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INTRODUCTION INVARIANT LOGICS EXPRESSIVENESS LOCALITY STRINGS AND TREES FINAL REMARKS

In this talk

I consider finite relational structures A = (A,RA
1 , . . . ,R

A
` ) over a finite

relational signature τ = {R1, . . . ,R`}

I p is a τ -property, if the following is true for all finite τ -structures A and B:

if A ∼= B, then A has property p ⇐⇒ B has property p

I q is a k -ary τ -query, if the following is true:

if π : A ∼= B, then for all a1, . . . ,ak ∈ A,(
a1, . . . ,ak

)
∈ q(A) ⇐⇒

(
π(a1), . . . , π(ak )

)
∈ q(B)

I I.e., τ -properties and queries are closed under isomorphisms.
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Logics expressing τ -properties and queries
Classical logics like, e.g.
I FO (first-order logic: Boolean combinations + quantification over nodes)
I LFP (least fixed point logic: FO + inductive definitions of relations)

express τ -properties and queries in a straightforward way.

Example: Consider graphs A = (A,EA). The query

q(A) = { x ∈ A : x lies on a triangle }

is expressed in FO via

ϕ(x) := ∃y ∃z
(

E(x , y) ∧ E(y , z) ∧ E(z, x)
)

Drawback:
FO and LFP are too weak to express (some) computationally easy properties, e.g.,
properties concerning the size of A or EA.
Stronger logics like, e.g., SO or ESO can express computationally hard properties
and queries.
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Invariant logics
Idea:

I Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, ×, . . . , Halt, . . . on A.

I For this, identify A with the set [n] := {0, 1, . . . , n−1} for n = |A|
and interpret <, +, ×, . . . , Halt, . . . in the natural way.

I To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying A with [n].
These formulas are called Arb-invariant.

Definition: Let L be a logic (e.g., FO, MSO, LFP).
A -formula ϕ(~x) is -invariant on A = (A,RA1 , . . . ,R

A
` ) ⇐⇒

for all tuples of elements ~a in A, for all linear orders ≺1 and ≺2 on A,

and the
matching addition relations +1, +2,

and the according multiplications ×1, ×2,

and
other numerical predicates,

For Arb-invariant sentences, shortly write A |= ϕ for (A,≺1,+1,×1 . . .) |= ϕ.
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Example
• Let τ = ∅. An addition-invariant FO(τ,≺,+)-sentence ϕ such that

A |= ϕ ⇐⇒ |A| is odd.

ϕ := ∃x ∃z
(

x + x = z ∧ ∀y ( y ≺ z ∨ y = z )
)

• Similarly, there is an (+,×)-invariant FO(τ,≺,+,×)-sentence ψ such that

A |= ψ ⇐⇒ |A| is a prime number.

• And there is an Arb-invariant FO(τ,≺,Halt)-sentence χ such that

A |= χ ⇐⇒ |A|−1 is the index of a Turing machine halting on empty input :

Simply choose χ := ∃x
(

Halt(x) ∧ ∀y (y ≺ x ∨ y = x)
)
.

Thus:

order-inv FO < addition-inv FO < (+,×)-inv FO < Arb-invariant FO.
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Expressive power of invariant logics

Known results:

I Order-invariant LFP precisely captures the polynomial time computable
τ -properties and queries. (Immerman, Vardi, 1982)

I Arb-invariant LFP precisely captures the τ -properties and queries that belong to
the comlexity class P/poly. (Makowsky, 1998)

P/poly consists of all problems solvable by circuit families of polynomial size

I Arb-invariant FO precisely captures the τ -properties and queries that belong to
the circuit complexity class AC0.

AC0 consists of all problems solvable by circuit families of polynomial size and
constant depth

I (+,×)-invariant FO precisely captures the τ -properties and queries that belong
to uniform AC0.
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Order-invariance is undecidable
Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE {E ,C}-STRUCTURES:
Input: a FO(E ,C,≺)-sentence ϕ

Question: Is ϕ order-invariant on all finite {E ,C}-structures?

Proof: By a reduction using Trakhtenbrot’s theorem.
I Assume, for contradiction, that order-invariance is decidable.
I Then, also the problem “Is a given FO(E)-sentence ψ true for all finite graphs?”

is decidable as follows:

(1) If there is a one-vertex-graph, in which ψ is not true, then stop with output
“no”. Otherwise, proceed with (2).

(2) Let χ be a formula that is not order-invariant on structures of size > 2.
E.g., χ := ∃x

(
C(x) ∧ ∀y(x � y)

)
.

Stop with output “yes” iff the formula (¬ψ → χ) is order-invariant.
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Proof: By a reduction using Trakhtenbrot’s theorem.
I Assume, for contradiction, that order-invariance is decidable.
I Then, also the problem “Is a given FO(E)-sentence ψ true for all finite graphs?”

is decidable as follows:

(1) If there is a one-vertex-graph, in which ψ is not true, then stop with output
“no”. Otherwise, proceed with (2).

(2) Let χ be a formula that is not order-invariant on structures of size > 2.
E.g., χ := ∃x

(
C(x) ∧ ∀y(x � y)

)
.

Stop with output “yes” iff the formula (¬ψ → χ) is order-invariant.
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Order- and addition-invariance for unary signatures

Let τ = {C1, . . . ,C`} consist of unary relation symbols.

Theorem: Order-invariance of a given FO(τ)-sentence ϕ
(on the class of all finite τ -structures) is decidable.

Decision procedure:
I ϕ defines a language L of finite strings.
I ϕ is order-invariant ⇐⇒ L is commutative.
I Commutativity of regular string-languages is decidable.

Theorem: Addition-invariance of a given FO(C,≺,+)-sentence ϕ
(on the class of all finite {C}-structures) is not decidable.
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FO < order-invariant FO
Theorem (Gurevich):
Let τ := {⊆} be a signature consisting of a single binary relation symbol ⊆.
For a finite set X let BX := (2X ,⊆) be the Boolean algebra over X .

There is an order-invariant FO(τ,≺)-sentence ϕeven such that for every finite set X :

BX |= ϕeven ⇐⇒ |X | is even.

But there is no FO(τ)-sentence ψeven such that for every finite set X :

BX |= ψeven ⇐⇒ |X | is even.

Proof:

Part 1: ϕeven expresses that there is a set z that contains the first (w.r.t. ≺) atom of
X , every other (w.r.t. ≺) atom of X , but not the last (w.r.t. ≺) atom of X .

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that
BX ≡r BY for all finite X ,Y of cardinality > 2r .
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Successor-invariant FO

By a much more elaborate construction, one can also show:

Theorem (Rossman, LICS’03)
On the class of all finite structures,
successor-invariant FO is strictly more expressive than FO.
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FO+MOD2 < order-invariant FO+MOD2
FO+MOD2 : the extension of FO by modulo 2 counting quantifiers
∃r mod 2x ψ(x) : the number of nodes x satisfying ψ(x) is congruent r modulo 2.

Theorem (Niemistö):
Let τ := {E} be a signature consisting of a single binary relation symbol E .
There is an order-invariant FO+MOD2(E)-sentence ϕeven cycles that is satisfied by a
finite directed graph G = (V ,E) iff

(1) G is a disjoint union of directed cycles, and

(2) the number of even-length cycles is even.

Proof:
I (1) can be expressed in FO: “every node has in- and out-degree 1”
I Every G satisfying (1) is the cycle decomposition of a permutation π.
I G has an even number of even-length cycles ⇐⇒
π is an even permuatation, i.e., sgn(π) = 1 ⇐⇒
π has an even number of inversions (i, j) such that i < j and π(i) > π(j).
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Order-invariant MSO
CMSO : the extension of MSO by modulo counting quantifiers
∃r mod mx ψ(x) : the number of nodes x satisfying ψ(x) is congruent r modulo m.

Known:

I On trees:
Order-invariant MSO = CMSO (Courcelle 1996, Lapoire 1998)

I On the class of all finite structures:
Order-invariant MSO > CMSO (Ganzow, Rubin 2008)

The separating example:
I Consider 2-dimensional grids, represented as structures of the form(

A, Same_Row, Same_Column
)
.

I Order-invariant MSO can express that
the number of columns is a multiple of the number of rows.

I CMSO cannot (for showing this, use a variant of EF-games).
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Neighborhoods
Graph G = (V ,E)

Distance dist(u, v) : length of a shortest path between u, v in G.

Shell Sr (a) of nodes at distance exactly r from a.

Ball Nr (a) of radius r at a in G.

Neighborhood Nr (a) of radius r at a in G.

a

r = 1

r = 2

r = 0
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Gaifman-local queries

I For a list a = a1, . . . , ak of nodes, NG
r (a) = NG

r (a1) ∪ · · · ∪ NG
r (ak ).

I The r -neighborhood NG
r (a) is the structure (G|NG

r (a), a) consisting of the induced
subgraph of G on NG

r (a), together with the distinguished nodes a.

Definition: Let q be a k -ary graph query. Let f : N→ N.
q is called f (n)-local if there is an n0 such that for every n > n0 and every graph G
with |V G| = n, the following is true for all k -tuples a and b of nodes:

if NG
f (n)(a) ∼= NG

f (n)(b) then a ∈ q(G) ⇐⇒ b ∈ q(G).
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Gaifman-locality of FO

Theorem:

I For every graph query q that is FO-definable,
there is a constant c such that q is c-local.

(Hella, Libkin, Nurmonen 1990s; Gaifman ’82)

I For every graph query q that is FO-definable on ordered graphs
(for short: q is definable in order-invariant FO),
there is a constant c such that q is c-local.

(Grohe, Schwentick ’98)

I For every graph query q that is FO-definable on graphs with arbitrary numerical
predicates (for short: q is definable in Arb-invariant FO),
there is a constant c such that q is (log n)c-local.

(Anderson, van Melkebeek, S., Segoufin ’11)
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Use locality for proving non-expressibility

Example: The reachability query

REACH(G) := { (a1, a2) : there is a directed path from a1 to a2 in G }

is not n
5 -local an thus cannot be expressed in Arb-invariant FO.

Proof: Consider the graph G:
a
1 b

1

a
2 b

2
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Use locality for proving non-expressibility

Similarly, one obtains that the following queries are not definable in Arb-invariant FO:

• Does node x lie on a cycle?

• Does node x belong to a connected component that is acyclic?

• Is node x reachable from a node that belongs to a triangle?

• Do nodes x and y have the same distance to node z?
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Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a c ∈ N such that
q is (log n)c-local.

Idea: Use known lower bounds in circuit complexity!

I Let q be expressible by an Arb-invariant FO formula.

I Then, q can be computed by an AC0 circuit family C (Immerman ’87).

I Assume that q is not (log n)c-local (for any c ∈ N), and
modify C to obtain an AC0 circuit family computing

PARITY := {w ∈ {0, 1}∗ : |w |1 is even}.

I This contradicts known lower bounds in circuit complexity theory (Håstad’86).
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Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by an AC0 circuit family C?

• Represent graph G = (V ,E) by a bitstring
β(G) corresponding to an adjacency matrix for G.

• Represent a node a ∈ V by the bitstring
β(a) of the form 0∗10∗, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

• Let Rep(G, a) be the set of all bitstrings β(G)β(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding V in {1, . . . , |V |}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

• A unary graph query q(x) is computed by a circuit family C = (Cn)n∈N iff the
following is true:
for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

• Known: A unary graph query q(x) is definable in Arb-invariant FO ⇐⇒
it is computed by a circuit family of constant depth and polynomial size.

(implicit in Immerman’87)
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Proof of Gaifman-locality theorem (3/5)
Let q(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cn)n∈N be
a circuit family of constant depth d and polynomial size p(n) computing q.
I.e., for all G = (V ,E), a ∈ V , γ ∈ Rep(G, a): a ∈ q(G) ⇐⇒ C|γ| accepts γ.

For contradiction, assume q(x) is not (log n)c-local, for any c ∈ N.
Thus: For all c, n0 there exist n > n0, G = (V ,E) with n nodes, a, b ∈ V such that
for m := (log n)c , NG

m (a) ∼= NG
m (b), but a ∈ q(G) and b 6∈ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Theorem: (Håstad ’86)
There exist `,m0 > 0 such that for all m > m0, no circuit of depth d and size
2`·m

1/(d−1)
computes parity on m bits.

Contradiction for c = 2d , since 2`·m
1/(d−1)

> 2`·(log n)2 = n` log n > p(n).
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Proof of Gaifman-locality theorem (4/5)

Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

Proof:

Consider w ∈ {0, 1}m.
For i ∈ {0, 1, . . . ,m − 1} with wi = 1:

Swap the endpoints of the edges
leaving Ni (a) with the corresponding
endpoints of the edges leaving Ni (b).

The resulting graph Gw ∼= G.

(Gw , a) ∼=

{
(G, a), if |w |1 even
(G, b), if |w |1 odd

Circuit C distinguishes these cases.
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INTRODUCTION INVARIANT LOGICS EXPRESSIVENESS LOCALITY STRINGS AND TREES FINAL REMARKS

Proof of Gaifman-locality theorem (5/5)
Key Lemma:
Let m ∈ N, G = (V ,E), a, b ∈ V such that NG

m (a) ∼= NG
m (b) and dist(a, b) > 2m.

Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C̃ of the same size & depth as C computing parity on m bits.

How to obtain C̃ from C?
I Consider C for a fixed input string γ ∈ Rep(G, a).
I Fix all input bits (as in γ) that do not correspond to potential edges between the

shells Si and Si+1, for i < m.
I For all i < m and all u ∈ Si (a), v ∈ Si+1(a) consider the potential edges

e = {u, v}, e′ = {π(u), π(v)}, ẽ = {u, π(v)}, ẽ′ = {π(u), v}.
I Replace input gates of C as follows:

e by (e ∧ ¬wi ) e′ by (e′ ∧ ¬wi )

ẽ by (e ∧ wi ) ẽ′ by (e′ ∧ wi )

I This yields a circuit C̃ of the same size and depth as C which, on input
w ∈ {0, 1}m does the same as C on input (Gw , a).
Thus, C̃ accepts iff |w |1 is even.
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INTRODUCTION INVARIANT LOGICS EXPRESSIVENESS LOCALITY STRINGS AND TREES FINAL REMARKS

Summary: Gaifman-locality of Arb-invariant FO (1/2)

Theorem: (Anderson, Melkebeek, S., Segoufin ’11)

(a) For every query q expressible by Arb-invariant FO there is a c ∈ N such that
q is (log n)c-local.

(b) For every d ∈ N there is a (+,×)-invariant FO query that is not (log n)d -local.

The query qd (x) states:

(1) The graph has at most (log n)d+1 non-isolated vertices.

(Use the polylog-counting capability of FO(+,×))

(2) Node x is reachable from a node that belongs to a triangle.

(Show that in graphs satisfying (1), reachability by paths of length (log n)d+1 can
be expressed in (+,×)-invariant FO)

Note: This query is not (log n)d -local.
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INTRODUCTION INVARIANT LOGICS EXPRESSIVENESS LOCALITY STRINGS AND TREES FINAL REMARKS

Summary: Gaifman-locality of Arb-invariant FO (2/2)
Goal: Show that in graphs with 6 (log n)c non-isolated vertices, reachability by

paths of length (log n)c can be expressed in (+,×)-invariant FO.

Lemma: (Durand, Lautemann, More ’07)
For every c ∈ N there is a FO(<,+,×,S)-formula bijc(x , y) such that for all
n ∈ N, all S ⊆ [n] := {0, . . . , n−1}, all a, i < n we have

([n], <,+,×,S) |= bijc(a, i) ⇐⇒ |S| < (log n)c and
a is the i-th smallest element of S.

I Using this, identify the non-isolated vertices with numbers < (log n)c and
represent them by bitstrings of length c log log n.

I Identify an arbitrary vertex of G with a number < n, whose binary representation
encodes a sequence of `(n) := log n

c log log n non-isolated vertices.
I Use this to express that there is a path of length `(n) from node x to node y .
I Iterate this for c+1 times to express that there is a path of length
`(n)c+1 > (log n)c from x to y .
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Locality of Arb-invariant FO+MODp

In a similar way, we can also prove:

Theorem: (Harwath, S., 2013)
Let p be a prime power and let k ∈ N be coprime with p.
For every k-ary query q expressible in Arb-invariant FO+MODp, there is a c ∈ N
such that q is (log n)c-shift-local w.r.t. k.

Definition: Let q be a k -ary graph query. Let f : N→ N.
q is called f (n)-shift-local w.r.t. k if there is an n0 such that for every n > n0 and every
graph G with |V G| = n, the following is true for all k -tuples (a0, . . . , ak−1) of nodes:

if the f (n)-neighborhoods of the ai are disjoint and isomorphic,

then (a0, a1, . . . , ak−1) ∈ q(G) ⇐⇒ (a1, . . . , ak−1, a0) ∈ q(G).

Proof: Use Smolensky’s result for AC0[p]-circuits.

Corollary: Reachability is not definable in Arb-invariant FO+MODp

(for prime power p).
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Represent words as labeled graphs

(labeled) chain-graphs . . . . . . . . . . . . . . . . . . this chain-graph represents the string rbrg.

Edges correspond to the successor relation “succ” on the positions of the string.
Write ≺ -inv-FO(succ) for order-invariant FO on these graphs.
Write +-inv-FO(succ) for addition-invariant FO on these graphs.
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Known results

FO(succ) = locally threshold testable languages (Thomas)
FO(<) = star-free regular languages (McNaughton, Papert)

MSO(<) = regular languages (Büchi, Elgot, Trakhtenbrot)
MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)

≺-inv-FO(succ) = FO(succ) (Benedikt, Segoufin, 2005)
+-inv-MLFP(succ) ⊇ DLIN (S., 2004)
+-inv-MSO(succ) = the linear time hierarchy (More & Olive 1997, S. 2004)

FO(<) = ≺-inv-FO(<)  +-inv-FO(<)  (+,×)-inv-FO(<) ⊆ uniform AC0.

The following problem is undecidable: (Benedikt, Segoufin, 2005)

ORDER-INVARIANCE ON FINITE LABELED CHAIN-GRAPHS:
Input: a FO(≺,E)-sentence ϕ

Question: Is ϕ order-invariant on all finite labeled chain-graphs?
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The “Algebraic” Approach

Let L1 and L2 be logics, and let C be a class of structures.

Goal: Show that L1 can define exactly the same properties of C-structures as L2.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L1 iff it is closed under
every operation op ∈ O. I.e., for every A ∈ C:

A has property p ⇐⇒ op(A) has property p.

(2) Show that a property p of C-structures is closed under every operation op ∈ O
iff it is definable in L2.
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An example
Theorem (Benedikt, Segoufin, ’09):
A string-language is definable in ≺-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:
I Use a result by Beauquier and Pin (1989) stating that a string-language is

definable in FO(succ) iff it is aperiodic and closed under swaps.
• A string language L is aperiodic iff there exists a number ` ∈ N such that for

all strings u, x , v we have

u x` v ∈ L ⇐⇒ u x`+1 v ∈ L.

• L is closed under swaps iff for all strings u, v , e, x , y , z such that e, f are
idempotents (i.e., for all u, v we have uev ∈ L iff ue2v ∈ L), we have

u e x f y e z f v ∈ L ⇐⇒ u e z f y e x f v ∈ L.

I Show that every string-language definable in ≺-inv-FO(succ) is aperiodic and
closed under swaps.
(For this, you can use Ehrenfeucht-Fraïssé games.)
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Some further results proved using this method

Theorem:

I A tree-language is definable in <-invariant FO(Succ) iff
it is definable in FO(Succ). (Benedikt, Segoufin ’09)
(They use aperiodicity and closure under guarded swaps.)

I A colored finite set is definable in +-invariant FO iff it is definable in FOcard (i.e.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).

(S., Segoufin ’10)

I A regular string- or tree-language is definable in +-invariant FO(Succ) iff
it is definable in FOcard(succ). (S., Segoufin ’10 and Harwath, S. ’12)
(They use closure under transfers and closure under guarded swaps.)

I A regular string-language is definable in Arb-invariant FO(Succ) iff it is definable
in FOcard(Succ). (Anderson, van Melkebeek, S., Segoufin ’11)
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An open question

Open Question:
Are all languages definable in addition-invariant FO regular?

Known: (S., Segoufin, 2010)

I Arb-invariant FO can define non-regular languages, e.g.,
L = {w ∈ {1}∗ : |w | is a prime number }.

I Every deterministic context-free language definable in addition-invariant FO is
regular.

I Every commutative language definable in addition-invariant FO is regular.

I Every bounded language definable in addition-invariant FO is regular.
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Bounded languages
Definition: (Ginsburg & Spanier, 1964)
L ⊆ Σ∗ is bounded ⇐⇒

∃ k ∈ N and k strings w1, . . . ,wk ∈ Σ∗ such that L ⊆ w∗1 w∗2 · · ·w∗k .

Theorem: (S., Segoufin, 2010)

Every bounded language definable in +-inv-FO(<) is regular.

Proof method:

• Identify w∗1 w∗2 · · ·w∗k with Nk via (x1, . . . , xk ) ∈ Nk =̂ wx1
1 wx2

2 · · ·w
xk
k .

Thus: L ⊆ w∗1 w∗2 · · ·w∗k =̂ S(L) ⊆ Nk .

• Note that S(L) is semi-linear, since L is definable in +-inv-FO(<).

• Reason about semi-linear sets . . .

Corollary:
Every commutative language definable in +-inv-FO(<) is regular.
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Characterization of colored sets definable in +-inv-FO

Definition: A colored finite set is a finite relational structure over a finite signature
that contains only unary relation symbols.

Theorem: (S., Segoufin, 2010)

Over the class of colored finite sets, +-inv-FO(=) and FOCard(=) have the same
expressive power.

Proof:

• Every +-inv-FO(=) sentence over colored sets defines a
commutative language.

• Every commutative language definable in +-inv-FO(<) is regular.

• Every regular language definable in +-inv-FO(=) is definable in FOCard(=).
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Characterization of colored sets definable in +-inv-FO

Definition: A colored finite set is a finite relational structure over a finite signature
that contains only unary relation symbols.

Theorem: (S., Segoufin, 2010)

Over the class of colored finite sets, +-inv-FO(=) and FOCard(=) have the same
expressive power.

Note: FOCard(=) is a logic (with a decidable syntax); +-inv-FO(=) is not.

More precisely: The following problem is undecidable:

Input: a FO(≺,+,C)-sentence ϕ (C a unary relation symbol)
Question: Is ϕ addition-invariant on all finite {C}-structures ?
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Gaifman-locality
If NG

r (a) ∼= NG
r (b) then

(
a ∈ q(G) ⇐⇒ b ∈ q(G)

)
.

Known:

I Queries definable in order-invariant FO are Gaifman-local with respect to a
constant locality radius. (Grohe, Schwentick ’98)

I Queries definable in Arb-invariant FO are Gaifman-local with respect to a
poly-logarithmic locality radius. (Anderson, Melkebeek, S., Segoufin ’11)

Open Question:

I How about addition-invariant FO — is it Gaifman-local with respect to a
constant locality radius?
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Hanf-locality
A graph property p is Hanf-local w.r.t. locality radius r , if

any two graphs having the same r -neighbourhood types with the same multiplicities,
are not distinguished by p.

Known:
I Properties of graphs definable in FO are Hanf-local w.r.t. a constant locality

radius. (Fagin, Stockmeyer, Vardi ’95)
I Properties of strings or trees definable by order-invariant FO are Hanf-local w.r.t.

a constant locality radius. (Benedikt, Segoufin ’09)

I Properties of strings definable by Arb-invariant FO are Hanf-local w.r.t. a
poly-logarithmic locality radius. (Anderson, van Melkebeek, S., Segoufin ’11)

I Properties of strings definable by Arb-invariant FO+MODp, for odd prime powers
p, are Hanf-local w.r.t. a poly-logarithmic locality radius. (Harwath, S. ’13)

Open Question:
I Which of these results generalise from strings to arbitrary finite graphs?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 41/43



INTRODUCTION INVARIANT LOGICS EXPRESSIVENESS LOCALITY STRINGS AND TREES FINAL REMARKS

Decidable Characterisations

Open Question:

Are there decidable characterisations of

I order-invariant FO?
I addition-invariant FO?
I (+,×)-invariant FO?

Known:

I On finite strings and trees: order-invariant FO ≡ FO. (Benedikt, Segoufin ’10)
I On finite coloured sets: addition-invariant FO ≡ FO enriched by “cardinality

modulo” quantifiers. (S., Segoufin ’10)
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Thank You!
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