From functional programming to program proof

or: The continuation of ML by other means

Xavier Leroy
INRIA Paris-Rocquencourt

Journées d'Informatique Fondamentale de Paris Diderot,
2013-04-26

-

&i < -

Part |

The legacy of ML

In the beginning.

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 17, 348-375 (1978)

A Theory of Type Polymorphism in Programming
RoBIN MILNER

Computer Science Department, University of Edinburgh, Edinburgh, Scotland
Received October 10, 1977; revised April 19, 1978

Principal type-schemes for functional programs

Tuis Damas* and Robin Milner

The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types,
entails defining procedures which work well on objects of a wide variety. We present a
formal type discipline for such polymorphic procedures in the context of a simple pro-
gramming language, and a compile time type-checking algorithm %" which enforces the

Edinburgh University

discipline. A Semantic Soundness Theorem (based on a formal semantics for the language) 1. Introdution of successful use of th
states that well-type programs cannot “go wrong” and a Syntactic Soundness Theorem e paper ta concerned with the polymrphic ner rosaarch and i ¢

states that if % accepts a program then it is well typed. We also discuss extending these

results to richer languages; a type-checking algorithm based on ¥ is in fact already type discipline of ML, which is a general purpose it has become important

implemented and working, for the metalanguage ML in the Edinburgh LCF system, functional programming language, although it was particularly because th
first introduced as a metalanguage (whence its (due to polymorphisa) ,
name) for conducting proofs in the LCF proof system soundness) and detectic
(@] The type discipline was studled in (Mil], has proved to be one of

where it was shown to be semantically sound, in a
The discipline can

sense made precise below, but where one important

small example. Let us
question was left open: does the type-checking

"map", which maps a giv
algorithm - or more precisely, the type assignment

- that is,
algorithn (since types are assigned by the compiler,

map £ [x1j...:xn]

and need not be mentioned by the programer) - £ind
The required declaratic

the most general type possible for every expression

(POPL 1082) ans tectocations sere e snsver ene question on

letrec map £ 5 = if nul

else ¢

Core ML

Hindley-Milner polymorphic types
Damas-Milner type inference

First-class Datatypes and
functions pattern-matching

Things we learned from Core ML

Strong static typing is the programmer’s friend.

Types need not be verbose.

Explicit types as documentation (datatypes, interfaces).

Types are compatible with code reuse.

Opportunities for reuse can be discovered rather than planned.

Not just type safety, but also exhaustiveness checks.

A rich lineage

SASL (’Agda#
-
Miranda — Haskell — Haskell9§ —

LazyML —
Hope (V rv Alice

LCF ML = SML90——— SMLY7

Lisp -~ MoscowML

CAML ——» Caml Light — OCam| —

g

1980-2000: a flurry of type systems

Type more features; type them more precisely.
Type other programming paradigms (OO, distributed).

Typed intermediate & assembly languages.

VA
V(x)

X1 X2 X

(Core ML as the bottom of a potential well.)

Principal types or not?

Beauty can also arise from formal constraints. . .

William Shakespeare FIGURE 4. Opening of Fugue XXIi from Part [of J.S. Bach's
“The Well-Tempered Clavier."

Sonnet 116

Let me niot to the marriage of true minds
Admit impediments. Love is not low
Which alters when it alteration finds,
Or bends with the removerto remove:
0, nol it is an ewr-fixed mark,
That looks on tempests and is never shaken;
Itis the star to ewery wandering bark,
Whose worth's unknown, although his height be taken.
Love's not Time's fool, though rosy lips and cheeks
Within his bending sickle's compass come;
Tove alters not with his brief hours and weeks,
But bears it out even to the edge of doom
If this be error and upon me prov'd,
I tever writ, nior no man evwer lovd.

Novel approaches driven by principality

Exhibit A: Haskell's type classes.

How to make ad-hoc polymorphism less ad hoc

Philip Wadler and Stephen Blott
University of Glasgow*

Abstract

This paper presents fype classes, a new approach
to ad-hoc polymorphism. Type classes permit over-
loading of arithmetic operators such as multiplica-
tion, and generalise the “eqtype variables” of Stan-
dard ML. Type classes extend the Hindley/Milner
polymorphic type system, and provide a new ap-
proach to issues that arise in object-oriented pro-
gramming, bounded type quantification, and ab-
stract data types. This paper provides an informal
introduction to type classes, and defines them for-
mally by means of type inference rules.

ML [HMMS86, Mil87], Miranda*[Tur85], and other
languages. On the other hand, there is no widely
accepted approach to ad-hoc polymorphism, and so
its name is doubly appropriate.

This paper presents type classes, which extend the
Hindley /Milner type system to include certain kinds
of overloading, and thus bring together the two sorts
of polymorphism that Strachey separated.

The type system presented here is a generalisa-
tion of the Hindley/Milner type system. As in that
system, type declarations can be inferred, so explicit
type declarations for functions are not required. Dur-
ing the inference process, it is possible to translate a

Novel approaches driven by principality

Exhibit B: row polymorphism (Wand, Rémy, Garrigue)

(m:int; p1) (k : bool; p2)

Pitfalls

Independently-developed advanced type systems that don't
combine well in one language.

Multiple sub-languages:
core + modules + OO classes + type classes + ...

Intractable type expressions.
Diminishing returns.

Complicated encodings:
phantom types, GADTs, ...

1990-2000: making pure functional
programming work

[Standard ML] grew in response to a particular
programming task, for which it was equipped also with
full imperastive power, and a sophisticated exception
mechanism.

(R. Milner et al, The Definition of SML)

Pragmatic reasons for “impure” functional programming:
o Efficient algorithms using in-place modification
(e.g. unification)
e Basic software engineering:
e error reporting

e logging, 1/0, ...
e configuration variables, “gensym”, ...

Paradise lost?

With imperative features come difficult metatheory:
e STLC + control operators = classical logic

e Hindley-Milner + references ~ communication channels

and great responsibilities on the programmers:
e equational reasoning is generally false;
e missing cases (“uncaught exception”);

e sharing of data structures is no longer always safe.

Purely Functional
Data Structures
Chris Ohasahi 605%

L4
44
4 A4 4
lddd 44 44
d dd dd 44 44
dddddddddddddd

L4
44

4 A4 L4
ddddd 44

Paradise regained, I:

functional data structures
C. Okasaki, R. Bird, R. Hinze, J.-C. Filliatre, ...

Building a catalogue of pure, persistent data
structures:
e with only O(log n) slowdowns
(balanced binary trees, Patricia trees, ...)

e or even O(1) amortized slowdowns
(by clever use of lazy evaluation)

Paradise regained, |l: monads

The essence of functional programming
(Invited talk)

Philip Wadler, University of Glasgow*

Abstract A Modular Approach to Denotational Semantics

This paper explores the use monads to structure func- E io Moggi
. N L}
tional programs. No prior knowledge of monads or ugenio Aloget

category theory is required. Dipartimento di Matematica

Universita di Genova
via L.B. Alberti 4
16132 Genova, ITALY
moggi@igecuniv.bitnet

We propose an i \ h to the d jonal ics of complex pro-
gramming languages based on the idea of monad transformer.

A monad = a parameterized type o mon and operations

ret : VYo, a — o mon

bind : Vaf,amon — (o — [mon) — [mon

such that bind(ret x) f &~ f x and bind x f &~ bind y f if x & y.

Paradise regained, |l: monads

All classic imperative features can be uniformly presented as
monadic programming: state, exceptions, continuations.

Not a silver bullet: if all your code is in the state-and-exception
monads, it has the same problems as ML code.

A way to segregate (by typing) pure computations from effectful
computations.

A way to restrict effects to just what is needed by the program:
e just logging or just configuration passing or just “gensym”
instead of full state;

e just backtracking or just coroutining instead of full control
operators.

Limitations

The check is in the mail.
Next year unemployment will go down.

If it typechecks, it is correct.

Reality check: even after leveraging static typing and exploiting
purity as much as possible, functional programs still have serious
bugs, esp.

e regarding numerical computations

e and data structure invariants (beyond basic integrity).

Part Il

Towards software verification

2000—now: towards program verification
(for security and safety)

A big chunk of the P.L. community shifts to verification:

static analysis,

model checking,

program proof,

e and combinations thereof.

Another chunk re-discovers LCF-style interactive proof assistants:

e mechanized metatheory of typed languages
(the POPLmark challenge)

e verification of fundamental algorithms
(Java bytecode verification, H-M type inference, SSA conversion)

A modern verification tool

(Frama-C Jessie)

X (O gwhy: a verification conditions viewer

Fle Configuration _Proof

‘AltErge s-mpufy 23 |vices [cves
Proof obligations 22 (1.024(2.1 Statistics.
(SS)|(sS) |[(sS)
b User goals @ © 0 0 o0 1
Fueiten binery. soach © 000 0w
* Norael nenavior™ faritre © 6 00 02
1. postcondition o © 0 0 °o
2. postcondition o © © o0 o
7 iorrt b e Vo000 0
1. loop invariant initially holds @ o o0 o o
2. loop invariant initially holds @ o o0 o o
3. loop invariant preserved] @ 0 0 o
4. loop invariant preserved o o o o o
5. loop invariant preserved () o o0 o o
6. loop invariant preserved o © 0 0 °o
7. postcondition @ © 9 0 °o
8. postcondition o © 0 0 °o
9. postcondition Q © © o0 o
0. postcondition B e @ e @

, Function binary_search
Safety

o o o

°

k)

integer_of_int32(v) -> T T
integer_of_int32(10) <=

)) =
k and k <= integer_of_int32

(ue))

resultl:

(0 <= integer_of_int32(10) and
integer_of_int32(u0) <= integer_of_int32(n)
integer_of_int32(10) > integer_of_int32(u0)
int32

4: integer_of_int32(resultl) = -

retres: int32
5 retres =

-1

resultl

return: int32

/integer_of_int32(return) <= integer_of_int32(n) - 1

return = __retres

int binary search(long t[]
in

IS

@ \exists integer k; © <= k
@ ensures @ <= ;
@ behavior failure:

@ assumes // v does not appear anywhere in the array t
4 \forall integer k; © <= k <= n-1 ==> t[k] !=

@ ensures \result
@*/

n-1 & t[k]

, int n, long v) {
=0, u=n-1;

/+@ loop invariant 0 <= 1 && u <= n-1;

@ for success:

@ loop invariant

@ \forau integer k; 0 <= k < n && t[k]
<=k <= u;

o oon wariant 11

Timeout|10

[l pretty printer | |fHe: binary_search_behav.c VC: postcondition

... with a rich specification language

/*@ requires n >= 0 && \valid_range(t,0,n-1);
@ behavior success:
@ assumes // array t is sorted in increasing order
\forall integer k1, k2;
0 <= k1 <= k2 <= n-1 ==> t[kl] <= t[k2];
assumes // v appears somewhere in the array t
\exists integer k; 0 <= k <= n-1 && t[k] == v;
ensures 0 <= \result <= n-1 && t[\result] == v;
behavior failure:
assumes // v does not appear anywhere in the array t
\forall integer k; 0 <= k <= n-1 ==> t[k] != v;
ensures \result == -1;

© 00 oo oo oo

@x/

int binary_search(long t[], int n, long v) {

A flurry of powerful verification tools

C Astree, BLAST, CBMC, Coverity, Fluctuat,
Frama-C, Polyspace, SLAM, VCC, ...

Java, C# Bandera, CodeContracts, Coverity, ESC/Java2,
Java Pathfinder, KeY, Klocwork, Spec#, ...

F.P. F*

A fragmented landscape

Proof
assistants

Func. prog. lang.
no verification

“Lesser” prog. lang.
w/ rich verification tools

A dilemma

How to develop and formally verify a program well-suited to F.P.?
(running example: a compiler)

@ Use a “lesser” programming language that has good
verification tools?
® Develop verification tools for a proper F.P. language?

© Use an interactive proof assistant and program within it?

Part 111

Programming and proving a compiler in Coq

Early compiler verification in Stanford LCF
(Milner and Weyrauch, Machine Intelligence, 1972)

3

Proving Compiler Correctness
in a Mechanized Logic

R. Milner and R. Weyhrauch

Computer Science Department
Stanford University

Abstract

We discuss the task of machine-checking the proof of a simple compiling
algorithm. The proof-checking program is LCF, an implementation of a logic
for computable functions due to Dana Scott, in which the abstract syntax
and extensional semantics of programming languages can be naturally
expressed. The source language in our example is a simple ALGoL-like
language with assignments, conditionals, whiles and compound statements.
The target language is an assembly language for a machine with a pushdown
store. Algebraic methods are used to give structure to the proof, which is
presented only in outline. However, we present in full the expression-compiling
part of the algorithm. More than half of the complete proof has been machine
checked, and we anticipate no difficulty with the remainder. We discuss our
experience in conducting the proof, which indicates that a large part of it
may be automated to reduce the human contribution.

Early compiler verification in Stanford LCF

APPENDIX 2: command sequence for McCarthy-Painter lemma

GOAL Ye sp,lswfse e1iMT(compe e,3p)Ssvof(sp) [((MSEle,svof sp))épdofisp)),
‘Yo, lgufse eitlgwft(compe @)ZTT,
Ye,lswfae qit{gount(oompe e)=B)STT)

TRY & INDUCT 56}
TRY 1 SIMPL}
LABEL INDHYP}
rg;yzlAgs;:x ’
ASES weg nif, ’
CABEL Ty oefuntfrel
TRY 1 CASES typo an_Nj
TRY 4 SIMPL BY ,FMTi,,FMSE; ,FCOMPE, ,FISHFTY, ,FCOUNT)
TRY 238S=, TTlSIMPL.TT:QED;
TRY 3 CASES tyng g3 E}
CTRY 1 SUBST ,FeSMPES
ss-.TTlSIHFL.TT,usz BOTH3 =SS+, TT;
INGL-,aiss+-l1NcL--.2;ss¢-;1NcL---,s;SS¢-
TRY & GONJ;
TRY 4 SIMPL;
TRY 1 USE CDUNTil
TRY 11
APPL | INDHYP+2,grglof 8}
LABEL CARG1j
SIMPL~}QED}
TRY 2 USE CQUNT4s
TRY 4

Trust in compilers

Source
program

Formal verification

? Compiler

Executable
code

Critical software with source-level verification:
Bugs in compilers (miscompilation) can invalidate the guarantees
obtained by verification.

Trust in compilers

Source

program Formal verification

J

observational

. Compiler -
equivalence

Executable
code

Formally-verified compiler:
Guarantees that the generated executable code behaves as pre-
scribed by the semantics of the source program.

Compiler verification

Theorem (Semantic preservation)

Let S be a source program and E an executable.
Assume the compiler produces E from S,

without reporting compile-time errors.

Then, for all observable behaviors b, E | b— S| b

A challenge for standard deductive program provers:

e The specification involves complex logical definitions
(two operational semantics).

e The program involves recursion and tree/graph-shaped data.

A good match for interactive theorem provers.

The CompCert project
(X.Leroy, S.Blazy, et al)

Develop and prove correct a realistic compiler, usable for critical
embedded software.

e Source language: a very large subset of C.

e Target language: PowerPC/ARM/x86 assembly.

e Generates reasonably compact and fast code
= careful code generation; some optimizations.

Note: compiler written from scratch, along with its proof; not
trying to prove an existing compiler.

Note 2: wish to prove correct the actual implementation, not just
the algorithms.

From Milner & Weyrauch. ..

Arithmetic Stack
expressions machine

to the CompCert C verified compiler

side-effects out] type elimination
CompCert C i C#minor
of expressions | J loop smpllflcatlonsl

stack allocation

Optimizations: constant prop., CSE, tail calls,
(LCM), (Software pipelining) of "&" variables Y

CFG construction .) instruction (.
RTL | CminorSel = - Cminor
) expr. decomp. \) selection

(Instruction scheduling)

register allocation (IRC)

Y
| linearization (R spilling, reloading .
LTL of the CFG | LTLin) calling conventions Linear

layout of stack frames

Y
asm code (Mach
C

- a
generation

A

Asm

Using the Coq proof assistant

@ To write the specification and conduct the proof.
(50000 lines; 5 person.years)

® To program the compiler.
In pure, strict, terminating functional style.
Executability via Coq — OCaml extraction.

Coq in a nutshell

The Calculus of Constructions
(HO constructive logic based on dependent type theory)

Structurally-recursive Inductive and coinductive
functions & pattern-matching datatypes and predicates

Programming a compiler pass in Coq

Example: translation from structured control (if/then/else, loops)
to a control-flow graph:
e Nodes = instructions.

e Edge from [to J = Jis a successor of /
(J can execute just after /).

Example: some structured code

double average(int * tbl, int size)
{
double s = 0.0;
int 1i;
for (i = 0; 1 < size; i++)
s = s + tbl[i];
return s / size;

Example: the corresponding CFG

(s = 0.0)
T
(if G j size) {

(d = float(51ze)]/ a=i<<2)
(e-= s /rd) (b = load+(tb1, a))
(return(e)) (¢ = float(b))

(s=s+rc)
(. i= f +1)

Programming the translation

The graph is built incrementally by recursive functions such as
transl_expr [er n

Effect: add to the graph the instructions that evaluate expression
e, deposit its result in temporary r, and branch to node n’. Return
first node n of this sequence of instructions.

If we were to write this function in ML, we would use mutable
state to represent the current state of the CFG, and the generators
for fresh CFG nodes and fresh temporaries.

Example of translation

For a conditional expression e; 7 e : e3

Example of translation

For a conditional expression e; 7 e : e3

-9

.

recursive call on e :

Example of translation

For a conditional expression e; 7 e : e3

“recursive call on e3

recursive call on e : , .

Example of translation

For a conditional expression e; 7 e : e3

Icond(r)

S S)
recursive call on ey | | recursive call on e3
. | ' 0 | '
| |

Example of translation

For a conditional expression e; 7 e : e3

“recursive call on e;

recursive call on e : “recursive call on e3

Making the state explicit

CFG construction functions as state transformers

state — result X state

The state is:

Record state: Type := {
st_nextreg: positive;
st_nextnode: positive;
st_code: PTree.t instruction
(* finite map positive -> instr *)

The state monad to the rescue

Encapsulate threading of the state in a monad. An imperative
computation returning type A is a Coq term of type mon A.

Definition mon (A: Type) : Type := state -> A * state.

Definition ret (A: Type) (x: A) : mon A :=
fun (s: state) => (x, s).

Definition bind (A B: Type) (f: mon A) (g: A -> mon B) : mon B :
fun (s: state) => match f s with (a, s’) => g a s’ end.

Notation "’do’ X <- A ; B" := (bind A (fun X => B))
(at level 200, X ident, A at level 100, B at level 200).

Excerpt from the translation

Fixpoint transl_expr (map: mapping) (a: expr)
(rd: reg) (nd: node)

{struct a}: mon node :=
match a with

| Evar v =>
do r <- find_var map v; add_move r rd nd
| Eop op al =>
do rl <- alloc_regs map al;
do no <- add_instr (Iop op rl rd nd);
transl_exprlist map al rl no
| Eload chunk addr al =>
do rl <- alloc_regs map al;
do no <- add_instr (Iload chunk addr rl rd nd);
transl_exprlist map al rl no

Monotone evolution of the state
A crucial property of the CFG construction functions is that the
state evolves in a monotone way:
e New nodes are added to the CFG, but preexisting nodes are
never changed.
e Temporaries are not reused.

We must maintain an invariant over states:

state_wf s :=
forall pc, pc >= s.(st_nextnode) -> s.(st_code) pc = None

and guarantee that if the state evolves from s1 to s2, we have

state_incr sl s2: =
s1.(st_nextnode) <= s2.(st_nextnode)
/\ sl.(st_nextreg) <= s2.(st_nextreg)
/\ forall pc,
pc < sl.(st_nextnode) -> s2.(st_code) pc = sl.(st_code) pc

Dependent types to the rescue

The properties on the state are guaranteed by the basic state
operations (add a new node, etc), but we still have to show that
all CFG construction operations, built on these basic operations,
also guarantee these properties.

Dependent types can help!

The state_wf property of a single state can easily be attached to
all states we manipulate:

Record state: Type := {
st_nextreg: positive;
st_nextnode: positive;
st_code: positive -> option instr;
st_wf: forall pc,
pc >= st_nextnode -> st_code pc = None

Dependent types to the rescue

Less trivially, the state_incr property of two states can be neatly
hidden in the monad.

Definition mon (A: Type) : Type :=
forall (s: state), A * { s’: state | state_incr s s’ }

Definition ret (A: Type) (x: A) : mon A :=
fun (s: state) => (x, exist s (state_incr_refl s)).

Definition bind (A B: Type) (f: mon A) (g: A -> mon B) : mon B :=
fun (s: state) =>
match f s with (a, exist s’ i) =>
match g a s’ with (b, exist s’’ i’) =>
(b, exist s’’ (state_incr_trans i i’))
end
end.

Dependently typed monads:
a winning combination?

While dependent function types Vx : A, {y : B| P x y} are hard
to use in general, a monadic encapsulation hides them entirely
from the user of the monad.

The client code using the monad is unchanged:

Fixpoint transl_expr (map: mapping) (a: expr)
(rd: reg) (nd: node)
{struct a}: mon node :=
match a with
| Evar v =>
do r <- find_var map v; add_move r rd nd
| Eop op al =>
do rl <- alloc_regs map al;

Programming limitations

Is it effective to program directly in Coq?

In exchange for powerful proof support, we must deal with
e Strictness: no problem

e Purity: use monads for state and errors; use functional data
structures.

e Termination: often a problem!
Use “fuel” to bound recursions.
Irritating issue: we're only interested in partial correctness.

Is there a better way?

Part IV

Alternative approaches

The Pangolin system
(Y. Régis-Gianas, F. Pottier)
Hoare logic for a pure functional language.

p ML automatic
u_rf Ir;”i]é;l HOL proof FOL proof theorem

. ecificgations obligations obligations proving

P (Alt-Ergo)

How to specify an argument f : A — B to a higher-order function?

e Not by a function of the logic (non-termination, ...)
e But by a pair of predicates:

Pre(f) : A — Prop
Post(f) : Ax B — Prop

Example of specification

let rec add (x, a) where (bst(a) and avl(a))
returns b where

(bst(b) and avl(b) and

elements (b) ===

singleton (x) U elements (a)) =
match a with
| Empty ->

Node (Empty, x, Empty)
| Node (1, y, r) —>

if x = y then a

else if x < y then bal (add (x, 1), y, r)

else bal (1, y, add (x, 1))
end

Proof obligations automatically discharged by Alt-Ergo.

Example of higher-order specification

let rec map (f, a) where
(bst(a) and avl(a)
and Vx € elements(a), Pre(f)(x))
returns b where
(bst(b) and avl(b)
and Vx € elements(a), dy € b, Post(f) (x,y)
and Vy € elements(b), dx € a, Post(f) (x,y))

HALO

(D. Vytiniotis, S. Peyton Jones, D. Rosen, K. Claessen)

Static verification of contracts for Haskell.
Cu={xle}|(x:G)— G| G&G

(Contracts were initially introduced as dynamically-checked
assertions.)

HALO generates and solves first-order proof obligations much like
Pangolin does.

However, specifications are given as boolean-valued Haskell
expressions (e above), not HO logic formulas, hence
¢ No infinite quantification.

e Delicate semantic issues when e does not terminate.

The CFML system

(A. Charguéraud)

An alternative approach based on characteristic formulas:

Most of Caml

Characteristic
(no assertions)

formulas

Interactive proof

The characteristic formula [[t]] of a term t is the HO predicate s.t.

VP, Q, |[[t]] P Q@ < {P} t {Q} (in Hoare logic)

It can be viewed simultaneously as
e a weakest precondition for t
e a denotational semantics for t

e a deep embedding of t in HO logic.

The CFML system

The characteristic formula [[t]] follows exactly the structure of t
— lends itself well to interactive proof.

Pre-/post-conditions and invariants are not written in the source
code, but provided as needed during the proof.

Can also be extended with exceptions and mutable state.

In closing. . .

Pure, strict functional programming is a very short path from a
program to its correctness proof.

Contemporary F.P. languages do not realize this potential.
Axiomatic semantics is not just for imperative languages!
Shall we just embrace and improve proof assistants as P.L.7

Or design future F.P. languages with verifiability in mind?

