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Outline of this talk

I 0. Prelude: What good are semigroups?
I 1. Four decades of research on the application of the

algebraic theory of semigroups to problems about the
expressive power of logics on words.

I 2. Efforts (failures? challenges?) to extend the reach of
these techniques beyond regular languages of finite words:
(a) boolean circuit complexity (b) logics on trees.



Part 1: Weeds



A question on my oral qualifying exam in Algebra,
1975

How many groups of order 45 are there?

Answer: 2, both abelian. (I Googled it.)
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Semigroups

A semigroup is a set together with an associative
multiplication. (A monoid is a semigroup with an identity
element.)

Semigroups suffer from an image problem: Even the name
makes it sound like it is something trying hard to be a
group but not succeeding.



Theorem: Almost all finite semigroups are garbage.

(Kleitman, Rothchild, Spencer)
I s(n): number of semigroups of order n.
I t(n): number of semigroups of order n satisfying identity

xyz = 0 where 0 · x = 0 = x · 0 for all elements x .
I Then

lim
n→∞

t(n)

s(n)
= 1.



“Finite group theory is like an exotic garden, where everything
that grows is a beautiful flower. Finite semigroup theory is more
like a yard full of weeds.”

–John Rhodes



This is not a defect of semigroup theory! It is a result of not
looking at semigroups the right way or asking the right
questions about them.



Part 2: Where do Semigroups Appear in Natre?



Finite automata

Minimal automaton accepting the set of strings
corresponding to the regular expression (a + b + c)∗bc∗



Syntactic monoid

Each word w in {a,b, c}∗ induces a function [w ] from
{1,2} to itself.

c∗ : 1 7→ 1 2 7→ 2
(a + b + c)∗bc∗ : 1 7→ 2, 2 7→ 2
(a + b + c)∗ac∗ : 1 7→ 1, 2 7→ 1

This is a 3-element monoid U2 with left-to-right function
composition as the operation. ([u][v ] = [uv ].)
The pair ({1,2},U2) is a transformation monoid.
M(L): syntactic monoid of L ⊆ A∗, transition monoid of
minimal automaton of L.



Big Idea

Structure of the syntactic monoid of a language tells us
something about definability of the language in various logics.



Part 3. The Theorem of McNaughton-Papert
and Schützenberger, and its Progeny



FO[<]

Variables represent positions in a string over finite alphabet
A.
Atomic formulas: x < y means position x is strictly to the
left of position y , Qax means position x contains the letter
a ∈ A.
Boolean operations and quantifiers have their usual
meaning.
Our example language consists of strings over
A = {a,b, c} containing a b with no a’s after it:

∃x(Qbx ∧ ∀y(Qay → y < x)).



What can you say in first-order logic?

What properties of words can be defined in FO[<]?

Every language definable in FO[<] is regular (since
FO[<] ⊆ MSO). Is there some way of determining from an
automaton whether the language it accepts is first-order
definable?



A necessary condition for first-order definability

Let w ∈ A∗. Second player (‘duplicator’) wins the n-round
Ehrenfeucht-Fraı̈ssé game for FO[<] in (w2n−1

,w2n−1+1).

So w2n−1
and w2n−1+1 must induce the same state

transitions in any automaton that recognizes a language L
definable by a FO[<] formula of quantifer depth ≤ n.
Thus if L is definable in FO[<] then M(L) satisfies the
identity xk = xk+1 for all sufficiently large k .
Equivalently M(L) must be aperiodic : it contains no
nontrivial groups.



For instance, the set of strings over {a,b} with an odd
number of a’s is not definable in FO[<], because its
syntactic monoid is the group of permutations of the two
states of the minimal automaton.



The right way to think about semigroups

Such equationally-defined classes (‘satisfies xk = xk+1 for
k sufficiently large’) are pseudovarieties of finite
monoids–closed under finite direct products, quotients
and submonoids.
The right questions to ask usually involve the structure of,
and relations between, such varieties.
But there’s more!



Wreath product of transformation monoids (cascade
composition of automata)

Figure : Wreath product before and after application of input a :
(q,q′) · a = (q · a,q′ · f (q,a)).



Krohn-Rhodes Theorem: Deep structure of aperiodic
semigroups

If M(L) is aperiodic, then L is recognized by a wreath
product of copies of our 2-state, 3-element transformation
monoid U2.

This is typical of the kinds of ‘decomposition’ results of this
theory: we do not really break M(L) into smaller pieces, we
cover it by something that can be broken into smaller
pieces.



McNaughton-Papert/Schützenberger Theorem:
Aperiodicity is Necessary and Sufficient for First-order
Definability

It follows from an induction on the number of factors in the
cascade that if M(L) is aperiodic, then L is definable by a
formula of FO[<].

This is a different kind of model-theoretic result: We have
an effective criterion for determining whether the
behavior of an automaton is first-order definable,
based on computing the transition monoid of the reduced
automaton and verifying identities.



A flood of results, beginning in the 1970’s and
continuing to the present, use the
decomposition theory for finite semigroups to
obtain such effective characterizations of
logically defined classes of regular languages.



First-order logic with successor (Beauquier and Pin
1991, building on Thérien and Weis 1986)

FO[succ]: Atomic formulas x < y replaced by y = x + 1.
L ⊆ A∗ definable if and only if M(L) is aperiodic, and for all
e, f , s, t ,u ∈ M(L) induced by nonempty words, with
e2 = e, f 2 = f ,

esfteuf = euftesf

Associated decomposition theorem: Satisfaction of these
identities is equivalent to recognition by a wreath product
of an aperiodic and commutative monoid with a ‘definite’
semigroup: One that satisfies se = e for all idempotents e.



Modular Quantifiers (Straubing, Thérien, Thomas
1988)

(FO + MOD)[<] is FO[<] supplemented by quantifiers
∃r mod q that say ‘there are exactly r mod q positions such
that...’
For example ∃1 mod 2xQax defines the set of strings with an
odd number of occurrences of a.
Theorem: L is definable in (FO + MOD)[<] if and only if
every group in M(L) is solvable.
Associated decomposition theorem: Krohn-Rhodes
Theorem–monoids with only solvable groups are the
wreath product closure of U2 and the cyclic groups.



Modular Quantifiers (Straubing, Thérien, Thomas
1988)

Figure : The behavior of the automaton on the left is definable using
only modular quantifiers of modulus 2 and 3; the one on the right is
not definable with any combination of ordinary and modular
quantifiers.



Fragments of linear temporal logic (Thérien and Wilke
1996)

Let L ⊆ A∗. The following are equivalent:
I L is definable in the fragment of linear temporal logic using

only strict past and strict future operators.
I L is definable by a formula of FO[<] using only two

variables.
I L is definable by both a Σ2 formula of FO[<] and by a Π2

formula.
I M(L) ∈ DA: it satisfies the identites

xxω = xω, (xyz)ωy(xyz)ω = (xyz)ω

where xω denotes the unique idempotent power of x .
Associated decomposition theorem: DA is the ‘weak
block-product closure’ of the idempotent and commutative
monoids.



This algebraic approach is a powerful tool for
the study of regular languages of finite words.
Can we move beyond this?



Part 4: Connection with Bounded-Depth Circuits



Comparison of two integers in binary

xn−1 · · · x0yn−1 · · · y0 ∈ {0,1}2n.

(xn−1 · · · x0)2 > (yn−1 · · · y0)2 if and only if

n∨
j=1

(
xn−j ∧ ȳn−j ∧

n∧
i=j+1

(xn−i = yn−i)
)
= 1.



AC0

AC0: family of languages recognized by bounded-depth,
polynomial-size families of circuits with unbounded fan-in
AND and OR gates.



Interpretation in terms of nonuniform automata

If we read pairs of input symbols in the order

(x0, y0), (x1, y1), . . . , (xn−1, yn−1),

then this is recognized by the two-state U2-automaton.

Figure : (0,0), (1,1) encoded as c, (0,1) as a, (1,0) as b



...and in terms of first-order logic

From the first-order sentence for the behavior of the
U2-automaton

∃x(Qbx ∧ ∀y(Qay → y < x)).

we obtain a sentence for the comparison language

∃z1∃z2(C(z1, z2) ∧Q1z1 ∧Q0z2 ∧
∀z3∀z4((C(z3, z4) ∧Q0z3 ∧Q1z4)→ z1 < z3))

where C(z, z ′) means z ′ = z + length
2 .



Circuits, automata, logic

Theorem (Immerman for equivalence of first two items,
Barrington and Thérien for the third): The following are
equivalent:

I L ∈ AC0.

I L definable in FO[N ] (first-order logic with unrestricted
numerical predicates).

I L recognized by nonuniform aperiodic finite automaton
reading k -tuples of input bits.



Lower bounds and their interpretation in terms of
automata and logic

I Theorem (Furst, Saxe, Sipser). Let q > 1. The set of bit
strings in which the number of 1’s is divisible by q is not in
AC0.

I Theorem (Barrington, Compton, Straubing, Thérien).

FO[N ] ∩ Regular languages = FO[<, x ≡ 0 (mod q)].

I Circuit lower bounds are equivalent to statements about
the definability of regular languages in first-order logic!
Can we use this observation to give a different proof of
these bounds?



Modular gates and ACC0.

If we add a new gate type that determines if the number of
1’s on the input is divisible by n, we get the class ACC0[n].
ACC0 = ∪n>0ACC0[n].

ACC0 = (FO + MOD)[N ] = behavior of nonuniform
automata over monoids that contain only solvable groups.
Huge open problem in circuit complexity: Can we solve the
word problem for a non-solvable group in ACC0?
(Separation of ACC0 from NC1.)



The logic/automata interpretation

Huge open problem in circuit complexity: Can we solve the
word problem for a non-solvable group in ACC0?
Equivalent formulation: Does the following hold?

(FO + MOD)[N ] ∩ Regular languages = (FO + MOD)[<]

Can such problems be approached using our algebraic
tools?



Baby steps

Using a combination of Ramsey-style combinatorics and
semigroup theory we can prove:

(Barrington-Straubing, 1995):

(FO+MOD)[Nmonadic, <]∩Regular languages = (FO+MOD)[<]

(Roy-Straubing, 2007):

(FO + MOD)[+] ∩ Regular languages = (FO + MOD)[<]



Part 5: Trees and Forests



Forest algebras-(Bojanczyk-Walukiewicz 2008)

If we put an additive structure (0 +∞ =∞) on our U2
automaton, we can use it as a bottom-up tree automaton,
to read labeled forests instead of just words.

Our transformation monoid (Q,M) has become a forest
algebra (H,V ), where the set H of states has a monoid
structure (which we write additively).



The set of forests accepted consists of all those that
contain a node labeled b that has no ancestor labeled a.

∃x(Qbx ∧ ∀y(Qay → ¬(y ≺ x))).

Figure : The value is 0 +∞ =∞



I There is a syntactic forest algebra (HL,VL) associated to
each collection L of forests (essentially the minimal
acceptor).

I Can one obtain effective characterizations of properties
definable in FO[≺]? or in related logics such as CTL?

I We can prove abstractly that these properties are indeed
algebraic and depend only on the structure of the
syntactic forest algebra.



Decompositions and necessary conditions
(Bojanczyk-Straubing-Walukiewicz, 2012)

I Theorem: L is definable in CTL if and only if it is
recognized by a wreath product of copies of U2 (shades of
Krohn-Rhodes!)

I Theorem: L is definable in FO[≺] if and only if L is
recognized by a wreath product of forest algebras (H,V )
that satisfy the identities

gv + hv = (g + h)v + 0v

for all g,h ∈ H, v ∈ V .



Decompositions and necessary conditions
(Bojanczyk-Straubing-Walukiewicz, 2012)

I We can use these characterizations to derive effective,
algebraic necessary conditions for definability in these
logics, and prove that certain properties are not definable.

I

CTL ( FO[≺] ( {L : VL aperiodic}

I The conditions we derive are not sufficient! Can we
duplicate the successes of the theory for finite words?



What I didn’t talk about

I Characterizing the quantifier alternation depth in FO[<]:
The long-open dot-depth problem.

I Promising successes for forest algebras: First-order logic
with successor (Benedikt-Segoufin), piecewise-testable
forest languages (Bojanczyk-Segoufin-Straubing),...

I A topological approach to recognizability (with possible
applications to circuit complexity)? (Gehrke-Grigorieff-Pin).

I An algebraic-logical theory for regular cost functions
(Colcombet)



Thank you
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