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Introduction
Numerical lteration
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Introduction
Quadratic Convergence

To solve ¢(y) =0, iterate
y[n+1] _ y[n]+u[n+1]’ ¢/(y[n])u[n+1] _ _¢(y[n])

Good case: quadratic convergence if \ "

Yor1
@ the initial point is close enough; /

@ the root is simple.
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Introduction
Quadratic Convergence

To solve ¢(y) =0, iterate
y[n+1] _ y[n]+u[n+1]’ ¢/(y[n])u[n+1] _ _¢(y[n])

Good case: quadratic convergence if \ ’

or1 8
@ the initial point is close enough; //

@ the root is simple.

Proof: simple root at ¢ = ¢/(¢) # 0,
¢(y[”])=¢’(6)(y[”]—C)+O((y[”]—C)2)} W S
nl_~_ 0 [n] 2 ’
¢ () =¢/(Q)+ 0N —¢) T gy O
=yl —¢=0o((yI"-¢)?).
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Introduction

Symbolic lteration
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Introduction

Random Generation in Combinatorics

Random generation of large objects =
simulation in the discrete world.
It helps

@ evaluate the order of magnitude of
quantities of interest;

o differentiate exceptional values from
statistically expected ones;

@ compare models;

test software.
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Introduction
Recursive Method

Binary Trees: B=ZUZ x B x B

7’5 bi: nb. binary trees with k nodes (Catalan)
= I

i

TiDIaWBinTree(n) ={

| fn=1return Z

M Else {

J U := Uniform([0,1]); k :== 0; S := 0;

while (§ < U){k:=k+1;5S:=5 + bxbp—k—_1/bn; }

return Z x DrawBinTree(k) x DrawBinTree(n — k — 1)}}

[Nijenhuis and Wilf; Flajolet, Zimmermann, Van Cutsem]
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Introduction
Recursive Method

Binary Trees: B=ZUZ xBx B
% 7541 bk: nb. binary trees with k nodes (Catalan)

i

171\21 ,,%?DrawBinTree(n)
| { Ifn=1return Z
Else {

U := Uniform([0,1]); k :=0; S :=0;
while (S < U)}{k:=k+1;5S:=S + bkbp_k_1/bn; }
return Z x DrawBinTree(k) X DrawBinTree(n — k — 1)}}

{

| ' Generalizes to many recursive structures.
|
1 Requires by, ..., bp.
[Nijenhuis and Wilf; Flajolet, Zimmermann, Van Cutsem]



Introduction
Boltzmann Samplers

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each t € T with probability x/!l / T(x), where: x >0
fixed; T(z) := 3, 2tl = generating series of 77 |t| = size.

Same size, same probability
Expected size xT'(x)/ T(x) increases with x.

Complexity linear in |t| when the values T(x) are available (oracle).
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Introduction
Boltzmann Samplers

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each t € T with probability x/!l / T(x), where: x >0
fixed; T(z) := 3, 2tl = generating series of 77 |t| = size.

Same size, same probability
Expected size xT'(x)/ T(x) increases with x.

Singleton
Easy.

Complexity linear in |t| when the values T(x) are available (oracle).
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Introduction
Boltzmann Samplers

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each t € T with probability x/t// T(x), where: x > 0
fixed; T(z) := Y ,cq 2Itl = generating series of T |t| = size.

Same size, same probability
Expected size xT'(x)/T(x) increases with x.

Singleton

—

Cartesian Product C = A x B

Easy.

@ Generate ac A; be B;
@ Return (a, b).

Proof. C(x) = Z(ab)X'a'Hb‘ = A(x)B(x); Xl(?‘(j)b‘ = /)\((‘j) E)s((“:)'

Complexity linear in |t| when the values T(x) are available (oracle).
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Introduction
Boltzmann Samplers

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each t € T with probability x/!l / T(x), where: x >0
fixed; T(z) := 3, 2tl = generating series of 77 |t| = size.

Same size, same probability
Expected size xT'(x)/ T(x) increases with x.

Singleton Disjoint Union C = AU B
Easy. e Draw b = Bernoulli(A(x)/C(x));
@ If b=1 then generate a € A
Cartesian Product C = A x B else generate b € B.
o Generate a € A; b € B; o ol Ax)
Proof. &— = X221,

Clx) — Alx) €(x)

@ Return (a, b).

Complexity linear in |t| when the values T(x) are available (oracle).
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Introduction
Boltzmann Samplers

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each t € T with probability x/!l / T(x), where: x > 0
fixed; T(z) := 3t 2l = generating series of T |t| = size.

Same size, same probability
Expected size xT'(x)/T(x) increases with x.

Singleton Disjoint Union C = AU B

Easy. @ Draw b = Bernoulli(A(x)/C(x));
@ If b=1 then generate a € A

Cartesian Product C = A x B else generate b € B.

@ Generate ac A; be B;
@ Return (a, b).

Use recursively (e.g., binary trees B=Z U Z x B x B)
Also: sets, cycles,. . .;
Complexity linear in || when the values T(x) are available (oracle).
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Introduction
Boltzmann Samplers

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each t € T with probability xI!l/ T(x)/|t|!, where: x >0
fixed; T(z) := 3,7 2It1/|t|! = generating series of T |t| = size.

Same size, same probability
Expected size xT'(x)/T(x) increases with x.

Singleton Disjoint Union C = AU B

Easy. @ Draw b = Bernoulli(A(x)/C(x));
@ If b=1 then generate a € A

Cartesian Product C = A x B else generate b € B.

@ Generate ac A; be B;
@ Return (a, b).

Use recursively (e.g., binary trees B=Z U Z x B x B)
Also: sets, cycles,. .. ; labelled case
Complexity linear in || when the values T(x) are available (oracle).
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Introduction

Framework: Constructible Species

A small set of species

1, Z, x,+,SEQ, SET, CYC,

cardinality constraints that are finite unions of intervals,
used recursively.

Examples:

@ Regular languages

@ Unambiguous context-free languages
o Trees (B=Z+ZxB% T =Z x Ser(T))
o Mappings, ...

e s e Modern Computer Algebra.
COMBINATORIAL =
A SPECIES AND

Analytic
Combinatorics

TREE-LIKE
STRUCTURES
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Introduction

Framework: Constructible Species

A small set of species

1, Z, x,+,SEQ, SET, CYC,

cardinality constraints that are finite unions of intervals,
used recursively (when it makes sense).

Examples:

@ Regular languages

@ Unambiguous context-free languages
o Trees (B=Z+Zx B T =Z xSET(T))
o Mappings, ...

BINATORIAL
1ES AND

SPECIES
TREE-LIKE
STRUCTURES

[H)]

Analytic
Combinatorics
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Introduction

Results (1/2): Fast Enumeration

Theorem (Enumeration in Complexity)

First N coefficients of gfs of constructible species in
© arithmetic complexity:
o O(Nlog N) (both ogf and egf);
@ binary complexity:
o O(N?log® Nloglog N) (ogf);
o O(N?log® Nloglog N) (egf).
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Introduction

Results (2/2): Oracle

@ A numerical iteration converging to Y(«) in the labelled case
(inside the disk);

@ A numerical iteration converging to the
sequence Y(a),Y(a?),Y(a3),... for || - ||leo
in the unlabelled case (inside the disk).
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Introduction

Examples (I): Polynomial Systems

Random generation following given XML grammars

Grammar nb max npb or%:;ls Fgli

eqs deg sols (
rss 10 5 2 0.02 0.03
PNML 22 4 4  0.05 0.1
xslt 40 3 10 04 1.5
relaxng 34 4 32 04 3.3
xhtml-basic 53 3 13 1.2 18
mathm|2 182 2 18 3.7 882
xhtml 93 6 56 34 1124
xhtml-strict 80 6 32 3.0 1590

xmlschema 59 10 24 0.5 6592

SVG 117 10 58 >1.5Go
docbook 407 11 67.7 >1.5Go
OpenDoc 500 3.9

[Darrasse 2008]
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Introduction

Example (11): A Non-Polynomial “System”

Unlabelled rooted trees:

f(x) = xexp(f(x) + %f(x2) + %f(x3) +--)

09+
0.8
0.7+

0.6

T 1
0 0.1 02 03 0.4
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Computer Algebra

Il Newton lteration for Power Series
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Computer Algebra

Symbolic lteration
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[Newton 1671]
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Computer Algebra
Newton lteration for Power Series has Good Complexity

To solve ¢(y) = 0, iterate
y[n+1] — y[n]+u[n+1], ¢l(y[n])u[n+1] — _¢(y[n])

Quadratic convergence \ "

1]: / Yn+1
Divide-and-Conquer
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Computer Algebra
Newton lteration for Power Series has Good Complexity

To solve ¢(y) =0, iterate
YAy RV iy L R VAL ) V1 L Y gL

Quadratic convergence \ ’

:[I / 1
Divide-and-Conquer
To solve at precision N

@ Solve at precision N/2; Cost(y!"l) = constantx Cost(last step).
@ Compute ¢ and ¢’ there;
© Solve for ul"*11.
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Computer Algebra
Newton lteration for Power Series has Good Complexity

To solve ¢(y) = 0, iterate
ylr = lnly 1] gy Doy [mt1] — gy Il

Quadratic convergence \ "

:[I / 1
Divide-and-Conquer
To solve at precision N

@ Solve at precision N/2; Cost(y!") = constantx Cost(last step).
@ Compute ¢ and ¢’ there;
@ Solve for ul"*11.

Useful in conjunction with fast multiplication (e.g., FFT):

@ power series at order N: O(N log N) ops on the coefficients;
o N-bit integers: O(N log N loglog N) bit ops.
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Computer Algebra
Example: Newton lteration for Inverses

Ply)=a—1/y = 1/¢/(y) = y* = |yl =yl — ylnl(gylnl 1),

Cost: a small number of multiplications

Works for:
@ Numerical inversion;
@ Reciprocal of power series;

@ Inversion of matrices.

[Schulz 1933; Cook 1966; Sieveking 1972; Kung 1974]
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Computer Algebra
Inverses for Series-Parallel Graphs

(G,S,P)=H(G,S,P).

G =S+P, 0 1 1
1 OoH s
5 :(1—Z—P) —]., 87Y— 0 0 (1—Z—P)

P :eZJrS—l—Z—S. 0 ez+5—1 0

Newton iteration:
vl = vl 4 (1d _%v(y[n]))—l NGICAERZ)

vyt — ] yln+] (H(Y[”]) — Y[”]) mod z2n+17
Ui+l =yl 4 il (%(Y[n]) LUl 41 —U[”]> mod 22",
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Computer Algebra
Inverses for Series-Parallel Graphs

(G,S,P) = H(G, S, P).

G =S+P, 0 1 1
- OH .
S :(]_—Z—P)l—]., 87Y: 0 0 (1—Z—P)

P :ez+5—1—2—5. 0 ez+s—1 0

Newton iteration:
vl — vyl 4 (1d _%(y[nl)) NGICA 1)

vyl — oyl gyl (H(Yl"l) - Y[”]) mod 22",
ylnt1l = yll 4 ylol . (%(Y[”]) Ul 4 1d —U[”]) mod 2%’

= Wanted: efficient exp.
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Computer Algebra
From the Inverse to the Exponential

@ Logarithm of power series: log f = [(f'/f);
@ exponential of power series: ¢(y) =a—logy.

~log el )
elr+1] — gl 31;0%;9 mod 22
e n

— el 1 lnl <a — /e[”]//e[”]> mod 22",

And 1/el" is computed by Newton iteration too!
[Brent 1975; Hanrot-Zimmermann 2002]
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Computer Algebra
Application: Power Sums

F=tNyay 1tV 14 4204 5= Z o, i=0,...,N.
F(a)=0
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Computer Algebra
Application: Power Sums

F=tNyay 1tV 14 4204 5= Z o, i=0,...,N.
F(a)=0

Fast conversion using the generating series:

FI H S,' i
rri\\//((F)) = —ZSH—lt' < rev(F) = exp <—Z I_t) .
i>0
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Computer Algebra
Application: Power Sums

F=tNyay 1tV 14 4204 5= Z o, i=0,...,N.
F(a)=0

Fast conversion using the generating series:
rev(F) ; Si
———E Si 1t < F)=e —E N
rev(F) o~ an rev(F) = exp < i

Application: composed product and sums

(F,G) — II (@t—aB) or II @¢—(a+n).

F(a)=0,G(8)=0 F(a)=0,G(8)=0
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Computer Algebra
Application: Power Sums

F=tNyay 1tV 14 4204 5= Z o, i=0,...,N.
F(a)=0

Fast conversion using the generating series:
reV(F)' i S,' i
ev(F) :—;5;+1t < rev(F) = exp _ZTt .

Application: composed product and sums

(F,G) — II (@t—aB) or II @¢—(a+n).

F(a)=0,G(8)=0 F(a)=0,G(8)=0
Easy in Newton representation: _ a° Y ° = (af)® and

ST e (D) (S5 )

[Schonhage 1982; Bostan, Flajolet, Salvy, Schost 2006]




Computer Algebra

Timings

Applications (crypto): over finite fields, degree > 200000 expected.

12000 T T T T 60 T T
Bivariate resultant computation Our algorithm
10000 - 50 B
8000 [ — 40 A
6000 — 30 A
4000 — 20 A
2000 [ B 10 A
0 | I I I 0 I I I I
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000

Timings in seconds vs. output degree N, over [F,, 26 bits prime p
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Computer Algebra
Conclusion for Series-Parallel Graphs

G=8+P, S=SEQ.o(Z+P), P=SET-1(Z+S)

compiles into the Newton iteration:

jln+1] — Il _ ,'[n](e[n],'[n] ~1),
elr+1] — gln] _ gln] (1 + %5['1] — f(%e[n]),'[n]) ’
vlntil — lnl — v[”]((l 7 p[n])v[n] —1),
0 1 1
yln+1 — ylnl £ ylnl . 0 0 Sr+112 | Lyl g —ylnl 7
0 el"t_1 0
Gln+1] Glnl sl o plnl _ glnl
Sl+1l | = | gl |  ylntil | Int1] _ gl mod 22",
pln+1] plnl eln+1] _ pln]

Computation reduced to products and linear ops.



Computer Algebra
Linear Differential Equations of Arbitrary Order

Given a linear differential equation with power series coefficients,
ar () + -+ ao(t)y(t) = 0,

compute the first N terms of a basis of power series solutions.
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Computer Algebra
Linear Differential Equations of Arbitrary Order

Given a linear differential equation with power series coefficients,
ar(t)y(£) + -+ + ao(t)y(t) = 0,
compute the first N terms of a basis of power series solutions.

Algorithm

@ Convert into a system & : Y — Y' — A(t)Y (D® = ®);
Q@ D[, (U) = d(Y) rewrites U' — AU = Y’ — AY;;

© Variation of constants: U =Y [ Y7}(Y — AY);

@ Y ! by Newton iteration too.

Special case: recover good exponential.

[Bostan, Chyzak, Ollivier, Salvy, Schost, Sedoglavic 2007]
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Computer Algebra

Timings

"MatMul.dat" —— "Newton.dat" —

time (in seconds) time (in seconds)

OCRNWAND~N®

Polynomial matrix multiplication vs. solving Y/ = AY'.

Bruno Salvy Newton lteration in Computer Algebra and Combinatorics



Computer Algebra
Non-Linear Differential Equations

Example from cryptography:

¢y (X3 +Ax+B)y? - (y* + Ay + B).

Bruno Salvy Newton lteration in Computer Algebra and Combinatorics



Computer Algebra
Non-Linear Differential Equations

Example from cryptography:
¢y (X +Ax+B)y? — (v’ + Ay + B).

Differential:

D¢, : uws 2(x3 4+ Ax + B)y'u' — (3y? + A)u.

Solve the linear differential equation

Do|, u= ¢(y)
at each iteration.

Again, quasi-linear complexity.

[Bostan, Morain, Salvy, Schost 2008]
Bruno Salvy Newton lteration in Computer Algebra and Combinatorics
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Combinatorics
Generating Series: a Simple Dictionary

Il
. It S N
ogf.—Zz , egf.—zml.

teT teT

Language and Gen. Fcns (labelled)
AUB  A(z) + B(z)
AxB A(z) x B(z)
SEQ(C) — é(z)
A A(z)
Cyc(C)  log i=¢3
SET(C)  exp(C(2))

Consequences:
@ Newton for EGFs easy;
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Combinatorics
Generating Series: a Simple Dictionary

Il
. It S N
ogf.—Zz , egf.—zml.

teT teT

Language and Gen. Fcns (labelled) (v rlabelled)
AUB  A(z) + B(z) A(z) + B(2)
Ax B Alz) x B(z) A(z) x B(2)
SEQ(C) lfé(z) lfé(z)
A A(z)

Cyc(C) Iogﬁ(z) D k1 kk 0g 1 ( o)
SET(C)  exp(C(2)) exp(3- C(2')/i)
Consequences:
© Newton for EGFs easy;
@ Pdlya operators for ogfs;
© Newton iteration more difficult for ogfs.
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Combinatorics

Example (11): A Non-Polynomial “System”

Unlabelled rooted trees:

f(x) = xexp(f(x) + %f(x2) + %f(x3) +--)

09+
0.8
0.7+

0.6

T 1
0 0.1 02 03 0.4
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Combinatorics

Mini-Introduction to Species Theory

@ Species F: Examples:
e 0 Z 1;
i @ SET;
e SEQ, Cyc.
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Combinatorics

Mini-Introduction to Species Theory

@ Species F: Examples:
e 0 Z 1;
i @ SET;
e SEQ, Cyc.

o Composition F oG

Ry
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Combinatorics

Mini-Introduction to Species Theory

@ Species F: Examples:
e 0 Z 1;
i @ SET;
e SEQ, Cyc.
@ Composition F oG o V= H(Z,Y)

gy
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Combinatorics

Derivative
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Combinatorics

Derivative
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Combinatorics
Derivative

Huet's zipper
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Combinatorics
Derivative

species derivative
A+B A+ B

A-B A -B+A-B
SEQ(B) SEQ(B)-B' - SEQ(B)
Cyc(B) SEQ(B) - B/
SET(B) SET(B) - B

Bruno Salvy Newton lteration in Computer Algebra and Combinatorics



Combinatorics
Derivative

species derivative

A+ B A+ B

A-B A -B+A-B
SEQ(B) SEQ(B)- B’ - SEQ(B)
Cyc(B) SEQ(B) - B
SET(B) SET(B) - B

Example:

H(G,S,P) :=(S+ P,Seq-o(Z + P),Set=1(Z + S)).
oM _
oy

Bruno Salvy Newton lteration in Computer Algebra and Combinatorics
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1 1
%) Seq(Z +P)-1-Seq(Z +P)
& Setso(Z2+S8)-1 %)



Combinatorics
Joyal’s Implicit Species Theorem

If H(0,0) = 0 and OH/9Y(0,0) is nilpotent, then Y = H(Z,)Y)
has a unique solution, limit of

ylol — o, yirl — gz Yy (n>0).

Def. A =, B if they coincide up to size k (contact k).

If YIrt1l =, Ylrl then Ylrtetl]l =, YI+el (p = dimension).

[] E]
V”] Vf’*’ yeo i g
E?] E17 rw If v ”0
.................. :
E?J :w
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Combinatorics
Joyal’s Implicit Species Theorem

If H(0,0) = 0 and OH/9Y(0,0) is nilpotent, then Y = H(Z,Y)
has a unique solution, limit of

ylol — o, yirl — gz Yy (n>0).

Def. A =, B if they coincide up to size k (contact k).

If YIrt1l =, Ylrl then Ylrtetl]l =, YI+el (p = dimension).

[] E]
V”] Vf’*’ yeo i g
E?] E17 rw If v ”0
.................. :
E?J :w

We prove an iff when no 0 coordlnate.
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Combinatorics
Newton Iteration for Binary Trees

Y=1UZxJYx)Y
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Combinatorics

Newton lteration for Binary Trees

Y=1UZxJYx)Y

w4 <<Z R S
Tl e ~

6 2
V3 =) + .(éz dlooodt % 4+ 4.4+ "'Ké + ...
S

[Décoste, Labelle, Leroux 1982]
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Combinatorics

Newton lteration for Binary Trees

Y=1UZxYx)Y
Vop1 = Vo USEQ(Z x Yy x DU Z x O x V) x (1UZ x Y2\ V).

=0 Y=o

Y | +—<<—+<5%diig+m+ T e
L S e ~

6 2
V3 =) + .(éz dlooodt % 4+ 4.4+ "'Ké + ...
S

[Décoste, Labelle, Leroux 1982]
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Combinatorics

Symbolic lteration

ST 0954
oA 208 ittt =0 y = i S &
ceap==y oy | Al Ayalpemgapiobpl

—utry | At KX

gty i) a?p

——x3 —x3

—2a) | —m2a3

— % P

Sy)=1+zy—y R [ T
i) —} ax? X
(12 _ yln] T [T

14 zytm —yln I vy

1 — 2zyln] et R :

x4 -y
Agagt | g * e et art

y[n+1] =Yn+

“ihatg
—laxg
H4arq
—ts
[0] —
y"=0 ¢ Lrgr— ot o B, B

(L) ]
Pl 11242244723 1824 +162° +322° 16427 + ...
Bl — 14+ 742224523 4 142* + 427° + 1322° + 42877 + . ..

[Newton 1671]
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Combinatorics
Numerical Iteration

1 05
o(y) = 1+§y2—y
n n 2 n
1] lel o(yl") _ b 14 yl%/g — ylnl
(Zﬁl(y[”]) 1— y[”]/4 s
y@=o. g

[ = 1.00000000000000000000000000
yP = 1.16666666666666666666666666
yBl = 1.17156862745098039215686275
yl¥ = 1.17157287525062017874740884
Bl = 1.17157287525380990239662075



Combinatorics
Combinatorial Newton lteration

Theorem (essentially Labelle)

For any well-founded system Y = H(Z,Y), if A has contact k
with the solution and A C H(Z,.A), then

A+Z< (Z.A) C(H(Z,A) - A)

i>0

has contact 2k + 1 with it.

A+ AT = At
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Combinatorics
Combinatorial Newton lteration

Theorem (essentially Labelle)

For any well-founded system Y = H(Z,Y), if A has contact k
with the solution and A C H(Z,.A), then

A+Z< (Z.A) C(H(Z,A) - A)

i>0

has contact 2k + 1 with it.

A
A

A+ AT = At

A
A

Generation by increasing Strahler numbers.
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Combinatorics
Newton Iteration for Series-Parallel Graphs

w0
w0

s [ e = Sones on o 2ot Bho o} 0 2% seven o Fo
spgein e hin g B

mﬁ}m%%mtﬁﬁiﬂm%m@jm@ﬂ@

sty (sl Ay 0 se?(2 + P — 1\ (seasi(2 + P - s
plr+1] pln = SETS0(Z + Sl 0 SETso(Z + Sl — Pl

Bruno Salvy Newton lteration in Computer Algebra and Combinatorics



Combinatorics
Example: Unlabelled Rooted Trees

@ Combinatorial equation: Y = Z - SET(Y) =: H(Z,)); Y
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Combinatorics
Example: Unlabelled Rooted Trees

@ Combinatorial equation: Y = Z - SET(Y) =: H(Z,Y);
@ Combinatorial Newton iteration:

VI = Yl Seq(H(VIM)) - (1) \ Y1)
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Combinatorics
Example: Unlabelled Rooted Trees

@ Combinatorial equation: Y = Z - SET(Y) =: H(Z,Y);
@ Combinatorial Newton iteration:

VI = Yl Seq(H(VIM)) - (1) \ Y1)

(2))
Y(z%)+

@ OGF equation: Y(z) = H(z,
Y(2) =zexp(Y(2) +

l\)\b—\ ~<z
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Combinatorics
Example: Unlabelled Rooted Trees

@ Combinatorial equation: Y = Z - SET(Y) =: H(Z,));

@ Combinatorial Newton iteration:

VI = Yl Seq(H(VIM)) - (1) \ Y1)

© OGF equation: SN/(z) H(z, \N/( )
. . 1.
V(2) = zep(V(2) + 5 7)) +
@ Newton for OGF: B .
Pl gl H(z, Yl - vyl
1— H(z, Yn)
0,

2—1—22—1—23—1—244—---7
Z+z2+223+4Z4—|—925+2026+--~
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Combinatorics
Example: Unlabelled Rooted Trees

@ Combinatorial equation: Y = Z - SET(Y) =: H(Z,));
@ Combinatorial Newton iteration:
@ OGF equation: Y(z) = H(z, Y(2))

\N/(z) = zexp( V(z) + %\N/(z2) + 1\7(23) + .-

3
@ Newton for OGF: S ln
§loet) _ gl H(z YT — ¥
1 — H(z, YIn)
© Numerical iteration: .
n Y(0.3) yn1(0.32) ylnl(0.3%)

0 0 0 0 7,
1 43021322639 0.99370806338e-1 0.27759817516e-1 ‘}/
2 .54875612912 0.99887132154e-1 0.27770629187e-1
3 .55709557053 0.99887147197e-1 0.27770629189%-1
4 55713907945 0.99887147198e-1 0.27770629189%e-1
5 55713908064 0.99887147198e-1 0.27770629189%-1
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Combinatorics
Linear Species and Ordered Structures

The underlying sets are ordered
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Combinatorics
Linear Species and Ordered Structures

The underlying sets are ordered

| F: e increasing trees: Y = Z + [ F(Y);
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Combinatorics
Linear Species and Ordered Structures

The underlying sets are ordered

JF: e increasing trees: Y = Z + [ F(Y);
x @ alternating permutations (odd/even):
min .Ae = /.Aer, .Ao = Z+/.A%,
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Combinatorics
Linear Species and Ordered Structures

The underlying sets are ordered

JF: e increasing trees: Y = Z + [ F(Y);
x @ alternating permutations (odd/even):
min .Ae = /.Aer, .Ao = Z+/.A%,

e cycles: Cyc(A) = [SEQ(A)A;
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Combinatorics
Linear Species and Ordered Structures

The underlying sets are ordered

JF: e increasing trees: Y = Z + [ F(Y);
x @ alternating permutations (odd/even):
min .Ae = /.Aer, .Ao = Z+/.A%,

e cycles: Cyc(A) = [SEQ(A)A;
o sets: SET(A) =1+ [SET(A)A'.
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Combinatorics
Linear Species and Ordered Structures

JF: e increasing trees: Y = Z + [ F(Y);
e @ alternating permutations (odd/even):
o= [Ache, Ao=z+ [ 4

o cycles: Cyc(A) = [SEQ(A)A;
o sets: SET(A) =1+ [SET(A)A'.

Theorem (Enumeration in Quasi-Optimal Complexity)

First N coefficients of the solution of
Z
V(Z) = H(Z,(2)) + /0 (T, (7)) dT

with H and G constructible, in O(N log N) operations.

Bruno Salvy Newton lteration in Computer Algebra and Combinatorics



Conclusion

IV Conclusion
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Conclusion

Conclusion

@ Summary:
e Newton iteration has good complexity;
e Oracle: numerical Newton iteration that gives the values of ...
power series that are the gfs of ...
combinatorial iterates.
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Conclusion
Conclusion

@ Summary:
e Newton iteration has good complexity;
e Oracle: numerical Newton iteration that gives the values of ...
power series that are the gfs of ...
combinatorial iterates.
@ Read the paper for:
o Well-defined systems (with 1);
e Majorant species;
o PowerSet (it is not a species).
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Conclusion
Conclusion

@ Summary:
e Newton iteration has good complexity;
e Oracle: numerical Newton iteration that gives the values of ...
power series that are the gfs of ...
combinatorial iterates.
@ Read the paper for:
o Well-defined systems (with 1);
o Majorant species;
o PowerSet (it is not a species).

THE END
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