
From functional programming to program proof
or: The continuation of ML by other means

Xavier Leroy

INRIA Paris-Rocquencourt

Journées d’Informatique Fondamentale de Paris Diderot,
2013-04-26

Part I

The legacy of ML

In the beginning. . .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 17, 348-375 (1978)

A Theory of Type Polymorphism in Programming

ROBIN MILNER

Computer Science Department, Vm+ersity of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphic procedures in the context of a simple pro-
gramming language, and a compile time type-checking algorithm w which enforces the
discipline. A Semantic Soundness Theorem (based on a formal semantics for the language)
states that well-type programs cannot “go wrong” and a Syntactic Soundness Theorem
states that if fl accepts a program then it is well typed. We also discuss extending these
results to richer languages; a type-checking algorithm based on w is in fact already
implemented and working, for the metalanguage ML in the Edinburgh LCF system,

1. INTRODUCTION

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types
(LISP is a perfect example), entails defining procedures which work well on objects of
a wide variety (e.g., on lists of atoms, integers, or lists). Such flexibility is almost essential
in this style of programming; unfortunately one often pays a price for it in the time taken
to find rather inscrutable bugs-anyone who mistakenly applies CDR to an atom in
LISP, and finds himself absurdly adding a property list to an integer, will know the
symptoms. On the other hand a type discipline such as that of ALGOL 68 [22] which
precludes the flexibility mentioned above, also precludes the programming style which
we are talking about. ALGOL 60 was more flexible-in that it required procedure
parameters to be specified only as “procedure” (rather than say “integer to realprocedure”)
-but the flexibility was not uniform, and not sufficient.

An early discussion of such flexibility can be found in Strachey [19], who was probably
the first to call it polymorphism. In fact he qualified it as “parametric” polymorphism,
in contrast to what he called “adhoc” polymorphism. An example of the latter is the use
of “+” to denote both integer and real addition (in fact it may be further extended to
denote complex addition, vector addition, etc.); this use of an identifier at several distinct
types is often now called “overloading,” and we are not doncerned with it in this paper.

In this paper then, we present and justify one method of gaining type flexibility, but
also retaining a discipline which ensures robust programs. We have evidence that this

348
0022-0000/78/0173-0348$02.00/0
Copyright 8 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.

Principal type-schemes for functional programs

Luis Darnas* and Robin Milne~

Edinburgh University

1. Introduction

This paper is concerned with the polymorphic

type discipline of NL, which is a general purpose

functional programming language, although it was

first introduced as a metalanguage (whence its

name) for conducting proofs in the LCF proof system

[GMW] . The type discipline was studied in [Mil] ,

where it was shown to be semantically sound, in a

sense made precise below, but where one important

question was left open: does the type-checking

algorithm - or more precisely, the type assignment

algorithm (since types are assigned by the compiler,

and need not be mentioned by the programmer) - find

the most general type possible for every expression

and declaration? Here we answer the question in

the affirmative, for the purely applicative part

of ML. It follows immediately that it is decid-

able whether a program is well-typed, in contrast

with the elegant and slightly more permissive type

discipline of Coppo [Cop] . After several years

* The work of this author is supported by the
Portuguese Instituto National de Investigacao
Cientifica.

Permksion to copy without fee all or part of this material k granted
provided that the copies are not made ordktributed fordkect
commercial advantage, the ACM copyright notice and the title of the
publication and ha date appear, and notice k given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@ 1982 ACM O-89791-065-6/82/OOl/0207 $00.75

of successful use of the language, both in LCF and

other research and in teaching to undergraduates,

it has become important to answer these questions -

particularly because the combination of flexibility

(due to polymorphism) , robustness (due to semantic

soundness) and detection of errors at compile time

has proved to be one of the strongest aspects of ML.

The discipline can be well illustrated by a

small example. Let us define in ML the function

“map”, which maps a given function over a given list

- that is,

map f [xl;. ..;xn] =

The required declaration

letrec map f s = if null—

[f(xl); f(xn)]

is

s then nil

else cons(f (hd s)) (map f (tl s))

The type-checker will deduce a type-scheme for “map”

from existing type-schemes for “null”, “nil”, “cons”,

“hd” and “tl”; the term “type-scheme” is appropriate

since all these objects are polymorphic. In fact,

from

null : Va(a list+ bool)

nil : Va(a list)

cons : Va(a + (a list + u list))

hd : Va(u list + a)

tl : VU([

will be deduced

maP : V’WV(3

list + a list)

(u + !3) + (a list+5 list) .

207

(POPL 1982)

Core ML

First-class
functions

Datatypes and
pattern-matching

Hindley-Milner polymorphic types
Damas-Milner type inference

Things we learned from Core ML

Strong static typing is the programmer’s friend.

Types need not be verbose.

Explicit types as documentation (datatypes, interfaces).

Types are compatible with code reuse.

Opportunities for reuse can be discovered rather than planned.

Not just type safety, but also exhaustiveness checks.

A rich lineage

LCF ML SML90 SML97

LazyML
Miranda

Haskell Haskell98

CAML Caml Light OCaml

F#

MoscowML

Alice

Agda

Hope

SASL

Lisp

1980–2000: a flurry of type systems

Type more features; type them more precisely.

Type other programming paradigms (OO, distributed).

Typed intermediate & assembly languages.

http://upload.wikimedia.org/wikipedia/commons/c/c5/Potenti...

1 of 1 13/4/12 15:36

(Core ML as the bottom of a potential well.)

Principal types or not?

Beauty can also arise from formal constraints. . .

Novel approaches driven by principality

Exhibit A: Haskell’s type classes.

How to make ad-hoc polymorphism less ad hoc

Philip Wadler and Stephen Blott
University of Glasgow*

Abstract
This paper presents type classes, a new approach
to ad-hoc polymorphism. Type classes permit over-
loading of arithmetic operators such as multiplica-
tion, and generalise the “eqtype variables” of Stan-
dard ML. Type classes extend the Hindley/Milner
polymorphic type system, and provide a new ap-
proach to issues that arise in object-oriented pro-
gramming, bounded type quantification, and ab-
stract data types. This paper provides an informal
introduction to type classes, and defines them for-
mally by means of type inference rules.

1 Introduction
Strachey chose the adjectives ad-hoc and panzmelric
to distinguish two varieties of polymorphism [Str67].

Ad-hoc polymorphism occurs when a function is
defined over several diflerent types, acting in a dif-
ferent way for each type. A typical example is
overloaded multiplication: the same symbol may be
used to denote multiplication of integers (as in 3*3)
and multiplication of floating point values (as in
3.14*3.14).

Parametric polymorphism occurs when a function
is defined over a range of types, acting in the same
way for each type. A typical example is the length
function, which acts in the same way on a list of
integers and a list of floating point numbers.

One widely accepted approach to parametric
polymorphism is the Hindley/Milner type system
[Hin69, Mi178, DM82], which is used in Standard

*Authors’ address: Department of Computing Science,
University of Glasgow, Glasgow G12 SQQ, Scotland. Elec-
tronic mail: aadler, blottUlcs .glasgou .ac .uk.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and n*
tice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

0 1989 ACM 0-89791-.294-2/89/0001/0060 $1.50

ML [HMM86, Mi187], Mirandal[Tur85], and other
languages. On the other hand, there is no widely
accepted approach to ad-hoc polymorphism, and so
its name is doubly appropriate.

This paper presents type classes, which extend the
Hindley/Milner type system to include certain kinds
of overloading, and thus bring together the two sorts
of polymorphism that Strachey separated.

The type system presented here is a generalisa-
tion of the Hindley/Milner type system. As in that
system, type declarations can be inferred, so explicit
type declarations for functions are not required. Dur-
ing the inference process, it is possible to translate a
program using type classes to an equivalent program
that does not use overloading. The translated pro-
grams are typable in the (ungeneralised) Hindley/
Milner type system.

The body of this paper gives an informal introduc-
tion to type classes and the translation rules, while
an appendix gives formal rules for typing and trans-
lation, in the form of inference rules (as in [DM82]).
The translation rules provide a semantics for type
classes. They also provide one possible implementa-
tion technique: if desired, the new system could be
added to an existing language with Hindley/Milner
types simply by writing a pre-processor.

Two places where the issues of ad-hoc polymor-
phism arise are the definition of operators for arith-
metic and equality. Below we examine the ap-
proaches to these three problems adopted by Stan-
dard ML and Miranda; not only do the approaches
differ between the two languages, they also differ
within a single language. But as we shall see, type
classes provide a uniform mechanism that can ad-
dress these problems.

This work grew out of the efforts of the Haskell
committee to design a lazy functional programming
language2. One of the goals of the Haskell commit-

‘Miranda is a trademark of Research Software Limited.
2The Haskell committee includes: Arvind, Brian Boutel,

Jon Fairbairn, Joe Fasel, Paul Hudak, John Hughes, Thomas
Johnsson, Dick Kieburtz, Simon Peyton Jones, Ftishiyur
Nikhil, Mike Reeve, Philip Wadler, David Wise, and Jonathan

60

Novel approaches driven by principality

Exhibit B: row polymorphism (Wand, Rémy, Garrigue)

〈m : int; ρ1〉 〈k : bool; ρ2〉

〈m : int; ∅〉 〈m : int; k : bool; ∅〉

Pitfalls

Independently-developed advanced type systems that don’t
combine well in one language.

Multiple sub-languages:
core + modules + OO classes + type classes + . . .

Intractable type expressions.

Diminishing returns.

Complicated encodings:
phantom types, GADTs, . . .

1990–2000: making pure functional
programming work

[Standard ML] grew in response to a particular
programming task, for which it was equipped also with
full imperastive power, and a sophisticated exception
mechanism.

(R. Milner et al, The Definition of SML)

Pragmatic reasons for “impure” functional programming:

• Efficient algorithms using in-place modification
(e.g. unification)

• Basic software engineering:
• error reporting
• logging, I/O, . . .
• configuration variables, “gensym”, . . .

Paradise lost?

With imperative features come difficult metatheory:

• STLC + control operators ≈ classical logic

• Hindley-Milner + references ≈ communication channels

and great responsibilities on the programmers:

• equational reasoning is generally false;

• missing cases (“uncaught exception”);

• sharing of data structures is no longer always safe.

Paradise regained, I:
functional data structures

C. Okasaki, R. Bird, R. Hinze, J.-C. Filliâtre, . . .

Building a catalogue of pure, persistent data
structures:

• with only O(log n) slowdowns
(balanced binary trees, Patricia trees, . . .)

• or even O(1) amortized slowdowns
(by clever use of lazy evaluation)

Paradise regained, II: monads

The essence of functional programming
(Invited talk)

Philip Wadler, University of Glasgow*

Abstract

This paper explores the use monads to structure func-
tional programs. No prior knowledge of monads or
category theory is required.

Monads increase the ease with which programs may
be modified. They can mimic the effect of impure
features such as exceptions, state, and continuations;
and also provide effects not easily achieved with such
features. The types of a program reflect which effects
occur.

The first section is an extended example of the use
of monads. A simple interpreter is modified to support
various extra features: error messages, state, output,
and non-deterministic choice. The second section de-
scribes the relation bet ween monads and cent inuation-
passing style. The third section sketches how monads
are used in a compiler for Haskell that is written in
Haskell.

1 Introduction

Shall I be pure or impure?
Pure functional languages, such as Haskell or Mi-

randa, offer the power of lazy evaluation and the sim-
plicity of equational reasoning. Impure functional lan-
guages, such as Standard ML or Scheme, offer a tempt-
ing spread of features such as state, exception han-
dling, or continuations.

One factor that should influence my choice is the
ease with which a program can be modified. Pure
languages ease change by making manifest the data
upon which each operation depends. But, sometimes,
a seemingly small change may require a program in a
pure language to be extensively restructured, when ju-
dicious use of an impure feature may obtain the same

*Author’s address: Department of Computing Science, UN-
versity of Glasgow, Glasgow G12 8QQ, Scotland Email:
wadlerfldcs .glasgow .ac .uk.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery, To wpy other-
wise, or to republisb, requires a fee and/or specific permission.

effect by altering a mere handful of lines.
Say I write an interpreter in a pure functional lan-

guage.
To add error handling to it, I need to modify the re-

sult type to include error values, and at each recursive
call to check for and handle errors appropriately. Had
I used an impure language with exceptions, no such
restructuring would be needed.

To add an execution count to it, I need to mod-
ify the the result type to include such a count, and
modify each recursive call to pass around such counts
appropriately. Had I used an impure language with
a global variable that could be incremented, no such
restructuring would be needed.

To add an output instruction to it, I need to modify
the result type to include an output list, and to modify
each recursive call to pass around this list appropri-
ately. Had I used an impure language that performed
output as a side effect, no such restructuring would <e
needed.

Or I could use a monad.
This paper shows how to use monads to structure an

interpreter so that the changes mentioned above are
simple to make. In each case, all that is required is to
redefine the monad and to make a few local changes.
This programming style regains some of the flexibility
provided by various features of impure languages. It
also may apply when there is no corresponding impure
feature.

The technique applies not just to interpreters, but
to a wide range of functional programs. The GRASP
team at Glasgow is constructing a compiler for the
functional language Haskell. The compiler is itself
written in Haskell, and uses monads to good effect.
Though this paper concentrates on the use of monads
in a program tens of lines long, it also sketches our
experience using them in a program three orders of
magnitude larger.

Programming with monads strongly reminiscent of
continuation-passing style (CPS), and this paper ex-
plores the relationship between the two. In a sense
they are equivalent: CPS arises as a special case of a
monad, and any monad may be embedded in CIY3 by
changing the answer type. But the monadic approach
provides additionall insight and allows a finer degree
of control.

@ 1992 ACM 089791453-8/92/0001/0001 $1.50

1

A Modular Approach to Denotational Semantics

Eugenio Moggi
Dipa r t imen to di M a t e m a t i c a

Univers i t£ di Genova
v ia L.B. Alber t i 4

16132 Genova, ITALY
moggi@igecuniv.bi tnet

We propose an incremental approach to the denotational semantics of complex pro-
gramming languages based on the idea of monad transformer.

The traditional way of giving denotational semantics to a programming language is to
translate it into a metalanguage ML with a fixed intended interpretation in the category
Cpo of cpos (or some variant of it). We depart from this approach by translating a
programming language PL in a metalanguage ML(E), where some constants do not
have a fixed intended interpretation in Cpo. These constants, specified in the signature
~, include a unary type constructor T and a collection of (polymorphic) operations for
constructing terms of type TA. A key property of the translation is that programs of
type A are translated into terms of type T(A°), where A ° is the translation of A.

This approach does not yield any new semantics for PL, since eventually one has to
interpret the constants in E, e.g. by translating them into ML. However, it is an integral
part of the incremental approach to be able to change the interpretation of constants
in E (without invalidating adequacy of the denotational semantics w.r.t, some given
operational semantics), when extending the programming language. Suppose that PL is
obtained from PLo by a sequence of simple extensions PLI C PLi+I and that we have
a semantics for PLo, how can we built a semantics for PL? In terms of signatures for
metalanguages the problem can be rephrased as follows:

given an increasing sequence of signatures Ei C Ei+l and an interpretation for
~o (the initiM signature), we want to construct an interpretation for :E (the
final signature).

This can be achieved incrementally, provided at each step Y:'i C Ei+l we can construct an
interpretation for ~i+1 from an interpretation for ~i. At first, one is tempted to extend
the interpretation for ~i to the whole of Ei+I, but in general this is not possible. Instead,
one has first to redefining the interpretation of T (and therefore of M1 operations in ~i),
and then extend it to :Ei+ 1.

We will show that for a wide range of signature extensions ~i C :El+l, there is a
uniform way of redefining an interpretation for El and to extend it to Ei+l. We will
illustrate the incremental approach with few examules, such as:

A monad = a parameterized type α mon and operations

ret : ∀α, α→ α mon

bind : ∀αβ, α mon→ (α→ β mon)→ β mon

such that bind(ret x) f ≈ f x and bind x f ≈ bind y f if x ≈ y .

Paradise regained, II: monads

All classic imperative features can be uniformly presented as
monadic programming: state, exceptions, continuations.

Not a silver bullet: if all your code is in the state-and-exception
monads, it has the same problems as ML code.

A way to segregate (by typing) pure computations from effectful
computations.

A way to restrict effects to just what is needed by the program:

• just logging or just configuration passing or just “gensym”
instead of full state;

• just backtracking or just coroutining instead of full control
operators.

Limitations

The check is in the mail.

Next year unemployment will go down.

If it typechecks, it is correct.

Reality check: even after leveraging static typing and exploiting
purity as much as possible, functional programs still have serious
bugs, esp.

• regarding numerical computations

• and data structure invariants (beyond basic integrity).

Part II

Towards software verification

2000–now: towards program verification
(for security and safety)

A big chunk of the P.L. community shifts to verification:

• static analysis,

• model checking,

• program proof,

• and combinations thereof.

Another chunk re-discovers LCF-style interactive proof assistants:

• mechanized metatheory of typed languages
(the POPLmark challenge)

• verification of fundamental algorithms
(Java bytecode verification, H-M type inference, SSA conversion)

A modern verification tool
(Frama-C Jessie)

. . . with a rich specification language

/*@ requires n >= 0 && \valid_range(t,0,n-1);

@ behavior success:

@ assumes // array t is sorted in increasing order

@ \forall integer k1, k2;

@ 0 <= k1 <= k2 <= n-1 ==> t[k1] <= t[k2];

@ assumes // v appears somewhere in the array t

@ \exists integer k; 0 <= k <= n-1 && t[k] == v;

@ ensures 0 <= \result <= n-1 && t[\result] == v;

@ behavior failure:

@ assumes // v does not appear anywhere in the array t

@ \forall integer k; 0 <= k <= n-1 ==> t[k] != v;

@ ensures \result == -1;

@*/

int binary_search(long t[], int n, long v) {

A flurry of powerful verification tools

C Astree, BLAST, CBMC, Coverity, Fluctuat,
Frama-C, Polyspace, SLAM, VCC, . . .

Java, C# Bandera, CodeContracts, Coverity, ESC/Java2,
Java Pathfinder, KeY, Klocwork, Spec#, . . .

F.P. F*

A fragmented landscape

“Lesser” prog. lang.
w/ rich verification tools

Func. prog. lang.

no verification
Proof

assistants
Agda ACL2

A dilemma

How to develop and formally verify a program well-suited to F.P.?
(running example: a compiler)

1 Use a “lesser” programming language that has good
verification tools?

2 Develop verification tools for a proper F.P. language?

3 Use an interactive proof assistant and program within it?

Part III

Programming and proving a compiler in Coq

Early compiler verification in Stanford LCF
(Milner and Weyrauch, Machine Intelligence, 1972)

Early compiler verification in Stanford LCF

Trust in compilers

Executable
code

Source
program

Compiler?

Formal verification

Critical software with source-level verification:
Bugs in compilers (miscompilation) can invalidate the guarantees
obtained by verification.

Trust in compilers

Executable
code

Source
program

Compiler
observational
equivalence

Formal verification

Formally-verified compiler:
Guarantees that the generated executable code behaves as pre-
scribed by the semantics of the source program.

Compiler verification

Theorem (Semantic preservation)

Let S be a source program and E an executable.
Assume the compiler produces E from S,
without reporting compile-time errors.
Then, for all observable behaviors b, E ⇓ b =⇒ S ⇓ b

A challenge for standard deductive program provers:

• The specification involves complex logical definitions
(two operational semantics).

• The program involves recursion and tree/graph-shaped data.

A good match for interactive theorem provers.

The CompCert project
(X.Leroy, S.Blazy, et al)

Develop and prove correct a realistic compiler, usable for critical
embedded software.

• Source language: a very large subset of C.

• Target language: PowerPC/ARM/x86 assembly.

• Generates reasonably compact and fast code
⇒ careful code generation; some optimizations.

Note: compiler written from scratch, along with its proof; not
trying to prove an existing compiler.

Note 2: wish to prove correct the actual implementation, not just
the algorithms.

From Milner & Weyrauch. . .

Arithmetic
expressions

Stack
machine

. . . to the CompCert C verified compiler

CompCert C Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachAsm

side-effects out

of expressions

type elimination

loop simplifications

stack allocation

of “&” variables

instruction

selection

CFG construction

expr. decomp.

register allocation (IRC)

linearization

of the CFG

spilling, reloading

calling conventions

layout of stack frames

asm code

generation

Optimizations: constant prop., CSE, tail calls,

(LCM), (Software pipelining)

(Instruction scheduling)

Using the Coq proof assistant

1 To write the specification and conduct the proof.
(50 000 lines; 5 person.years)

2 To program the compiler.
In pure, strict, terminating functional style.
Executability via Coq → OCaml extraction.

Coq in a nutshell

Structurally-recursive
functions & pattern-matching

Inductive and coinductive
datatypes and predicates

The Calculus of Constructions
(HO constructive logic based on dependent type theory)

Programming a compiler pass in Coq

Example: translation from structured control (if/then/else, loops)
to a control-flow graph:

• Nodes = instructions.

• Edge from I to J = J is a successor of I
(J can execute just after I).

Example: some structured code

double average(int * tbl, int size)

{

double s = 0.0;

int i;

for (i = 0; i < size; i++)

s = s + tbl[i];

return s / size;

}

Example: the corresponding CFG

s = 0.0

i = 0

if (i >= size)

a = i << 2

b = load(tbl, a)

c = float(b)

s = s +f c

i = i + 1

d = float(size)

e = s /f d

return(e)

Programming the translation

The graph is built incrementally by recursive functions such as

transl expr Γ e r n′

Effect: add to the graph the instructions that evaluate expression
e, deposit its result in temporary r , and branch to node n′. Return
first node n of this sequence of instructions.

If we were to write this function in ML, we would use mutable
state to represent the current state of the CFG, and the generators
for fresh CFG nodes and fresh temporaries.

Example of translation

For a conditional expression e1 ? e2 : e3

recursive call on e2 recursive call on e3

Icond(r)

T F

recursive call on e1

Example of translation

For a conditional expression e1 ? e2 : e3

recursive call on e2 recursive call on e3

Icond(r)

T F

recursive call on e1

Example of translation

For a conditional expression e1 ? e2 : e3

recursive call on e2 recursive call on e3

Icond(r)

T F

recursive call on e1

Example of translation

For a conditional expression e1 ? e2 : e3

recursive call on e2 recursive call on e3

Icond(r)

T F

recursive call on e1

Example of translation

For a conditional expression e1 ? e2 : e3

recursive call on e2 recursive call on e3

Icond(r)

T F

recursive call on e1

Making the state explicit

CFG construction functions as state transformers

state → result × state

The state is:

Record state: Type := {

st_nextreg: positive;

st_nextnode: positive;

st_code: PTree.t instruction

(* finite map positive -> instr *)

}.

The state monad to the rescue

Encapsulate threading of the state in a monad. An imperative
computation returning type A is a Coq term of type mon A.

Definition mon (A: Type) : Type := state -> A * state.

Definition ret (A: Type) (x: A) : mon A :=

fun (s: state) => (x, s).

Definition bind (A B: Type) (f: mon A) (g: A -> mon B) : mon B :=

fun (s: state) => match f s with (a, s’) => g a s’ end.

Notation "’do’ X <- A ; B" := (bind A (fun X => B))

(at level 200, X ident, A at level 100, B at level 200).

Excerpt from the translation

Fixpoint transl_expr (map: mapping) (a: expr)

(rd: reg) (nd: node)

{struct a}: mon node :=

match a with

| Evar v =>

do r <- find_var map v; add_move r rd nd

| Eop op al =>

do rl <- alloc_regs map al;

do no <- add_instr (Iop op rl rd nd);

transl_exprlist map al rl no

| Eload chunk addr al =>

do rl <- alloc_regs map al;

do no <- add_instr (Iload chunk addr rl rd nd);

transl_exprlist map al rl no

| ...

Monotone evolution of the state

A crucial property of the CFG construction functions is that the
state evolves in a monotone way:

• New nodes are added to the CFG, but preexisting nodes are
never changed.

• Temporaries are not reused.

We must maintain an invariant over states:

state_wf s :=

forall pc, pc >= s.(st_nextnode) -> s.(st_code) pc = None

and guarantee that if the state evolves from s1 to s2, we have

state_incr s1 s2: =

s1.(st_nextnode) <= s2.(st_nextnode)

/\ s1.(st_nextreg) <= s2.(st_nextreg)

/\ forall pc,

pc < s1.(st_nextnode) -> s2.(st_code) pc = s1.(st_code) pc

Dependent types to the rescue
The properties on the state are guaranteed by the basic state
operations (add a new node, etc), but we still have to show that
all CFG construction operations, built on these basic operations,
also guarantee these properties.

Dependent types can help!

The state_wf property of a single state can easily be attached to
all states we manipulate:

Record state: Type := {
st_nextreg: positive;

st_nextnode: positive;

st_code: positive -> option instr;

st_wf: forall pc,

pc >= st_nextnode -> st_code pc = None

}.

Dependent types to the rescue

Less trivially, the state_incr property of two states can be neatly
hidden in the monad.

Definition mon (A: Type) : Type :=

forall (s: state), A * { s’: state | state_incr s s’ }

Definition ret (A: Type) (x: A) : mon A :=

fun (s: state) => (x, exist s (state_incr_refl s)).

Definition bind (A B: Type) (f: mon A) (g: A -> mon B) : mon B :=

fun (s: state) =>

match f s with (a, exist s’ i) =>

match g a s’ with (b, exist s’’ i’) =>

(b, exist s’’ (state_incr_trans i i’))

end

end.

Dependently typed monads:
a winning combination?

While dependent function types ∀x : A, {y : B | P x y} are hard
to use in general, a monadic encapsulation hides them entirely
from the user of the monad.

The client code using the monad is unchanged:

Fixpoint transl_expr (map: mapping) (a: expr)

(rd: reg) (nd: node)

{struct a}: mon node :=

match a with

| Evar v =>

do r <- find_var map v; add_move r rd nd

| Eop op al =>

do rl <- alloc_regs map al;

...

Programming limitations

Is it effective to program directly in Coq?

In exchange for powerful proof support, we must deal with

• Strictness: no problem

• Purity: use monads for state and errors; use functional data
structures.

• Termination: often a problem!
Use “fuel” to bound recursions.
Irritating issue: we’re only interested in partial correctness.

Is there a better way?

Part IV

Alternative approaches

The Pangolin system
(Y. Régis-Gianas, F. Pottier)

Hoare logic for a pure functional language.

Pure mini-ML
+ logical

specifications

V.C.gen HOL proof
obligations

FOL proof
obligations

automatic
theorem
proving

(Alt-Ergo)

How to specify an argument f : A→ B to a higher-order function?

• Not by a function of the logic (non-termination, . . .)

• But by a pair of predicates:

Pre(f) : A→ Prop

Post(f) : A× B → Prop

Example of specification

let rec add (x, a) where (bst(a) and avl(a))

returns b where

(bst(b) and avl(b) and

elements (b) === singleton (x) ∪ elements (a)) =

match a with

| Empty ->

Node (Empty, x, Empty)

| Node (l, y, r) ->

if x = y then a

else if x < y then bal (add (x, l), y, r)

else bal (l, y, add (x, r))

end

Proof obligations automatically discharged by Alt-Ergo.

Example of higher-order specification

let rec map (f, a) where

(bst(a) and avl(a)

and ∀ x ∈ elements(a), Pre(f)(x))

returns b where

(bst(b) and avl(b)

and ∀ x ∈ elements(a), ∃ y ∈ b, Post(f)(x,y)

and ∀ y ∈ elements(b), ∃ x ∈ a, Post(f)(x,y))

=

...

HALO
(D. Vytiniotis, S. Peyton Jones, D. Rosen, K. Claessen)

Static verification of contracts for Haskell.

C ::= {x | e} | (x : C1)→ C2 | C1&C2

(Contracts were initially introduced as dynamically-checked
assertions.)

HALO generates and solves first-order proof obligations much like
Pangolin does.

However, specifications are given as boolean-valued Haskell
expressions (e above), not HO logic formulas, hence

• No infinite quantification.

• Delicate semantic issues when e does not terminate.

The CFML system
(A. Charguéraud)

An alternative approach based on characteristic formulas:

Most of Caml
(no assertions)

C.F.gen Characteristic
formulas

Interactive proof
in Coq

The characteristic formula [[t]] of a term t is the HO predicate s.t.

∀P,Q, [[t]] P Q ⇐⇒ {P} t {Q} (in Hoare logic)

It can be viewed simultaneously as

• a weakest precondition for t

• a denotational semantics for t

• a deep embedding of t in HO logic.

The CFML system

The characteristic formula [[t]] follows exactly the structure of t
→ lends itself well to interactive proof.

Pre-/post-conditions and invariants are not written in the source
code, but provided as needed during the proof.

Can also be extended with exceptions and mutable state.

In closing. . .

Pure, strict functional programming is a very short path from a
program to its correctness proof.

Contemporary F.P. languages do not realize this potential.

Axiomatic semantics is not just for imperative languages!

Shall we just embrace and improve proof assistants as P.L.?

Or design future F.P. languages with verifiability in mind?

