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INTRODUCTION

In this talk

» consider finite relational structures A = (A, R{*, ..., R{') over a finite
relational signature r = {Ry, ..., R;}
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INTRODUCTION

In this talk

v

consider finite relational structures A = (A, R{%, ..., R{) over a finite
relational signature r = {Ry, ..., R;}

> pis a T-property, if the following is true for all finite 7-structures A and B:
if A= B,then A has property p <= B has property p

> qis a k-ary T-query, if the following is true:
if m: A= B, thenforall ay,...,ax € A,
(a,...,ak) € q(A) <= (n(a1),...,7(a)) € q(B)

v

l.e., T-properties and queries are closed under isomorphisms.
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INTRODUCTION

Logics expressing 7-properties and queries
Classical logics like, e.g.
» FO (first-order logic: Boolean combinations + quantification over nodes)
» LFP (least fixed point logic: FO + inductive definitions of relations)
express T-properties and queries in a straightforward way.

Example: Consider graphs A = (A, E*). The query

q(A) = {xe€A: xliesonatriangle }

is expressed in FO via

o(x) = 3y3z(E(x,y) N E(y,2) A E(z,x))
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INTRODUCTION

Logics expressing 7-properties and queries
Classical logics like, e.g.
» FO (first-order logic: Boolean combinations + quantification over nodes)
» LFP (least fixed point logic: FO + inductive definitions of relations)
express T-properties and queries in a straightforward way.

Example: Consider graphs A = (A, E*). The query

q(A) = {xe€A: xliesonatriangle }

is expressed in FO via

o(x) = 3y3z(E(x,y) N E(y,2) A E(z,x))

Drawback:

FO and LFP are too weak to express (some) computationally easy properties, e.g.,
properties concerning the size of A or E4.

Stronger logics like, e.g., SO or ESO can express computationally hard properties
and queries.
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INVARIANT LOGICS

Overview

Invariant logics
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INVARIANT LOGICS

Invariant logics

Idea:
» Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, x, ..., Halt, ... on A.

» For this, identify A with the set [n] := {0,1,...,n—1} for n = |A]|
and interpret <, +, X, ..., Halt, ... in the natural way.
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Invariant logics

Idea:
» Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, x, ..., Halt, ... on A.

» For this, identify A with the set [n] := {0,1,...,n—1} for n = |A]|
and interpret <, +, x, ..., Halt, ... in the natural way.
» To ensure closure under isomorphisms, restrict attention to formulas

independent of the particular way of identifying A with [n].
These formulas are called Arb-invariant.

Definition: Let £ be a logic (e.g., FO, MSO, LFP).
A £(7, <)-formula (X) is order-invariant on A = (A, R{*,..., R{") «—
for all tuples of elements & in A, for all linear orders <1 and <, on A,

(A=) Ee@ < (A=) Eep)
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» For this, identify A with the set [n] := {0,1,...,n—1} for n = |A]|
and interpret <, +, x, ..., Halt, ... in the natural way.

» To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying A with [n].
These formulas are called Arb-invariant.
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Invariant logics

Idea:
» Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, x, ..., Halt, ... on A.

» For this, identify A with the set [n] := {0,1,...,n—1} for n = |A]|
and interpret <, +, x, ..., Halt, ... in the natural way.

» To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying A with [n].
These formulas are called Arb-invariant.

Definition: Let £ be a logic (e.g., FO, MSO, LFP).

A L(7, <, +, x)-formula ¢(X) is (+, x)-invarianton A = (A, R:,...,R{') +—
for all tuples of elements &in A, for all linear orders <y and <> on A, and the
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arithmetic predicates like <, +, x, ..., Halt, ... on A.

» For this, identify A with the set [n] := {0,1,...,n—1} for n = |A]|
and interpret <, +, x, ..., Halt, ... in the natural way.

» To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying A with [n].
These formulas are called Arb-invariant.

Definition: Let £ be a logic (e.g., FO, MSO, LFP).

A L(7,=<,+, %,...)-formula o(X) is Arb-invariant on A = (A, R{*,...,R{) —
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INVARIANT LOGICS

Invariant logics

Idea:
» Extend the expressive power of a logic by allowing formulas to also use
arithmetic predicates like <, +, x, ..., Halt, ... on A.

» For this, identify A with the set [n] := {0,1,...,n—1} for n = |A]|
and interpret <, +, x, ..., Halt, ... in the natural way.

» To ensure closure under isomorphisms, restrict attention to formulas
independent of the particular way of identifying A with [n].
These formulas are called Arb-invariant.

Definition: Let £ be a logic (e.g., FO, MSO, LFP).
A L(T,<,+, %,...)-formula p(X) is Arb-invarianton A = (A, R{%,...,R}) —
for all tuples of elements &in A, for all linear orders <y and <> on A, and the
matching addition relations ++, +2, and the according multiplications x4, x», and
other numerical predicates,

(A =141, x1,.) Fo(d) <= (A =<2, 42, X2,...) F ¢(d).
For Arb-invariant sentences, shortly write A |= ¢ for (A, <1, +1, X1...) E ¢.
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INVARIANT LOGICS

Example

e Let 7 = 0. An addition-invariant FO(r, <, +)-sentence ¢ such that
AE¢ <<= |A] isodd.

p = Hxﬂz(erx:z AVy(y<zV y:z)>
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AE¢ <<= |A] isodd.
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A=y <= |A| isaprime number.
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p = Hxﬂz(erx:z AVy(y<zV y:z)>

e Similarly, there is an (+, x)-invariant FO(r, <, +, x)-sentence v such that

A=y <= |A| isaprime number.

e And there is an Arb-invariant FO(r, <, Halt)-sentence x such that
AEx <= |A|-1 istheindex of a Turing machine halting on empty input :
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INVARIANT LOGICS

Example
e Let 7 = (. An addition-invariant FO(r, <, +)-sentence ¢ such that

AE¢ <<= |A] isodd.

p = Hxﬂz(erx:z AVy(y<zV y:z)>

e Similarly, there is an (+, x)-invariant FO(r, <, +, x)-sentence v such that

A=y <= |A| isaprime number.

e And there is an Arb-invariant FO(r, <, Halt)-sentence x such that
AEx <= |A|-1 istheindex of a Turing machine halting on empty input :

Simply choose  x = Ix (Hali(x) A Vy (y <x V y=Xx)).

Thus:
order-inv FO < addition-inv FO < (+, x)-inv FO < Arb-invariant FO.
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INVARIANT LOGICS

Expressive power of invariant logics

Known results:

» Order-invariant LFP precisely captures the polynomial time computable
T-properties and queries. (Immerman, Vardi, 1982)
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» Arb-invariant LFP precisely captures the 7-properties and queries that belong to
the comlexity class Py . (Makowsky, 1998)
Pjeoly consists of all problems solvable by circuit families of polynomial size

» Arb-invariant FO precisely captures the 7-properties and queries that belong to
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Expressive power of invariant logics

Known results:

» Order-invariant LFP precisely captures the polynomial time computable
T-properties and queries. (Immerman, Vardi, 1982)

» Arb-invariant LFP precisely captures the 7-properties and queries that belong to
the comlexity class Py . (Makowsky, 1998)
Pjeoly consists of all problems solvable by circuit families of polynomial size

» Arb-invariant FO precisely captures the 7-properties and queries that belong to
the circuit complexity class ACP.

AC? consists of all problems solvable by circuit families of polynomial size and
constant depth

> (4, x)-invariant FO precisely captures the T-properties and queries that belong
to uniform AC°.
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INVARIANT LOGICS

Order-invariance is undecidable

Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax.
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Order-invariance is undecidable

Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE {E, C}-STRUCTURES:
Input: a FO(E, C, <)-sentence ¢
Question: Is ¢ order-invariant on all finite { E, C}-structures?

Proof: By a reduction using Trakhtenbrot’s theorem.
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INVARIANT LOGICS

Order-invariance is undecidable

Invariant logics are not logics in the strict formal sense:
They have an undecidable syntax. Precisely:

The following problem is undecidable (for binary symbol E and unary symbol C):

ORDER-INVARIANCE ON FINITE {E, C}-STRUCTURES:
Input: a FO(E, C, <)-sentence ¢
Question: Is ¢ order-invariant on all finite { E, C}-structures?

Proof: By a reduction using Trakhtenbrot’s theorem.
» Assume, for contradiction, that order-invariance is decidable.

» Then, also the problem “Is a given FO(E)-sentence  true for all finite graphs?”
is decidable as follows:
(1) If there is a one-vertex-graph, in which ¢ is not true, then stop with output
“no”. Otherwise, proceed with (2).
(2) Let x be a formula that is not order-invariant on structures of size > 2.
E.g., x := 3Ix(C(x) AVy(x < y)).
Stop with output “yes” iff the formula (- — x) is order-invariant.
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INVARIANT LOGICS

Order- and addition-invariance for unary signatures

Let 7 = {Cy,..., C/} consist of unary relation symbols.

Theorem: Order-invariance of a given FO(r)-sentence ¢
(on the class of all finite 7-structures) is decidable.
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Order- and addition-invariance for unary signatures

Let 7 = {C4,..., C/} consist of unary relation symbols.

Theorem: Order-invariance of a given FO(7)-sentence ¢
(on the class of all finite 7-structures) is decidable.

Decision procedure:
> ¢ defines a language L of finite strings.
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INVARIANT LOGICS

Order- and addition-invariance for unary signatures

Let 7 = {C4,..., C/} consist of unary relation symbols.

Theorem: Order-invariance of a given FO(7)-sentence ¢
(on the class of all finite 7-structures) is decidable.
Decision procedure:

> ¢ defines a language L of finite strings.

> o is order-invariant <= L is commutative.

» Commutativity of regular string-languages is decidable.

Theorem: Addition-invariance of a given FO(C, <, +)-sentence ¢
(on the class of all finite { C}-structures) is not decidable.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 10/43



EXPRESSIVENESS

Overview

Expressiveness of order-invariant logics
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EXPRESSIVENESS

FO < order-invariant FO

Theorem (Gurevich):

Let 7 := {C} be a signature consisting of a single binary relation symbol C.

For a finite set X let Bx := (2%, C) be the Boolean algebra over X.
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For a finite set X let Bx := (2%, C) be the Boolean algebra over X.
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Theorem (Gurevich):

Let 7 := {C} be a signature consisting of a single binary relation symbol C.
For a finite set X let Bx := (2%, C) be the Boolean algebra over X.

There is an order-invariant FO(r, <)-sentence geven such that for every finite set X:

Bx ': Yeven < |X| is even.
But there is no FO(7)-sentence veven such that for every finite set X:

Bx E Yeven < |X| is even.

Proof:

Part 1: peven €Xpresses that there is a set z that contains the first (w.r.t. <) atom of
X, every other (w.r.t. <) atom of X, but not the last (w.r.t. <) atom of X.
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EXPRESSIVENESS

FO < order-invariant FO

Theorem (Gurevich):

Let 7 := {C} be a signature consisting of a single binary relation symbol C.
For a finite set X let Bx := (2%, C) be the Boolean algebra over X.

There is an order-invariant FO(r, <)-sentence geven such that for every finite set X:

Bx ':QOeven < |X| is even.

But there is no FO(7)-sentence veven such that for every finite set X:

Bx E Yeven < |X| is even.

Proof:

Part 1: peven €Xpresses that there is a set z that contains the first (w.r.t. <) atom of
X, every other (w.r.t. <) atom of X, but not the last (w.r.t. <) atom of X.

Part 2: Use an Ehrenfeucht-Fraissé game argument to show that
Bx =, By for all finite X, Y of cardinality > 2". O
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EXPRESSIVENESS

Successor-invariant FO

By a much more elaborate construction, one can also show:

Theorem (Rossman, LICS’03)

On the class of all finite structures,
successor-invariant FO is strictly more expressive than FO.
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EXPRESSIVENESS

FO+MOD, < order-invariant FO4+MOD,

FO+MOD: : the extension of FO by modulo 2 counting quantifiers
3rmod 2y 45(x) : the number of nodes x satisfying 4 (x) is congruent r modulo 2.

Theorem (Niemistd):
Let 7 := { E} be a signature consisting of a single binary relation symbol E.

There is an order-invariant FO+MOD5( E)-sentence weven oycies that is satisfied by a
finite directed graph G = (V, E) iff

(1) Gis adisjoint union of directed cycles, and
(2) the number of even-length cycles is even.
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(1) Gis adisjoint union of directed cycles, and
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Proof:
> (1) can be expressed in FO: “every node has in- and out-degree 1”
» Every G satisfying (1) is the cycle decomposition of a permutation .
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EXPRESSIVENESS

FO+MOD, < order-invariant FO4+MOD,

FO+MOD: : the extension of FO by modulo 2 counting quantifiers
3rmod 2y 45(x) : the number of nodes x satisfying 4 (x) is congruent r modulo 2.

Theorem (Niemistd):
Let 7 := { E} be a signature consisting of a single binary relation symbol E.

There is an order-invariant FO+MOD5( E)-sentence weven oycies that is satisfied by a
finite directed graph G = (V, E) iff

(1) Gis adisjoint union of directed cycles, and
(2) the number of even-length cycles is even.

Proof:
> (1) can be expressed in FO: “every node has in- and out-degree 1”
» Every G satisfying (1) is the cycle decomposition of a permutation .
» G has an even number of even-length cycles <~
m is an even permuatation, i.e., sgn(w) =1 <—
7 has an even number of inversions (i, j) such that i < j and = (i) > =(j).
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EXPRESSIVENESS

Order-invariant MSO

CMSO : the extension of MSO by modulo counting quantifiers
3rmed my 4 (x) : the number of nodes x satisfying ¥ (x) is congruent r modulo m.
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Order-invariant MSO

CMSO : the extension of MSO by modulo counting quantifiers
3rmed my 4 (x) : the number of nodes x satisfying ¥ (x) is congruent r modulo m.

Known:

» On trees:
Order-invariant MSO = CMSO (Courcelle 1996, Lapoire 1998)

» On the class of all finite structures:
Order-invariant MSO > CMSO (Ganzow, Rubin 2008)

The separating example:

» Consider 2-dimensional grids, represented as structures of the form
(A, Same_Row, Same_Column).

» Order-invariant MSO can express that
the number of columns is a multiple of the number of rows.

» CMSO cannot (for showing this, use a variant of EF-games).
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LocALITY

Overview

Locality Results
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LocALITY

Neighborhoods
Graph G = (V,E)
Distance dist(u, v) : length of a shortest path between u, v in G.
Shell S;(a) of nodes at distance exactly r from a.
Ball N;(a) of radius r at ain G.
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Distance dist(u, v) : length of a shortest path between u, v in G.
Shell S;(a) of nodes at distance exactly r from a.
Ball N;(a) of radius r at ain G.
Neighborhood N (a) of radius r at ain G.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 17/43



LocALITY

Gaifman-local queries

» Foralista=a,...,ax of nodes, N°(a) = N%(a;) U--- U NS(a).

» The r-neighborhood N.6(a) is the structure (G‘Nre(a), a) consisting of the induced
subgraph of G on NZ(a), together with the distinguished nodes a.

Definition: Let q be a k-ary graph query. Let f: N — N.

g is called f(n)-local if there is an ngy such that for every n > no and every graph G
with | V€| = n, the following is true for all k-tuples a and b of nodes:

it Ni(@) = Ny(b) then ac q(G) <= be q(G).
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LocALITY

Gaifman-locality of FO

Theorem:
» For every graph query q that is FO-definable,

there is a constant ¢ such that q is c-local.
(Hella, Libkin, Nurmonen 1990s; Gaifman '82)
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» For every graph query g that is FO-definable on ordered graphs
(for short: g is definable in order-invariant FO),
there is a constant ¢ such that q is c-local.
(Grohe, Schwentick '98)
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Gaifman-locality of FO

Theorem:

» For every graph query q that is FO-definable,
there is a constant ¢ such that q is c-local.
(Hella, Libkin, Nurmonen 1990s; Gaifman '82)

» For every graph query q that is FO-definable on ordered graphs
(for short: g is definable in order-invariant FO),
there is a constant ¢ such that q is c-local.
(Grohe, Schwentick '98)

» For every graph query q that is FO-definable on graphs with arbitrary numerical
predicates (for short: q is definable in Arb-invariant FO),
there is a constant ¢ such that g is (log n)°-local.
(Anderson, van Melkebeek, S., Segoufin ’11)
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LocALITY

Use locality for proving non-expressibility

Example: The reachability query
REACH(G) := {(a1,a2) : there is a directed path from a; to a in G }

is not £-local an thus cannot be expressed in Arb-invariant FO.

Proof: Consider the graph G: a, b
1

aj b2
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LocALITY

Use locality for proving non-expressibility

Similarly, one obtains that the following queries are not definable in Arb-invariant FO:

Does node x lie on a cycle?

e Does node x belong to a connected component that is acyclic?

Is node x reachable from a node that belongs to a triangle?

Do nodes x and y have the same distance to node z?
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LocALITY

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a ¢ € N such that
q is (log n)°-local.
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Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a ¢ € N such that
q is (log n)°-local.

‘ Idea: Use known lower bounds in circuit complexity!
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‘ Idea: Use known lower bounds in circuit complexity!

> Let g be expressible by an Arb-invariant FO formula.

» Then, g can be computed by an AC? circuit family C (Immerman '87).
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LocALITY

Proof of Gaifman-locality theorem (1/5)

For every query q expressible by Arb-invariant FO, there is a ¢ € N such that
q is (log n)°-local.

’ Idea: Use known lower bounds in circuit complexity!

v

Let g be expressible by an Arb-invariant FO formula.

» Then, g can be computed by an AC? circuit family ¢ (Immerman '87).

\4

Assume that g is not (log n)°-local (for any ¢ € N), and
modify C to obtain an AC? circuit family computing

PARITY := {w € {0,1}" : |w|; is even}.

v

This contradicts known lower bounds in circuit complexity theory (Hastad’86).
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Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by an AC° circuit family C ?

e Represent graph G = (V, E) by a bitstring
B(G) corresponding to an adjacency matrix for G.
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How to compute a graph query q(x) by an AC° circuit family C ?

e Represent graph G = (V, E) by a bitstring
B(G) corresponding to an adjacency matrix for G.

e Represent a node a € V by the bitstring

B(a) of the form 0*10*, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.
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o Let Rep(G, a) be the set of all bitstrings 3(G)S(a), corresponding to all
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o Let Rep(G, a) be the set of all bitstrings 3(G)S(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding Vin {1,...,|V|}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

e A unary graph query gq(x) is computed by a circuit family C = (Cn)nen iff the

following is true:
forall G=(V,E),ac V,y < Rep(G,a): ac q(G) < C, accepts ~.
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Proof of Gaifman-locality theorem (2/5)
How to compute a graph query q(x) by an AC° circuit family C ?

e Represent graph G = (V, E) by a bitstring
B(G) corresponding to an adjacency matrix for G.

e Represent a node a € V by the bitstring
B(a) of the form 0*10*, carrying the 1 at position i iff node a corresponds to the
i-th row/column of the adjacency matrix.

o Let Rep(G, a) be the set of all bitstrings 3(G)S(a), corresponding to all
adjacency matrices of G (i.e., all ways of embedding Vin {1,...,|V|}).
Thus, Rep(G, a) is the set of all bitstrings representing (G, a).

e A unary graph query gq(x) is computed by a circuit family C = (Cn)nen iff the
following is true:
forall G=(V,E),ac V,y < Rep(G,a): ac q(G) < C, accepts ~.

e Known: A unary graph query g(x) is definable in Arb-invariant FO <
it is computed by a circuit family of constant depth and polynomial size.
(implicit in Immerman’87)
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LocALITY

Proof of Gaifman-locality theorem (3/5)

Let g(x) be a unary graph query expressible in Arb-invariant FO.
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For contradiction, assume g(x) is not (log n)°-local, for any ¢ € N.
Thus: For all ¢, ng there exist n > ng, G = (V, E) with n nodes, a, b € V such that
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Thus: For all ¢, ng there exist n > ng, G = (V, E) with n nodes, a, b € V such that

for m:= (logn)®, NgS(a)= NS(b),butac q(G)and b ¢ q(G).
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For contradiction, assume g(x) is not (log n)°-local, for any ¢ € N.
Thus: For all ¢, ng there exist n > ng, G = (V, E) with n nodes, a, b € V such that
for m:= (logn)®, NgS(a)= NS(b),butac q(G)and b ¢ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:

LetmeN, G=(V,E), a,b € V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.
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Let g(x) be a unary graph query expressible in Arb-invariant FO. Let C = (Cs)nen be
a circuit family of constant depth d and polynomial size p(n) computing g.
le,forall G=(V,E),ac V,v € Rep(G,a): ac q(G) < Cj, accepts ~.

For contradiction, assume g(x) is not (log n)°-local, for any ¢ € N.
Thus: For all ¢, ng there exist n > ng, G = (V, E) with n nodes, a, b € V such that
for m:= (logn)®, NgS(a)= NS(b),butac q(G)and b ¢ q(G).

For simplicity, consider the special case that dist(a, b) > 2m.

Key Lemma:

LetmeN, G=(V,E), a,b € V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Theorem: (Hastad '86)
There exist £, my > 0 such that for all m > my, no circuit of depth d and size
ot:m!/(@=D computes parity on m bits.

) > 2[(Iogn)2 — nllogn > p(n) 0O
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LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:
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Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 25/43



LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 25/43



LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:
Consider w € {0,1}".

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 25/43



LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:
Consider w € {0,1}".

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 25/43



LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:
Consider w € {0,1}".

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 25/43



LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".
Forie {0,1,...,m—1} withw; = 1:

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 25/43



LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".
Forie {0,1,...,m—1} withw; = 1:

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 25/43



LocALITY

Proof of Gaifman-locality theorem (4/5)
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LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 25/43



LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 25/43



LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 25/43



LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 25/43



LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 25/43



LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
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Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

The resulting graph Gw = G.
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(G, b), if|w|; odd
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LocALITY

Proof of Gaifman-locality theorem (4/5)

Key Lemma:

LetmeN, G=(V,E), a,bc V such that N5 (a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

Proof:

Consider w € {0,1}".

Forie {0,1,...,m—1} withw; = 1:
Swap the endpoints of the edges

leaving N;(a) with the corresponding
endpoints of the edges leaving N;(b).

The resulting graph G, = G.
(G,a), if|w|seven
Gu,a) =
(G, 2) {(G,b), if [w|; odd
Circuit C distinguishes these cases.
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LocALITY

Proof of Gaifman-locality theorem (5/5)

Key Lemma:

LetmeN, G=(V,E), a,b € V such that N'5(a) = N5 (b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).
Then there is a circuit C of the same size & depth as C computing parity on m bits.

How to obtain C from C?

» Consider C for a fixed input string v € Rep(G, a).
» Fix all input bits (as in ) that do not correspond to potential edges between the
shells S; and S, 1, fori < m.
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Proof of Gaifman-locality theorem (5/5)

Key Lemma:
LetmeN, G= (V,E), a,be V suchthat N5(a) = NE(b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

How to obtain C from C?

» Consider C for a fixed input string v € Rep(G, a).

» Fix all input bits (as in ) that do not correspond to potential edges between the
shells S; and S, 1, fori < m.

» Foralli< mandallu e Si(a), v e Si;1(a) consider the potential edges

e={u,v}, & = {n(u),n(v)}, &= {u,n(v)}, & = {n(v), v}

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 26/43



LocALITY

Proof of Gaifman-locality theorem (5/5)

Key Lemma:

LetmeN, G= (V,E), a,be V suchthat N5(a) = NE(b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

How to obtain C from C?

» Consider C for a fixed input string v € Rep(G, a).

» Fix all input bits (as in ) that do not correspond to potential edges between the
shells S; and S, 1, fori < m.

» Foralli< mandallu e Si(a), v e Si;1(a) consider the potential edges
e={u,v}, & = {n(u),n(v)}, &= {u,n(v)}, & = {n(v), v}
» Replace input gates of C as follows:
e by (en-w) e by (' A—-w)
é by (eAw) & by (¢ Aw)
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Proof of Gaifman-locality theorem (5/5)

Key Lemma:

LetmeN, G= (V,E), a,be V suchthat N5(a) = NE(b) and dist(a, b) > 2m.
Let circuit C accept all strings in Rep(G, a) and reject all strings in Rep(G, b).

Then there is a circuit C of the same size & depth as C computing parity on m bits.

How to obtain C from C?

» Consider C for a fixed input string v € Rep(G, a).

» Fix all input bits (as in ) that do not correspond to potential edges between the
shells S; and S, 1, fori < m.

» Foralli< mandallu e Si(a), v e Si;1(a) consider the potential edges
e={u,v}, & = {n(u),n(v)}, &= {u,n(v)}, & = {n(v), v}
» Replace input gates of C as follows:
e by (en-w) e by (' A—-w)
é by (eAw) & by (¢ Aw)

» This yields a circuit C of the same size and depth as C which, on input
w € {0,1}™ does the same as C on input (Gw, a).
Thus, C accepts iff |w|y is even. O
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LocALITY

Summary: Gaifman-locality of Arb-invariant FO (1/2)

Theorem: (Anderson, Melkebeek, S., Segoufin ’11)

(a) For every query q expressible by Arb-invariant FO there is a ¢ € N such that
q is (log n)°-local.
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Summary: Gaifman-locality of Arb-invariant FO (1/2)

Theorem: (Anderson, Melkebeek, S., Segoufin '11)

(a) For every query q expressible by Arb-invariant FO there is a ¢ € N such that
q is (log n)°-local.

(b) Forevery d € N there is a (+, x)-invariant FO query that is not (log n)?-local.

The query qq(x) states:

(1) The graph has at most (log n)®*" non-isolated vertices.

(2) Node x is reachable from a node that belongs to a triangle.

Note: This query is not (log n)9-local.
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(a) For every query q expressible by Arb-invariant FO there is a ¢ € N such that
q is (log n)°-local.

(b) Forevery d € N there is a (+, x)-invariant FO query that is not (log n)?-local.

The query qq(x) states:

(1) The graph has at most (log n)®*" non-isolated vertices.

(Use the polylog-counting capability of FO(+, x))
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LocALITY

Summary: Gaifman-locality of Arb-invariant FO (1/2)

Theorem: (Anderson, Melkebeek, S., Segoufin '11)

(a) For every query q expressible by Arb-invariant FO there is a ¢ € N such that
q is (log n)°-local.

(b) Forevery d € N there is a (+, x)-invariant FO query that is not (log n)?-local.

The query qq(x) states:
(1) The graph has at most (log n)®*" non-isolated vertices.
(Use the polylog-counting capability of FO(+, x))

(2) Node x is reachable from a node that belongs to a triangle.

(Show that in graphs satisfying (1), reachability by paths of length (log n)®*" can
be expressed in (+, x)-invariant FO)

Note: This query is not (log n)9-local.
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LocALITY

Summary: Gaifman-locality of Arb-invariant FO (2/2)

Goal: Show that in graphs with < (log n)¢ non-isolated vertices, reachability by
paths of length (log n)° can be expressed in (+, x)-invariant FO.
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LocALITY

Summary: Gaifman-locality of Arb-invariant FO (2/2)

Goal: Show that in graphs with < (log n)¢ non-isolated vertices, reachability by
paths of length (log n)° can be expressed in (+, x)-invariant FO.

Lemma: (Durand, Lautemann, More "07)
For every ¢ € N there is a FO(<, +, x, S)-formula bij,(x, y) such that for all
neN,allS§C[n]:=1{0,...,n—-1}, alla,i < n we have

([n], <,+, %, S) E bij,(a,i) < |S] < (logn)® and
a is the i-th smallest element of S.

» Using this, identify the non-isolated vertices with numbers < (log n)¢ and
represent them by bitstrings of length clog log n.
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paths of length (log n)° can be expressed in (+, x)-invariant FO.

Lemma: (Durand, Lautemann, More "07)
For every ¢ € N there is a FO(<, +, x, S)-formula bij,(x, y) such that for all
neN,allS§C[n]:=1{0,...,n—-1}, alla,i < n we have

([n], <,+, %, S) E bij,(a,i) < |S] < (logn)® and
a is the i-th smallest element of S.

» Using this, identify the non-isolated vertices with numbers < (log n)¢ and
represent them by bitstrings of length clog log n.
» Identify an arbitrary vertex of G with a number < n, whose binary representation

encodes a sequence of ¢(n) := Cl;z%ggn non-isolated vertices.

» Use this to express that there is a path of length ¢(n) from node x to node y.
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LocALITY

Summary: Gaifman-locality of Arb-invariant FO (2/2)

Goal: Show that in graphs with < (log n)¢ non-isolated vertices, reachability by
paths of length (log n)° can be expressed in (+, x)-invariant FO.

Lemma: (Durand, Lautemann, More "07)
For every ¢ € N there is a FO(<, +, x, S)-formula bij,(x, y) such that for all
neN,allS§C[n]:=1{0,...,n—-1}, alla,i < n we have

([n], <,+, %, S) E bij,(a,i) < |S] < (logn)® and
a is the i-th smallest element of S.

» Using this, identify the non-isolated vertices with numbers < (log n)¢ and
represent them by bitstrings of length clog log n.

» Identify an arbitrary vertex of G with a number < n, whose binary representation

encodes a sequence of £(n) := Clc'f’;ilgw non-isolated vertices.

» Use this to express that there is a path of length ¢(n) from node x to node y.
> lterate this for c+1 times to express that there is a path of length
£(n)°*" > (log n)° from x to y. O
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LocALITY

Locality of Arb-invariant FO+MOD,

In a similar way, we can also prove:

Theorem: (Harwath, S., 2013)

Let p be a prime power and let k € N be coprime with p.
For every k-ary query q expressible in Arb-invariant FO+MOD,, thereisac € N

such that q is (log n)°-shift-local w.r.t. k.
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In a similar way, we can also prove:

Theorem: (Harwath, S., 2013)

Let p be a prime power and let k € N be coprime with p.
For every k-ary query q expressible in Arb-invariant FO+MOD,, thereisac € N

such that q is (log n)°-shift-local w.r.t. k.

Definition: Let q be a k-ary graph query. Let f: N — N.
g is called f(n)-shift-local w.r.t. k if there is an ny such that for every n > ng and every
graph G with |VE| = n, the following is true for all k-tuples (ao, . . ., ax_1) of nodes:

if the f(n)-neighborhoods of the a; are disjoint and isomorphic,

then (ao,ai,...,ak—1) € Q(G) < (ai,...,a-1,a) € q(G).
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Definition: Let q be a k-ary graph query. Let f: N — N.

g is called f(n)-shift-local w.r.t. k if there is an ny such that for every n > ng and every
graph G with |VE| = n, the following is true for all k-tuples (ao, . . ., ax_1) of nodes:

if the f(n)-neighborhoods of the a; are disjoint and isomorphic,

then (ao,ai,...,ak—1) € Q(G) < (ai,...,a-1,a) € q(G).

Proof: Use Smolensky’s result for AC®[p]-circuits.
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LocALITY

Locality of Arb-invariant FO+MOD,

In a similar way, we can also prove:

Theorem: (Harwath, S., 2013)
Let p be a prime power and let k € N be coprime with p.

For every k-ary query q expressible in Arb-invariant FO+MOD,, thereisac € N
such that q is (log n)°-shift-local w.r.t. k.

Definition: Let q be a k-ary graph query. Let f: N — N.

g is called f(n)-shift-local w.r.t. k if there is an ny such that for every n > ng and every
graph G with | V€| = n, the following is true for all k-tuples (o, . . ., ax_1) of nodes:

if the f(n)-neighborhoods of the a; are disjoint and isomorphic,

then (ao,ai,...,ak—1) € Q(G) < (ai,...,a-1,a) € q(G).

Proof: Use Smolensky’s result for AC®[p]-circuits.

Corollary: Reachability is not definable in Arb-invariant FO+MOD,
(for prime power p).
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STRINGS AND TREES

Overview

Order- and Arb-invariant logics on strings and trees
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STRINGS AND TREES

Represent words as labeled graphs

(labeled) chain-graphs .................. this chain-graph represents the string rbrg.
o—0—0—0

Edges correspond to the successor relation “succ” on the positions of the string.
Write < -inv-FO(succ) for order-invariant FO on these graphs.
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STRINGS AND TREES

Represent words as labeled graphs

(labeled) chain-graphs .................. this chain-graph represents the string rbrg.
o—0—0—0

Edges correspond to the successor relation “succ” on the positions of the string.

Write < -inv-FO(succ) for order-invariant FO on these graphs.
Write +-inv-FO(succ) for addition-invariant FO on these graphs.
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STRINGS AND TREES

Known results

FO(succ) = locally threshold testable languages (Thomas)
FO(<) = star-free regular languages (McNaughton, Papert)
MSO(<) = regular languages (Buchi, Elgot, Trakhtenbrot)

MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)
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STRINGS AND TREES

Known results

FO(succ) = locally threshold testable languages (Thomas)
FO(<) = star-free regular languages (McNaughton, Papert)
MSO(<) = regular languages (Buchi, Elgot, Trakhtenbrot)

MSO(<) = MSO(succ) = MLFP(<) = MLFP(succ)

<-inv-FO(succ) = FO(succ) (Benedikt, Segoufin, 2005)
+-inv-MLFP(succ) > DLIN (S., 2004)
+-inv-MSO(succ) = the linear time hierarchy (More & Olive 1997, S. 2004)

FO(<) = =-inv-FO(<) & +-inv-FO(<) & (4, x)-inv-FO(<) C uniform AC°.

The following problem is undecidable: (Benedikt, Segoufin, 2005)

ORDER-INVARIANCE ON FINITE LABELED CHAIN-GRAPHS:
Input: a FO(=, E)-sentence ¢
Question: s ¢ order-invariant on all finite labeled chain-graphs?
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STRINGS AND TREES

The “Algebraic” Approach

Let Ly and L, be logics, and let C be a class of structures.

Goal: Show that L can define exactly the same properties of C-structures as Lo.

Approach:
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Let Ly and L, be logics, and let C be a class of structures.

Goal: Show that L can define exactly the same properties of C-structures as Lo.

Approach:

(0) Identify a suitable set of operations O on structures in C.
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STRINGS AND TREES

The “Algebraic” Approach
Let Ly and L, be logics, and let C be a class of structures.
Goal: Show that L can define exactly the same properties of C-structures as Lo.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L iff it is closed under
every operation op € O.
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The “Algebraic” Approach

Let Ly and L, be logics, and let C be a class of structures.

Goal: Show that L can define exactly the same properties of C-structures as Lo.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L iff it is closed under
every operation op € O. l.e., forevery A € C:

A has property p < op(.A) has property p.
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STRINGS AND TREES

The “Algebraic” Approach

Let Ly and L, be logics, and let C be a class of structures.

Goal: Show that L can define exactly the same properties of C-structures as Lo.

Approach:

(0) Identify a suitable set of operations O on structures in C.

(1) Show that a property p of C-structures is definable in L iff it is closed under
every operation op € O. l.e., forevery A € C:

A has property p < op(.A) has property p.

(2) Show that a property p of C-structures is closed under every operation op € O
iff it is definable in L.
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STRINGS AND TREES

An example

Theorem (Benedikt, Segoufin, '09):
A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).
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STRINGS AND TREES

An example
Theorem (Benedikt, Segoufin, '09):
A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

» Use a result by Beauquier and Pin (1989) stating that a string-language is
definable in FO(succ) iff it is aperiodic and closed under swaps.
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STRINGS AND TREES

An example

Theorem (Benedikt, Segoufin, '09):
A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

» Use a result by Beauquier and Pin (1989) stating that a string-language is
definable in FO(succ) iff it is aperiodic and closed under swaps.
o A string language L is aperiodic iff there exists a number ¢ € N such that for
all strings u, x, v we have

041

ux‘vel «— ux'vel
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STRINGS AND TREES

An example

Theorem (Benedikt, Segoufin, '09):
A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

» Use a result by Beauquier and Pin (1989) stating that a string-language is
definable in FO(succ) iff it is aperiodic and closed under swaps.

o A string language L is aperiodic iff there exists a number ¢ € N such that for
all strings u, x, v we have

041

ux‘vel «— ux'vel

o [ is closed under swaps iff for all strings u, v, e, x, y, z such that e, f are
idempotents (i.e., for all u, v we have uev € L iff ue®v € L), we have

uexfyezfvel <+ uezfyexfv e L
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STRINGS AND TREES

An example

Theorem (Benedikt, Segoufin, '09):
A string-language is definable in <-inv-FO(succ) iff it is definable in FO(succ).

Main ingredients of the proof:

» Use a result by Beauquier and Pin (1989) stating that a string-language is
definable in FO(succ) iff it is aperiodic and closed under swaps.

o A string language L is aperiodic iff there exists a number ¢ € N such that for
all strings u, x, v we have

041

ux‘vel «— ux'vel

o [ is closed under swaps iff for all strings u, v, e, x, y, z such that e, f are
idempotents (i.e., for all u, v we have uev € L iff ue®v € L), we have

uexfyezfvel <« uezfyexfv e L

» Show that every string-language definable in <-inv-FO(succ) is aperiodic and
closed under swaps.

(For this, you can use Ehrenfeucht-Fraissé games.)
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STRINGS AND TREES

Some further results proved using this method

Theorem:
> A tree-language is definable in <-invariant FO(Succ) iff

it is definable in FO(Succ). (Benedikt, Segoufin '09)
(They use aperiodicity and closure under guarded swaps.)
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> A tree-language is definable in <-invariant FO(Succ) iff
it is definable in FO(Succ). (Benedikt, Segoufin '09)
(They use aperiodicity and closure under guarded swaps.)

» A colored finite set is definable in +-invariant FO iff it is definable in FOcarq (i-€.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).
(S., Segoufin ’10)
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Some further results proved using this method

Theorem:

> A tree-language is definable in <-invariant FO(Succ) iff
it is definable in FO(Succ). (Benedikt, Segoufin '09)
(They use aperiodicity and closure under guarded swaps.)

» A colored finite set is definable in +-invariant FO iff it is definable in FOcarq (i-€.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).
(S., Segoufin ’10)

» A regular string- or tree-language is definable in +-invariant FO(Succ) iff
it is definable in FOcarq(succ). (S., Segoufin’10 and Harwath, S.’12)
(They use closure under transfers and closure under guarded swaps.)

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 35/43



STRINGS AND TREES

Some further results proved using this method

Theorem:

> A tree-language is definable in <-invariant FO(Succ) iff
it is definable in FO(Succ). (Benedikt, Segoufin '09)
(They use aperiodicity and closure under guarded swaps.)

» A colored finite set is definable in +-invariant FO iff it is definable in FOcarq (i-€.,
FO with predicates testing the cardinality of the universe modulo fixed numbers).
(S., Segoufin ’10)

» A regular string- or tree-language is definable in +-invariant FO(Succ) iff
it is definable in FOcarq(succ). (S., Segoufin’10 and Harwath, S.’12)
(They use closure under transfers and closure under guarded swaps.)

» A regular string-language is definable in Arb-invariant FO(Succ) iff it is definable
in FOcara(Succ). (Anderson, van Melkebeek, S., Segoufin '11)
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STRINGS AND TREES

An open question

Open Question:
Are all languages definable in addition-invariant FO regular?

Known: (S., Segoufin, 2010)
» Arb-invariant FO can define non-regular languages, e.g.,
L={we {1} : |w|is a prime number }.
» Every deterministic context-free language definable in addition-invariant FO is
regular.
» Every commutative language definable in addition-invariant FO is regular.

» Every bounded language definable in addition-invariant FO is regular.
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STRINGS AND TREES

Bounded languages

Definition: (Ginsburg & Spanier, 1964)
L C X*isbounded <=
JkeN and kstrings wy,...,wx € £* suchthat L C wyws - wy.
Theorem: (S., Segoufin, 2010)

Every bounded language definable in +-inv-FO(<) is regular.
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STRINGS AND TREES

Bounded languages
(Ginsburg & Spanier, 1964)

Definition:
L C X*isbounded <=
JkeN and kstrings wy,...,wx € £* suchthat L C wyws - wy.
Theorem: (S., Segoufin, 2010)

Every bounded language definable in +-inv-FO(<) is regular.

Proof method:
e Identify wiws .- wy with N via  (xi,...,x) € N* = w w? . wr.
Thus: LCwiws---w;y = S(L)CNK

o Note that S(L) is semi-linear, since L is definable in +-inv-FO(<).

e Reason about semi-linear sets ...
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STRINGS AND TREES

Bounded languages
(Ginsburg & Spanier, 1964)

Definition:
L C X*isbounded <=
JkeN and kstrings wy,...,wx € £* suchthat L C wyws - wy.
Theorem: (S., Segoufin, 2010)

Every bounded language definable in +-inv-FO(<) is regular.

Proof method:
e Identify wiws .- wy with N via  (xi,...,x) € N* = w w? . wr.
Thus: LCwiws---w;y = S(L)CNK

o Note that S(L) is semi-linear, since L is definable in +-inv-FO(<).

e Reason about semi-linear sets ...

Corollary:

Every commutative language definable in +-inv-FO(<) is regular.
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STRINGS AND TREES

Characterization of colored sets definable in +-inv-FO

Definition: A colored finite set is a finite relational structure over a finite signature
that contains only unary relation symbols.

Theorem: (S., Segoufin, 2010)

Over the class of colored finite sets, +-inv-FO(=) and FOcaq(=) have the same
expressive power.

Proof:

e Every +-inv-FO(=) sentence over colored sets defines a
commutative language.

e Every commutative language definable in +-inv-FO(<) is regular.

e Every regular language definable in +-inv-FO(=) is definable in FOca4(=).
O
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STRINGS AND TREES

Characterization of colored sets definable in +-inv-FO

Definition: A colored finite set is a finite relational structure over a finite signature
that contains only unary relation symbols.

Theorem: (S., Segoufin, 2010)

Over the class of colored finite sets, +-inv-FO(=) and FOcaq(=) have the same
expressive power.

Note: FOcaq(=) is a logic (with a decidable syntax); +-inv-FO(=) is not.
More precisely: The following problem is undecidable:

Input: a FO(=, +, C)-sentence ¢ (C a unary relation symbol)
Question: Is ¢ addition-invariant on all finite { C}-structures ?
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FINAL REMARKS

Overview

Final Remarks
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FINAL REMARKS

Gaifman-locality
If VF(a) = NF(b) then (a€ q(G) < b e q(q)).

Known:

> Queries definable in order-invariant FO are Gaifman-local with respect to a
constant locality radius. (Grohe, Schwentick '98)

» Queries definable in Arb-invariant FO are Gaifman-local with respect to a
poly-logarithmic locality radius. (Anderson, Melkebeek, S., Segoufin ’11)

Open Question:

» How about addition-invariant FO — is it Gaifman-local with respect to a
constant locality radius?

NICOLE SCHWEIKARDT A TUTORIAL ON ORDER- AND ARB-INVARIANT LOGICS 40/43



FINAL REMARKS

Hanf-locality

A graph property p is Hanf-local w.r.t. locality radius r, if

any two graphs having the same r-neighbourhood types with the same multiplicities,

are not distinguished by p.

Known:

>

Properties of graphs definable in FO are Hanf-local w.r.t. a constant locality

radius. (Fagin, Stockmeyer, Vardi '95)
Properties of strings or trees definable by order-invariant FO are Hanf-local w.r.t.
a constant locality radius. (Benedikt, Segoufin '09)

Properties of strings definable by Arb-invariant FO are Hanf-local w.r.t. a
poly-logarithmic locality radius. (Anderson, van Melkebeek, S., Segoufin ’11)

Properties of strings definable by Arb-invariant FO4+MOD,, for odd prime powers
p, are Hanf-local w.r.t. a poly-logarithmic locality radius. (Harwath, S.’'13)

Open Question:

>

Which of these results generalise from strings to arbitrary finite graphs?
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FINAL REMARKS

Decidable Characterisations

Open Question:
Are there decidable characterisations of

» order-invariant FO?
» addition-invariant FO?
> (4, x)-invariant FO?

Known:

» On finite strings and trees: order-invariant FO = FO.  (Benedikt, Segoufin '10)

» On finite coloured sets: addition-invariant FO = FO enriched by “cardinality
modulo” quantifiers. (S., Segoufin '10)
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FINAL REMARKS

Thank You!
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