A tutorial on order- and arb-invariant logics

Nicole Schweikardt

Goethe-Universität Frankfurt am Main

Journées d'Informatique Fondamentale de Paris Diderot 26 April 2013, Paris

- consider finite relational structures $\mathcal{A} = (A, R_1^{\mathcal{A}}, \dots, R_{\ell}^{\mathcal{A}})$ over a finite relational signature $\tau = \{R_1, \dots, R_{\ell}\}$
- ▶ p is a τ -property, if the following is true for all finite τ -structures \mathcal{A} and \mathcal{B} : if $\mathcal{A} \cong \mathcal{B}$, then \mathcal{A} has property $p \iff \mathcal{B}$ has property p
- ightharpoonup q is a k-ary τ -query, if the following is true:

If
$$\pi: A \cong \mathcal{B}$$
, then for all $a_1, \ldots, a_k \in A$, $(a_1, \ldots, a_k) \in g(A) \iff (\pi(a_1), \ldots, \pi(a_k)) \in g(\mathcal{B})$

▶ I.e., τ -properties and gueries are closed under isomorphisms.

- consider finite relational structures $\mathcal{A} = (A, R_1^{\mathcal{A}}, \dots, R_{\ell}^{\mathcal{A}})$ over a finite relational signature $\tau = \{R_1, \dots, R_{\ell}\}$
- ▶ p is a τ -property, if the following is true for all finite τ -structures $\mathcal A$ and $\mathcal B$: if $\mathcal A \cong \mathcal B$, then $\mathcal A$ has property $p \iff \mathcal B$ has property p
- ightharpoonup q is a k-ary τ -query, if the following is true:

if
$$\pi : A \cong \mathcal{B}$$
, then for all $a_1, \ldots, a_k \in A$,
 $(a_1, \ldots, a_k) \in q(A) \iff (\pi(a_1), \ldots, \pi(a_k)) \in q(\mathcal{B})$

I.e., τ-properties and queries are closed under isomorphisms.

- consider finite relational structures $\mathcal{A} = (A, R_1^{\mathcal{A}}, \dots, R_{\ell}^{\mathcal{A}})$ over a finite relational signature $\tau = \{R_1, \dots, R_{\ell}\}$
- ▶ p is a τ -property, if the following is true for all finite τ -structures \mathcal{A} and \mathcal{B} : if $\mathcal{A} \cong \mathcal{B}$, then \mathcal{A} has property $p \iff \mathcal{B}$ has property p
- q is a k-ary τ -query, if the following is true:

$$\begin{array}{l} \text{if } \pi: \mathcal{A} \cong \mathcal{B} \text{, then for all } a_1, \ldots, a_k \in A, \\ \\ \left(a_1, \ldots, a_k\right) \ \in \ q(\mathcal{A}) \quad \Longleftrightarrow \quad \left(\pi(a_1), \ldots, \pi(a_k)\right) \ \in \ q(\mathcal{B}) \end{array}$$

I.e., τ-properties and queries are closed under isomorphisms.

- consider finite relational structures $\mathcal{A} = (A, R_1^{\mathcal{A}}, \dots, R_{\ell}^{\mathcal{A}})$ over a finite relational signature $\tau = \{R_1, \dots, R_{\ell}\}$
- ▶ p is a τ -property, if the following is true for all finite τ -structures \mathcal{A} and \mathcal{B} : if $\mathcal{A} \cong \mathcal{B}$, then \mathcal{A} has property $p \iff \mathcal{B}$ has property p
- q is a k-ary τ -query, if the following is true:

$$\begin{array}{l} \text{if } \pi: \mathcal{A} \cong \mathcal{B} \text{, then for all } a_1, \ldots, a_k \in A, \\ \\ \left(a_1, \ldots, a_k\right) \ \in \ q(\mathcal{A}) \quad \Longleftrightarrow \quad \left(\pi(a_1), \ldots, \pi(a_k)\right) \ \in \ q(\mathcal{B}) \end{array}$$

▶ I.e., τ -properties and gueries are closed under isomorphisms.

Logics expressing τ -properties and queries

Classical logics like, e.g.

- ► FO (first-order logic: Boolean combinations + quantification over nodes)
- ► LFP (least fixed point logic: FO + inductive definitions of relations) express τ -properties and queries in a straightforward way.

Example: Consider graphs $A = (A, E^A)$. The query

$$q(A) = \{ x \in A : x \text{ lies on a triangle } \}$$

is expressed in FO via

$$\varphi(x) := \exists y \exists z (E(x,y) \land E(y,z) \land E(z,x))$$

Logics expressing τ -properties and queries

Classical logics like, e.g.

- ► FO (first-order logic: Boolean combinations + quantification over nodes)
- LFP (least fixed point logic: FO + inductive definitions of relations)
 express τ-properties and gueries in a straightforward way.

Example: Consider graphs $A = (A, E^A)$. The query

$$q(A) = \{ x \in A : x \text{ lies on a triangle } \}$$

is expressed in FO via

$$\varphi(x) := \exists y \exists z (E(x,y) \land E(y,z) \land E(z,x))$$

Drawback:

FO and LFP are too weak to express (some) computationally easy properties, e.g., properties concerning the size of A or E^A .

Stronger logics like, e.g., SO or ESO can express computationally hard properties and queries.

Overview

Introduction

Invariant logics

Expressiveness of order-invariant logics

Locality Results

Order- and Arb-invariant logics on strings and trees

Final Remarks

Overview

Introduction

Invariant logics

Expressiveness of order-invariant logics

Locality Results

Order- and Arb-invariant logics on strings and trees

Final Remarks

Idea:

- ► Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like <, +, ×, ..., Halt, ... on A.
- For this, identify A with the set $[n] := \{0, 1, ..., n-1\}$ for n = |A| and interpret $<, +, \times, ..., Halt, ...$ in the natural way.
- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying A with [n]. These formulas are called Arb-invariant.

```
Definition: Let \mathcal L be a logic (e.g., FO, MSO, LFP). A -formula \varphi(\vec{x}) is -invariant on \mathcal A=(A,R_1^A,\dots,R_\ell^A) \iff for all linear orders \prec, and \prec, on A.
```

Idea:

- ► Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like <, +, ×, ..., Halt, ... on A.
- For this, identify A with the set $[n] := \{0, 1, ..., n-1\}$ for n = |A| and interpret $<, +, \times, ..., Halt, ...$ in the natural way.
- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying A with [n]. These formulas are called Arb-invariant.

```
Definition: Let \mathcal{L} be a logic (e.g., FO, MSO, LFP).
A -formula \varphi(\vec{x}) is -invariant on \mathcal{A} = (A, R_1^{\mathcal{A}}, \dots, R_\ell^{\mathcal{A}}) \iff for all tuples of elements \vec{a} in A, for all linear orders \prec_1 and \prec_2 on A,
```

Idea:

- Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like <, +, \times , ..., Halt, ... on A.
- ▶ For this, identify A with the set $[n] := \{0, 1, ..., n-1\}$ for n = |A|and interpret <, +, \times , ..., *Halt*, ... in the natural way.
- ▶ To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying A with [n]. These formulas are called Arb-invariant.

Definition: Let \mathcal{L} be a logic (e.g., FO, MSO, LFP).

A $\mathcal{L}(\tau, \prec)$ -formula $\varphi(\vec{x})$ is order-invariant on $\mathcal{A} = (A, R_1^{\mathcal{A}}, \dots, R_{\ell}^{\mathcal{A}}) \iff$ for all tuples of elements \vec{a} in A, for all linear orders \prec_1 and \prec_2 on A,

$$(A, \prec_1) \models \varphi(\vec{a}) \iff (A, \prec_2) \models \varphi(\vec{a}).$$

Idea:

- Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like <, +, \times , ..., Halt, ... on A.
- ▶ For this, identify A with the set $[n] := \{0, 1, ..., n-1\}$ for n = |A|and interpret <, +, \times , ..., *Halt*, ... in the natural way.
- ▶ To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying A with [n]. These formulas are called Arb-invariant.

Definition: Let \mathcal{L} be a logic (e.g., FO, MSO, LFP).

A $\mathcal{L}(\tau, \prec, +)$ -formula $\varphi(\vec{x})$ is addition-invariant on $\mathcal{A} = (A, R_1^{\mathcal{A}}, \dots, R_{\ell}^{\mathcal{A}}) \iff$ for all tuples of elements \vec{a} in A, for all linear orders \prec_1 and \prec_2 on A, and the matching addition relations $+_1$, $+_2$,

$$(A, \prec_1, +_1) \models \varphi(\vec{a}) \iff (A, \prec_2, +_2) \models \varphi(\vec{a}).$$

Idea:

- Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like <, +, ×, ..., Halt, ... on A.</p>
- For this, identify A with the set $[n] := \{0, 1, ..., n-1\}$ for n = |A| and interpret $<, +, \times, ..., Halt, ...$ in the natural way.
- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying A with [n]. These formulas are called Arb-invariant.

Definition: Let \mathcal{L} be a logic (e.g., FO, MSO, LFP).

A $\mathcal{L}(\tau, \prec, +, \times)$ -formula $\varphi(\vec{x})$ is $(+, \times)$ -invariant on $\mathcal{A} = (A, R_1^A, \dots, R_\ell^A) \iff$ for all tuples of elements \vec{a} in A, for all linear orders \prec_1 and \prec_2 on A, and the matching addition relations $+_1, +_2$, and the according multiplications \times_1, \times_2 ,

$$(A, \prec_1, +_1, \times_1) \models \varphi(\vec{a}) \iff (A, \prec_2, +_2, \times_2) \models \varphi(\vec{a}).$$

Idea:

- Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like <, +, \times , ..., Halt, ... on A.
- ▶ For this, identify A with the set $[n] := \{0, 1, ..., n-1\}$ for n = |A|and interpret <. +. \times Halt. . . . in the natural way.
- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying A with [n]. These formulas are called Arb-invariant.

Definition: Let \mathcal{L} be a logic (e.g., FO, MSO, LFP).

A $\mathcal{L}(\tau, \prec, +, \times, ...)$ -formula $\varphi(\vec{x})$ is Arb-invariant on $\mathcal{A} = (A, R_1^{\mathcal{A}}, ..., R_{\ell}^{\mathcal{A}}) \iff$ for all tuples of elements \vec{a} in A, for all linear orders \prec_1 and \prec_2 on A, and the matching addition relations $+_1$, $+_2$, and the according multiplications \times_1 , \times_2 , and other numerical predicates,

$$(A, \prec_1, +_1, \times_1, \ldots) \models \varphi(\vec{a}) \iff (A, \prec_2, +_2, \times_2, \ldots) \models \varphi(\vec{a}).$$

Idea:

- Extend the expressive power of a logic by allowing formulas to also use arithmetic predicates like <, +, \times , ..., Halt, ... on A.
- ► For this, identify A with the set $[n] := \{0, 1, ..., n-1\}$ for n = |A|and interpret <, +, \times , ..., *Halt*, ... in the natural way.
- To ensure closure under isomorphisms, restrict attention to formulas independent of the particular way of identifying A with [n]. These formulas are called Arb-invariant.

Definition: Let \mathcal{L} be a logic (e.g., FO, MSO, LFP).

A $\mathcal{L}(\tau, \prec, +, \times, ...)$ -formula $\varphi(\vec{x})$ is Arb-invariant on $\mathcal{A} = (A, R_1^{\mathcal{A}}, ..., R_{\ell}^{\mathcal{A}}) \iff$ for all tuples of elements \vec{a} in A, for all linear orders \prec_1 and \prec_2 on A, and the matching addition relations $+_1$, $+_2$, and the according multiplications \times_1 , \times_2 , and other numerical predicates,

$$(\mathcal{A}, \prec_1, +_1, \times_1, \ldots) \models \varphi(\vec{a}) \quad \Longleftrightarrow \quad (\mathcal{A}, \prec_2, +_2, \times_2, \ldots) \models \varphi(\vec{a}).$$

For Arb-invariant sentences, shortly write $A \models \varphi$ for $(A, \prec_1, +_1, \times_1 \dots) \models \varphi$.

• Let $\tau = \emptyset$. An addition-invariant FO($\tau, \prec, +$)-sentence φ such that

$$\mathcal{A} \models \varphi \quad \Longleftrightarrow \quad |\mathbf{A}| \text{ is odd}.$$

$$\varphi := \exists x \exists z (x + x = z \land \forall y (y \prec z \lor y = z))$$

- Similarly, there is an $(+, \times)$ -invariant FO $(\tau, \prec, +, \times)$ -sentence ψ such that $\mathcal{A} \models \psi \quad \Longleftrightarrow \quad |\mathcal{A}| \text{ is a prime number}.$
- And there is an Arb-invariant FO(τ , \prec , *Halt*)-sentence χ such that $A \models \chi \iff |A|-1$ is the index of a Turing machine halting on empty input $\chi := \exists x \; (\textit{Halt}(x) \land \forall y \; (y \prec x \lor y = x)).$

Thus

order-inv FO < addition-inv FO < (+, x)-inv FO < Arb-invariant FO.

• Let $\tau = \emptyset$. An addition-invariant FO($\tau, \prec, +$)-sentence φ such that

$$\mathcal{A} \models \varphi \iff |A| \text{ is odd.}$$

$$\varphi := \exists x \exists z (x + x = z \land \forall y (y \prec z \lor y = z))$$

- Similarly, there is an $(+, \times)$ -invariant FO $(\tau, \prec, +, \times)$ -sentence ψ such that $\mathcal{A} \models \psi \quad \iff \quad |\mathcal{A}| \text{ is a prime number}.$
- And there is an Arb-invariant FO(au, \prec , Halt)-sentence χ such that $\mathcal{A} \models \chi \iff |\mathcal{A}|-1$ is the index of a Turing machine halting on empty input : Simply choose $\chi := \exists x \; (Halt(x) \land \forall y \; (y \prec x \lor y = x))$.

Thus

order-inv FO < addition-inv FO < (+, ×)-inv FO < Arb-invariant FO

• Let $\tau = \emptyset$. An addition-invariant FO($\tau, \prec, +$)-sentence φ such that

$$\mathcal{A} \models \varphi \iff |A| \text{ is odd.}$$

$$\varphi := \exists x \exists z (x + x = z \land \forall y (y \prec z \lor y = z))$$

- Similarly, there is an $(+, \times)$ -invariant FO $(\tau, \prec, +, \times)$ -sentence ψ such that $\mathcal{A} \models \psi \iff |\mathcal{A}| \text{ is a prime number}.$
- And there is an Arb-invariant FO(au, \prec , Halt)-sentence χ such that $\mathcal{A} \models \chi \iff |\mathcal{A}|-1$ is the index of a Turing machine halting on empty input : Simply choose $\chi := \exists x \ (Halt(x) \land \forall y \ (y \prec x \lor y = x))$.

Thus:

order-inv FO < addition-inv FO < (+, ×)-inv FO < Arb-invariant FO

• Let $\tau = \emptyset$. An addition-invariant FO($\tau, \prec, +$)-sentence φ such that

$$\mathcal{A} \models \varphi \iff |A| \text{ is odd.}$$

$$\varphi := \exists x \exists z (x + x = z \land \forall y (y \prec z \lor y = z))$$

- Similarly, there is an $(+, \times)$ -invariant FO $(\tau, \prec, +, \times)$ -sentence ψ such that $\mathcal{A} \models \psi \iff |\mathcal{A}| \text{ is a prime number}.$
- And there is an Arb-invariant FO(τ , \prec , Halt)-sentence χ such that $A \models \chi \iff |A|-1$ is the index of a Turing machine halting on empty input : Simply choose $\chi := \exists x \; (Halt(x) \land \forall y \; (y \prec x \lor y = x))$.

Thus:

order-inv FO < addition-inv FO < $(+, \times)$ -inv FO < Arb-invariant FO.

• Let $\tau = \emptyset$. An addition-invariant FO($\tau, \prec, +$)-sentence φ such that

$$\mathcal{A} \models \varphi \iff |A| \text{ is odd.}$$

$$\varphi := \exists x \exists z (x + x = z \land \forall y (y \prec z \lor y = z))$$

- Similarly, there is an $(+, \times)$ -invariant FO $(\tau, \prec, +, \times)$ -sentence ψ such that $\mathcal{A} \models \psi \iff |\mathcal{A}| \text{ is a prime number}.$
- And there is an Arb-invariant FO(τ , \prec , Halt)-sentence χ such that $A \models \chi \iff |A|-1$ is the index of a Turing machine halting on empty input : Simply choose $\chi := \exists x \; (Halt(x) \land \forall y \; (y \prec x \lor y = x))$.

Thus:

order-inv FO < addition-inv FO < $(+, \times)$ -inv FO < Arb-invariant FO.

INVARIANT LOGICS

Expressive power of invariant logics

Known results:

- Order-invariant LFP precisely captures the polynomial time computable τ -properties and queries. (Immerman, Vardi, 1982)

- $(+, \times)$ -invariant FO precisely captures the τ -properties and queries that belong

Expressive power of invariant logics

Known results:

- Order-invariant LFP precisely captures the polynomial time computable τ -properties and queries. (Immerman, Vardi, 1982)
- \triangleright Arb-invariant LFP precisely captures the τ -properties and queries that belong to the comlexity class $P_{(poly)}$. (Makowsky, 1998)

 $P_{\text{(poly)}}$ consists of all problems solvable by circuit families of polynomial size

- $(+, \times)$ -invariant FO precisely captures the τ -properties and queries that belong

Expressive power of invariant logics

Known results:

- Order-invariant LFP precisely captures the polynomial time computable
 τ-properties and queries. (Immerman, Vardi, 1982)
- Arb-invariant LFP precisely captures the τ-properties and queries that belong to the comlexity class P_{/poly}. (Makowsky, 1998)
 - P_{/poly} consists of all problems solvable by circuit families of polynomial size
- Arb-invariant FO precisely captures the τ-properties and queries that belong to the circuit complexity class AC⁰.
 - AC⁰ consists of all problems solvable by circuit families of polynomial size and constant depth
- (+, ×)-invariant FO precisely captures the τ-properties and queries that belong to uniform AC⁰.

Expressive power of invariant logics

Known results:

- Order-invariant LFP precisely captures the polynomial time computable τ -properties and queries. (Immerman, Vardi, 1982)
- \triangleright Arb-invariant LFP precisely captures the τ -properties and queries that belong to the comlexity class $P_{(poly)}$. (Makowsky, 1998)
 - $P_{\text{(poly)}}$ consists of all problems solvable by circuit families of polynomial size
- \triangleright Arb-invariant FO precisely captures the τ -properties and queries that belong to the circuit complexity class AC⁰.
 - AC⁰ consists of all problems solvable by circuit families of polynomial size and constant depth
- $(+, \times)$ -invariant FO precisely captures the τ -properties and queries that belong to uniform AC⁰.

Order-invariance is undecidable

Invariant logics are not logics in the strict formal sense:

They have an undecidable syntax. Precisely:

INVARIANT LOGICS

The following problem is undecidable (for binary symbol E and unary symbol C):

Order-invariance on finite $\{E,C\}$ -structures

Input: a FO(E, C, \prec)-sentence φ

Question: Is φ order-invariant on all finite $\{E, C\}$ -structures?

Proof: By a reduction using Trakhtenbrot's theorem.

- Assume, for contradiction, that order-invariance is decidable.
- ▶ Then, also the problem "Is a given FO(E)-sentence ψ true for <u>all</u> finite graphs?" is decidable as follows:
 - (1) If there is a one-vertex-graph, in which ψ is <u>not</u> true, then stop with output "no". Otherwise, proceed with (2).
 - (2) Let χ be a formula that is <u>not</u> order-invariant on structures of size $\geqslant 2$. E.g., $\chi := \exists x (C(x) \land \forall y (x \leq y))$. Stop with output "yes" iff the formula $(\neg \psi \rightarrow \chi)$ is order-invariant.

Order-invariance is undecidable

Invariant logics are not logics in the strict formal sense:

They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE $\{E, C\}$ -STRUCTURES:

Input: a FO(E, C, \prec)-sentence φ

Question: Is φ order-invariant on all finite $\{E, C\}$ -structures?

By a reduction using Trakhtenbrot's theorem. Proof:

Order-invariance is undecidable

Invariant logics are not logics in the strict formal sense:

They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

Order-invariance on finite $\{E, C\}$ -structures:

Input: a FO(E, C, \prec)-sentence φ

Question: Is φ order-invariant on all finite $\{E, C\}$ -structures?

Proof: By a reduction using Trakhtenbrot's theorem.

- Assume, for contradiction, that order-invariance is decidable.
- Then, also the problem "Is a given FO(E)-sentence ψ true for all finite graphs?" is decidable as follows:
 - (1) If there is a one-vertex-graph, in which ψ is not true, then stop with output "no". Otherwise, proceed with (2).
 - (2) Let χ be a formula that is not order-invariant on structures of size ≥ 2 . E.g., $\chi := \exists x (C(x) \land \forall y (x \prec y)).$ Stop with output "yes" iff the formula $(\neg \psi \rightarrow \chi)$ is order-invariant.

Let $\tau = \{C_1, \dots, C_\ell\}$ consist of unary relation symbols.

Theorem: Order-invariance of a given FO(τ)-sentence φ (on the class of all finite τ -structures) is decidable.

Decision procedure:

- $\triangleright \varphi$ defines a language *L* of finite strings.
- $ightharpoonup \varphi$ is order-invariant \iff *L* is commutative.
- Commutativity of regular string-languages is decidable.

Theorem: Addition-invariance of a given FO($C, \prec, +$)-sentence φ (on the class of all finite {C}-structures) is not decidable.

Let $\tau = \{C_1, \dots, C_\ell\}$ consist of unary relation symbols.

Theorem: Order-invariance of a given FO(τ)-sentence φ (on the class of all finite τ -structures) is decidable.

Decision procedure:

- φ defines a language L of finite strings.

Let $\tau = \{C_1, \dots, C_\ell\}$ consist of unary relation symbols.

Theorem: Order-invariance of a given FO(τ)-sentence φ (on the class of all finite τ -structures) is decidable.

Decision procedure:

- φ defines a language L of finite strings.
- φ is order-invariant \iff L is commutative.
- Commutativity of regular string-languages is decidable.

Theorem: Addition-invariance of a given FO(C, \prec , +)-sentence φ (on the class of all finite {C}-structures) is not decidable.

Let $\tau = \{C_1, \dots, C_\ell\}$ consist of unary relation symbols.

Theorem: Order-invariance of a given FO(τ)-sentence φ (on the class of all finite τ -structures) is decidable.

Decision procedure:

- φ defines a language L of finite strings.
- $\triangleright \varphi$ is order-invariant $\iff L$ is commutative.
- Commutativity of regular string-languages is decidable.

Let $\tau = \{C_1, \dots, C_\ell\}$ consist of unary relation symbols.

Theorem: Order-invariance of a given $FO(\tau)$ -sentence φ (on the class of all finite τ -structures) is decidable.

Decision procedure:

- φ defines a language L of finite strings.
- $\triangleright \varphi$ is order-invariant $\iff L$ is commutative.
- Commutativity of regular string-languages is decidable.

Theorem: Addition-invariance of a given FO($C, \prec, +$)-sentence φ (on the class of all finite $\{C\}$ -structures) is not decidable.

Overview

Introduction

Invariant logics

Expressiveness of order-invariant logics

Locality Results

Order- and Arb-invariant logics on strings and trees

Final Remarks

FO < order-invariant FO

Theorem (Gurevich):

Let $\tau := \{\subseteq\}$ be a signature consisting of a single binary relation symbol \subseteq . For a finite set X let $\mathcal{B}_X := (2^X, \subseteq)$ be the Boolean algebra over X.

There is an order-invariant FO (au,\prec) -sentence $arphi_{\mathsf{even}}$ such that for every finite set X

$$\mathcal{B}_X \models \varphi_{even} \iff |X| \text{ is even}$$

But there is no FO(τ)-sentence ψ_{even} such that for every finite set X:

$$\mathcal{B}_X \models \psi_{\mathit{even}} \iff |X|$$
 is even.

Proof.

Part 1: φ_{even} expresses that there is a set z that contains the first (w.r.t. \prec) atom of X, every other (w.r.t. \prec) atom of X, but not the last (w.r.t. \prec) atom of X.

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that $\mathcal{B}_X \equiv_r \mathcal{B}_Y$ for all finite X, Y of cardinality $> 2^r$.

FO < order-invariant FO

Theorem (Gurevich):

Let $\tau := \{\subseteq\}$ be a signature consisting of a single binary relation symbol \subseteq . For a finite set X let $\mathcal{B}_X := (2^X, \subseteq)$ be the Boolean algebra over X.

There is an order-invariant FO(τ , \prec)-sentence φ_{even} such that for every finite set X:

$$\mathcal{B}_X \models \varphi_{even} \iff |X| \text{ is even.}$$

But there is no FO(τ)-sentence ψ_{even} such that for every finite set X:

$$\mathcal{B}_X \models \psi_{\mathit{even}} \iff |X|$$
 is even.

Proof.

Part 1: φ_{even} expresses that there is a set z that contains the first (w.r.t. \prec) atom of X, every other (w.r.t. \prec) atom of X, but not the last (w.r.t. \prec) atom of X.

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that $\mathcal{B}_X \equiv_r \mathcal{B}_Y$ for all finite X, Y of cardinality $> 2^r$.

FO < order-invariant FO

Theorem (Gurevich):

Let $\tau := \{\subseteq\}$ be a signature consisting of a single binary relation symbol \subseteq . For a finite set X let $\mathcal{B}_X := (2^X, \subseteq)$ be the Boolean algebra over X.

There is an order-invariant FO(τ , \prec)-sentence φ_{even} such that for every finite set X:

$$\mathcal{B}_X \models \varphi_{even} \iff |X| \text{ is even.}$$

But there is no FO(τ)-sentence ψ_{even} such that for every finite set X:

$$\mathcal{B}_X \models \psi_{even} \iff |X| \text{ is even.}$$

Proof.

Part 1: φ_{even} expresses that there is a set z that contains the first (w.r.t. \prec) atom of X, every other (w.r.t. \prec) atom of X, but not the last (w.r.t. \prec) atom of X.

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that $\mathcal{B}_X \equiv_r \mathcal{B}_Y$ for all finite X, Y of cardinality $> 2^r$.

FO < order-invariant FO

Theorem (Gurevich):

Let $\tau := \{\subseteq\}$ be a signature consisting of a single binary relation symbol \subseteq . For a finite set X let $\mathcal{B}_X := (2^X, \subseteq)$ be the Boolean algebra over X.

There is an order-invariant FO(τ , \prec)-sentence φ_{even} such that for every finite set X:

$$\mathcal{B}_X \models \varphi_{even} \iff |X| \text{ is even.}$$

But there is no FO(τ)-sentence ψ_{even} such that for every finite set X:

$$\mathcal{B}_X \models \psi_{even} \iff |X| \text{ is even.}$$

Proof:

Part 1: φ_{even} expresses that there is a set z that contains the first (w.r.t. \prec) atom of X, every other (w.r.t. \prec) atom of X, but not the last (w.r.t. \prec) atom of X.

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that $\mathcal{B}_X \equiv_t \mathcal{B}_Y$ for all finite X, Y of cardinality $> 2^r$.

FO < order-invariant FO

Theorem (Gurevich):

Let $\tau := \{\subseteq\}$ be a signature consisting of a single binary relation symbol \subseteq . For a finite set X let $\mathcal{B}_X := (2^X, \subseteq)$ be the Boolean algebra over X.

There is an order-invariant FO(τ , \prec)-sentence φ_{even} such that for every finite set X:

$$\mathcal{B}_X \models \varphi_{even} \iff |X| \text{ is even.}$$

But there is no FO(τ)-sentence ψ_{even} such that for every finite set X:

$$\mathcal{B}_X \models \psi_{even} \iff |X| \text{ is even.}$$

Proof:

Part 1: φ_{even} expresses that there is a set z that contains the first (w.r.t. \prec) atom of X, every other (w.r.t. \prec) atom of X, but not the last (w.r.t. \prec) atom of X.

Part 2: Use an Ehrenfeucht-Fraïssé game argument to show that $\mathcal{B}_X \equiv_r \mathcal{B}_Y$ for all finite X, Y of cardinality $> 2^r$.

Successor-invariant FO

By a much more elaborate construction, one can also show:

Theorem (Rossman, LICS'03)

On the class of all finite structures, successor-invariant FO is strictly more expressive than FO.

FO+MOD₂: the extension of FO by modulo 2 counting quantifiers

 $\exists^{r \bmod 2} x \ \psi(x)$: the number of nodes x satisfying $\psi(x)$ is congruent r modulo 2.

Theorem (Niemistö):

Let $\tau := \{E\}$ be a signature consisting of a single binary relation symbol E.

There is an order-invariant FO+MOD₂(E)-sentence $\varphi_{even\ cycles}$ that is satisfied by a finite directed graph G=(V,E) iff

- (1) G is a disjoint union of directed cycles, and
- (2) the number of even-length cycles is even.

- (1) can be expressed in FO: "every node has in- and out-degree 1"
- ▶ Every *G* satisfying (1) is the cycle decomposition of a permutation π .
- π is an even number of even-length cycles \iff π is an even permuatation, i.e., $sgn(\pi) = 1 \iff$

FO+MOD₂: the extension of FO by modulo 2 counting quantifiers

 $\exists^{r \bmod 2} x \ \psi(x)$: the number of nodes x satisfying $\psi(x)$ is congruent r modulo 2.

Theorem (Niemistö):

Let $\tau := \{E\}$ be a signature consisting of a single binary relation symbol E.

There is an order-invariant FO+MOD₂(E)-sentence $\varphi_{even\ cycles}$ that is satisfied by a finite directed graph G=(V,E) iff

- (1) G is a disjoint union of directed cycles, and
- (2) the number of even-length cycles is even.

- ▶ (1) can be expressed in FO: "every node has in- and out-degree 1"
- ▶ Every *G* satisfying (1) is the cycle decomposition of a permutation π .
- ► *G* has an even number of even-length cycles \iff π is an even permuatation, i.e., $\operatorname{sgn}(\pi) = 1 \iff$ π has an even number of inversions (i, j) such that i < j and $\pi(i) > \pi(j)$

FO+MOD₂: the extension of FO by modulo 2 counting quantifiers

 $\exists^{r \bmod 2} x \ \psi(x)$: the number of nodes x satisfying $\psi(x)$ is congruent r modulo 2.

Theorem (Niemistö):

Let $\tau := \{E\}$ be a signature consisting of a single binary relation symbol E.

There is an order-invariant FO+MOD₂(E)-sentence $\varphi_{even\ cycles}$ that is satisfied by a finite directed graph G=(V,E) iff

- (1) G is a disjoint union of directed cycles, and
- (2) the number of even-length cycles is even.

- ▶ (1) can be expressed in FO: "every node has in- and out-degree 1"
- ▶ Every *G* satisfying (1) is the cycle decomposition of a permutation π .
- ▶ G has an even number of even-length cycles <=>
 - π is an even permutation, i.e., $sgn(\pi) = 1 \iff$
 - π has an even number of inversions (i,j) such that i < j and $\pi(i) > \pi(j)$.

FO+MOD₂: the extension of FO by modulo 2 counting quantifiers

 $\exists^{r \bmod 2} x \ \psi(x)$: the number of nodes x satisfying $\psi(x)$ is congruent r modulo 2.

Theorem (Niemistö):

Let $\tau := \{E\}$ be a signature consisting of a single binary relation symbol E.

There is an order-invariant FO+MOD₂(E)-sentence $\varphi_{even\ cycles}$ that is satisfied by a finite directed graph G=(V,E) iff

- (1) G is a disjoint union of directed cycles, and
- (2) the number of even-length cycles is even.

- ▶ (1) can be expressed in FO: "every node has in- and out-degree 1"
- Every G satisfying (1) is the cycle decomposition of a permutation π .
- ► *G* has an even number of even-length cycles \iff π is an even permuatation, i.e., $\operatorname{sgn}(\pi) = 1 \iff$ π has an even number of inversions (i, j) such that i < j and $\pi(i) > \pi(j)$

$FO+MOD_2$ < order-invariant $FO+MOD_2$

FO+MOD₂: the extension of FO by modulo 2 counting quantifiers

 $\exists^{r \bmod 2} x \ \psi(x)$: the number of nodes x satisfying $\psi(x)$ is congruent r modulo 2.

Theorem (Niemistö):

Let $\tau := \{E\}$ be a signature consisting of a single binary relation symbol E.

There is an order-invariant FO+MOD₂(E)-sentence $\varphi_{even\ cycles}$ that is satisfied by a finite directed graph G=(V,E) iff

- (1) G is a disjoint union of directed cycles, and
- (2) the number of even-length cycles is even.

- ▶ (1) can be expressed in FO: "every node has in- and out-degree 1"
- ▶ Every *G* satisfying (1) is the cycle decomposition of a permutation π .
- ► *G* has an even number of even-length cycles \iff π is an even permuatation, i.e., $\operatorname{sgn}(\pi) = 1 \iff$ π has an even number of inversions (i,j) such that i < j and $\pi(i) > \pi(j)$.

CMSO: the extension of MSO by modulo counting quantifiers

 $\exists^{r \bmod m} x \ \psi(x)$: the number of nodes x satisfying $\psi(x)$ is congruent r modulo m.

Known:

On trees:

Order-invariant MSO — CMSO

(Courcelle 1996, Lapoire 1998)

On the class of all finite structures:

Order-invariant MSO > CMSO

Ganzow, Rubin 2008)

- Consider 2-dimensional grids, represented as structures of the form (A, Same Row, Same Column).
- Order-invariant MSO can express that the number of columns is a multiple of the number of rows
- ► CMSO cannot (for showing this, use a variant of EF-games).

CMSO: the extension of MSO by modulo counting quantifiers

 $\exists^{r \bmod m} x \ \psi(x)$: the number of nodes x satisfying $\psi(x)$ is congruent r modulo m.

Known:

On trees:

Order-invariant MSO = CMSO

(Courcelle 1996, Lapoire 1998)

On the class of all finite structures:

Order-invariant MSO > CMSO

Ganzow, Rubin 2008)

- Consider 2-dimensional grids, represented as structures of the form (A, Same Row, Same Column).
- Order-invariant MSO can express that the number of columns is a multiple of the number of rows
- ► CMSO cannot (for showing this, use a variant of EF-games).

CMSO: the extension of MSO by modulo counting quantifiers

 $\exists^{r \bmod m} x \ \psi(x)$: the number of nodes x satisfying $\psi(x)$ is congruent r modulo m.

Known:

On trees:

Order-invariant MSO = CMSO

(Courcelle 1996, Lapoire 1998)

On the class of all finite structures:

Order-invariant MSO > CMSO

(Ganzow, Rubin 2008)

- Consider 2-dimensional grids, represented as structures of the form (A, Same Row, Same Column).
- Order-invariant MSO can express that the number of columns is a multiple of the number of rows
- ► CMSO cannot (for showing this, use a variant of EF-games).

CMSO: the extension of MSO by modulo counting quantifiers

 $\exists^{r \bmod m} x \ \psi(x)$: the number of nodes x satisfying $\psi(x)$ is congruent r modulo m.

Known:

On trees:

Order-invariant MSO = CMSO

(Courcelle 1996, Lapoire 1998)

On the class of all finite structures:

Order-invariant MSO > CMSO

(Ganzow, Rubin 2008)

- Consider 2-dimensional grids, represented as structures of the form (A, Same Row, Same Column).
- Order-invariant MSO can express that the number of columns is a multiple of the number of rows
- ► CMSO cannot (for showing this, use a variant of EF-games).

CMSO: the extension of MSO by modulo counting quantifiers

 $\exists^{r \bmod m} x \ \psi(x)$: the number of nodes x satisfying $\psi(x)$ is congruent r modulo m.

Known:

On trees:

Order-invariant MSO = CMSO

(Courcelle 1996, Lapoire 1998)

On the class of all finite structures:

Order-invariant MSO > CMSO

(Ganzow, Rubin 2008)

- Consider 2-dimensional grids, represented as structures of the form (A, Same Row, Same Column).
- Order-invariant MSO can express that the number of columns is a multiple of the number of rows.
- ► CMSO cannot (for showing this, use a variant of EF-games).

CMSO: the extension of MSO by modulo counting quantifiers

 $\exists^{r \bmod m} x \ \psi(x)$: the number of nodes x satisfying $\psi(x)$ is congruent r modulo m.

Known:

On trees:

Order-invariant MSO = CMSO

(Courcelle 1996, Lapoire 1998)

On the class of all finite structures:

Order-invariant MSO > CMSO

(Ganzow, Rubin 2008)

- Consider 2-dimensional grids, represented as structures of the form (A, Same Row, Same Column).
- Order-invariant MSO can express that the number of columns is a multiple of the number of rows.
- CMSO cannot (for showing this, use a variant of EF-games).

Overview

Introduction

Invariant logics

Expressiveness of order-invariant logics

Locality Results

Order- and Arb-invariant logics on strings and trees

Final Remarks

Neighborhoods

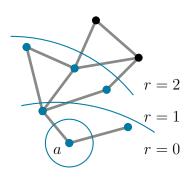
Graph G = (V, E)

Distance dist(u, v): length of a shortest path between u, v in G.

Shell $S_r(a)$ of nodes at distance exactly r from a.

Ball $N_r(a)$ of radius r at a in G.

Neighborhood $\mathcal{N}_r(a)$ of radius r at a in G.



Neighborhoods

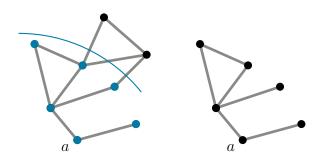
Graph G = (V, E)

Distance dist(u, v): length of a shortest path between u, v in G.

Shell $S_r(a)$ of nodes at distance exactly r from a.

Ball $N_r(a)$ of radius r at a in G.

Neighborhood $\mathcal{N}_r(a)$ of radius r at a in G.



Gaifman-local queries

- ▶ For a list $a = a_1, \ldots, a_k$ of nodes, $N_r^G(a) = N_r^G(a_1) \cup \cdots \cup N_r^G(a_k)$.
- ▶ The r-neighborhood $\mathcal{N}_r^G(a)$ is the structure $(G_{|\mathcal{N}_r^G(a)}, a)$ consisting of the induced subgraph of G on $N_c^G(a)$, together with the distinguished nodes a.

Let *q* be a *k*-ary graph query. Let $f: \mathbb{N} \to \mathbb{N}$.

q is called f(n)-local if there is an n_0 such that for every $n \ge n_0$ and every graph G with $|V^G| = n$, the following is true for all k-tuples a and b of nodes:

if
$$\mathcal{N}_{f(p)}^G(a) \cong \mathcal{N}_{f(p)}^G(b)$$
 then $a \in q(G) \iff b \in q(G)$.

Gaifman-locality of FO

Theorem:

For every graph query q that is FO-definable, there is a constant c such that q is c-local.

(Hella, Libkin, Nurmonen 1990s; Gaifman '82)

For every graph query q that is FO-definable on ordered graphs (for short: q is definable in order-invariant FO), there is a constant c such that α is c-local.

(Grone, Schwentick 198)

For every graph query q that is FO-definable on graphs with arbitrary numerical predicates (for short: q is definable in Arb-invariant FO), there is a constant c such that q is $(\log n)^c$ -local.

(Anderson, van Melkebeek, S., Segoufin '11)

Gaifman-locality of FO

Theorem:

For every graph guery a that is FO-definable. there is a constant c such that q is c-local.

(Hella, Libkin, Nurmonen 1990s; Gaifman '82)

For every graph query q that is FO-definable on ordered graphs (for short: q is definable in order-invariant FO), there is a constant c such that q is c-local.

(Grohe, Schwentick '98)

Gaifman-locality of FO

Theorem:

► For every graph query q that is FO-definable, there is a constant c such that q is c-local.

(Hella, Libkin, Nurmonen 1990s; Gaifman '82)

► For every graph query *q* that is FO-definable on ordered graphs (for short: *q* is definable in order-invariant FO), there is a constant *c* such that *q* is *c*-local.

(Grohe, Schwentick '98)

For every graph query q that is FO-definable on graphs with arbitrary numerical predicates (for short: q is definable in Arb-invariant FO), there is a constant c such that q is $(\log n)^c$ -local.

(Anderson, van Melkebeek, S., Segoufin '11)

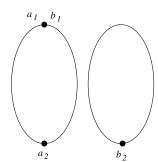
Use locality for proving non-expressibility

Example: The reachability query

 $REACH(G) := \{(a_1, a_2) : \text{ there is a directed path from } a_1 \text{ to } a_2 \text{ in } G\}$

is not $\frac{n}{5}$ -local an thus cannot be expressed in Arb-invariant FO.

Proof: Consider the graph *G*:



Use locality for proving non-expressibility

Similarly, one obtains that the following queries are not definable in Arb-invariant FO:

- Does node x lie on a cycle?
- Does node x belong to a connected component that is acyclic?
- Is node x reachable from a node that belongs to a triangle?
- Do nodes x and y have the same distance to node z?

For every query q expressible by Arb-invariant FO, there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -local.

PARITY :=
$$\{w \in \{0,1\}^* : |w|_1 \text{ is even}\}.$$

For every query q expressible by Arb-invariant FO, there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -local.

Idea: Use known lower bounds in circuit complexity!

PARITY :=
$$\{w \in \{0,1\}^* : |w|_1 \text{ is even}\}$$

LOCALITY

For every query q expressible by Arb-invariant FO, there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -local.

Idea: Use known lower bounds in circuit complexity!

- Let a be expressible by an Arb-invariant FO formula.
- Then, q can be computed by an AC⁰ circuit family \mathcal{C} (Immerman '87).

This contradicts known lower bounds in circuit complexity theory (Håstad'86).

For every query q expressible by Arb-invariant FO, there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -local.

Idea: Use known lower bounds in circuit complexity!

- Let q be expressible by an Arb-invariant FO formula.
- ▶ Then, q can be computed by an AC⁰ circuit family C (Immerman '87).
- Assume that q is not $(\log n)^c$ -local (for any $c \in \mathbb{N}$), and modify C to obtain an AC⁰ circuit family computing

PARITY :=
$$\{w \in \{0,1\}^* : |w|_1 \text{ is even}\}.$$

This contradicts known lower bounds in circuit complexity theory (Håstad'86).

- Represent graph G = (V, E) by a bitstring $\beta(G)$ corresponding to an adjacency matrix for G.
- Let Rep(G, a) be the set of all bitstrings $\beta(G)\beta(a)$, corresponding to all
- A unary graph guery q(x) is computed by a circuit family $\mathcal{C} = (C_n)_{n \in \mathbb{N}}$ iff the
- Known: A unary graph query q(x) is definable in Arb-invariant FO \iff

- Represent graph G = (V, E) by a bitstring $\beta(G)$ corresponding to an adjacency matrix for G.
- Represent a node a ∈ V by the bitstring β(a) of the form 0*10*, carrying the 1 at position i iff node a corresponds to the i-th row/column of the adjacency matrix.
- Let Rep(G, a) be the set of all bitstrings $\beta(G)\beta(a)$, corresponding to all adjacency matrices of G (i.e., all ways of embedding V in $\{1, \ldots, |V|\}$). Thus, Rep(G, a) is the set of all bitstrings representing (G, a).
- A unary graph query q(x) is computed by a circuit family C = (C_n)_{n∈N} iff the following is true:
 for all G = (V, E), a ∈ V, γ ∈ Rep(G, a): a ∈ q(G) ⇔ C_{|γ|} accepts γ.
- *Known:* A unary graph query q(x) is definable in Arb-invariant FO \iff it is computed by a circuit family of constant depth and polynomial size. (implicit in Immerman's

- Represent graph G = (V, E) by a bitstring $\beta(G)$ corresponding to an adjacency matrix for G.
- Represent a node a ∈ V by the bitstring $\beta(a)$ of the form 0^*10^* , carrying the 1 at position i iff node a corresponds to the *i*-th row/column of the adjacency matrix.
- Let Rep(G, a) be the set of all bitstrings $\beta(G)\beta(a)$, corresponding to all adjacency matrices of G (i.e., all ways of embedding V in $\{1, \ldots, |V|\}$). Thus, Rep(G, a) is the set of all bitstrings representing (G, a).
- A unary graph guery q(x) is computed by a circuit family $\mathcal{C} = (C_n)_{n \in \mathbb{N}}$ iff the
- Known: A unary graph query q(x) is definable in Arb-invariant FO \iff

- Represent graph G = (V, E) by a bitstring $\beta(G)$ corresponding to an adjacency matrix for G.
- Represent a node a ∈ V by the bitstring β(a) of the form 0*10*, carrying the 1 at position i iff node a corresponds to the i-th row/column of the adjacency matrix.
- Let Rep(G, a) be the set of all bitstrings β(G)β(a), corresponding to all adjacency matrices of G (i.e., all ways of embedding V in {1,..., |V|}). Thus, Rep(G, a) is the set of all bitstrings representing (G, a).
- A unary graph query q(x) is computed by a circuit family $C = (C_n)_{n \in \mathbb{N}}$ iff the following is true:
 - for all G = (V, E), $a \in V$, $\gamma \in Rep(G, a)$: $a \in q(G) \iff C_{|\gamma|}$ accepts γ .
- Known: A unary graph query q(x) is definable in Arb-invariant FO
 it is computed by a circuit family of constant depth and polynomial size.

 (implicit in Immerman's)

- Represent graph G = (V, E) by a bitstring $\beta(G)$ corresponding to an adjacency matrix for G.
- Represent a node a ∈ V by the bitstring $\beta(a)$ of the form 0^*10^* , carrying the 1 at position i iff node a corresponds to the *i*-th row/column of the adjacency matrix.
- Let Rep(G, a) be the set of all bitstrings $\beta(G)\beta(a)$, corresponding to all adjacency matrices of G (i.e., all ways of embedding V in $\{1, \ldots, |V|\}$). Thus, Rep(G, a) is the set of all bitstrings representing (G, a).
- A unary graph query q(x) is computed by a circuit family $\mathcal{C} = (C_n)_{n \in \mathbb{N}}$ iff the following is true: for all G = (V, E), $a \in V$, $\gamma \in Rep(G, a)$: $a \in q(G) \iff C_{|\gamma|}$ accepts γ .
- Known: A unary graph query q(x) is definable in Arb-invariant FO \iff it is computed by a circuit family of constant depth and polynomial size. (implicit in Immerman'87)

Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be a circuit family of constant depth d and polynomial size p(n) computing q. I.e., for all G = (V, E), $a \in V$, $\gamma \in Rep(G, a)$: $a \in q(G) \iff C_{|\gamma|}$ accepts γ .

For contradiction, assume q(x) is not $(\log n)^c$ -local, for any $c \in \mathbb{N}$.

Thus: For all c, n_0 there exist $n > n_0$, G = (V, E) with n nodes, $a, b \in V$ such that for $m := (\log n)^c$, $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$, but $a \in q(G)$ and $b \notin q(G)$.

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits

Theorem:

Håstad '86)

There exist ℓ , $m_0 > 0$ such that for all $m \ge m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Contradiction for c=2d, since $2^{\ell \cdot m^{1/(d-1)}} > 2^{\ell \cdot (\log n)^2} = n^{\ell \log n} > p(n)$.

TRODUCTION INVARIANT LOGICS EXPRESSIVENESS LOCALITY STRINGS AND TREES FINAL REMARKS

Proof of Gaifman-locality theorem (3/5)

Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $C = (C_n)_{n \in \mathbb{N}}$ be a circuit family of constant depth d and polynomial size p(n) computing q.

.e., for all
$$G = (V, E)$$
, $a \in V$, $\gamma \in Rep(G, a)$: $a \in q(G) \iff C_{|\gamma|}$ accepts γ .

For contradiction, assume q(x) is not $(\log n)^c$ -local, for any $c \in \mathbb{N}$.

Thus: For all c, n_0 there exist $n > n_0$, G = (V, E) with n nodes, $a, b \in V$ such that for $m := (\log n)^c$, $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$, but $a \in q(G)$ and $b \notin q(G)$.

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit \hat{C} of the same size & depth as C computing parity on m bits

Theorem:

(Håstad '86)

There exist ℓ , $m_0 > 0$ such that for all $m \ge m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Contradiction for
$$c=2d$$
, since $2^{\ell \cdot m^{1/(d-1)}} > 2^{\ell \cdot (\log n)^2} = n^{\ell \log n} > p(n)$.

Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $\mathcal{C}=(C_n)_{n\in\mathbb{N}}$ be a circuit family of constant depth d and polynomial size p(n) computing q. I.e., for all $G=(V,E), a\in V, \gamma\in Rep(G,a)$: $a\in q(G)\iff C_{|\gamma|}$ accepts γ .

For contradiction, assume q(x) is not $(\log n)^c$ -local, for any $c \in \mathbb{N}$.

Thus: For all c, n_0 there exist $n > n_0, G = (V, E)$ with n nodes, $a, b \in V$ such that for $m := (\log n)^c, \quad \mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$, but $a \in q(G)$ and $b \notin q(G)$.

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit $ilde{C}$ of the same size & depth as C computing parity on m bits

Theorem:

(Håstad '86)

There exist ℓ , $m_0 > 0$ such that for all $m \ge m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Contradiction for
$$c=2d$$
, since $2^{\ell \cdot m^{1/(d-1)}} > 2^{\ell \cdot (\log n)^2} = n^{\ell \log n} > p(n)$.

Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $\mathcal{C}=(C_n)_{n\in\mathbb{N}}$ be a circuit family of constant depth d and polynomial size p(n) computing q. I.e., for all $G=(V,E), a\in V, \gamma\in Rep(G,a)$: $a\in q(G)\iff C_{|\gamma|}$ accepts γ .

For contradiction, assume q(x) is not $(\log n)^c$ -local, for any $c \in \mathbb{N}$.

Thus: For all c, n_0 there exist $n > n_0$, G = (V, E) with n nodes, $a, b \in V$ such that for $m := (\log n)^c$, $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$, but $a \in q(G)$ and $b \notin q(G)$.

For simplicity, consider the special case that dist(a,b) > 2m.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits

Theorem:

(Håstad '86)

There exist ℓ , $m_0 > 0$ such that for all $m \ge m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Proof of Gaifman-locality theorem (3/5)

Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $\mathcal{C}=(C_n)_{n\in\mathbb{N}}$ be a circuit family of constant depth d and polynomial size p(n) computing q. I.e., for all $G=(V,E), a\in V, \gamma\in Rep(G,a)$: $a\in q(G)\iff C_{|\gamma|}$ accepts γ .

For contradiction, assume q(x) is not $(\log n)^c$ -local, for any $c \in \mathbb{N}$. Thus: For all c, n_0 there exist $n > n_0$, G = (V, E) with n nodes, $a, b \in V$ such that

for $m:=(\log n)^c, \quad \mathcal{N}^G_m(a)\cong \mathcal{N}^G_m(b),$ but $a\in q(G)$ and $b
ot\in q(G).$

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Theorem: (Ušeted 200)

There exist ℓ , $m_0 > 0$ such that for all $m \ge m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Proof of Gaifman-locality theorem (3/5)

Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $\mathcal{C}=(C_n)_{n\in\mathbb{N}}$ be a circuit family of constant depth d and polynomial size p(n) computing q. I.e., for all $G=(V,E), a\in V, \gamma\in Rep(G,a)$: $a\in q(G)\iff C_{|\gamma|}$ accepts γ .

For contradiction, assume q(x) is not $(\log n)^c$ -local, for any $c \in \mathbb{N}$.

Thus: For all c, n_0 there exist $n > n_0$, G = (V, E) with n nodes, $a, b \in V$ such that for $m := (\log n)^c$, $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$, but $a \in q(G)$ and $b \notin q(G)$.

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Theorem:

Håstad '86)

There exist ℓ , $m_0 > 0$ such that for all $m \ge m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Proof of Gaifman-locality theorem (3/5)

Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $\mathcal{C}=(C_n)_{n\in\mathbb{N}}$ be a circuit family of constant depth d and polynomial size p(n) computing q. I.e., for all $G=(V,E), a\in V, \gamma\in Rep(G,a)$: $a\in q(G)\iff C_{|\gamma|}$ accepts γ .

For contradiction, assume q(x) is not $(\log n)^c$ -local, for any $c \in \mathbb{N}$.

Thus: For all c, n_0 there exist $n > n_0$, G = (V, E) with n nodes, $a, b \in V$ such that for $m := (\log n)^c$, $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$, but $a \in q(G)$ and $b \notin q(G)$.

For simplicity, consider the special case that $\frac{dist(a,b)}{2m}$.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Theorem:

Håstad '86)

There exist ℓ , $m_0 > 0$ such that for all $m \ge m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $\mathcal{C}=(C_n)_{n\in\mathbb{N}}$ be a circuit family of constant depth d and polynomial size p(n) computing q. I.e., for all G=(V,E), $a\in V$, $\gamma\in Rep(G,a)$: $a\in q(G)\iff C_{|\gamma|}$ accepts γ .

For contradiction, assume q(x) is not $(\log n)^c$ -local, for any $c \in \mathbb{N}$.

Thus: For all c, n_0 there exist $n > n_0$, G = (V, E) with n nodes, $a, b \in V$ such that for $m := (\log n)^c$, $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$, but $a \in q(G)$ and $b \notin q(G)$.

For simplicity, consider the special case that $\frac{dist(a,b)}{2m}$.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit $\tilde{\mathbb{C}}$ of the same size & depth as \mathbb{C} computing parity on m bits.

Theorem:

Håstad '86_.

There exist ℓ , $m_0 > 0$ such that for all $m \ge m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Let q(x) be a unary graph query expressible in Arb-invariant FO. Let $\mathcal{C}=(C_n)_{n\in\mathbb{N}}$ be a circuit family of constant depth d and polynomial size p(n) computing q. I.e., for all $G=(V,E), a\in V, \gamma\in Rep(G,a)$: $a\in q(G)\iff C_{|\gamma|}$ accepts γ .

For contradiction, assume q(x) is not $(\log n)^c$ -local, for any $c \in \mathbb{N}$.

Thus: For all c, n_0 there exist $n > n_0$, G = (V, E) with n nodes, $a, b \in V$ such that for $m := (\log n)^c$, $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$, but $a \in q(G)$ and $b \notin q(G)$.

For simplicity, consider the special case that $\frac{dist(a,b)}{2m}$.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit $\tilde{\mathbb{C}}$ of the same size & depth as \mathbb{C} computing parity on m bits.

Theorem:

(Håstad '86)

There exist ℓ , $m_0 > 0$ such that for all $m \geqslant m_0$, no circuit of depth d and size $2^{\ell \cdot m^{1/(d-1)}}$ computes parity on m bits.

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

For
$$i \in \{0, 1, ..., m-1\}$$
 with $w_i = 1$:

$$(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}$$

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

For
$$i \in \{0, 1, ..., m-1\}$$
 with $w_i = 1$

$$(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}$$

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

$$(G_w, a) \cong egin{cases} (G, a), & ext{if } |w|_1 ext{ even} \\ (G, b), & ext{if } |w|_1 ext{ odd} \end{cases}$$

LOCALITY

Proof of Gaifman-locality theorem (4/5)

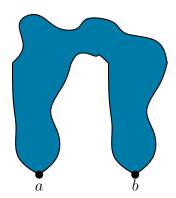
Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

$$(G_w, a) \cong egin{cases} (G, a), & ext{if } |w|_1 ext{ even} \\ (G, b), & ext{if } |w|_1 ext{ odd} \end{cases}$$



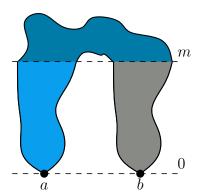
Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

$$(G_w,a)\cong egin{cases} (G,a), & ext{if } |w|_1 ext{ even} \ (G,b), & ext{if } |w|_1 ext{ odd} \end{cases}$$



Key Lemma:

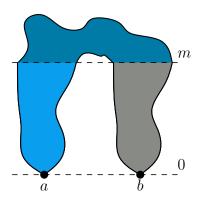
Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

For
$$i \in \{0, 1, ..., m-1\}$$
 with $w_i = 1$:

$$(G_w, a) \cong egin{cases} (G, a), & ext{if } |w|_1 ext{ even} \\ (G, b), & ext{if } |w|_1 ext{ odd} \end{cases}$$



Key Lemma:

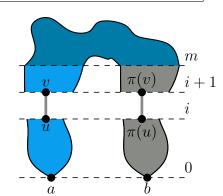
Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

For
$$i \in \{0, 1, ..., m-1\}$$
 with $w_i = 1$:

$$(G_w, a) \cong egin{cases} (G, a), & ext{if } |w|_1 ext{ even} \\ (G, b), & ext{if } |w|_1 ext{ odd} \end{cases}$$



Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

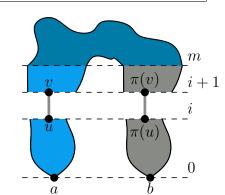
Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For
$$i \in \{0, 1, ..., m-1\}$$
 with $w_i = 1$:

$$(G_w, a) \cong egin{cases} (G, a), & ext{if } |w|_1 ext{ even} \\ (G, b), & ext{if } |w|_1 ext{ odd} \end{cases}$$



Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

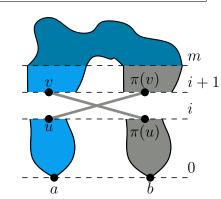
Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For
$$i \in \{0, 1, ..., m-1\}$$
 with $w_i = 1$:

$$(G_w,a)\cong egin{cases} (G,a), & ext{if } |w|_1 ext{ even} \ (G,b), & ext{if } |w|_1 ext{ odd} \end{cases}$$



Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

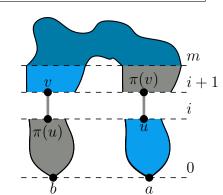
Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For
$$i \in \{0, 1, ..., m-1\}$$
 with $w_i = 1$:

$$(G_w, a) \cong egin{cases} (G, a), & ext{if } |w|_1 ext{ even} \\ (G, b), & ext{if } |w|_1 ext{ odd} \end{cases}$$



Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

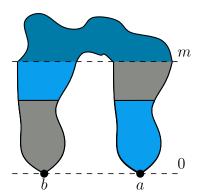
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For
$$i \in \{0, 1, ..., m-1\}$$
 with $w_i = 1$:

$$(G_w, a) \cong egin{cases} (G, a), & ext{if } |w|_1 ext{ even} \\ (G, b), & ext{if } |w|_1 ext{ odd} \end{cases}$$



LOCALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

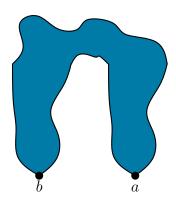
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

For
$$i \in \{0, 1, ..., m-1\}$$
 with $w_i = 1$:

$$(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}$$



LOCALITY

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

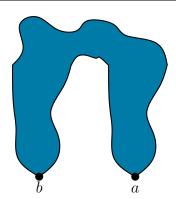
Consider $w \in \{0, 1\}^m$.

For
$$i \in \{0, 1, ..., m-1\}$$
 with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}$$



LOCALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

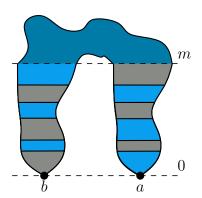
Consider $w \in \{0, 1\}^m$.

For
$$i \in \{0, 1, ..., m-1\}$$
 with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong \begin{cases} (G, a), & \text{if } |w|_1 \text{ even} \\ (G, b), & \text{if } |w|_1 \text{ odd} \end{cases}$$



Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

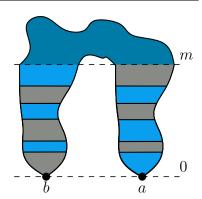
Consider $w \in \{0, 1\}^m$.

For
$$i \in \{0, 1, ..., m-1\}$$
 with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong egin{cases} (G, a), & ext{if } |w|_1 ext{ even} \\ (G, b), & ext{if } |w|_1 ext{ odd} \end{cases}$$



LOCALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

Proof:

Consider $w \in \{0, 1\}^m$.

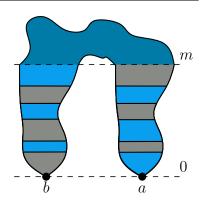
For
$$i \in \{0, 1, ..., m-1\}$$
 with $w_i = 1$:

Swap the endpoints of the edges leaving $N_i(a)$ with the corresponding endpoints of the edges leaving $N_i(b)$.

The resulting graph $G_w \cong G$.

$$(G_w, a) \cong egin{cases} (G, a), & ext{if } |w|_1 ext{ even} \\ (G, b), & ext{if } |w|_1 ext{ odd} \end{cases}$$

Circuit C distinguishes these cases.



Proof of Gaifman-locality theorem (5/5)

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit \ddot{C} of the same size & depth as C computing parity on m bits.

How to obtain C from C?

- ► Consider *C* for a fixed input string $\gamma \in Rep(G, a)$.
- Fix all input bits (as in γ) that do not correspond to potential edges between the shells S_i and S_{i+1}, for i < m.
- For all i < m and all $u \in S_i(a)$, $v \in S_{i+1}(a)$ consider the potential edges $e = \{u, v\}$, $e' = \{\pi(u), \pi(v)\}$, $\tilde{e} = \{u, \pi(v)\}$, $\tilde{e}' = \{\pi(u), v\}$.
- ▶ Replace input gates of *C* as follows:

e by
$$(e \wedge \neg w_i)$$
 e' by $(e' \wedge \neg w_i)$
 \tilde{e} by $(e \wedge w_i)$ \tilde{e}' by $(e' \wedge w_i)$

▶ This yields a circuit \tilde{C} of the same size and depth as C which, on input $w \in \{0, 1\}^m$ does the same as C on input (G_w, a) . Thus, \tilde{C} accepts iff $|w|_1$ is even.

Proof of Gaifman-locality theorem (5/5)

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit \ddot{C} of the same size & depth as C computing parity on m bits.

How to obtain C from C?

- ▶ Consider C for a fixed input string $\gamma \in Rep(G, a)$.
- Fix all input bits (as in γ) that do not correspond to potential edges between the shells S_i and S_{i+1}, for i < m.
- For all i < m and all $u \in S_i(a)$, $v \in S_{i+1}(a)$ consider the potential edges $e = \{u, v\}$, $e' = \{\pi(u), \pi(v)\}$, $\tilde{e} = \{u, \pi(v)\}$, $\tilde{e}' = \{\pi(u), v\}$.
- Replace input gates of C as follows

$$e$$
 by $(e \land \neg w_i)$ e' by $(e' \land \neg w_i)$ \tilde{e} by $(e \land w_i)$ \tilde{e}' by $(e' \land w_i)$

▶ This yields a circuit \tilde{C} of the same size and depth as C which, on input $w \in \{0, 1\}^m$ does the same as C on input (G_w, a) . Thus, \tilde{C} accepts iff $|w|_1$ is even.

Proof of Gaifman-locality theorem (5/5)

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit \ddot{C} of the same size & depth as C computing parity on m bits.

How to obtain C from C?

- ▶ Consider *C* for a fixed input string $\gamma \in Rep(G, a)$.
- Fix all input bits (as in γ) that do not correspond to potential edges between the shells S_i and S_{i+1}, for i < m.
- For all i < m and all $u \in S_i(a)$, $v \in S_{i+1}(a)$ consider the potential edges $e = \{u, v\}$, $e' = \{\pi(u), \pi(v)\}$, $\tilde{e} = \{u, \pi(v)\}$, $\tilde{e}' = \{\pi(u), v\}$.
- ▶ Replace input gates of *C* as follows:

$$e$$
 by $(e \land \neg w_i)$ e' by $(e' \land \neg w_i)$ \tilde{e} by $(e \land w_i)$ \tilde{e}' by $(e' \land w_i)$

▶ This yields a circuit \hat{C} of the same size and depth as C which, on input $w \in \{0,1\}^m$ does the same as C on input (G_w,a) . Thus, \hat{C} accepts iff $|w|_1$ is even.

Proof of Gaifman-locality theorem (5/5)

Key Lemma:

Let $m \in \mathbb{N}$, G = (V, E), $a, b \in V$ such that $\mathcal{N}_m^G(a) \cong \mathcal{N}_m^G(b)$ and dist(a, b) > 2m. Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit \tilde{C} of the same size & depth as C computing parity on m bits.

How to obtain C from C?

- ▶ Consider *C* for a fixed input string $\gamma \in Rep(G, a)$.
- Fix all input bits (as in γ) that do not correspond to potential edges between the shells S_i and S_{i+1}, for i < m.
- For all i < m and all $u \in S_i(a)$, $v \in S_{i+1}(a)$ consider the potential edges $e = \{u, v\}$, $e' = \{\pi(u), \pi(v)\}$, $\tilde{e} = \{u, \pi(v)\}$, $\tilde{e}' = \{\pi(u), v\}$.
- Replace input gates of C as follows:

$$e$$
 by $(e \land \neg w_i)$ e' by $(e' \land \neg w_i)$ \tilde{e} by $(e \land w_i)$ \tilde{e}' by $(e' \land w_i)$

▶ This yields a circuit \hat{C} of the same size and depth as C which, on input $w \in \{0,1\}^m$ does the same as C on input (G_w,a) . Thus, \hat{C} accepts iff $|w|_1$ is even.

Theorem:

(Anderson, Melkebeek, S., Segoufin '11)

- (a) For every query q expressible by Arb-invariant FO there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -local.
- (b) For every $d \in \mathbb{N}$ there is a $(+, \times)$ -invariant FO query that is not $(\log n)^d$ -local.

The query $q_d(x)$ states

(1) The graph has at most $(\log n)^{d+1}$ non-isolated vertices.

(Use the polylog-counting capability of FO($+, \times$))

(2) Node *x* is reachable from a node that belongs to a triangle.

(Show that in graphs satisfying (1), reachability by paths of length ($\log n$)^{a+1} can be expressed in (+, ×)-invariant FO)

Theorem:

(Anderson, Melkebeek, S., Segoufin '11)

- (a) For every query q expressible by Arb-invariant FO there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -local.
- (b) For every $d \in \mathbb{N}$ there is a $(+, \times)$ -invariant FO query that is not $(\log n)^d$ -local.

The query $q_d(x)$ states:

(1) The graph has at most $(\log n)^{d+1}$ non-isolated vertices.

(Use the polylog-counting capability of FO($+, \times$)

(2) Node *x* is reachable from a node that belongs to a triangle.

(Show that in graphs satisfying (1), reachability by paths of length ($\log n$)^{a+1} can be expressed in (+, \times)-invariant FO)

Theorem:

(Anderson, Melkebeek, S., Segoufin '11)

- (a) For every query q expressible by Arb-invariant FO there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -local.
- (b) For every $d \in \mathbb{N}$ there is a $(+, \times)$ -invariant FO query that is not $(\log n)^d$ -local.

The query $q_d(x)$ states:

(1) The graph has at most $(\log n)^{d+1}$ non-isolated vertices.

(Use the polylog-counting capability of $\mathsf{FO}(+, \times)$)

(2) Node *x* is reachable from a node that belongs to a triangle.

(Show that in graphs satisfying (1), reachability by paths of length ($\log n$)^{d+1} car be expressed in $(+, \times)$ -invariant FO)

Theorem:

(Anderson, Melkebeek, S., Segoufin '11)

- (a) For every query q expressible by Arb-invariant FO there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -local.
- (b) For every $d \in \mathbb{N}$ there is a $(+, \times)$ -invariant FO query that is not $(\log n)^d$ -local.

The query $q_d(x)$ states:

(1) The graph has at most $(\log n)^{d+1}$ non-isolated vertices.

(Use the polylog-counting capability of $FO(+, \times)$)

(2) Node *x* is reachable from a node that belongs to a triangle.

(Show that in graphs satisfying (1), reachability by paths of length $(\log n)^{d+1}$ can be expressed in $(+, \times)$ -invariant FO)

Theorem:

(Anderson, Melkebeek, S., Segoufin '11)

- (a) For every query q expressible by Arb-invariant FO there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -local.
- (b) For every $d \in \mathbb{N}$ there is a $(+, \times)$ -invariant FO query that is not $(\log n)^d$ -local.

The query $q_d(x)$ states:

(1) The graph has at most $(\log n)^{d+1}$ non-isolated vertices.

(Use the polylog-counting capability of $FO(+, \times)$)

(2) Node *x* is reachable from a node that belongs to a triangle.

(Show that in graphs satisfying (1), reachability by paths of length $(\log n)^{d+1}$ can be expressed in $(+, \times)$ -invariant FO)

Goal: Show that in graphs with $\leq (\log n)^c$ non-isolated vertices, reachability by paths of length $(\log n)^c$ can be expressed in $(+, \times)$ -invariant FO.

Lemma

urand, Lautemann, More '07)

For every $c \in \mathbb{N}$ there is a FO(<, +, \times , S)-formula bij $_c(x, y)$ such that for all $n \in \mathbb{N}$, all $S \subseteq [n] := \{0, \dots, n-1\}$, all a, i < n we have

$$([n], <, +, \times, S) \models \mathit{bij}_c(a, i) \iff |S| < (\log n)^c$$
 and a is the i-th smallest element of S .

- ▶ Using this, identify the non-isolated vertices with numbers $< (\log n)^c$ and represent them by bitstrings of length $c \log \log n$.
- ▶ Identify an arbitrary vertex of *G* with a number < *n*, whose binary representation encodes a sequence of $\ell(n) := \frac{\log n}{\log \log n}$ non-isolated vertices.
- ▶ Use this to express that there is a path of length $\ell(n)$ from node x to node y
- ▶ Iterate this for c+1 times to express that there is a path of length $\ell(n)^{c+1} \ge (\log n)^c$ from x to y.

Summary: Gaifman-locality of Arb-invariant FO (2/2)

Goal: Show that in graphs with $\leq (\log n)^c$ non-isolated vertices, reachability by paths of length $(\log n)^c$ can be expressed in $(+, \times)$ -invariant FO.

Lemma:

(Durand, Lautemann, More '07)

For every $c \in \mathbb{N}$ there is a FO(<, +, \times , S)-formula $bij_c(x,y)$ such that for all $n \in \mathbb{N}$, all $S \subseteq [n] := \{0, \dots, n-1\}$, all a, i < n we have

$$([n], <, +, \times, S) \models bij_c(a, i) \iff |S| < (\log n)^c$$
 and a is the i-th smallest element of S .

- Using this, identify the non-isolated vertices with numbers < (log n)^c and represent them by bitstrings of length c log log n.
- Identify an arbitrary vertex of *G* with a number < n, whose binary representation encodes a sequence of $\ell(n) := \frac{\log n}{\log \log n}$ non-isolated vertices.
- ▶ Use this to express that there is a path of length $\ell(n)$ from node x to node y.
- ▶ Iterate this for c+1 times to express that there is a path of length $\ell(n)^{c+1} \ge (\log n)^c$ from x to y.

Summary: Gaifman-locality of Arb-invariant FO (2/2)

Goal: Show that in graphs with $\leq (\log n)^c$ non-isolated vertices, reachability by paths of length $(\log n)^c$ can be expressed in $(+, \times)$ -invariant FO.

Lemma:

(Durand, Lautemann, More '07)

For every $c \in \mathbb{N}$ there is a FO(<,+,×,S)-formula bij_c(x,y) such that for all $n \in \mathbb{N}$, all $S \subseteq [n] := \{0, \dots, n-1\}$, all a, i < n we have

$$([n], <, +, \times, S) \models bij_c(a, i) \iff |S| < (\log n)^c$$
 and a is the i-th smallest element of S .

- Using this, identify the non-isolated vertices with numbers < (log n)^c and represent them by bitstrings of length c log log n.
- Identify an arbitrary vertex of G with a number < n, whose binary representation encodes a sequence of $\ell(n) := \frac{\log n}{c \log \log n}$ non-isolated vertices.
- ▶ Use this to express that there is a path of length $\ell(n)$ from node x to node y.
- ▶ Iterate this for c+1 times to express that there is a path of length $\ell(n)^{c+1} \ge (\log n)^c$ from x to y.

Summary: Gaifman-locality of Arb-invariant FO (2/2)

Goal: Show that in graphs with $\leq (\log n)^c$ non-isolated vertices, reachability by paths of length $(\log n)^c$ can be expressed in $(+, \times)$ -invariant FO.

Lemma:

(Durand, Lautemann, More '07)

For every $c \in \mathbb{N}$ there is a FO(<,+,×,S)-formula bij_c(x,y) such that for all $n \in \mathbb{N}$, all $S \subseteq [n] := \{0, \dots, n-1\}$, all a, i < n we have

$$([n], <, +, \times, S) \models bij_c(a, i) \iff |S| < (\log n)^c$$
 and a is the i-th smallest element of S .

- Using this, identify the non-isolated vertices with numbers < (log n)^c and represent them by bitstrings of length c log log n.
- Identify an arbitrary vertex of G with a number < n, whose binary representation encodes a sequence of $\ell(n) := \frac{\log n}{c \log \log n}$ non-isolated vertices.
- ▶ Use this to express that there is a path of length $\ell(n)$ from node x to node y.
- ▶ Iterate this for c+1 times to express that there is a path of length $\ell(n)^{c+1} \ge (\log n)^c$ from x to y.

LOCALITY

Locality of Arb-invariant FO+MOD_n

In a similar way, we can also prove:

Theorem:

(Harwath, S., 2013)

Let p be a prime power and let $k \in \mathbb{N}$ be coprime with p.

For every k-ary query q expressible in Arb-invariant FO+MOD_p, there is a $c \in \mathbb{N}$ such that g is $(\log n)^c$ -shift-local w.r.t. k.

LOCALITY

Locality of Arb-invariant FO+MOD_n

In a similar way, we can also prove:

Theorem:

(Harwath, S., 2013)

Let p be a prime power and let $k \in \mathbb{N}$ be coprime with p.

For every k-ary query q expressible in Arb-invariant FO+MOD_p, there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -shift-local w.r.t. k.

Let q be a k-ary graph query. Let $f: \mathbb{N} \to \mathbb{N}$.

q is called f(n)-shift-local w.r.t. k if there is an n_0 such that for every $n \ge n_0$ and every graph G with $|V^G| = n$, the following is true for all k-tuples (a_0, \ldots, a_{k-1}) of nodes:

the f(n)-neighborhoods of the a_i are disjoint and isomorphic,

then
$$(a_0, a_1, \dots, a_{k-1}) \in q(G) \iff (a_1, \dots, a_{k-1}, a_0) \in q(G)$$
.

Locality of Arb-invariant FO+MOD_n

In a similar way, we can also prove:

Theorem:

(Harwath, S., 2013)

Let p be a prime power and let $k \in \mathbb{N}$ be coprime with p.

For every k-ary query q expressible in Arb-invariant FO+MOD_p, there is a $c \in \mathbb{N}$ such that g is $(\log n)^c$ -shift-local w.r.t. k.

Definition: Let q be a k-ary graph query. Let $f: \mathbb{N} \to \mathbb{N}$.

q is called f(n)-shift-local w.r.t. k if there is an n_0 such that for every $n \ge n_0$ and every graph G with $|V^G| = n$, the following is true for all k-tuples (a_0, \ldots, a_{k-1}) of nodes:

the f(n)-neighborhoods of the a_i are disjoint and isomorphic,

then
$$(a_0, a_1, \dots, a_{k-1}) \in q(G) \iff (a_1, \dots, a_{k-1}, a_0) \in q(G)$$
.

Proof: Use Smolensky's result for AC⁰[p]-circuits.

Locality of Arb-invariant FO+MOD_n

In a similar way, we can also prove:

Theorem:

(Harwath, S., 2013)

Let p be a prime power and let $k \in \mathbb{N}$ be coprime with p.

For every k-ary query q expressible in Arb-invariant FO+MOD_p, there is a $c \in \mathbb{N}$ such that q is $(\log n)^c$ -shift-local w.r.t. k.

Definition: Let q be a k-ary graph query. Let $f: \mathbb{N} \to \mathbb{N}$.

q is called f(n)-shift-local w.r.t. k if there is an n_0 such that for every $n \ge n_0$ and every graph G with $|V^G| = n$, the following is true for all k-tuples (a_0, \ldots, a_{k-1}) of nodes:

the f(n)-neighborhoods of the a_i are disjoint and isomorphic,

then
$$(a_0, a_1, \ldots, a_{k-1}) \in q(G) \iff (a_1, \ldots, a_{k-1}, a_0) \in q(G)$$
.

Proof: Use Smolensky's result for AC⁰[p]-circuits.

Corollary: Reachability is not definable in Arb-invariant FO+MOD_p (for prime power p).

Overview

Introduction

Invariant logics

Expressiveness of order-invariant logics

Locality Results

Order- and Arb-invariant logics on strings and trees

Final Remarks

Represent words as labeled graphs

(labeled) chain-graphsthis chain-graph represents the string *rbrg*.

Edges correspond to the successor relation "succ" on the positions of the string.

Write \prec -inv-FO(*succ*) for order-invariant FO on these graphs.

Write +-inv-FO(succ) for addition-invariant FO on these graphs

Represent words as labeled graphs

(labeled) chain-graphsthis chain-graph represents the string *rbrg*.

Edges correspond to the successor relation "succ" on the positions of the string.

Write \prec -inv-FO(succ) for order-invariant FO on these graphs.

Write +-inv-FO(succ) for addition-invariant FO on these graphs.

FO(*succ*) = locally threshold testable languages

FO(<) = star-free regular languages

MSO(<) = regular languages

MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)

(Thomas)

(McNaughton, Papert) (Büchi, Elgot, Trakhtenbrot)

FO(*succ*) = locally threshold testable languages

(Thomas)

FO(<) = star-free regular languages

(McNaughton, Papert)

MSO(<) = regular languages

(Büchi, Elgot, Trakhtenbrot)

MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)

 \prec -inv-FO(succ) = FO(succ)

(Benedikt, Segoufin, 2005)

+-inv-MLFP(succ) \supset DLIN

(S., 2004)

+-inv-MSO(*succ*) = the linear time hierarchy

(More & Olive 1997, S. 2004)

FO(*succ*) = locally threshold testable languages

(Thomas)

FO(<) = star-free regular languages

(McNaughton, Papert)

MSO(<) = regular languages

(Büchi, Elgot, Trakhtenbrot)

MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)

 \prec -inv-FO(succ) = FO(succ)

(Benedikt, Segoufin, 2005)

+-inv-MLFP(succ) \supseteq DLIN

(S., 2004)

+-inv-MSO(succ) = the linear time hierarchy

(More & Olive 1997, S. 2004)

 $FO(<) = \prec -inv-FO(<) \subsetneq +-inv-FO(<) \subsetneq (+, \times)-inv-FO(<) \subseteq uniform AC^0.$

The following problem is undecidable:

[Benedikt, Segoufin, 2005]

ORDER-INVARIANCE ON FINITE LABELED CHAIN-GRAPHS:

Input: a FO(\prec , E)-sentence φ

Question: Is arphi order-invariant on all finite labeled chain-graphs?

```
FO(succ) = locally threshold testable languages
                                                                       (Thomas)
  FO(<) = star-free regular languages
                                                           (McNaughton, Papert)
```

MSO(<) = regular languages (Büchi, Elgot, Trakhtenbrot)

MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)

```
(Benedikt, Segoufin, 2005)
  \prec-inv-FO(succ) = FO(succ)
+-inv-MLFP(succ) \supset DLIN
                                                                              (S., 2004)
```

+-inv-MSO(*succ*) = the linear time hierarchy (More & Olive 1997, S. 2004)

```
FO(<) = \prec -inv-FO(<) \subseteq +-inv-FO(<) \subseteq (+, \times)-inv-FO(<) \subseteq uniform AC^0.
```

The following problem is undecidable: (Benedikt, Segoufin, 2005)

ORDER-INVARIANCE ON FINITE LABELED CHAIN-GRAPHS:

Input: a FO(\prec , E)-sentence φ

Question: Is φ order-invariant on all finite labeled chain-graphs?

Let L_1 and L_2 be logics, and let C be a class of structures.

Goal: Show that L_1 can define exactly the same properties of C-structures as L_2 .

Approach:

Let L_1 and L_2 be logics, and let C be a class of structures.

Goal: Show that L_1 can define exactly the same properties of C-structures as L_2 .

Approach:

- Identify a suitable set of operations \mathcal{O} on structures in \mathcal{C} .

Let L_1 and L_2 be logics, and let C be a class of structures.

Goal: Show that L_1 can define exactly the same properties of C-structures as L_2 .

Approach:

- Identify a suitable set of operations \mathcal{O} on structures in \mathcal{C} .
- (1) Show that a property p of C-structures is definable in L₁ iff it is closed under every operation $op \in \mathcal{O}$. I.e., for every $A \in \mathcal{C}$:

Let L_1 and L_2 be logics, and let C be a class of structures.

Goal: Show that L_1 can define exactly the same properties of C-structures as L_2 .

Approach:

- (0) Identify a suitable set of operations O on structures in C.
- (1) Show that a property p of C-structures is definable in L_1 iff it is closed under every operation $op \in \mathcal{O}$. I.e., for every $A \in C$:

 \mathcal{A} has property $p \iff op(\mathcal{A})$ has property p.

(2) Show that a property p of C-structures is closed under every operation $op \in \mathcal{O}$ iff it is definable in L_2 .

Let L_1 and L_2 be logics, and let C be a class of structures.

Goal: Show that L_1 can define exactly the same properties of C-structures as L_2 .

Approach:

- Identify a suitable set of operations \mathcal{O} on structures in \mathcal{C} .
- (1) Show that a property p of C-structures is definable in L₁ iff it is closed under every operation $op \in \mathcal{O}$. I.e., for every $A \in C$:

 \mathcal{A} has property $p \iff op(\mathcal{A})$ has property p.

(2) Show that a property p of C-structures is closed under every operation $op \in \mathcal{O}$ iff it is definable in L_2 .

Theorem (Benedikt, Segoufin, '09):

A string-language is definable in \prec -inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

- Use a result by Beauquier and Pin (1989) stating that a string-language is definable in FO(succ) iff it is aperiodic and closed under swaps.
 - A string language L is aperiodic iff there exists a number $\ell \in \mathbb{N}$ such that for all strings u, x, v we have

$$u x^{\ell} v \in L \iff u x^{\ell+1} v \in L.$$

• *L* is closed under swaps iff for all strings u, v, e, x, y, z such that e, f are idempotents (i.e., for all u, v we have $uev \in L$ iff $ue^2v \in L$), we have

$$u exf v ezf v \in L \iff u ezf v exf v \in L$$

Show that every string-language definable in ≺-inv-FO(succ) is aperiodic and closed under swaps.

For this, you can use Ehrenfeucht-Fraïssé games.)

Theorem (Benedikt, Segoufin, '09):

A string-language is definable in \prec -inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

- Use a result by Beauquier and Pin (1989) stating that a string-language is definable in FO(succ) iff it is aperiodic and closed under swaps.
 - A string language L is aperiodic iff there exists a number $\ell \in \mathbb{N}$ such that for

$$u x^{\ell} v \in L \iff u x^{\ell+1} v \in L.$$

• L is closed under swaps iff for all strings u, v, e, x, y, z such that e, f are

$$uexfyezfv \in L \iff uezfyexfv \in L$$

Theorem (Benedikt, Segoufin, '09):

A string-language is definable in \prec -inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

- Use a result by Beauquier and Pin (1989) stating that a string-language is definable in FO(succ) iff it is aperiodic and closed under swaps.
 - A string language L is aperiodic iff there exists a number ℓ ∈ N such that for all strings u, x, v we have

$$u x^{\ell} v \in L \iff u x^{\ell+1} v \in L.$$

• *L* is closed under swaps iff for all strings u, v, e, x, y, z such that e, f are idempotents (i.e., for all u, v we have $uev \in L$ iff $ue^2v \in L$), we have

$$u exf v ezf v \in L \iff u ezf v exf v \in L$$

Show that every string-language definable in ≺-inv-FO(succ) is aperiodic and closed under swaps.

(For this, you can use Ehrenfeucht-Fraïssé games.)

Theorem (Benedikt, Segoufin, '09):

A string-language is definable in \prec -inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

- Use a result by Beauquier and Pin (1989) stating that a string-language is definable in FO(succ) iff it is aperiodic and closed under swaps.
 - A string language L is aperiodic iff there exists a number ℓ ∈ N such that for all strings u, x, v we have

$$u x^{\ell} v \in L \iff u x^{\ell+1} v \in L.$$

• *L* is closed under swaps iff for all strings u, v, e, x, y, z such that e, f are idempotents (i.e., for all u, v we have $uev \in L$ iff $ue^2v \in L$), we have

$$u exf y ezf v \in L \iff u ezf y exf v \in L.$$

Show that every string-language definable in ≺-inv-FO(succ) is aperiodic and closed under swaps.

(For this, you can use Ehrenfeucht-Fraïssé games.)

Theorem (Benedikt, Segoufin, '09):

A string-language is definable in \prec -inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

- Use a result by Beauquier and Pin (1989) stating that a string-language is definable in FO(succ) iff it is aperiodic and closed under swaps.
 - A string language L is aperiodic iff there exists a number ℓ ∈ N such that for all strings u, x, v we have

$$u x^{\ell} v \in L \iff u x^{\ell+1} v \in L.$$

• *L* is closed under swaps iff for all strings u, v, e, x, y, z such that e, f are idempotents (i.e., for all u, v we have $uev \in L$ iff $ue^2v \in L$), we have

$$u exf y ezf v \in L \iff u ezf y exf v \in L.$$

► Show that every string-language definable in <-inv-FO(succ) is aperiodic and closed under swaps.

(For this, you can use Ehrenfeucht-Fraïssé games.)

- A tree-language is definable in <-invariant FO(Succ) iff it is definable in FO(Succ). (Benedikt, Segoufin '09) (They use aperiodicity and closure under guarded swaps.)

- A tree-language is definable in <-invariant FO(Succ) iff it is definable in FO(Succ). (Benedikt, Segoufin '09) (They use aperiodicity and closure under guarded swaps.)
- A colored finite set is definable in +-invariant FO iff it is definable in FO_{card} (i.e., FO with predicates testing the cardinality of the universe modulo fixed numbers). (S., Segoufin '10)

- A tree-language is definable in <-invariant FO(Succ) iff
 it is definable in FO(Succ). (Benedikt, Segoufin '09)
 (They use aperiodicity and closure under guarded swaps.)
- A colored finite set is definable in +-invariant FO iff it is definable in FO_{card} (i.e., FO with predicates testing the cardinality of the universe modulo fixed numbers).
 (S., Segoufin '10)
- A regular string- or tree-language is definable in +-invariant FO(Succ) iff it is definable in FO_{card}(succ). (S., Segoufin '10 and Harwath, S. '12) (They use closure under transfers and closure under guarded swaps.)
- A regular string-language is definable in Arb-invariant FO(Succ) iff it is definable in FO_{card}(Succ). (Anderson, van Melkebeek, S., Segoufin '11)

- A tree-language is definable in <-invariant FO(Succ) iff
 it is definable in FO(Succ). (Benedikt, Segoufin '09)
 (They use aperiodicity and closure under guarded swaps.)
- A colored finite set is definable in +-invariant FO iff it is definable in FO_{card} (i.e., FO with predicates testing the cardinality of the universe modulo fixed numbers).
 (S., Segoufin '10)
- A regular string- or tree-language is definable in +-invariant FO(Succ) iff it is definable in FO_{card}(succ). (S., Segoufin '10 and Harwath, S. '12) (They use closure under transfers and closure under guarded swaps.)
- A regular string-language is definable in Arb-invariant FO(Succ) iff it is definable in FO_{card}(Succ).
 (Anderson, van Melkebeek, S., Segoufin '11)

An open question

Open Question:

Are all languages definable in addition-invariant FO regular?

Known:

(S., Segoufin, 2010)

- Arb-invariant FO can define non-regular languages, e.g., $L = \{w \in \{1\}^* : |w| \text{ is a prime number } \}.$
- Every deterministic context-free language definable in addition-invariant FO is regular.
- Every commutative language definable in addition-invariant FO is regular.
- Every bounded language definable in addition-invariant FO is regular.

Bounded languages

Definition:

(Ginsburg & Spanier, 1964)

 $L \subseteq \Sigma^*$ is bounded \iff

 $\exists k \in \mathbb{N}$ and k strings $w_1, \ldots, w_k \in \Sigma^*$ such that $L \subseteq w_1^* w_2^* \cdots w_k^*$.

Theorem:

(S., Segoufin, 2010)

Every bounded language definable in +-inv-FO(<) is regular.

- Identify $w_1^* w_2^* \cdots w_k^*$ with \mathbb{N}^k via $(x_1, \dots, x_k) \in \mathbb{N}^k = w_1^{x_1} w_2^{x_2} \cdots w_k^{x_k}$.
- Note that S(L) is semi-linear, since L is definable in +-inv-FO(<).
- Reason about semi-linear sets

Bounded languages

Definition:

(Ginsburg & Spanier, 1964)

 $L \subseteq \Sigma^*$ is bounded \iff

 $\exists k \in \mathbb{N}$ and k strings $w_1, \ldots, w_k \in \Sigma^*$ such that $L \subseteq w_1^* w_2^* \cdots w_k^*$.

Theorem:

(S., Segoufin, 2010)

Every bounded language definable in +-inv-FO(<) is regular.

Proof method:

- Identify $w_1^* w_2^* \cdots w_k^*$ with \mathbb{N}^k via $(x_1, \dots, x_k) \in \mathbb{N}^k \stackrel{\frown}{=} w_1^{x_1} w_2^{x_2} \cdots w_k^{x_k}$. Thus: $L \subset W_1^* W_2^* \cdots W_k^* = S(L) \subset \mathbb{N}^k$.
- Note that S(L) is semi-linear, since L is definable in +-inv-FO(<).
- Reason about semi-linear sets

Bounded languages

Definition:

(Ginsburg & Spanier, 1964)

 $L \subseteq \Sigma^*$ is bounded \iff

 $\exists k \in \mathbb{N}$ and k strings $w_1, \ldots, w_k \in \Sigma^*$ such that $L \subseteq w_1^* w_2^* \cdots w_k^*$.

Theorem:

(S., Segoufin, 2010)

Every bounded language definable in +-inv-FO(<) is regular.

Proof method:

- Identify $w_1^* w_2^* \cdots w_k^*$ with \mathbb{N}^k via $(x_1, \dots, x_k) \in \mathbb{N}^k \stackrel{\frown}{=} w_1^{x_1} w_2^{x_2} \cdots w_k^{x_k}$. Thus: $L \subset W_1^* W_2^* \cdots W_k^* = S(L) \subset \mathbb{N}^k$.
- Note that S(L) is semi-linear, since L is definable in +-inv-FO(<).
- Reason about semi-linear sets

Corollary:

Every commutative language definable in +-inv-FO(<) is regular.

Characterization of colored sets definable in +-inv-FO

Definition: A colored finite set is a finite relational structure over a finite signature that contains only unary relation symbols.

Theorem:

(S., Segoufin, 2010)

Over the class of colored finite sets, +-inv-FO(=) and FO_{Card}(=) have the same expressive power.

Proof:

- Every +-inv-FO(=) sentence over colored sets defines a commutative language.
- Every commutative language definable in +-inv-FO(<) is regular.
- Every regular language definable in +-inv-FO(=) is definable in FO_{Card}(=).

Characterization of colored sets definable in +-inv-FO

Definition: A colored finite set is a finite relational structure over a finite signature that contains only unary relation symbols.

Theorem:

(S., Segoufin, 2010)

Over the class of colored finite sets, +-inv-FO(=) and FO_{Card}(=) have the same expressive power.

Note: $FO_{Card}(=)$ is a logic (with a decidable syntax); +-inv-FO(=) is not.

More precisely: The following problem is undecidable:

Input: a FO(\prec , +, C)-sentence φ (C a unary relation symbol)

Question: Is φ addition-invariant on all finite $\{C\}$ -structures?

Overview

Introduction

Invariant logics

Expressiveness of order-invariant logics

Locality Results

Order- and Arb-invariant logics on strings and trees

Final Remarks

Gaifman-locality

If
$$\mathcal{N}_r^G(a) \cong \mathcal{N}_r^G(b)$$
 then $(a \in q(G) \iff b \in q(G))$.

Known:

- Queries definable in order-invariant FO are Gaifman-local with respect to a constant locality radius. (Grohe, Schwentick '98)
- Queries definable in Arb-invariant FO are Gaifman-local with respect to a poly-logarithmic locality radius.
 (Anderson, Melkebeek, S., Segoufin '11)

Open Question:

How about addition-invariant FO — is it Gaifman-local with respect to a constant locality radius?

Hanf-locality

A graph property p is Hanf-local w.r.t. locality radius r, if any two graphs having the same r-neighbourhood types with the same multiplicities, are not distinguished by p.

Known:

- Properties of graphs definable in FO are Hanf-local w.r.t. a constant locality radius. (Fagin, Stockmeyer, Vardi '95)
- Properties of strings or trees definable by order-invariant FO are Hanf-local w.r.t. a constant locality radius.
 (Benedikt, Segoufin '09)
- Properties of strings definable by Arb-invariant FO are Hanf-local w.r.t. a poly-logarithmic locality radius. (Anderson, van Melkebeek, S., Segoufin '11)
- Properties of strings definable by Arb-invariant FO+MOD_p, for odd prime powers p, are Hanf-local w.r.t. a poly-logarithmic locality radius. (Harwath, S. '13)

Open Question:

Which of these results generalise from strings to arbitrary finite graphs?

Decidable Characterisations

Open Question:

Are there decidable characterisations of

- order-invariant FO?
- addition-invariant FO?
- ► (+, ×)-invariant FO?

Known:

- On finite strings and trees: order-invariant FO \equiv FO. (Benedikt, Segoufin '10)
- On finite coloured sets: addition-invariant $FO \equiv FO$ enriched by "cardinality modulo" quantifiers. (S., Segoufin '10)

Thank You!