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OUTLINE OF THE TALK

The objective method [Aldous-Steele, 2004] : replace the asymptotic analysis of large

networks by the direct study of an appropriate limiting structure.

1. Spectra of sparse graphs : a few results and many problems

2. The notion of local weak convergence for graph sequences

3. Back to graph spectra : what have we gained ?
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PART I : SPECTRA OF GRAPHS
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THE SPECTRUM OF A GRAPH

A graph G = (V,E) can be represented by its adjacency matrix :

Aij =







1 if {i, j} ∈ E

0 otherwise.

The eigenvalues λ1 ≥ . . . ≥ λ|V | capture valuable structural information about G.

It is convenient to encode these eigenvalues into a probability measure on R :

µG =
1

|V |

|V |
∑

k=1

δλk
.

Question : How does the spectral distribution µG typically look when G is large ?



5

THE SPECTRUM OF A RANDOM GRAPH OF SIZE 10000



5-a

THE SPECTRUM OF A RANDOM GRAPH OF SIZE 10000



6

THE SEMI-CIRCLE LAW



6-a

THE SEMI-CIRCLE LAW
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THE SEMI-CIRCLE LAW

Gn : Erdős-Rényi random graph on V = {1, . . . , n} with edge probability p = pn.

Theorem (Wigner, 50’s). If npn → ∞, then

µGn

(

√

npn(1− pn)dλ
)

−−−→
n→∞

√
4− λ2

2π
1(|λ|≤2)dλ.

Gn : Random regular graph on V = {1, . . . , n} with degree d = dn.

Theorem (Tran-Vu-Wang, 2010). If dn → ∞, then

µGn

(

√

dn(1− dn/n)dλ
)

−−−→
n→∞

√
4− λ2

2π
1(|λ|≤2)dλ.

✄ In both cases, the condition is |E| >> |V | : the graph must be dense.

✄ What about sparse graphs |E| ≍ |V | ?
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THE SPARSE REGIME

For many sequences {Gn}n≥1 of sparse random graphs, the spectral distributions

{µGn
}n≥1 seem to approach a deterministic, but model-dependent limit :

µGn
−−−→
n→∞

µlim.

• Random regular graph with fixed degree d on n vertices [Kesten-McKay 1981]

• Erdős-Rényi random graph with edge probability p = c/n on n vertices

[Khorunzhy-Shcherbina-Vengerovsky 2004]

• Uniform random tree on n vertices [Bhamidi-Evans-Sen 2009]

Issue 1 : Case by case proofs, no unified approach.

Issue 2 : What about more realistic models ? [Farkas-Barabási et al., 2001]

Issue 3 : Practically nothing is known about µlim (but plenty of fascinating conjectures).
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PART II

LOCAL WEAK LIMITS OF FINITE GRAPHS
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LOCAL CONVERGENCE AROUND A FIXED ROOT

For a sequence of rooted graphs {(Gn, on) : n ≥ 1}, there is a natural notion of local

convergence to a limiting rooted graph (G, o) :

R

(Gn, on) −→ (G, o) if for each fixed radius R ≥ 1, there is some nR ≥ 1 such that

∀n ≥ nR, BallGn
(on,R) ≡ BallG(o,R).

BallG(o,R) : ball of radius R around o in G. ≡ root-preserving isomorphism.
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LOCAL WEAK CONVERGENCE UNDER UNIFORM ROOTING

(Benjamini-Schramm 2001, Aldous-Steele 2004)

{Gn = (Vn, En)}n≥1 : sequence of finite graphs (no prescribed root).

L : law of a random locally finite, connected rooted graph (G, o).

Write Gn
loc.−−−→

n→∞
L if for each fixed radius R ≥ 1,

1

|Vn|
∑

o∈Vn

1{BallGn
(o,R)≡•} −−−→

n→∞
PL (BallG(o,R) ≡ •) .

L is the asymptotic distribution of Gn when viewed locally from a uniformly chosen node.
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A FEW EXAMPLES

• Gn : box of size n× . . .× n cut out from the d-dimensional lattice Zd.

L : dirac mass at (Zd, 0).

• Gn : random d−regular graph on n vertices.

L : dirac mass at the d−regular infinite rooted tree [Bollobas, 1980].

• Gn : Erdős-Rényi random graph with p = c/n on n vertices.

L : law of a Galton-Watson tree with degree Poisson(c) [Aldous-Steele, 2004].

• Gn : random graph with prescribed degree distribution π ∈ P(N) on n vertices.

L : law of a Galton-Watson tree with degree distribution π [Dembo-Montanari, 2009].

• Gn : uniform random tree on n vertices.
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A FEW EXAMPLES

• Gn : box of size n× . . .× n cut out from the d-dimensional lattice Zd.

L : dirac mass at (Zd, 0).

• Gn : random d−regular graph on n vertices.

L : dirac mass at the d−regular infinite rooted tree [Bollobas, 1980].

• Gn : Erdős-Rényi random graph with p = c/n on n vertices.

L : law of a Galton-Watson tree with degree Poisson(c) [Aldous-Steele, 2004].

• Gn : random graph with prescribed degree distribution π ∈ P(N) on n vertices.

L : law of a Galton-Watson tree with degree distribution π [Dembo-Montanari, 2009].

• Gn : uniform random tree on n vertices.

L : law of the so-called ”Infinite Skeleton Tree” [Grimmett, 1980].

o2 o3 o4 o5 o6 o7 o8 o9o1
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PART III

BACK TO GRAPH SPECTRA
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A NATURAL HOPE

The convergence of the spectral distribution has been established for certain sparse

models. Can this be related to the underlying existence of a local weak limit ?

Theorem [Bordenave, Lelarge, S. 2011].

Gn
loc.−−−→

n→∞
L =⇒ µGn

−−−→
n→∞

µL

Issue : The definition of the empirical spectral distribution µG does not make any sense if

one replaces the finite graph G by our new limiting objects L.

✄ we will define a generalized empirical spectral distribution µL ∈ P(R) ;

✄ this extension will be continuous w.r.t. local weak convergence.

Implication 1 : unification and generalization of the aforementioned results.

Implication 2 : opens the way to the study of µL, at least when L is simple.
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GENERALIZED SPECTRAL DISTRIBUTION

Recall the definition µG =
1

|V |

|V |
∑

k=1

δλk
for G = (V,E) finite.

(z ∈ C \ R)
∫

R

1

λ− z
µG(dλ) =

1

|V |

|V |
∑

k=1

1

λk − z

=
1

|V | tr (AG − zI)−1

=
1

|V |
∑

o∈V

(AG − zI)−1
oo .

✄ Can be viewed as an alternative definition of µG, via its Stieltjes-Borel transform.

✄ If L is the law of a random locally finite rooted graph (G, o), define µL by

∫

R

1

λ− z
µL(dλ) = EL

[

(AG − zI)−1
oo

]



17

THE CASE OF TREES : A RECURSION



17-a

THE CASE OF TREES : A RECURSION

T1 T2 Td

T =

1 2 d

o



17-b

THE CASE OF TREES : A RECURSION

T1 T2 Td

T =

1 2 d

o

(AT − z)−1
oo =

−1

z +
∑

i∼o(ATi
− z)−1

ii



17-c

THE CASE OF TREES : A RECURSION

T1 T2 Td

T =

1 2 d

o

(AT − z)−1
oo =

−1

z +
∑

i∼o(ATi
− z)−1

ii

✄ This recursion contains everything one might want to know about µlim.



17-d

THE CASE OF TREES : A RECURSION

T1 T2 Td

T =

1 2 d

o

(AT − z)−1
oo =

−1

z +
∑

i∼o(ATi
− z)−1

ii

✄ This recursion contains everything one might want to know about µlim.

✄ Explicit resolution when T is the infinite d−ary tree (→ Kesten-McKay density).



17-e

THE CASE OF TREES : A RECURSION

T1 T2 Td

T =

1 2 d

o

(AT − z)−1
oo =

−1

z +
∑

i∼o(ATi
− z)−1

ii

✄ This recursion contains everything one might want to know about µlim.

✄ Explicit resolution when T is the infinite d−ary tree (→ Kesten-McKay density).

✄ Distributional fixed-point equation when T is a Galton-Watson tree.
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λ∗ + e−cλ∗

+ cλ∗e−cλ∗ − 1,

where λ∗ ∈ [0, 1] is the smallest root of λ = e−ce−cλ

.
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1. Gn
loc.−−−→

n→∞
L =⇒ µGn

({0}) −−−→
n→∞

µL({0}).

2. When L is the law of a Galton-Watson tree with degree distribution π = {πn}n≥0,

µL({0}) = min
λ∈[0,1] : λ=λ∗∗

{

φ′(1)λλ∗ + φ(1− λ) + φ(1− λ∗)− 1
}

,

where φ(z) =
∑

n πnz
n and λ∗ = φ′(1− λ)/φ′(1).
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Gn : Erdős-Rényi with p = c/n on n vertices. Asymptotics for µGn
({0}) ?

Conjecture [Bauer-Golinelli 2001, Costello-Vu 2008] :

µGn
({0}) −−−→

n→∞
λ∗ + e−cλ∗

+ cλ∗e−cλ∗ − 1,

where λ∗ ∈ [0, 1] is the smallest root of λ = e−ce−cλ

.

Theorem [Bordenave-Lelarge-S., 2011]

1. Gn
loc.−−−→

n→∞
L =⇒ µGn

({0}) −−−→
n→∞

µL({0}).

2. When L is the law of a Galton-Watson tree with degree distribution π = {πn}n≥0,

µL({0}) = min
λ∈[0,1] : λ=λ∗∗

{

φ′(1)λλ∗ + φ(1− λ) + φ(1− λ∗)− 1
}

,

where φ(z) =
∑

n πnz
n and λ∗ = φ′(1− λ)/φ′(1).

✄ In the case π = Poisson(c), we have φ(λ) = ec(λ−1) and the conjecture follows.
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CONCLUSION

It is a quite remarkable fact that in the diluted regime |E| ≍ |V | >> 1, certain non-trivial

graph parameters φ are essentially determined by the local geometry of the graph.

This can be rigorously formalized by a continuity theorem w.r.t. local weak convergence :

Gn
loc.−−−→

n→∞
L =⇒ φ(Gn) −−−→

n→∞
φ(L)

Examples : number of spanning trees, matching number, matching polynomial...

✄ Theoretic implication : φ admits a limit along most sparse graph sequences. The

self-similarity of L may sometimes even allow for an explicit determination of φ(L).
✄ Algorithmic implication : φ is efficiently approximable via local, distributed

algorithms, independently of the total size of the network.
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