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OUTLINE OF THE TALK

The objective method [Aldous-Steele, 2004] : replace the asymptotic analysis of large

networks by the direct study of an appropriate limiting structure.

1. Spectra of sparse graphs : a few results and many problems
2. The notion of local weak convergence for graph sequences

3. Back to graph spectra : what have we gained ?
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A graph G = (V, ) can be represented by its adjacency matrix :

)
1 if{i,j} e E
Aij = <
0 otherwise.
\
The eigenvalues A1 > ... > Ay capture valuable structural information about G.

It is convenient to encode these eigenvalues into a probability measure on R :

Question : How does the spectral distribution 1t typically look when G is large ?
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(+,, : Erd6s-Rényi random graph on V' = {1, - ,n} with edge probability p = p,,.

Theorem (Wigner, 50's). If np,, — 00, then

4 — \?
UG, (\/npn(l — pn)d)\) > 1(|>\|§2)d)\.

n—00 D

G, - Random regular graph on V' = {1, ..., n} with degree d = d,,.
Theorem (Tran-Vu-Wang, 2010). If d,, — o0, then

=X
e, (V/dn (U= dn/m)dr) —— 1(5<2) ).

n—00 2T

> In both cases, the condition is | E/| >> |V/| : the graph must be dense.

> What about sparse graphs |F| =< |[V]?
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THE SPARSE REGIME

For many sequences {Gn}n21 of sparse random graphs, the spectral distributions

{ra, }n>1 seem to approach a deterministic, but model-dependent limit :

nG, —— Hlim-
n—oo
e Random regular graph with fixed degree d on n vertices [Kesten-McKay 1981]

e Erdos-Reéenyi random graph with edge probability p = c/n on n vertices

[Khorunzhy-Shcherbina-Vengerovsky 2004]

e Uniform random tree on n vertices [Bhamidi-Evans-Sen 2009]

Issue 1 : Case by case proofs, no unified approach.
Issue 2 : What about more realistic models ? [Farkas-Barabasi et al., 2001]

Issue 3 : Practically nothing is known about ()i, (but plenty of fascinating conjectures).
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For a sequence of rooted graphs {(G,,, 0,,) : n > 1}, there is a natural notion of local

convergence to a limiting rooted graph (G, 0) :

(G, o0n) — (G, o) if for each fixed radius R > 1, there is some np > 1 such that
Vn > ng, Ballg,_ (o, R) = Ballg(o,R).

Ballg (o, R) : ball of radius R around o in G. = root-preserving isomorphism.
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LOCAL WEAK CONVERGENCE UNDER UNIFORM ROQOTING

(Benjamini-Schramm 2001, Aldous-Steele 2004)

{G,, = (Vp, Ey) bn>1 @ sequence of finite graphs (no prescribed root).

L : law of a random locally finite, connected rooted graph (G, 0).

Write G, L L if for each fixed radius R > 1,

n—oo

1
Z 1{BaHGn (0,R)=e} — Py (BallG (O7 R) = 0) .

|Vn‘ = n—00

L is the asymptotic distribution of (7,, when viewed locally from a uniformly chosen node.
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A FEW EXAMPLES

e (5, : box ofsizen X ... X n cut out from the d-dimensional lattice 72
L : dirac mass at (Z%,0).

e (5, : random d—regular graph on n vertices.

L : dirac mass at the d—regular infinite rooted tree [Bollobas, 1980].

o (5, : Erd6s-Rényi random graph with p = c/n on n vertices.

L : law of a Galton-Watson tree with degree Poisson(c) [Aldous-Steele, 2004].

e (5, : random graph with prescribed degree distribution 7 € P(N) on n vertices.

L : law of a Galton-Watson tree with degree distribution 7= [Dembo-Montanari, 2009].

e (7, : uniform random tree on n vertices.

L : law of the so-called "Infinite Skeleton Tree” [Grimmett, 1980].
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A NATURAL HOPE

The convergence of the spectral distribution has been established for certain sparse

models. Can this be related to the underlying existence of a local weak limit ?

Theorem [Bordenave, Lelarge, S. 2011].

loc.
G, —— L — nG, —— UL
Nn—00

n—oo

Issue : The definition of the empirical spectral distribution (i does not make any sense if

one replaces the finite graph G by our new limiting objects L.
> we will define a generalized empirical spectral distribution pu,y € P(R) ,

> this extension will be continuous w.r.t. local weak convergence.

Implication 1 : unification and generalization of the aforementioned results.

Implication 2 : opens the way to the study of 1., at least when L is simple.
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GENERALIZED SPECTRAL DISTRIBUTION

14
Recall the definition 11 = \V| Z Oy, for G = (V, E) finite.

FeC\R) [ ne@) = gr Y

> Can be viewed as an alternative definition of (i, via its Stieltjes-Borel transform.

> If L is the law of a random locally finite rooted graph (G, 0), define puo by

/R 3 i Z,ug(d)\) =K, [(AG — ZI)O_Ol]
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THE CASE OF TREES : A RECURSION

> This recursion contains everything one might want to know about (i, .
> Explicit resolution when T is the infinite d—ary tree (— Kesten-McKay density).

> Distributional fixed-point equation when 7" is a Galton-Watson tree.
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Conjecture [Bauer-Golinelli 2001, Costello-Vu 2008] :

na, (0}) —— XN 4+e % £ e —1,
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Ce—c)\

where \* € [0, 1] is the smallest root of A = e~

Theorem [Bordenave-Lelarge-S., 2011]

loc.

1 G ——= L = pa,({0}) —— ne({0}).

2. When L is the law of a Galton-Watson tree with degree distribution ™ = {7, } ,>0,

pe({0) = min /(AN 6= 2) +o(1 - X) — 1},

where ¢(2) = > mp2™ and A* = ¢'(1 — \)/¢'(1).

> In the case ™ = Poisson(c), we have ¢(\) = e“*~1) and the conjecture follows.
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It is a quite remarkable fact that in the diluted regime |E'| < |V | >> 1, certain non-trivial

graph parameters ¢ are essentially determined by the local geometry of the graph.

This can be rigorously formalized by a continuity theorem w.r.t. local weak convergence :

Gpn 5L = $(Gn) — $(L)

n—oo n—oo

Examples : number of spanning trees, matching number, matching polynomial...

> Theoretic implication : ¢ admits a limit along most sparse graph sequences. The

self-similarity of £ may sometimes even allow for an explicit determination of ¢(L).

> Algorithmic implication : ¢ is efficiently approximable via local, distributed

algorithms, independently of the total size of the network.
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