Newton Iteration in Computer Algebra and Combinatorics

Bruno Salvy Bruno.Salvy@inria.fr

Inria AriC Project, LIP ENS Lyon

Joint work with Carine Pivoteau and Michèle Soria, Journal of Combinatorial Theory, Series A 119 (2012), 1711–1773.

Université Paris Diderot, April 2013

I Introduction

Analysis

Computer Algebra

Combinatorics

Numerical Iteration

Quadratic Convergence

To solve $\phi(y) = 0$, iterate

$$y^{[n+1]} = y^{[n]} + u^{[n+1]}, \quad \phi'(y^{[n]})u^{[n+1]} = -\phi(y^{[n]})$$

Good case: quadratic convergence if

- the initial point is close enough;
- the root is simple.

Quadratic Convergence

To solve $\phi(y) = 0$, iterate

$$y^{[n+1]} = y^{[n]} + u^{[n+1]}, \quad \phi'(y^{[n]})u^{[n+1]} = -\phi(y^{[n]})$$

Good case: quadratic convergence if

- the initial point is close enough;
- the root is simple.

Proof: simple root at $\zeta \Rightarrow \phi'(\zeta) \neq 0$,

$$\phi(y^{[n]}) = \phi'(\zeta)(y^{[n]} - \zeta) + O((y^{[n]} - \zeta)^{2})
\phi'(y^{[n]}) = \phi'(\zeta) + O(y^{[n]} - \zeta)$$

$$\Rightarrow y^{[n]} - \zeta = \frac{\phi(y^{[n]})}{\phi'(y^{[n]})} + O((y^{[n]} - \zeta)^{2}),
\Rightarrow y^{[n+1]} - \zeta = O((y^{[n]} - \zeta)^{2}).$$

5 / 39

Symbolic Iteration

$$\phi(y) = 1 + \frac{z}{y^2} - y$$
$$y^{[n+1]} = y_n + \frac{1 + zy^{[n]^2} - y^{[n]}}{1 - 2zy^{[n]}}$$

$$y^{[0]} = 0$$

 $y^{[1]} = 1$

+a+p=y	-t-axy	+a3 +3a2p+3ap3+p3 +a2x+axp
	+12ý -x3	+x3 +x2p -x3
}·	-2a3	
$-\frac{1}{2}x+q=p$		$-\frac{1}{4}x^3 + \frac{1}{4}x^2q - \frac{1}{4}xq^2 + q^3$
	+3ap2	+ iax2 - axq +3aq2
	- -axp	$-\frac{1}{2}ax^2 + axq$
	+4020	- 12x +421q
-	- 1 -a2x	+41x
	x ³	x3
x ² -+r=4.	+ -q3	*
+- 640 +/=q.	ixq2	*
		$+\frac{3x^4}{4096a}*+\frac{1}{14}x^2r+3ar^2$
	+3492	
	+12x2q	+10244 * +10x2r
	- ;axq	-13x3 -1axr
	+4a2q	+++ax2 ++4a2r
	-61x3	44x3
	-13dx2	- ax
	2137137	$3 - \frac{15x^4}{4096a} \left(+ \frac{131x^3}{512a^2} + \frac{509x^6}{16384a^3} \right)$
	(-x-)x:x:	40964 + 11242 + 1638443

 $y^{[3]} = 1 + z + 2z^2 + 5z^3 + 14z^4 + 42z^5 + 132z^6 + 428z^7 + \dots$

 $v^{[2]} = 1 + z + 2z^2 + 4z^3 + 8z^4 + 16z^5 + 32z^6 + 64z^7 + \dots$

[Newton 1671]

Random Generation in Combinatorics

Random generation of large objects = simulation in the discrete world. It helps

 evaluate the order of magnitude of quantities of interest;

 differentiate exceptional values from statistically expected ones;

- compare models;
- test software.

Recursive Method

Binary Trees:
$$\mathcal{B} = \mathcal{Z} \cup \mathcal{Z} \times \mathcal{B} \times \mathcal{B}$$

 b_k : nb. binary trees with k nodes (Catalan)

```
 \begin{aligned} &\text{DrawBinTree}(n) = \{ \\ &\text{If } n = 1 \text{ return } \mathcal{Z} \\ &\text{Else } \{ \\ &U := \text{Uniform}([0,1]); k := 0; S := 0; \\ &\text{while } (S < U) \{ k := k+1; S := S + b_k b_{n-k-1}/b_n; \} \\ &\text{return } \mathcal{Z} \times \text{DrawBinTree}(k) \times \text{DrawBinTree}(n-k-1) \} \} \end{aligned}
```

[Nijenhuis and Wilf; Flajolet, Zimmermann, Van Cutsem]

Recursive Method

Binary Trees:
$$\mathcal{B} = \mathcal{Z} \cup \mathcal{Z} \times \mathcal{B} \times \mathcal{B}$$

 b_k : nb. binary trees with k nodes (Catalan)

$$extstyle extstyle ext$$

$$U := Uniform([0,1]); k := 0; S := 0;$$

while
$$(S < U)\{k := k + 1; S := S + b_k b_{n-k-1}/b_n; \}$$

return
$$\mathcal{Z} \times \texttt{DrawBinTree}(k) \times \texttt{DrawBinTree}(n-k-1)\}$$

Generalizes to many recursive structures.

Requires
$$b_0, \ldots, b_n$$
.

[Nijenhuis and Wilf; Flajolet, Zimmermann, Van Cutsem]

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each $t \in \mathcal{T}$ with probability $x^{|t|}/T(x)$, where: x > 0 fixed; $T(z) := \sum_{t \in \mathcal{T}} z^{|t|} = \text{generating series of } \mathcal{T}$; |t| = size.

Same size, same probability Expected size xT'(x)/T(x) increases with x.

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each $t \in \mathcal{T}$ with probability $x^{|t|}/T(x)$, where: x > 0 fixed; $T(z) := \sum_{t \in \mathcal{T}} z^{|t|} = \text{generating series of } \mathcal{T}$; |t| = size.

Same size, same probability Expected size xT'(x)/T(x) increases with x.

Singleton

Easy.

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each $t \in \mathcal{T}$ with probability $x^{|t|}/T(x)$, where: x > 0 fixed; $T(z) := \sum_{t \in \mathcal{T}} z^{|t|} = \text{generating series of } \mathcal{T}$; |t| = size.

Same size, same probability Expected size xT'(x)/T(x) increases with x.

Singleton

Easy.

Cartesian Product $C = A \times B$

- Generate $a \in \mathcal{A}$; $b \in \mathcal{B}$;
- Return (*a*, *b*).

Proof. $C(x) = \sum_{(a,b)} x^{|a|+|b|} = A(x)B(x); \frac{x^{|a|+|b|}}{C(x)} = \frac{x^{|a|}}{A(x)} \frac{x^{|b|}}{B(x)}.$ Complexity linear in |t| when the values T(x) are available (**oracle**).

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each $t \in \mathcal{T}$ with probability $x^{|t|}/T(x)$, where: x > 0 fixed; $T(z) := \sum_{t \in \mathcal{T}} z^{|t|} = \text{generating series of } \mathcal{T}$; |t| = size.

Same size, same probability Expected size xT'(x)/T(x) increases with x.

Singleton

Easy.

Cartesian Product $\mathcal{C} = \mathcal{A} \times \mathcal{B}$

- Generate $a \in \mathcal{A}$; $b \in \mathcal{B}$;
- Return (a, b).

Disjoint Union $\mathcal{C} = \mathcal{A} \cup \mathcal{B}$

- Draw b = Bernoulli(A(x)/C(x));
- If b = 1 then generate $a \in \mathcal{A}$ else generate $b \in \mathcal{B}$.

Proof.
$$\frac{x^{|a|}}{C(x)} = \frac{x^{|a|}}{A(x)} \frac{A(x)}{C(x)}$$
.

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each $t \in \mathcal{T}$ with probability $x^{|t|}/T(x)$, where: x > 0 fixed; $T(z) := \sum_{t \in \mathcal{T}} z^{|t|} = \text{generating series of } \mathcal{T}$; |t| = size.

Same size, same probability Expected size xT'(x)/T(x) increases with x.

Singleton

Easy.

Cartesian Product $C = A \times B$

- Generate $a \in \mathcal{A}$; $b \in \mathcal{B}$;
- Return (a, b).

Disjoint Union $C = A \cup B$

- Draw b = Bernoulli(A(x)/C(x));
- If b=1 then generate $a \in \mathcal{A}$ else generate $b \in \mathcal{B}$.

Use recursively (e.g., binary trees $\mathcal{B} = \mathcal{Z} \cup \mathcal{Z} \times \mathcal{B} \times \mathcal{B}$)
Also: sets, cycles,...;

Principle (Duchon, Flajolet, Louchard, Schaeffer 2004)

Generate each $t \in \mathcal{T}$ with probability $x^{|t|}/T(x)/|t|!$, where: x > 0 fixed; $T(z) := \sum_{t \in \mathcal{T}} z^{|t|}/|t|! = \text{generating series of } \mathcal{T}$; |t| = size.

Same size, same probability Expected size xT'(x)/T(x) increases with x.

Singleton

Easy.

Cartesian Product $C = A \times B$

- Generate $a \in \mathcal{A}$; $b \in \mathcal{B}$;
- Return (a, b).

Disjoint Union $C = A \cup B$

- Draw b = Bernoulli(A(x)/C(x));
- If b = 1 then generate $a \in \mathcal{A}$ else generate $b \in \mathcal{B}$.

Use recursively (e.g., binary trees $\mathcal{B} = \mathcal{Z} \cup \mathcal{Z} \times \mathcal{B} \times \mathcal{B}$)

Also: sets, cycles,...; labelled case

Framework: Constructible Species

A small set of species

 $1, \mathcal{Z}, \times, +, \mathrm{SEQ}, \mathrm{SET}, \mathrm{CYC},$ cardinality constraints that are finite unions of intervals, used recursively.

Examples:

- Regular languages
- Unambiguous context-free languages
- Trees $(\mathcal{B} = \mathcal{Z} + \mathcal{Z} \times \mathcal{B}^2, \ \mathcal{T} = \mathcal{Z} \times \operatorname{SET}(\mathcal{T}))$
- Mappings, . . .

Framework: Constructible Species

A small set of species

 $1, \mathcal{Z}, \times, +, \operatorname{SEQ}, \operatorname{SET}, \operatorname{CYC},$ cardinality constraints that are finite unions of intervals, used recursively (when it makes sense).

Examples:

- Regular languages
- Unambiguous context-free languages
- Trees $(\mathcal{B} = \mathcal{Z} + \mathcal{Z} \times \mathcal{B}^2$, $\mathcal{T} = \mathcal{Z} \times \operatorname{SET}(\mathcal{T})$
- Mappings, . . .

Results (1/2): Fast Enumeration

Theorem (Enumeration in Quasi-Optimal Complexity)

First N coefficients of gfs of constructible species in

- arithmetic complexity:
 - $O(N \log N)$ (both ogf and egf);
- binary complexity:
 - $O(N^2 \log^2 N \log \log N)$ (ogf);
 - $O(N^2 \log^3 N \log \log N)$ (egf).

Results (2/2): Oracle

- **①** A numerical iteration converging to $\mathbf{Y}(\alpha)$ in the labelled case (inside the disk);
- ② A numerical iteration converging to the sequence $\mathbf{Y}(\alpha), \mathbf{Y}(\alpha^2), \mathbf{Y}(\alpha^3), \ldots$ for $\|\cdot\|_{\infty}$ in the unlabelled case (inside the disk).

Examples (I): Polynomial Systems

Random generation following given XML grammars

Grammar	nb eqs	max deg	nb sols	oracle (s.)	FGb (s.)
rss	10	5	2	0.02	0.03
PNML	22	4	4	0.05	0.1
xslt	40	3	10	0.4	1.5
relaxng	34	4	32	0.4	3.3
xhtml-basic	53	3	13	1.2	18
mathml2	182	2	18	3.7	882
×html	93	6	56	3.4	1124
xhtml-strict	80	6	32	3.0	1590
xmlschema	59	10	24	0.5	6592
SVG	117	10		5.8	>1.5Go
docbook	407	11		67.7	>1.5Go
${\sf OpenDoc}$	500			3.9	

[Darrasse 2008]

Example (II): A Non-Polynomial "System"

Unlabelled rooted trees:

$$f(x) = x \exp(f(x) + \frac{1}{2}f(x^2) + \frac{1}{3}f(x^3) + \cdots)$$

Il Newton Iteration for Power Series

Symbolic Iteration

$$\phi(y) = 1 + zy^{2} - y$$
$$y^{[n+1]} = y_{n} + \frac{1 + zy^{[n]^{2}} - y_{n}}{1 - 2zy^{[n]}}$$

$$y^{[0]} = 0$$

$$y^{[1]} = 1$$

$$y^{[2]} = 1 + z + 2z^2 + 4z^3 + 8z^4 + 16z^5 + 32z^6 + 64z^7 + \dots$$

$$y^{[3]} = 1 + z + 2z^2 + 5z^3 + 14z^4 + 42z^5 + 132z^6 + 428z^7 + \dots$$

 $y = a^2y - 2a^3 + axy - x^3 = 0$. $y = a - \frac{x}{4} + \frac{x^2}{64} + \frac{111x^3}{512a^2} + \frac{509x^6}{16184a^3}$ &c. +a3 +3a2p+3ap2+p3 $+a^2x+axp$ +axy +12× +13 + a2p $-\frac{1}{2}x^3 + \frac{1}{2}x^2q - \frac{1}{2}xq^2 + q^3$ -1x+q=p, +p+3ap2 + 3ag2 + 3ag2 -- axp $-\frac{1}{2}ax^2 + axq$ - 12× +4129 -1-a2x +41× $+\frac{x^2}{6+a}+r=q$. $+q^3$ -- xq2 +3492 ++x29 - !axq

[Newton 1671]

Newton Iteration for Power Series has Good Complexity

To solve
$$\phi(y) = 0$$
, iterate

$$y^{[n+1]} = y^{[n]} + u^{[n+1]}, \quad \phi'(y^{[n]})u^{[n+1]} = -\phi(y^{[n]})$$

Quadratic convergence

Divide-and-Conquer

Newton Iteration for Power Series has Good Complexity

To solve $\phi(y) = 0$, iterate

$$y^{[n+1]} = y^{[n]} + u^{[n+1]}, \quad \phi'(y^{[n]})u^{[n+1]} = -\phi(y^{[n]})$$

Quadratic convergence

Divide-and-Conquer

To solve at precision *N*

- ① Solve at precision N/2;
- 2 Compute ϕ and ϕ' there;
- Solve for $u^{[n+1]}$.

$$Cost(y^{[n]}) = constant \times Cost(last step).$$

Newton Iteration for Power Series has Good Complexity

To solve $\phi(y) = 0$, iterate

$$y^{[n+1]} = y^{[n]} + u^{[n+1]}, \quad \phi'(y^{[n]})u^{[n+1]} = -\phi(y^{[n]})$$

Quadratic convergence

To solve at precision N

- Solve at precision N/2;
- 2 Compute ϕ and ϕ' there;
- Solve for $u^{[n+1]}$.

 $Cost(y^{[n]}) = constant \times Cost(last step).$

Useful in conjunction with fast multiplication (e.g., FFT):

- power series at order N: $O(N \log N)$ ops on the coefficients;
- *N*-bit integers: $O(N \log N \log \log N)$ bit ops.

Example: Newton Iteration for Inverses

$$\phi(y) = a - 1/y \Rightarrow 1/\phi'(y) = y^2 \Rightarrow y^{[n+1]} = y^{[n]} - y^{[n]}(ay^{[n]} - 1).$$

Cost: a small number of multiplications

Works for:

- Numerical inversion;
- Reciprocal of power series;
- Inversion of matrices.

[Schulz 1933; Cook 1966; Sieveking 1972; Kung 1974]

Inverses for Series-Parallel Graphs

$$(G,S,P)=\mathbf{H}(G,S,P).$$

$$\begin{cases} G = S + P, \\ S = (1 - z - P)^{-1} - 1, & \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & (1 - z - P)^{-2} \\ 0 & e^{z+S} - 1 & 0 \end{pmatrix}$$

Newton iteration:

$$\mathbf{Y}^{[n+1]} = \mathbf{Y}^{[n]} + (\operatorname{Id} - \frac{\partial \mathbf{H}}{\partial \mathbf{Y}}(\mathbf{Y}^{[n]}))^{-1} \cdot (\mathbf{H}(\mathbf{Y}^{[n]}) - \mathbf{Y}^{[n]}).$$

$$\begin{cases} \mathbf{Y}^{[n+1]} &= \mathbf{Y}^{[n]} + U^{[n+1]} \cdot \left(\mathbf{H}(\mathbf{Y}^{[n]}) - \mathbf{Y}^{[n]} \right) \bmod z^{2^{n+1}}, \\ U^{[n+1]} &= U^{[n]} + U^{[n]} \cdot \left(\frac{\partial \mathbf{H}}{\partial \mathbf{Y}}(\mathbf{Y}^{[n]}) \cdot U^{[n]} + \operatorname{Id} - U^{[n]} \right) \bmod z^{2^{n}}. \end{cases}$$

Inverses for Series-Parallel Graphs

$$(G,S,P)=\mathbf{H}(G,S,P).$$

$$\begin{cases} G = S + P, \\ S = (1 - z - P)^{-1} - 1, & \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & (1 - z - P)^{-2} \\ 0 & e^{z+S} - 1 & 0 \end{pmatrix}$$

Newton iteration:

$$\mathbf{Y}^{[n+1]} = \mathbf{Y}^{[n]} + (\operatorname{Id} - \frac{\partial \mathbf{H}}{\partial \mathbf{Y}}(\mathbf{Y}^{[n]}))^{-1} \cdot (\mathbf{H}(\mathbf{Y}^{[n]}) - \mathbf{Y}^{[n]}).$$

$$\begin{cases} \mathbf{Y}^{[n+1]} &= \mathbf{Y}^{[n]} + U^{[n+1]} \cdot \left(\mathbf{H}(\mathbf{Y}^{[n]}) - \mathbf{Y}^{[n]} \right) \bmod z^{2^{n+1}}, \\ U^{[n+1]} &= U^{[n]} + U^{[n]} \cdot \left(\frac{\partial \mathbf{H}}{\partial \mathbf{Y}}(\mathbf{Y}^{[n]}) \cdot U^{[n]} + \operatorname{Id} - U^{[n]} \right) \bmod z^{2^{n}}. \end{cases}$$

⇒ Wanted: efficient exp.

From the Inverse to the Exponential

- **1** Logarithm of power series: $\log f = \int (f'/f)$;
- ② exponential of power series: $\phi(y) = a \log y$.

$$e^{[n+1]} = e^{[n]} + \frac{a - \log e^{[n]}}{1/e^{[n]}} \mod z^{2^{n+1}},$$
$$= e^{[n]} + e^{[n]} \left(a - \int e^{[n]'} / e^{[n]} \right) \mod z^{2^{n+1}}.$$

And $1/e^{[n]}$ is computed by Newton iteration too!

[Brent 1975; Hanrot-Zimmermann 2002]

$$F = t^{N} + a_{N-1}t^{N-1} + \cdots + a_0 \leftrightarrow S_i = \sum_{F(\alpha)=0} \alpha^i, \quad i = 0, \dots, N.$$

$$F = t^{N} + a_{N-1}t^{N-1} + \dots + a_0 \leftrightarrow S_i = \sum_{F(\alpha)=0} \alpha^i, \quad i = 0, \dots, N.$$

Fast conversion using the generating series:

$$\frac{\operatorname{rev}(F)'}{\operatorname{rev}(F)} = -\sum_{i>0} S_{i+1} t^i \leftrightarrow \operatorname{rev}(F) = \exp\left(-\sum \frac{S_i}{i} t^i\right).$$

$$F = t^{N} + a_{N-1}t^{N-1} + \dots + a_0 \leftrightarrow S_i = \sum_{F(\alpha)=0} \alpha^i, \quad i = 0, \dots, N.$$

Fast conversion using the generating series:

$$\frac{\operatorname{rev}(F)'}{\operatorname{rev}(F)} = -\sum_{i>0} S_{i+1}t^i \leftrightarrow \operatorname{rev}(F) = \exp\left(-\sum \frac{S_i}{i}t^i\right).$$

Application: composed product and sums

$$(F,G)\mapsto \prod_{F(\alpha)=0,G(\beta)=0}(t-\alpha\beta) \quad \text{or} \quad \prod_{F(\alpha)=0,G(\beta)=0}(t-(\alpha+\beta)).$$

$$F = t^{N} + a_{N-1}t^{N-1} + \dots + a_0 \leftrightarrow S_i = \sum_{F(\alpha)=0} \alpha^i, \quad i = 0, \dots, N.$$

Fast conversion using the generating series:

$$\frac{\operatorname{rev}(F)'}{\operatorname{rev}(F)} = -\sum_{i>0} S_{i+1}t^i \leftrightarrow \operatorname{rev}(F) = \exp\left(-\sum \frac{S_i}{i}t^i\right).$$

Application: composed product and sums

$$(F,G) \mapsto \prod_{F(\alpha)=0, G(\beta)=0} (t - \alpha\beta) \quad \text{or} \quad \prod_{F(\alpha)=0, G(\beta)=0} (t - (\alpha + \beta)).$$

Easy in Newton representation: $\sum \alpha^s \sum \beta^s = \sum (\alpha \beta)^s$ and

$$\sum \frac{\sum (\alpha + \beta)^s}{s!} t^s = \left(\sum \frac{\sum \alpha^s}{s!} t^s\right) \left(\sum \frac{\sum \beta^s}{s!} t^s\right).$$

[Schönhage 1982; Bostan, Flajolet, Salvy, Schost 2006]

Timings

Applications (crypto): over finite fields, degree > 200000 expected.

Timings in seconds vs. output degree N, over \mathbb{F}_p , 26 bits prime p

Conclusion for Series-Parallel Graphs

$$\mathcal{G} = \mathcal{S} + \mathcal{P}, \quad \mathcal{S} = \operatorname{Seq}_{>0}(\mathcal{Z} + \mathcal{P}), \quad \mathcal{P} = \operatorname{Set}_{>1}(\mathcal{Z} + \mathcal{S})$$

compiles into the Newton iteration:

$$\begin{cases} i^{[n+1]} = i^{[n]} - i^{[n]} (e^{[n]} i^{[n]} - 1), \\ e^{[n+1]} = e^{[n]} - e^{[n]} \left(1 + \frac{d}{dz} S^{[n]} - \int (\frac{d}{dz} e^{[n]}) i^{[n]} \right), \\ v^{[n+1]} = v^{[n]} - v^{[n]} ((1 - z - P^{[n]}) v^{[n]} - 1), \\ \begin{cases} U^{[n+1]} = U^{[n]} + U^{[n]} \cdot \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & v^{[n+1]^2} \\ 0 & e^{[n+1]} - 1 & 0 \end{pmatrix} \cdot U^{[n]} + \operatorname{Id} - U^{[n]} \end{pmatrix}, \\ \begin{pmatrix} G^{[n+1]} \\ S^{[n+1]} \\ P^{[n+1]} \end{pmatrix} = \begin{pmatrix} G^{[n]} \\ S^{[n]} \\ P^{[n]} \end{pmatrix} + U^{[n+1]} \cdot \begin{pmatrix} S^{[n]} + P^{[n]} - G^{[n]} \\ v^{[n+1]} - S^{[n]} \\ e^{[n+1]} - P^{[n]} \end{pmatrix} \mod z^{2^{n+1}}. \end{cases}$$

Computation reduced to products and linear ops.

Linear Differential Equations of Arbitrary Order

Given a linear differential equation with power series coefficients,

$$a_r(t)y^{(r)}(t) + \cdots + a_0(t)y(t) = 0,$$

compute the first N terms of a basis of power series solutions.

Linear Differential Equations of Arbitrary Order

Given a linear differential equation with power series coefficients,

$$a_r(t)y^{(r)}(t) + \cdots + a_0(t)y(t) = 0,$$

compute the first N terms of a basis of power series solutions.

Algorithm

- **①** Convert into a system $\Phi: Y \mapsto Y' A(t)Y (D\Phi = \Phi)$;
- **3** Variation of constants: $U = Y \int Y^{-1}(Y' AY)$;
- \circ Y^{-1} by Newton iteration too.

Special case: recover good exponential.

[Bostan, Chyzak, Ollivier, Salvy, Schost, Sedoglavic 2007]

Timings

Polynomial matrix multiplication vs. solving Y' = AY.

Non-Linear Differential Equations

Example from cryptography:

$$\phi: y \mapsto (x^3 + Ax + B)y'^2 - (y^3 + \tilde{A}y + \tilde{B}).$$

Non-Linear Differential Equations

Example from cryptography:

$$\phi: y \mapsto (x^3 + Ax + B)y'^2 - (y^3 + \tilde{A}y + \tilde{B}).$$

Differential:

$$D\phi|_{y}: u \mapsto 2(x^{3} + Ax + B)y'u' - (3y^{2} + \tilde{A})u.$$

Solve the linear differential equation

$$D\phi|_y u = \phi(y)$$

at each iteration.

Again, quasi-linear complexity.

[Bostan, Morain, Salvy, Schost 2008]

III Combinatorics

Generating Series: a Simple Dictionary

$$\mathsf{ogf} := \sum_{t \in \mathcal{T}} z^{|t|}, \quad \mathsf{egf} := \sum_{t \in \mathcal{T}} \frac{z^{|t|}}{|t|!}.$$

Language and Gen. Fcns (labelled)

$$\begin{array}{lll}
A \cup B & A(z) + B(z) \\
A \times B & A(z) \times B(z)
\end{array}$$

$$\begin{array}{ll}
SEQ(C) & \frac{1}{1 - C(z)} \\
A' & A'(z)
\end{array}$$

$$CYC(C) & \log \frac{1}{1 - C(z)}$$

$$SET(C) & \exp(C(z))$$

Consequences:

Newton for EGFs easy;

Generating Series: a Simple Dictionary

$$\mathsf{ogf} := \sum_{t \in \mathcal{T}} z^{|t|}, \quad \mathsf{egf} := \sum_{t \in \mathcal{T}} \frac{z^{|t|}}{|t|!}.$$

Language and Gen. Fcns (labelled) (unlabelled)

$$\begin{array}{lll} \mathcal{A} \cup \mathcal{B} & \mathcal{A}(z) + \mathcal{B}(z) & \mathcal{A}(z) + \mathcal{B}(z) \\ \mathcal{A} \times \mathcal{B} & \mathcal{A}(z) \times \mathcal{B}(z) & \mathcal{A}(z) \times \mathcal{B}(z) \\ \mathrm{SEQ}(\mathcal{C}) & \frac{1}{1 - \mathcal{C}(z)} & \frac{1}{1 - \mathcal{C}(z)} \\ \mathcal{A}' & \mathcal{A}'(z) & - \\ \mathrm{CYC}(\mathcal{C}) & \log \frac{1}{1 - \mathcal{C}(z)} & \sum_{k \geq 1} \frac{\phi(k)}{k} \log \frac{1}{1 - \mathcal{C}(z^k)} \\ \mathrm{SET}(\mathcal{C}) & \exp(\mathcal{C}(z)) & \exp(\sum \mathcal{C}(z^i)/i) \end{array}$$

Consequences:

- Newton for EGFs easy;
- Pólya operators for ogfs;
- Newton iteration more difficult for ogfs.

Example (II): A Non-Polynomial "System"

Unlabelled rooted trees:

$$f(x) = x \exp(f(x) + \frac{1}{2}f(x^2) + \frac{1}{3}f(x^3) + \cdots)$$

Mini-Introduction to Species Theory

• Species \mathcal{F} :

Examples:

- 0, Z, 1;
- Set;
- Seq, Cyc.

Mini-Introduction to Species Theory

ullet Species \mathcal{F} :

• Composition $\mathcal{F} \circ \mathcal{G}$:

Examples:

- 0, Z, 1;
- Set;
- Seq, Cyc.

Mini-Introduction to Species Theory

ullet Species \mathcal{F} :

• Composition $\mathcal{F} \circ \mathcal{G}$:

Examples:

- 0, Z, 1;
- Set;
- Seq, Cyc.

• $\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$

Huet's zipper

species	derivative	
$\overline{\mathcal{A} + \mathcal{B}}$	$\mathcal{A}'+\mathcal{B}'$	
$\mathcal{A}\cdot\mathcal{B}$	$\mathcal{A}'\cdot\mathcal{B}+\mathcal{A}\cdot\mathcal{B}'$	
$\mathrm{Seq}(\mathcal{B})$	$\operatorname{Seq}(\mathcal{B}) \cdot \mathcal{B}' \cdot \operatorname{Seq}(\mathcal{B})$	
$\mathrm{Cyc}(\mathcal{B})$	$\operatorname{Seq}(\mathcal{B})\cdot\mathcal{B}'$	
$\operatorname{Set}(\mathcal{B})$	$\operatorname{Set}(\mathcal{B})\cdot\mathcal{B}'$	

species	derivative		
A + B	$\mathcal{A}'+\mathcal{B}'$		
$\mathcal{A}\cdot\mathcal{B}$	$\mathcal{A}'\cdot\mathcal{B}+\mathcal{A}\cdot\mathcal{B}'$		
$\mathrm{Seq}(\mathcal{B})$	$\operatorname{Seq}(\mathcal{B})\cdot\mathcal{B}'\cdot\operatorname{Seq}(\mathcal{B})$		
$\mathrm{Cyc}(\mathcal{B})$	$\operatorname{SeQ}(\mathcal{B})\cdot \mathcal{B}'$		
$\operatorname{Set}(\mathcal{B})$	$\operatorname{Set}(\mathcal{B})\cdot\mathcal{B}'$		

Example:

$$\mathcal{H}(\mathcal{G}, \mathcal{S}, \mathcal{P}) := (\mathcal{S} + \mathcal{P}, \mathsf{Seq}_{>0}(\mathcal{Z} + \mathcal{P}), \mathsf{Set}_{>1}(\mathcal{Z} + \mathcal{S})).$$

$$\frac{\partial \boldsymbol{\mathcal{H}}}{\partial \boldsymbol{\mathcal{Y}}} = \begin{pmatrix} \varnothing & 1 & 1 \\ \varnothing & \varnothing & \operatorname{Seq}(\mathcal{Z} + \mathcal{P}) \cdot 1 \cdot \operatorname{Seq}(\mathcal{Z} + \mathcal{P}) \\ \varnothing & \operatorname{Set}_{>0}(\mathcal{Z} + \mathcal{S}) \cdot 1 & \varnothing \end{pmatrix}$$

Joyal's Implicit Species Theorem

Theorem

If $\mathcal{H}(0,0) = 0$ and $\partial \mathcal{H}/\partial \mathcal{Y}(0,0)$ is nilpotent, then $\mathcal{Y} = \mathcal{H}(\mathcal{Z},\mathcal{Y})$ has a unique solution, limit of

$$\mathbf{\mathcal{Y}}^{[0]}=0, \qquad \mathbf{\mathcal{Y}}^{[n+1]}=\mathbf{\mathcal{H}}(\mathcal{Z},\mathbf{\mathcal{Y}}^{[n]}) \quad (n\geq 0).$$

Def. $A =_k B$ if they coincide up to size k (contact k).

Key Lemma

If
$$\mathcal{Y}^{[n+1]} =_k \mathcal{Y}^{[n]}$$
, then $\mathcal{Y}^{[n+p+1]} =_{k+1} \mathcal{Y}^{[n+p]}$, $(p = \text{dimension})$.

Joyal's Implicit Species Theorem

Theorem

If $\mathcal{H}(0,0) = 0$ and $\partial \mathcal{H}/\partial \mathcal{Y}(0,0)$ is nilpotent, then $\mathcal{Y} = \mathcal{H}(\mathcal{Z},\mathcal{Y})$ has a unique solution, limit of

$$\mathbf{\mathcal{Y}}^{[0]}=0, \qquad \mathbf{\mathcal{Y}}^{[n+1]}=\mathbf{\mathcal{H}}(\mathcal{Z},\mathbf{\mathcal{Y}}^{[n]}) \quad (n\geq 0).$$

Def. $A =_k B$ if they coincide up to size k (contact k).

Key Lemma

If
$$\mathcal{Y}^{[n+1]} =_k \mathcal{Y}^{[n]}$$
, then $\mathcal{Y}^{[n+p+1]} =_{k+1} \mathcal{Y}^{[n+p]}$, $(p = \text{dimension})$.

We prove an iff when no 0 coordinate.

Newton Iteration for Binary Trees

$$\mathcal{Y} = 1 \cup \mathcal{Z} \times \mathcal{Y} \times \mathcal{Y}$$

Newton Iteration for Binary Trees

$$\mathcal{Y} = 1 \cup \mathcal{Z} \times \mathcal{Y} \times \mathcal{Y}$$

[Décoste, Labelle, Leroux 1982]

Newton Iteration for Binary Trees

$$\mathcal{Y} = 1 \cup \mathcal{Z} \times \mathcal{Y} \times \mathcal{Y}$$

$$\mathcal{Y}_{n+1} = \mathcal{Y}_n \cup \operatorname{SEQ}(\mathcal{Z} \times \mathcal{Y}_n \times \square \cup \mathcal{Z} \times \square \times \mathcal{Y}_n) \times (1 \cup \mathcal{Z} \times \mathcal{Y}_n^2 \setminus \mathcal{Y}_n).$$

$$\mathcal{Y}_0 = \emptyset$$
 $\mathcal{Y}_1 = \circ$

$$\mathcal{Y}_{2} = \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

$$\mathcal{Y}_3 = \mathcal{Y}_2 + \mathcal{Y}_0 + \cdots + \mathcal{Y}_0 + \cdots + \mathcal{Y}_0 + \cdots$$

[Décoste, Labelle, Leroux 1982]

Symbolic Iteration

$$\phi(y) = 1 + zy^{2} - y$$
$$y^{[n+1]} = y_{n} + \frac{1 + zy^{[n]^{2}} - y^{[n]}}{1 - 2zy^{[n]}}$$

$$y^{[0]} = 0$$

$$y^{[1]} = 1$$

$$y^{[2]} = 1 + z + 2z^2 + 4z^3 + 8z^4 + 16z^5 + 32z^6 + 64z^7 + \dots$$

 $v^{[3]} = 1 + z + 2z^2 + 5z^3 + 14z^4 + 42z^5 + 132z^6 + 428z^7 + \dots$

+ a + p = y. +y3 +axy +x²y -x3 -2a3	+a3 +3a4p+3ap3+p3 +a2x+axp +a3 +a2p -x3
$ \begin{array}{c} -2a^{3} \\ -\frac{1}{4}x + q = p, & +p^{3} \\ +3ap^{2} \\ +axp \\ +4a^{2}p \end{array} $	$\begin{array}{c} -\frac{1}{4}x^{3} + \frac{1}{4}x^{2}q - \frac{1}{4}xq^{2} + q^{3} \\ +\frac{1}{4}ax^{2} - \frac{1}{4}axq + 3aq^{2} \\ -\frac{1}{4}ax^{2} + axq \end{array}$
$+a^2x$ $-x^3$ $+\frac{x^2}{64a}+r=q$. $+q^3$	+3 ¹ x -x3
-ixq* +3aq* +ix*q	$ \begin{array}{c} $
— ¦axq. +4a²q —°;x3 ,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$-\frac{1}{10}ax^{2}$ $+4a^{2}-\frac{1}{10}ax+\frac{2}{10}x^{2})+\frac{121}{100}x$	$ \frac{\int -\frac{1}{12}dX^{3}}{3 - \frac{15}{4096a}} \left(+\frac{151X^{9}}{512a} + \frac{509x^{6}}{16384a^{3}} \right) $

[Newton 1671]

Numerical Iteration

Combinatorial Newton Iteration

Theorem (essentially Labelle)

For any well-founded system $\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$, if \mathcal{A} has contact k with the solution and $\mathcal{A} \subset \mathcal{H}(\mathcal{Z}, \mathcal{A})$, then

$$\mathcal{A} + \sum_{i>0} \left(\frac{\partial \mathcal{H}}{\partial \mathcal{Y}}(\mathcal{Z}, \mathcal{A}) \right)^{\prime} \cdot (\mathcal{H}(\mathcal{Z}, \mathcal{A}) - \mathcal{A})$$

has contact 2k + 1 with it.

$$A + A^{+} = \begin{pmatrix} A & A & A \\ A & A & A \end{pmatrix}$$

Combinatorial Newton Iteration

Theorem (essentially Labelle)

For any well-founded system $\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$, if \mathcal{A} has contact k with the solution and $\mathcal{A} \subset \mathcal{H}(\mathcal{Z}, \mathcal{A})$, then

$$oldsymbol{\mathcal{A}} + \sum_{i \geq 0} \left(rac{\partial oldsymbol{\mathcal{H}}}{\partial oldsymbol{\mathcal{Y}}} (\mathcal{Z}, oldsymbol{\mathcal{A}})
ight)^i \cdot (oldsymbol{\mathcal{H}}(\mathcal{Z}, oldsymbol{\mathcal{A}}) - oldsymbol{\mathcal{A}})$$

has contact 2k + 1 with it.

$$\mathcal{A} + \mathcal{A}^{+} = \mathcal{A} + \mathcal{A}$$

Generation by increasing Strahler numbers.

Newton Iteration for Series-Parallel Graphs

$$\begin{pmatrix} \mathcal{S}^{[n+1]} \\ \mathcal{P}^{[n+1]} \end{pmatrix} = \begin{pmatrix} \mathcal{S}^{[n]} \\ \mathcal{P}^{[n]} \end{pmatrix} + \begin{pmatrix} \sum_{k \geq 0} \begin{pmatrix} 0 & \operatorname{SEQ}^2(\mathcal{Z} + \mathcal{P}^{[n]}) - 1 \\ \operatorname{SET}_{>0}(\mathcal{Z} + \mathcal{S}^{[n]}) & 0 \end{pmatrix}^k \begin{pmatrix} \operatorname{SEQ}_{>1}(\mathcal{Z} + \mathcal{P}^{[n]}) - \mathcal{S}^{[n]} \\ \operatorname{SET}_{>0}(\mathcal{Z} + \mathcal{S}^{[n]}) - \mathcal{P}^{[n]} \end{pmatrix}.$$

① Combinatorial equation: $\mathcal{Y} = \mathcal{Z} \cdot \text{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$

- **9** Combinatorial equation: $\mathcal{Y} = \mathcal{Z} \cdot \operatorname{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$
- Combinatorial Newton iteration:

$$\mathcal{Y}^{[n+1]} = \mathcal{Y}^{[n]} + \operatorname{Seq}(\mathcal{H}(\mathcal{Y}^{[n]})) \cdot (\mathcal{H}(\mathcal{Y}^{[n]}) \setminus \mathcal{Y}^{[n]})$$

- **①** Combinatorial equation: $\mathcal{Y} = \mathcal{Z} \cdot \operatorname{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$
- Combinatorial Newton iteration:

$$\mathcal{Y}^{[n+1]} = \mathcal{Y}^{[n]} + \operatorname{Seq}(\mathcal{H}(\mathcal{Y}^{[n]})) \cdot (\mathcal{H}(\mathcal{Y}^{[n]}) \setminus \mathcal{Y}^{[n]})$$

3 OGF equation: $\tilde{Y}(z) = H(z, \tilde{Y}(z))$

$$\tilde{Y}(z) = z \exp(\tilde{Y}(z) + \frac{1}{2}\tilde{Y}(z^2) + \frac{1}{3}\tilde{Y}(z^3) + \cdots)$$

- **①** Combinatorial equation: $\mathcal{Y} = \mathcal{Z} \cdot \operatorname{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$
- Combinatorial Newton iteration:

$$\mathcal{Y}^{[n+1]} = \mathcal{Y}^{[n]} + \operatorname{Seq}(\mathcal{H}(\mathcal{Y}^{[n]})) \cdot (\mathcal{H}(\mathcal{Y}^{[n]}) \setminus \mathcal{Y}^{[n]})$$

3 OGF equation: $\tilde{Y}(z) = H(z, \tilde{Y}(z))$

$$\tilde{Y}(z) = z \exp(\tilde{Y}(z) + \frac{1}{2}\tilde{Y}(z^2) + \frac{1}{3}\tilde{Y}(z^3) + \cdots)$$

• Newton for OGF:

$$\tilde{Y}^{[n+1]} = \tilde{Y}^{[n]} + \frac{H(z, \tilde{Y}^{[n]}) - \tilde{Y}^{[n]}}{1 - H(z, \tilde{Y}^{[n]})}$$

$$0,$$

$$z + z^2 + z^3 + z^4 + \cdots,$$

$$z + z^2 + 2z^3 + 4z^4 + 9z^5 + 20z^6 + \cdots$$

- **①** Combinatorial equation: $\mathcal{Y} = \mathcal{Z} \cdot \operatorname{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$
- Combinatorial Newton iteration:
- lacksquare OGF equation: $ilde{Y}(z) = H(z, ilde{Y}(z))$

$$\tilde{Y}(z) = z \exp(\tilde{Y}(z) + \frac{1}{2}\tilde{Y}(z^2) + \frac{1}{3}\tilde{Y}(z^3) + \cdots)$$

Newton for OGF:

$$\tilde{Y}^{[n+1]} = \tilde{Y}^{[n]} + \frac{H(z, \tilde{Y}^{[n]}) - \tilde{Y}^{[n]}}{1 - H(z, \tilde{Y}^{[n]})}$$

Numerical iteration:

n	$\tilde{Y}^{[n]}(0.3)$	$\tilde{Y}^{[n]}(0.3^2)$	$\tilde{Y}^{[n]}(0.3^3)$
0	0	0	0
1	.43021322639	0.99370806338e-1	0.27759817516e-1
2	. <mark>5</mark> 4875612912	0.99887132154e-1	0.27770629187e-1
3	.55709557053	0.99887147197e-1	0.27770629189e-1
4	.55713907945	0.99887147198e-1	0.27770629189e-1
5	.55713908064	0.99887147198e-1	0.27770629189e-1

The underlying sets are ordered

The underlying sets are ordered

Examples

• increasing trees: $\mathcal{Y} = \mathcal{Z} + \int \mathcal{F}(\mathcal{Y})$;

The underlying sets are ordered

Examples

- increasing trees: $\mathcal{Y} = \mathcal{Z} + \int \mathcal{F}(\mathcal{Y})$;
- alternating permutations (odd/even):

$$\mathcal{A}_e = \int \mathcal{A}_e \mathcal{A}_o, \quad \mathcal{A}_o = \mathcal{Z} + \int \mathcal{A}_o^2;$$

The underlying sets are ordered

Examples

- increasing trees: $\mathcal{Y} = \mathcal{Z} + \int \mathcal{F}(\mathcal{Y})$;
- alternating permutations (odd/even):

$$\mathcal{A}_{e}=\int\mathcal{A}_{e}\mathcal{A}_{o},\quad\mathcal{A}_{o}=\mathcal{Z}+\int\mathcal{A}_{o}^{2};$$

• cycles: $CYC(A) = \int SEQ(A)A'$;

The underlying sets are ordered

Examples

- increasing trees: $\mathcal{Y} = \mathcal{Z} + \int \mathcal{F}(\mathcal{Y})$;
- alternating permutations (odd/even):

$$\mathcal{A}_{\mathsf{e}} = \int \mathcal{A}_{\mathsf{e}} \mathcal{A}_{\mathsf{o}}, \quad \mathcal{A}_{\mathsf{o}} = \mathcal{Z} + \int \mathcal{A}_{\mathsf{o}}^2;$$

- cycles: $Cyc(A) = \int Seq(A)A'$;
- sets: $Set(A) = 1 + \int Set(A)A'$.

Examples

- increasing trees: $\mathcal{Y} = \mathcal{Z} + \int \mathcal{F}(\mathcal{Y})$;
- alternating permutations (odd/even):

$$\mathcal{A}_{e}=\int\mathcal{A}_{e}\mathcal{A}_{o},\quad\mathcal{A}_{o}=\mathcal{Z}+\int\mathcal{A}_{o}^{2};$$

- cycles: $Cyc(A) = \int Seq(A)A'$;
- sets: $Set(A) = 1 + \int Set(A)A'$.

Theorem (Enumeration in Quasi-Optimal Complexity)

First N coefficients of the solution of

$$oldsymbol{\mathcal{Y}}(\mathcal{Z}) = oldsymbol{\mathcal{H}}(\mathcal{Z},oldsymbol{\mathcal{Y}}(\mathcal{Z})) + \int_0^{\mathcal{Z}} oldsymbol{\mathcal{G}}(\mathcal{T},oldsymbol{\mathcal{Y}}(\mathcal{T})) \, d\mathcal{T}$$

with \mathcal{H} and \mathcal{G} constructible, in $O(N \log N)$ operations.

IV Conclusion

Conclusion

- Summary:
 - Newton iteration has good complexity;
 - Oracle: numerical Newton iteration that gives the values of ... power series that are the gfs of ...
 combinatorial iterates.

Conclusion

- Summary:
 - Newton iteration has good complexity;
 - Oracle: numerical Newton iteration that gives the values of ... power series that are the gfs of ...
 combinatorial iterates.
- Read the paper for:
 - Well-defined systems (with 1);
 - Majorant species;
 - PowerSet (it is not a species).

Conclusion

- Summary:
 - Newton iteration has good complexity;
 - Oracle: numerical Newton iteration that gives the values of ...
 power series that are the gfs of ...
 combinatorial iterates.
- Read the paper for:
 - Well-defined systems (with 1);
 - Majorant species;
 - PowerSet (it is not a species).

THE END

