x+ v dt
v → v − c ∂xV

(c = 1/m = compliance with potential) (the − is just that people want to minimize energy for
whatever reason)

a close mechanism is the Metropolis algorithm assume a discrete finite degree transition
graph + a V function (with real value say), to define an MC structure, draw y randomly from
the successors of x:

x → y with prob 1 when ∆V ≤ 0
x → y with prob exp(−∆V ) when ∆V ≥ 0 (else repeat)

we have that h(x, y)/h(y, x) = exp(−∆V )
in our world (for the time being!) x = site graph space is discrete and → is a transition

system which is given; the question is to generate refined rules and rates which will preserve the
TS and partition finer than ∆V s (so that Metropolis has become a static game).

4.1 INGREDIENTS of construction
(le fait de detailler la construction va faire qu’on passe en revue pas mal de la theorie de ce fait,
donc a fait deux coups d’une preze)

4.2 CAT
- categorie des graphes a sites avec morphismes laxes (on peut creer des aretes sur des sites libres)
objets = slice sur le type C cf la construction de Jon Hayman et Tobias Hendel - sous categories:
matchings et graphes realisables

- regles, le fragment node-invariant ⇒ tous les TS sont finis; pas de probleme de gestion de
creation de nom - CTMC (every event gets a rate, this gives a CTMC if finite degree)

4.3 MC
d/dtp(x, t) =

∑
y p(y, t)h(y, x)−

∑
y !=x p(x, t)h(x, y)

p(x) =
∑

y p(y)[h(y, x)/
∑

y !=x h(x, y)]
p(x) = 1/a(x)

∑
x p(y)h(y, x)

P = diag(1/A)H!P

nb: it is the same fixpoint equation in discrete time

p(x, t+ 1) =
∑

y p(y, t)h(y, x)
P (t+ 1) = H!P (t)
P = H!P

- point fixe stable par post composition avec MC morphism (Lawvere)
- finitude ⇒ compacite de Prob(finite set) ⇒ existence de points fixes
- notion d’equilibre P (y)h(y, x) = P (x)h(x, y) point fixe
- suppose TS symmetric as a graph, ⇒ unicity of fixed point

There is the question of how expressive one can be with this.
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fixed point

Abstract

Notes on the eponym paper.

1 preparation: Leicester GT day Jan 25, PPS days Apr 22,
Cournot Apr 25

l’IDEE definir la dynamique de reecriture a partir de la statique - comme dans la mecanique
Hamiltonienne:

x → x+ v dt v = 0
v → v − c ∂xV ∇V = 0 local extremum, somewhat self-inconsistent

(c = 1/m = compliance with potential; the − is just that people want to minimize energy for
whatever reason; probably because gravity goes ‘down’)

a close mechanism is the Metropolis algorithm: assume a discrete finite degree transition
graph + a V function (with real value say), to define an MC structure, draw y randomly from
the successors of x:

x → y with prob 1 when ∆V ≤ 0
x → y with prob exp(−∆V )

when ∆V ≥ 0 (else repeat)

we have that h(x, y)/h(y, x) = exp(−∆V )
in our world (for the time being!) x = site graph space is discrete and → is a transition

system which is given; the question is to generate refined rules and rates which will preserve the
TS and partition finer than ∆V s (so that Metropolis has become a static game).

1.1 INGREDIENTS of construction
(le fait de detailler la construction va faire qu’on passe en revue pas mal de la theorie de ce fait,
donc a fait deux coups d’une preze)

1.2 CAT
- categorie des graphes a sites avec morphismes laxes (on peut creer des aretes sur des sites libres)
objets = slice sur le type C cf la construction de Jon Hayman et Tobias Hendel - sous categories:
matchings et graphes realisables

- regles, le fragment node-invariant ⇒ tous les TS sont finis; pas de probleme de gestion de
creation de nom - CTMC (every event gets a rate, this gives a CTMC if finite degree)

1.3 MC
d/dtp(x, t) =

∑
y p(y, t)h(y, x)−

∑
y !=x p(x, t)h(x, y)

p(x) =
∑

y p(y)[h(y, x)/
∑

y !=x h(x, y)]
p(x) = 1/a(x)

∑
x p(y)h(y, x)

P = diag(1/A)H!P

nb: it is the same fixpoint equation in discrete time

p(x, t+ 1) =
∑

y p(y, t)h(y, x)
P (t+ 1) = H!P (t)
P = H!P

- point fixe stable par post composition avec MC morphism (Lawvere)
- finitude ⇒ compacite de Prob(finite set) ⇒ existence de points fixes

1

local extremum of V

dt detailed balance of 
exp(-V(x))

dynamicsstatics

ct detailed balance
wrt to V

?

no rejection
static analysis of domain-specific Metropolis
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SG site graphs
Kappa/KaSim

Thermodynamic graph rewriting

finite set of energy patterns (connected
site graphs) P —with unit price \epsilon

finite set of generating
reversible rules G

larger finite set of  
rules G(P)

rates k(g,\phi)



instance independence
of energy delta

G(P) obtained by partitioning G so as to reveal enough context
for each rule g to have a well-defined P-balance 

total energy
V(x) of x

Theorem 3 Let G, P, GP , k, and πx be as above. We have that:
LGP and LP are isomorphic as symmetric LTSs; and, furthermore,
for any mixture x, the irreducible continuous-time Markov chain Lk

GP
has detailed balance for, and converges to πx, on LGP (x) = LP(x)
the strongly connected component of x.

Proof. Both LG and LGP offer transitions from a mixture x: the
former are labelled by pairs (g,ψ) with g in G, ψ in Ψ(gL, x); the
latter by pairs (gφ, γ) with gφ the refinement of g along a mature
extension φ : gL → t, and γ in Ψ(t, x). Steps in the latter can be
mapped to steps in the former by transforming labels as follows:
(gφ, γ) "→ (g, γφ). As GP refines G exhaustively (Th. 2), this corre-
spondence is a bijection, which establishes the first claim.

(Pedantically, there is a full and faithful functor between the
two corresponding free categories which is the identity on objects—
incidentally, this bijection is readily seen to respect the symmetries
on labels.)

Since we have multiple rules in LGP , each of which can be applied
in several ways, there can be more than one transitions from x to
the same y —each uniquely described by a (gφ, γ) label. Each such
(gφ, γ) has an inverse, (g"φ! , γ"), where: g" is the rule inverse to g;
φ" corresponds to φ in the isomorphism between the categories of
extensions of x and y, with φA = φ"

A; and γ" is the embedding
corresponding to γ, also with γA = γ"

A. One can easily verify that
φ" is an epi, and that φ" is also mature. Hence (g"φ! , γ") determines
a valid transition in LGP which is inverse to (gφ, γ), and we have a
bijective correspondence between transitions from x to y and those
from y to x.

Consider a pair e, e" of such corresponding events due to to gφ and
g"φ! ; because e is a transition from x to y, and φ is P-balanced (Th. 2),
we have P(y) = P(x) + ∆φ, and hence ε · ∆φ = ε · (P(y) − P(x));
so, by (6), the rates of e, e" are such that:

k(e") e−ε·P(y) = k(e) e−ε·P(x)

and by summing this equation over all pairs, we obtain detailed
balance for the probability local to the component LGP (x) = LGP (y),
defined above as πx = πy, since:

q(y, x) e−ε·P(y) = q(x, y) e−ε·P(x)
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instances of a rule should have constant V(y)-V(x)

equivalently constant P(y)-P(x)

x

y

q(x,y)

q(y,x)
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2 Site graph rewriting

2.1 Site graphs and homomorphisms

A site graph G consists of finite sets of agents and sites, AG and SG, a partial
function σG : SG ⇀ AG assigning sites to agents, and a symmetric edge relation
EG on SG. It is said to be realizable iff (i) EG is irreflexive; and (ii) s EG s1 and
s EG s2 implies s1 = s2, i.e. each site has at most one incident edge.

SG
hS !!

σG

"

≤

SG′

σG′

"
AG

hA !! AG′

A homomorphism h : G → G′

of site graphs is a pair of functions,
hS : SG → SG′ and hA : AG → AG′ ,
such that (i) whenever hA(σG(s)) is
defined then so is σG′(hS(s)) and they
are equal; and (ii) if s EG s′ then
hS(s) EG′ hS(s′).

A homomorphism h : G → G′ is an embedding iff (i) hA and hS are injective;
and (ii) if s′ has an incident edge in G′ then h−1

S (s′), if it exists, has an incident
edge in G. If h : G → G′ is an embedding and G′ is realizable then G is also
realizable (indeed, this property only really depends on injectivity of hS).

Site graphs and homomorphisms form a category SG; embeddings form a
subcategory; if in addition, we restrict objects to be realizable, we get the sub-
category rSGe (of realizable site graphs and embeddings).

A homomorphism cG : G → C is a contact map iff (i) G is realizable, (ii) σC

is total and (iii) whenever cS(s1) = cS(s2) and σG(s1) = σG(s2), then s1 = s2.
The final local injectivity condition means that every agent of G has at most one
copy of each site of its corresponding agent in C; C is called the contact graph.

2.2 The category of site graphs over C

G

cG

"#

φ !! G′

cG′

#$
C

Hereafter, we work in a ‘slice’ cate-
gory rSGeC whose objects are con-
tact maps with a given target C, and
arrows are embeddings. The contact
graph C is fixed and plays the role of
a type: it specifies the kinds of agents
that exist, the sites that they may
possess, and which of the |SC |2 possible edge types are actually valid. It also
gives canonical names to the types of agents and their sites. In examples (e.g.
in appendix C), we write agent and sites names directly. We write | | for the
‘domain’ functor from rSGeC to rSGe which forgets types. In particular if
s : G → C is a contact map, we write |s| for its source G.

In rSGe, an agent-less site s in G, i.e. where σG(s) is undefined, can be
mapped to any site of G′ by an embedding h : G → G′; as such, it can be
used as an ‘any site’ wild card when matching G. In rSGeC , the contact map
c : G → C tells us which agent A of C the site s belongs to because σC is total,
and this must be respected by h; we call this a ‘binding type’ wild card since it
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rSGeC realizable site graphs over C

category of realizable site graphs typed by C
with embeddings (mono reflecting edges) 



typically allows us to express the property of being bound to the site s of some
occurrence of the agent A.

The category SG has all pull-backs, constructed from those in Set; it is easy
to see that they restrict to rSGeC . The category SG also has sums, but these
do not restrict to rSGeC .

h1
θ1 !!

γ1

""

si

∃!m

##

h2
θ2$$

γ2

%%
h

However, rSGeC has multi-sums:
meaning for all pairs of site graphs of
type C, h1 : G1 → C and h2 : G2 →
C, there exists a family of co-spans
θi1 : h1 → si ← h2 : θi2, such that any
co-span γ1 : h1 → h ← h2 : γ2 factors
through exactly one of the family and
does so uniquely. The idea is that the pairs θi1, θ

i
2 enumerate all minimal ways

in which one can glue h1 and h2, that is to say all the minimal glueings of G1

and G2 that respect C. There are finitely many which all factor through the
standard sum in the larger slice category SGC . (We will use this result without
proof, but it does need a proof!; see also an example in appendix A.)

The notion of multi-sum dates back to Ref. [11]; we will call them minimal
glueings in rSGe according to their intuition. They are very close to ‘relative
push-outs’ [26] and will be used in §3.2 in the same way, to minimize rewriting
contexts.

2.3 Rules

L

rL

&&

rA,rS

"
!! R

rR

''
C

A rule r over C is a pair of contact
maps rL : L → C, rR : R → C
equipped with Set isomorphisms rA :
AL

∼= AR and rS : SL
∼= SR satisfying

(i) rA(σL(s)) is defined iff σR(rS(s))
is defined and they are equal when de-
fined; and (ii) rL = rR ◦ (rA, rS). In
words, L and R differ only in their edge structures.

A contact map m : M → C is a mixture iff σM is total and, for all a ∈ AM ,
σ−1
M (a) ∼= σ−1

C (mA(a)), i.e. mS is locally surjective. In words, a mixture is a
fully-specified site graph with respect to the type C.

rL
rA,rS

"
!!

ψ

##

rR

ψ!

##
m "

!! m$

(1)
An embedding ψ : rL → m in-

duces a rewrite ofM by modifying the
edge structure of the image of φ, i.e.
an instance of L in M , to that of R;
the result of rewriting is a new mix-
ture m$ and an embedding ψ$ : rR →
m$. This can be formalized using dou-
ble push-out rewriting [5].

We write Ψ(r,m) for the set of all embeddings ψ : rL → m.
We can define the inverse of r as r$ := (rR, rL), also a valid rule; by rewriting

M$ with r$ via ψ$, we recover M and ψ.

4

rSGeC has multi-sums

we do not have a sum—but finitely many minimal
ones; we call them minimal glueings



multi-sums example

A.2 Minimal glueings, an example
To get a sense of the notion of minimal glueings, aka multi-sums (which dates back to Ref. [10]), in our category
of interest and on which the pull-by-glueing construction relies critically, let us enumerate the minimal glueings
of a simple pattern c = A(r1), A(l1, r2), A(l2) on itself. There are nine non-isomorphic possibilities, of which only
eight are shown below. The disjoint sum is not shown. The last two rows explore the cases where the glueings
wrap the two chains in a cycle.

Here isomorphism means isomorphism of co-spans (more generally co-cones). In particular, glueings in rows 2,
3, 4 are not isomorphic. Only the top and bottom ones, and the disjoint sum (not shown) are isomorphic to their
symmetric co-span.

We can also illustrate the notion of relevant glueings. If we consider the rule A(r1), A(l1, r2), A(l2) →
A(r1), A(l1, r), A(l), which breaks the rightmost link, we can select within this set, the ones which are rele-
vant glueings of c on r’s LHS. Conventionally the LHS is assumed to constitute the left leg of each glueing.
Relevant ones are shown below with a light green background. We see e.g. that the ones in position (3, 1), (2, 2),
(3, 2), are not relevant, despite sharing nodes and edges in the glueing with the rule LHS.

A
r l

A
r l

A A
r l

A
r l

A

A
r l

A
r l

A

A
r l

A
r l

A A
r l

A
r l

A

A
r l

A
r l

A
r l

A

A
r l

A
r l

A A
r l

A
r l

A

A
r l

A
r l

A
r l

A
r l

A

A
r l

A
r l

A A
r l

A
r l

A

A A

A

r l

r
lr

l

A
r l

A
r l

A A
r l

A
r l

A

A
r l

A
r l

A
r l

A

A
r l

A
r l

A A
r l

A
r l

A

A
r l

A
r l

A
r l

A
r l

A

A
r l

A
r l

A A
r l

A
r l

A

A A

A

r l

r
lr

l

A
r l

A
r l

A A
r l

A
r l

A

A

A

A

A

r
l r

l

r
lr

l

12

!"#"$%#%&&'("#"()*+,-&.)#&



A.2 Minimal glueings, an example
To get a sense of the notion of minimal glueings, aka multi-sums (which dates back to Ref. [10]), in our category
of interest and on which the pull-by-glueing construction relies critically, let us enumerate the minimal glueings
of a simple pattern c = A(r1), A(l1, r2), A(l2) on itself. There are nine non-isomorphic possibilities, of which only
eight are shown below. The disjoint sum is not shown. The last two rows explore the cases where the glueings
wrap the two chains in a cycle.

Here isomorphism means isomorphism of co-spans (more generally co-cones). In particular, glueings in rows 2,
3, 4 are not isomorphic. Only the top and bottom ones, and the disjoint sum (not shown) are isomorphic to their
symmetric co-span.

We can also illustrate the notion of relevant glueings. If we consider the rule A(r1), A(l1, r2), A(l2) →
A(r1), A(l1, r), A(l), which breaks the rightmost link, we can select within this set, the ones which are rele-
vant glueings of c on r’s LHS. Conventionally the LHS is assumed to constitute the left leg of each glueing.
Relevant ones are shown below with a light green background. We see e.g. that the ones in position (3, 1), (2, 2),
(3, 2), are not relevant, despite sharing nodes and edges in the glueing with the rule LHS.

A
r l

A
r l

A A
r l

A
r l

A

A
r l

A
r l

A

A
r l

A
r l

A A
r l

A
r l

A

A
r l

A
r l

A
r l

A

A
r l

A
r l

A A
r l

A
r l

A

A
r l

A
r l

A
r l

A
r l

A

A
r l

A
r l

A A
r l

A
r l

A

A A

A

r l

r
lr

l

A
r l

A
r l

A A
r l

A
r l

A

A
r l

A
r l

A
r l

A

A
r l

A
r l

A A
r l

A
r l

A

A
r l

A
r l

A
r l

A
r l

A

A
r l

A
r l

A A
r l

A
r l

A

A A

A

r l

r
lr

l

A
r l

A
r l

A A
r l

A
r l

A

A

A

A

A

r
l r

l

r
lr

l

12

!"#"$%#%&&'("#"()*+,-&.)#&

multi-sums example

+ disjoint sum not shown



typically allows us to express the property of being bound to the site s of some
occurrence of the agent A.

The category SG has all pull-backs, constructed from those in Set; it is easy
to see that they restrict to rSGeC . The category SG also has sums, but these
do not restrict to rSGeC .

h1
θ1 !!

γ1

""

si

∃!m

##

h2
θ2$$

γ2

%%
h

However, rSGeC has multi-sums:
meaning for all pairs of site graphs of
type C, h1 : G1 → C and h2 : G2 →
C, there exists a family of co-spans
θi1 : h1 → si ← h2 : θi2, such that any
co-span γ1 : h1 → h ← h2 : γ2 factors
through exactly one of the family and
does so uniquely. The idea is that the pairs θi1, θ

i
2 enumerate all minimal ways

in which one can glue h1 and h2, that is to say all the minimal glueings of G1

and G2 that respect C. There are finitely many which all factor through the
standard sum in the larger slice category SGC . (We will use this result without
proof, but it does need a proof!; see also an example in appendix A.)

The notion of multi-sum dates back to Ref. [11]; we will call them minimal
glueings in rSGe according to their intuition. They are very close to ‘relative
push-outs’ [26] and will be used in §3.2 in the same way, to minimize rewriting
contexts.

2.3 Rules

L

rL

&&

rA,rS

"
!! R

rR

''
C

A rule r over C is a pair of contact
maps rL : L → C, rR : R → C
equipped with Set isomorphisms rA :
AL

∼= AR and rS : SL
∼= SR satisfying

(i) rA(σL(s)) is defined iff σR(rS(s))
is defined and they are equal when de-
fined; and (ii) rL = rR ◦ (rA, rS). In
words, L and R differ only in their edge structures.

A contact map m : M → C is a mixture iff σM is total and, for all a ∈ AM ,
σ−1
M (a) ∼= σ−1

C (mA(a)), i.e. mS is locally surjective. In words, a mixture is a
fully-specified site graph with respect to the type C.

rL
rA,rS

"
!!

ψ

##

rR

ψ!

##
m "

!! m$

(1)
An embedding ψ : rL → m in-

duces a rewrite ofM by modifying the
edge structure of the image of φ, i.e.
an instance of L in M , to that of R;
the result of rewriting is a new mix-
ture m$ and an embedding ψ$ : rR →
m$. This can be formalized using dou-
ble push-out rewriting [5].

We write Ψ(r,m) for the set of all embeddings ψ : rL → m.
We can define the inverse of r as r$ := (rR, rL), also a valid rule; by rewriting

M$ with r$ via ψ$, we recover M and ψ.
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rules and rule application

rules are node-
preserving
and hence
reversible

top arrow is a pair 
of set bijections



extensions of a pattern, of a rule

Given a finite set of rules G over C we define a labelled transition system LG
on mixtures over C: a transition from a mixture m is a rewriting step determined
and labelled by an ‘event’ (r,ψ) as in diagram (1); with r in G, and ψ in Ψ(rL,m).

If G = G!, which we suppose hereafter, every (r,ψ)-transition has an inverse
(r!,ψ!), and therefore LG is symmetric.

2.4 CTMC semantics

It is not difficult to see that |Ψ(r,m)| ≤ |A|m||d(r) where d(r) is the number
of connected components in rL. Hence, LG has finite out-degree, bounded by
|G| · |A|m||d for some d. Also, as agents are preserved by rules, the (strongly)
connected components of LG are finite.

Hence, given a rate map k from G to R+, we can equip LG with the structure
of an irreducible continuous-time Markov chain (CTMC), simply by assigning
rate k(r) to an event of the form (r,ψ).

We write Lk
G for the obtained CTMC.

We need here to record a definition for later use. One says that a finite CTMC
M has detailed balance for a probability distribution π on M’s state space, if for
all states x and y, π(x) · q(x, y) = π(y) · q(y, x) where q(x, y) is M’s transition
rate from x to y. This implies that, assuming M is irreducible, π is the unique
fixed point of the action of M, to which the probabilistic state of M converge,
regardless of the initial state.

2.5 Extensions and rule refinement

Epis of rSGeC can be characterized as follows [30]: suppose s : G → C and
s′ : G′ → C are contact maps then φ : s → s′ of rSGeC is an epi iff every
connected component of G′ contains at least one agent in the image of φA.

s

φ

!!

φ′

""
s′′ s′

θ

##

θ′

$$
=

(2)
We refer to an epi φ : s → s′ as

an extension of s. The category of ex-
tensions of s is a pre-order, i.e. there
is at most one arrow between any two
objects: if φ′ = θφ = θ′φ then θ = θ′

because φ is an epi. We write φ ≤ φ′

for this specialization order. If φ ≤ φ′

and φ′ ≤ φ then we write φ ∼=s φ′.
A family of epis φi : s → ti uniquely decomposes s iff, for all mixtures m and

embeddings h : s → m, there exists a unique i and ψ such that h = ψφi. This is
the basic requirement for a reasonable notion of rule refinement: it guarantees
that the LHS s of a given rule splits into a non-overlapping collection of more
specific cases ti—albeit without telling us how to achieve this. For that, we use
the following notion of growth policy (adjusted from [30]) which specifies which
agents and sites we wish to add to s.

A growth policy Γ for s is a family of functions Γφ, indexed by extensions
φ : s → t, each of which sends u ∈ A|t| to a subset Γφ(u) of σ

−1
C (tA(u)), i.e. each

5

sub-category of epis below s: every connected 
component of s' has a preimage in s



growth policies and
rule partitioning

agent in |t| is allocated a subset of the sites it is entitled to, according to the
ambient contact graph C. An agent in |t| may display some, or all, of these sites
or even completely extraneous sites. We say that φ is immature (resp. mature)
iff all agents u of |t| display a subset of (resp. exactly) Γφ(u); φ is overgrown
otherwise. The functions Γφ must satisfy, for all extensions φ and φ′ ≥ φ, the
faithfulness property, Γφ = Γφ′ψA, where ψ is the epi witnessing φ ≤ φ′; so
a site requested by φ must be requested by any further extension. If φ is not
overgrown then no φ′ ≤ φ is overgrown either. An example of growth policy is
the ground policy which assigns all possible sites to all agents. Also, note that
the union of two growth policies is itself a growth policy.

Given an s and a growth policy Γ for s, we define Γ (s) by choosing one
representative per ∼=s-isomorphism class of the set of all extensions of s which
are mature according to Γ . If Γ is the ground policy, Γ (s) is simply the set,
possibly infinite, of epis of s into mixtures, considered up to ∼=s.

Theorem 1 If Γ is a growth policy for s, then Γ (s) uniquely decomposes s.

Proof. Suppose γ1φ1 = γ2φ2 where φ1 and φ2 are mature extensions of s ac-
cording to Γ . As shown in diagram (3) below, we have an inner square formed
by the pull-back π1, π2, and the minimal glueing θ1, θ2 of γ1 and γ2. Also θ1
and θ2 are epis, as every connected component of m has a pre-image in t1 or t2
and so also in rL, since the φis are epis, and so also in the other of t2 and t1.

rL
φ1 !!

φ2

""

φ

##

t1

γ1

""

θ1

$$

p

π1

%%

π2

$$

m

&&
t2 γ2

!!

θ2

%%

x

(3)

If θ1, θ2 are not both isomorphisms
then there must be a pair u, z, con-
sisting of a node in m with pre-images
u1, u2 in t1, t2 and a site z of u, such
that z has no pre-image in exactly
one of θ1, θ2. Say it is θ2. Since φ1

is not overgrown, z ∈ Γφ1(u1) and, by
faithfulness, z ∈ Γφ((u1, u2)), where
(u1, u2) is the pull-back pre-image of
u1 and u2. So again, by faithfulness,
z ∈ Γφ2(u2) which contradicts our
original assumption. !

The theorem guarantees that factorizations through Γ (s) are unique when
they exist, but not that they exist. However, in the next section, we will construct
a growth policy and prove exhaustivity by hand.

Given a rule r and an extension φ of rL, we write rφ for the ‘refined’ rule
associated to φ. If Γ is a growth policy for rL, the refinement of r by Γ is the
set of rules, Γ (r), the elements of which are of the form rφ, for φ in Γ (rL) a
mature extension. The ground refinement of r contains refinements of r which
directly manipulate mixtures.

Due to the simple nature of our rules, the category of extensions of rL and rR
are isomorphic; if φ is an extension of rL, we will write φ% for the corresponding
extension of rR.
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growth policy
\Gamma(\phi)

maps every node 
of the image of 
\phi to a set of 

sites (of C)

\phi has to be 
faithful: site 
requests are 

invariant under 
further extension

the set of mature extensions of a pattern form a partition of the instances of the pattern
(up to isomorphisms of extensions) 

\phi is mature if all  
all nodes in the 
image of \phi 

have exactly the 
set of sites 

requested by 
\Gamma



relevant minimal glueings

Due to the simple nature of our rules, the category of extensions
of rL and rR are isomorphic; if φ is an extension of rL, we will write
φ! for the corresponding extension of rR.

3 Rule generation

We fix a finite set G of generator rules; and a finite set P of connected
contact maps in rSGeC ; these are our energy patterns.

The goal is now to refine G into a new rule set GP where each
refined rule is P-balanced, which means that, however applied, it
consumes or produces a fixed amount of each pattern c in P . The
construction proceeds in two steps: first, we characterize balanced
refinements; second, we define a growth policy with balanced ma-
ture extensions, and apply Th. 1. Note that ground extensions of
g are trivially balanced but, in general, the ground refinement is
completely impractical or even infinite; ours will always be finite.

3.1 P-balanced extensions

c
γ′

!!

γ

""

t

##

rL
ψ′

$$

ψ
%%

m

Consider c in P , and a rule r.
For an r-event ψ to consume an
instance γ of c in a mixture m,
the cospan (γS ,ψS) must have
images which intersect on at
least one edge modified by r.
This is the case iff the associated
minimal glueing (γ′,ψ′) —obtained by restricting the cospan to the
union of its images in m— has the same property. Likewise, for an
r-event to produce an instance of c the associated minimal glueing
between c and rR must have a modified intersection. We call such
minimal glueings relevant as they are the only ones that can affect
instances of c.

gL

φ
##

c

γ
&&

t

θ

"

%%
u

(4)Pick g in G and φ : gL → t an
extension of gL. One says that φ
is P-left-balanced iff, for all rel-
evant minimal glueings γ : c →
u ← t : θ with c ∈ P , θ is an
isomorphism. This means that
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only if *the* minimal glueing of  the cospan
\psi,\gamma defines an overlap modified by r is

the rule instance consuming \gamma— we call it relevant 

c is in P
rL the left hand 
side of r in G

\psi is a match for r in m



balanced rules wrt to P

Due to the simple nature of our rules, the category of extensions
of rL and rR are isomorphic; if φ is an extension of rL, we will write
φ! for the corresponding extension of rR.

3 Rule generation

We fix a finite set G of generator rules; and a finite set P of connected
contact maps in rSGeC ; these are our energy patterns.

The goal is now to refine G into a new rule set GP where each
refined rule is P-balanced, which means that, however applied, it
consumes or produces a fixed amount of each pattern c in P . The
construction proceeds in two steps: first, we characterize balanced
refinements; second, we define a growth policy with balanced ma-
ture extensions, and apply Th. 1. Note that ground extensions of
g are trivially balanced but, in general, the ground refinement is
completely impractical or even infinite; ours will always be finite.

3.1 P-balanced extensions

c
γ′

!!

γ

""

t

##

rL
ψ′

$$

ψ
%%

m

Consider c in P , and a rule r.
For an r-event ψ to consume an
instance γ of c in a mixture m,
the cospan (γS ,ψS) must have
images which intersect on at
least one edge modified by r.
This is the case iff the associated
minimal glueing (γ′,ψ′) —obtained by restricting the cospan to the
union of its images in m— has the same property. Likewise, for an
r-event to produce an instance of c the associated minimal glueing
between c and rR must have a modified intersection. We call such
minimal glueings relevant as they are the only ones that can affect
instances of c.

gL

φ
##

c

γ
&&

t

θ

"

%%
u

(4)Pick g in G and φ : gL → t an
extension of gL. One says that φ
is P-left-balanced iff, for all rel-
evant minimal glueings γ : c →
u ← t : θ with c ∈ P , θ is an
isomorphism. This means that
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\phi is left-P-
balanced if no proper 
relevant minimal glueing

of c with t

\phi is P-balanced if also 
symmetric condition on \phi*

equivalent to P-instance 
independence

all we need is to define a growth policy which guarantees P-balance …



add by relevant glueing

the image of c under γ is con-
tained in t. Symmetrically, one
says that φ is P-right-balanced
iff φ! is a P-left-balanced extension of r!.

An extension φ is P-balanced iff it is P-left- and P-right-balanced;
we say that φ is prime iff it is minimal P-balanced in the specializa-
tion order ≤.

If φ is a P-balanced extension of g, the refined rule gφ has a
balance vector in ZP , written ∆φ, where ∆φ(c), for c ∈ P , is the
amount of c produced by any gφ-event leading from m to m!, or
equivalently the difference between the number of embeddings of c
in the RHS and the LHS of gφ. Indeed, as φ is balanced, Ψ(c,m!)−
Ψ(c,m) = Ψ(c, gφ,R)− Ψ(c, gφ,L).

Conversely, it is easy to see that a non-P-balanced extension
will always incur different ∆φ(c) for different applications of gφ for
any c in P at which the condition of diagram (4) is violated. Thus,
the notion of balanced extension characterizes the property that we
want.3

3.2 Add-by-glueing

We now define a growth policy, which uses minimal glueings on
non-P-balanced extensions φ to add further required sites into φ’s
codomain; this corresponds in diagram (4) to the case where θ is not
an isomorphism.

Some care is needed to ensure faithfulness, i.e. Γφ = Γφ′φ φ′
A,

since relevant minimal glueings on φ can disappear along a further
extension φ′ and, consequently, a site that was ‘requested’ at φ may
no longer be so after at φ′φ. To address this, we add site requests
from all relevant minimal glueings in the past of an extension.

gL
φ1 !! φ

""

c

γ ##

t1 $ u1

θ$$ φ2 %%
t′ t $ u

(5)Given g ∈ G we define a
growth policy ΓL for gL. Sup-
pose φ : gL → t is an extension
of gL. We set ΓL(φ) to request
a site s ∈ σ−1

C (tA(u)) at agent
u ∈ A|t| iff either (i) u = φA(u0)

3 This is the case insofar as one does not relativize the construction to a superset of
reachables; e.g. in order to reduce the size of the generated rule set.
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\Gamma requests site s to u in \phi if —in the past of \phi— one energy 
pattern c in P glues relevantly to (the ancestor of) u 

and adds site s on its image via \theta 



a growth policy indeed
and a surjective finite one

suppose u is requested to show site s along 
another rewind of \phi …

and s = φS(s0) for some u0, s0
in |gL|A, |gL|S ; or (ii) φ factor-
izes as φ2φ1, where φ1 : s → t1, and there is a relevant minimal
glueing γ : c → t′ ← t1 : θ, u1 in |t1|A, and a site s′1 in σ−1

|t′|(θA(u1))
such that u = φ2,A(u1), and s = t′S(s

′
1).

The first clause simply ensures that all sites already present in g
are asked for; the second one adds in sites which appear by glueing
at some point between gL and t. We refer to φ2 : t1 → t as a rewind
of φ.

Symmetrically, we define a growth policy ΓR for gR by applying
the same definition to the reverse generator g!. Since extensions of
gL and gR are isomorphic, we can, with a slight abuse of notation,
define ΓP := ΓL ∪ ΓR.

Theorem 2 The above ΓP is indeed a growth policy for gL; the
induced refined rule set ΓP(g) is non-empty, balanced, exhaustive
and finite.

g
φ1

!! ""

##
p $ (u1, u2)

$$ %%
t1 $ u1

φ2 &&

t2 $ u2

''
t $ u

Proof. Faithfulness : we take
the notations of diagram (5). As,
by construction, every request
for a site in t1 propagates to t,
ΓP
φ1
(u1) ⊆ ΓP

φ (u). For the other
direction, consider an alterna-
tive factorization of φ through
t2, giving rise to a site request
in u from the agent u2, caused by some (relevant minimal) glueing
of c and t2; this gives rise to another glueing of c and p, the pull-back
of the two rewinds, which induces the same site request now made
by (u1, u2) in p, the pre-image of u along both sides of p; this request
propagates to u1 in t1 as required.

Non-empty : clause (i) guarantees that we request at least the
sites in gL, hence gL is not overgrown, and ΓP(g) not empty.

Balanced : if φ ∈ ΓP(g) is not balanced, there must be some rele-
vant minimal glueing violating diagram (4), which is as diagram (5)
with an empty rewind (φ2 = I), and therefore requesting a missing
site; hence φ is not mature.

Exhaustive: Let ψ : gL → x be an embedding of gL into a mixture.
We can restrict the co-domain of φ to be the connected closure y of

11

… this defines G(P) as the union of the refined rules



The Result

by (u1, u2) in p, the pre-image of u along both sides of p; this request propagates
to u1 in t1 as required.

Non-empty : clause (i) guarantees that we request at least the sites in gL,
hence gL is not overgrown, and ΓP(g) not empty.

Balanced : if φ ∈ ΓP(g) is not balanced, there must be some relevant minimal
glueing violating diagram (4), which is as diagram (5) with an empty rewind
(φ2 = I), and therefore requesting a missing site; hence φ is not mature.

Exhaustive: Let ψ : gL → x be an embedding of gL into a mixture. We can
restrict the co-domain of φ to be the connected closure y of the image of ψ in x,
obtaining an epi φy : gL → y. Now, further restrict y by removing: un-requested
sites except those bound to requested ones which are converted to agent-less sites
(aka binding types), and connected components that no longer have a pre-image
in gL. Call the result z. We thus obtain an epi φz : gL → z which is mature with
respect to ΓP since, by construction, it has all and only the sites needed by φy

and so, by faithfulness, all those needed by φz.
Finite: a site s is requested by ΓP when a c is relevantly glued to an extension

φ1—using the notations of diagram (5) and accompanying definition. Hence the
distance of s′1 to the image of gL or gR in |t1| is at most the diameter of c, δ(c),
because c must intersect that image for the glueing to be relevant. And so the
same holds for s in |t|. Hence, any immature extension has a codomain t all the
agents of which are within maxc∈P δ(c) of the image of gL and gR. As the degree
of each agent is bounded by C, there are only finitely many such ts. !

3.3 Rates

Given G and P, we obtain a finite P-balanced rule set which refines G exhaus-
tively, by setting GP := ∪̇g∈GΓP(g) (disjoint sum). To every refinement gφ cor-
responds an inverse refinement g"φ! , and GP = G"

P .
To equip GP with rates, we suppose given a P-indexed real-valued vector of

energy costs ε, and a rate map k : GP → R+ such that, for all gφ in GP :

log k(g"φ!)− log k(gφ) = ε ·∆φ (6)

with ∆φ the balance vector of the refined rule gφ with respect to P (which is
well-defined by Th. 2).

We write P(x) for the P-indexed vector which maps c to |Ψ(c, x)|, and define
the energy E(x) of x as ε · P(x). We also write LP(x) for the finite (strongly)
connected component of x in LP , and define a probability distribution (in Boltz-
mann format) on LP(x) by:

πx(y) := e−ε·P(y)/
∑

y∈LP(x)

e−ε·P(y) (7)

Theorem 3 Let G, P, GP , k, and πx be as above. We have that: LGP and
LP are isomorphic as symmetric LTSs; and, furthermore, for any mixture x,
the irreducible continuous-time Markov chain Lk

GP
has detailed balance for, and

converges to πx, on LGP (x) = LP(x) the strongly connected component of x.
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the image of ψ in x, obtaining an epi φy : gL → y. Now, further
restrict y by removing: un-requested sites except those bound to
requested ones which are converted to agent-less sites (aka binding
types), and connected components that no longer have a pre-image
in gL. Call the result z. We thus obtain an epi φz : gL → z which
is mature with respect to ΓP since, by construction, it has all and
only the sites needed by φy and so, by faithfulness, all those needed
by φz.

Finite: a site s is requested by ΓP when a c is relevantly glued to
an extension φ1—using the notations of diagram (5) and accompa-
nying definition. Hence the distance of s′1 to the image of gL or gR in
|t1| is at most the diameter of c, δ(c), because c must intersect that
image for the glueing to be relevant. And so the same holds for s in
|t|. Hence, any immature extension has a codomain t all the agents
of which are within maxc∈P δ(c) of the image of gL and gR. As the
degree of each agent is bounded by C, there are only finitely many
such ts. !

3.3 Rates

Given G and P , we obtain a finite P-balanced rule set which refines
G exhaustively, by setting GP := ∪̇g∈GΓP(g) (disjoint sum). To every
refinement gφ corresponds an inverse refinement g"φ! , and GP = G"

P .
To equip GP with rates, we suppose given a P-indexed real-valued

vector of energy costs ε, and a rate map k : GP → R+ such that, for
all gφ in GP :

log k(g"φ!)− log k(gφ) = ε ·∆φ (6)

with ∆φ the balance vector of the refined rule gφ with respect to P
(which is well-defined by Th. 2).

We write P(x) for the P-indexed vector which maps c to |Ψ(c, x)|,
and define the energy E(x) of x as ε · P(x). We also write LG(x) for
the finite (strongly) connected component of x in LG, and define a
probability distribution (in Boltzmann format) on LG(x) by:

πx(y) := e−ε·P(y)/
∑

y∈LG(x)

e−ε·P(y) (7)

12Theorem 3 Let G, P, GP , k, and πx be as above. We have that:
LGP and LG are isomorphic as symmetric LTSs; and, furthermore,
for any mixture x, the irreducible continuous-time Markov chain Lk

GP
has detailed balance for, and converges to πx, on LGP (x) = LG(x) the
strongly connected component of x.

Proof. Both LG and LGP offer transitions from a mixture x: the
former are labelled by pairs (g,ψ) with g in G, ψ in Ψ(gL, x); the
latter by pairs (gφ, γ) with gφ the refinement of g along a mature
extension φ : gL → t, and γ in Ψ(t, x). Steps in the latter can be
mapped to steps in the former by transforming labels as follows:
(gφ, γ) "→ (g, γφ). As GP refines G exhaustively (Th. 2), this corre-
spondence is a bijection, which establishes the first claim.

(Pedantically, there is a full and faithful functor between the
two corresponding free categories which is the identity on objects—
incidentally, this bijection is readily seen to respect the symmetries
on labels.)

Since we have multiple rules in LGP , each of which can be applied
in several ways, there can be more than one transitions from x to
the same y —each uniquely described by a (gφ, γ) label. Each such
(gφ, γ) has an inverse, (g"φ! , γ"), where: g" is the rule inverse to g;
φ" corresponds to φ in the isomorphism between the categories of
extensions of x and y, with φA = φ"

A; and γ" is the embedding
corresponding to γ, also with γA = γ"

A. One can easily verify that
φ" is an epi, and that φ" is also mature. Hence (g"φ! , γ") determines
a valid transition in LGP which is inverse to (gφ, γ), and we have a
bijective correspondence between transitions from x to y and those
from y to x.

Consider a pair e, e" of such corresponding events due to gφ and
g"φ! ; because e is a transition from x to y, and φ is P-balanced (Th. 2),
we have P(y) = P(x) + ∆φ, and hence ε · ∆φ = ε · (P(y) − P(x));
so, by (6), the rates of e, e" are such that:

k(e") e−ε·P(y) = k(e) e−ε·P(x)

and by summing this equation over all pairs, we obtain detailed
balance for the probability local to the component LGP (x) = LGP (y),
defined above as πx = πy, since:

q(y, x) e−ε·P(y) = q(x, y) e−ε·P(x)

13



parsimonious parameterization

Suppose as given a contact graph C, a set G of (agent-
preserving) generator rules over C, a set P of energy
patterns over C and a P-indexed real-valued vector of
energy costs ε. Suppose additionally that, for each g in
G, we have a pair of rate maps kg, k!g from ΓP(g) to R+

such that, for all pairs φ, φ! in ΓP(g),

log
k!g(φ

!)

kg(φ)
= ε ·∆φ (8)

where ∆φ is the energy balance of φ(g) w.r.t. P (a well-
defined quantity by Theorem 2).

Theorem 3 (equilibrium theorem) The CTMC
GP,ε generated by P, G, with rate maps kg, k!g :
(i) has an underlying non-deterministic LTS which is
isomorphic to the symmetric LTS generated by G; and
(ii) converges to the equilibrium p(x) ∝ e−ε·P(x) on the
strongly connected component of (any initial state) x0.

Proof. Let x be a site graph of type C. There are two
qualitative, i.e. non-deterministic, LTSs offering transi-
tions from x: the first is obtained directly from G, la-
belled by pairs (g,ψ) where g in G and ψ is an embed-
ding of the LHS of g into x; the second is the one gener-
ated by P and G, labelled by triplets (g,φ,m) where g is
a generating rule, φ : gL → t is an extension of g which
belongs to ΓP(g) and m is an embedding of t into x.
Obviously the latter transitions can be mapped to the
former by applying (g,φ,m) #→ (g,m ◦ φ) to labels.

Since extensions in ΓP(g) form a refinement of g
(Th. 2), this map is injective; and, since this refine-
ment is surjective, it is a bijection. This means the two
LTSs are the same up to a renaming of labels, which
establishes the first claim. (Pedantically, there is a full
and faithful functor between the two corresponding free
categories which is the identity on objects.)

Since we have multiple rules, each of which can be
applied in multiple ways, there can be several transi-
tions from x to the same y; each is uniquely described
by a (g,φ,m) triple. Each such (g,φ,m) has an inverse,
(g!,φ!,m!), where g! is the rule inverse to g. The ex-
tension φ! is the extension corresponding to φ in the
isomorphism between the two categories of extensions
(and, moreover, they are equal seen as maps on nodes)
and m! is the embedding corresponding to m (again the
same as m on nodes). One can easily verify that φ! is
an epi and is also in ΓP(g!).

The above defines a forward/backward correspon-
dence between transitions from x to y and those back
again. Consider a pair e, e! of such corresponding events
associated to φ and φ!; because the φ event is a tran-
sition from x to y, and φ is balanced (Th. 2), we have
P(y) = P(x)+∆φ, and hence ε ·∆φ = ε · (P(y)−P(x));
so, by (8), the rates of e, e! are such that:

k(e!) e−ε·P(y) = k(e) e−ε·P(x)

and by summing this equation over all pairs, we obtain
detailed balance:

q(y, x) e−ε·P(y) = q(x, y) e−ε·P(x)

The convergence statement follows by standard re-
sults of the theory of continuous-time reversible Markov
chains on finite state spaces [22]. !

5.1 Discussion

Let us make a few remarks about the above argument.
First of all, that portion of the state space which is
reachable from x0 is finite; hence, the normalization
factor, also known as the partition function

∑
e−E(x),

which is restricted to the finite (strongly) connected
component cc(x0) of x0, is finite. If we were to extend
our construction to rules that increase the number of
agents, i.e. to potentially countably infinite components
in the state space, we would have to confront with this
inherent difficulty. In the case of mass action stochastic
Petri nets, convergence is guaranteed if detailed balance
holds, but it is not true in general for Kappa [7, 8].

Second, the result holds symbolically—regardless of
the energy cost ε. So ε can be seen as a set of parameters,
an ideal support for machine learning techniques if one
were contemplating fitting the model to data.

Third, it is perhaps important to insist that, without
the first part of the statement, the theorem loses some
of its lustre. Indeed, for the second part of the proof, it
is sufficient that the rule set of interest is P-balanced.
Hence, any such rule set will also go to P-equilibrium
on cc(x0). The problem is that we do not know how to
relate cc(x0) to its analogue in the original G-transition
system, as there is no guarantee that the original system
is isomorphic—or even in any way related—to the new
transition system (other than playing out on the same
state space)!

For example, suppose we take as rules the set of direct
glueings of G with P. We have seen that, in general, this
means that we are missing instances of the generating
rules, i.e. the functor mentioned in the proof is not full;
hence, it is possible that the reachable states are far
fewer than the original ones. If, on the other hand, we
use prime extensions, we get overlapping instances of
the same generating g, i.e. the functor is not faithful;
this is perhaps less of a problem but, when overlaps do
happen, kinetic rates (not rate ratios) will be modified
and it seems weird to let the syntactic nature of the
construction dictate something about the kinetics which
is nowhere in the statement of the problem.

5.2 A linear kinetic model

Suppose we have, for every generating rule g in G, a
constant cg ∈ R, and a matrix Ag of dimension P × P.

We define the rate maps by:

log(kg(φ)) := cg −Ag(ε) ·∆φ (9)

where ∆φ ∈ ZP is the P-balance of φ.
It is easy to verify that, subject to the constraints

that

cg! = cg and Ag! +Ag = I,
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the rate maps (9) define a compatible dynamics (8).
Indeed:

cg! −Ag!(ε) ·∆φ! = cg −Ag(ε) ·∆φ+ ε ·∆φ

or, equivalently, using ∆φ! = −∆φ:

cg! − cg = −Ag!(ε) ·∆φ−Ag(ε) ·∆φ+ ε ·∆φ
= (I −Ag! −Ag)(ε) ·∆φ.

Note that this kinetic model is completely parametric
in ε (again) and ∆φ, and linear in both arguments (up
to the additive constant cg).

A remarkable particular case is obtained when cg! =
cg = 0, Ag! = 0, Ag = I:

kg(φ) = e−ε·∆φ

kg!(φ!) = 1

As ε ·∆φ is the difference of energy between the target
and source of any φ-transition, the above choice of rates
means that one is increasingly reluctant to climb up the
energy gradient. This is a continuous-time version of the
celebrated Metropolis algorithm [20].

This kinetic model is convenient in as much as it nar-
rows choices down to a parsimonious space, as (9) re-
quires the specification of only O(|P|2×|G|) parameters.
This number is to be compared with the total number
of choices possible which is of the order of the number
of refinements, that is to say

∑
g∈G |ΓP(g)|. In practice,

one needs even fewer parameters, as only those energy
shapes that are relevant, i.e. have a non-zero balance for
at least one extension in ΓP(g) need to be considered
when building Ag. Typically, for larger models, this will
be a far smaller number than |P|.

There is a final source of parameter parsimony into
which this kinetic model taps, namely the dependen-
cies between the ∆φ of a refinement. We have seen in
§2 that the ∆φ family typically exhibit strong linear
dependencies, i.e. has low rank; as (9) assigns rates to
an extension φ solely based on its ∆φ, this imposes ex-
tra uniformities on the rate maps. It follows that fewer
independent parameters will be needed. Concretely, all
other rates can be expressed once we have a basis, e.g.
if ∆φ =

∑
i αi∆φi then:

log kg(φ)− cg =
∑

i αiAg(ε) ·∆φi

=
∑

i αi(log kg(φi)− cg)

Finally, as an aside, we can draw a comparison with
the Arrhenius rate law. This law posits a dependency
of the rate constant k of a reaction of the form log k =
c − Ea/kT , where c is a constant (defining the basic
time scale of the reaction), Ea is the so-called activation
energy of the reaction and T is the temperature. In our
case, we are not concerned with the effect of T on the
(logarithm of the) rate but with the effect of consuming
and producing various energy patterns in P at the locus
of the instance of the generator rule g. In this view
of things, (9) posits that the ‘activation energy’ of φ
depends linearly on the cost of the various patterns and
the balance of φ.

6 Conclusion
We have presented a new ‘energy-oriented’ methodol-
ogy for the development of site graph rewriting models
based on a notion of energy patterns; energy patterns
use a graphical syntax which allows us to specify the
energy landscape. Rewrite rules stay implicit; they are
generated automatically and guaranteed to be thermo-
dynamically correct and to (flow around and) eventu-
ally converge to the energy landscape. There are no spe-
cific conditions bearing on this construction other than
that patterns should be local although it would be in-
teresting to investigate whether, under certain circum-
stances, it may be worthwhile to impose some stronger
constraints on the choice of energy patterns in order to
obtain a fully optimized generated rule set. Moreover,
we have restricted the class of permitted rules so as to
leave agents invariants. As explained in the main text,
there are significant challenges ahead if one wants to
relax this assumption.

The site graph formalism exhibits a form of syntactic
closure in the sense that the dynamics is written in the
same syntax of site graphs as the energy terms them-
selves. Technically, the construction can be made rel-
ative to a given non-deterministic site graph-rewriting
transition system, say G. Given in addition, a set of con-
nected site graphs P, and an energy cost P-indexed vec-
tor ε, we construct a canonical P-compatible quantita-
tive GP,ε which converges to the equilibrium prescribed
by P and ε. The construction is entirely parametric in
ε, and modular in G. This means that in a modelling
context, one can sweep over various values for ε with-
out having to rebuild GP,ε, and one can compositionally
add new rule components to G. Both features are clearly
useful.

Concerning applications, we expect our construc-
tion to provide a broad and uniform language to
describe a significant class of models for networks
of interacting biomolecules and similar systems of a
quantitative fine-grained and distributed nature. The
method subsumes and powerfully generalizes the con-
cept of allosteric network in [23] while keeping its valu-
able features—relative sobriety of parametrization and
machine-learning readiness—and its compatibility with
lower-level modelling techniques such as a rule-based
version of molecular dynamics [13, 5]. It also encom-
passes wider and more ambitious models, such as ther-
modynamic models of transcriptional regulation [25]
and signalling systems involving dynamic and large as-
semblies of cooperating molecules [6, 18, 26], which are
currently modelled in an ad hoc and piecemeal fashion
for want of a unifying framework.

We would like to extend our analysis to non-local
forms of energies so as to treat well-known important
phenomena such as so-called ‘positional entropy’ effects.
We could also in principle accommodate long-range spa-
tial terms, e.g. electrostatic interactions, provided that
the metric is read off the site graph itself. However, in
practice, even using shielded potentials [17], the explicit
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