REGULARITIES OF THE DISTRIBUTION OF 3-ADIC VAN DER
CORPUT SEQUENCES

WOLFGANG STEINER*

ABSTRACT. For Pisot numbers 8 with irreducible -polynomial, we prove that the dis-
crepancy function D(N,[0,y)) of the B-adic van der Corput sequence is bounded if and
only if the S-expansion of y is finite or its tail is the same as that of the expansion of 1.
If B is a Parry number, then we can show that the discrepancy function is unbounded for
all intervals of length y & Q(5). We give explicit formulae for the discrepancy function in
terms of lengths of iterates of a reverse B-substitution.

1. INTRODUCTION

Let (z,)n>0 be a sequence with z,, € [0,1) and
DN, I) = #{0<n<N: z, € I} — NX({I)

its discrepancy function on the interval I, where \(I) denotes the length of the interval.
Then (z,)n>0 is uniformly distributed if and only if D(N,I) = o(N) for all intervals
I € ]0,1). Van Aardenne-Ehrenfest [25] proved that the discrepancy function cannot be
bounded (in N) for all intervals I C [0,1). W.M. Schmidt showed in [23] that the set of
lengths of intervals with bounded discrepancy function, {A(I) : supyso D(N,I) < 0o}, is
at most countable and in [22] that sup;co ) D(N, 1) > C'log N for some constant C' > 0.
For more details on the discrepancy, see Drmota and Tichy [4].

For some special sequences, the intervals with bounded discrepancy function were deter-
mined. If z,, = {na}, then D(N,I) is bounded if and only if A(1) = {ma} for some m >0
(Hecke [10] and Kesten [13]). More generally, Rauzy [18] and Ferenczi [8] characterized
bounded remainder sets for irrational rotations on the torus T*®. Liardet [14] extended
Hecke’s and Kesten’s result on these rotations and studied bounded remainder sets for
x, = {p(n)}, where p(n) is a real polynomial with irrational leading coefficient, as well as
for g-multiplicative sequences.

If (z,)n>0 is the van der Corput sequence in base ¢, then D(N,I) is bounded if and
only if A(/) has finite g-ary expansion (W.M. Schmidt [23] and Shapiro [24] for ¢ = 2,
Hellekalek [11] for integers ¢ > 2). Faure extended this result in [6] on generalized van
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der Corput sequences and recently in [7] on digital (0, 1)-sequences over Z, generated by a
nonsingular upper triangular matrix where ¢ is a prime number (see also Drmota, Larcher
and Pillichshammer [3]). Hellekalek [12] considered generalizations of the Halton sequences
in higher dimensions.

The aim of this article is to determine the intervals with bounded discrepancy function for
the B-adic van der Corput sequences, which were introduced by Ninomiya [15] who proved
that these sequences are low discrepancy sequences, i.e. sup;co 1) D(N,I) = O(log N), if
[ is a Pisot number with irreducible -polynomial.

For a given real number 5 > 1, the ezpansion of 1 with respect to (3 is the sequence of
nonnegative integers (a;);>1 satisfying

1:.a1a2...:%+%+--- with aja;41 ... < ajag... forall j > 2
(Throughout this article, let < denote the lexicographical order for words.) For z € [0, 1),
the B-ezpansion of x, introduced by Rényi [19] and characterized by Parry [16], is given by

€1 €9

x:.eleg...:E—F@—i—--- with €j€j41 ... < ajap... forall j > 1.
The elements of the 3-adic van der Corput sequence (z,),>o are the real numbers x €

[0,1) with finite S-expansion,
{zn:n>0}={ee...:€€et1... <aay... forall j > 1, €epqq ... =0 for some £ > 1},

ordered lexicographically with respect to the (inversed) word ... ezep, i.e. for z, = .€16s. ..
and z,, = .€j¢€, ..., we have n < n' if we have some k > 1 such that ¢, < €, and ¢; = € for
all 7 > k.

If the expansion of 1 is finite, ajay... = ay...a40%, or eventually periodic, ajas ... =
ar...a4—p(Ag—pt1-..aq)>, then B is a Parry number and it is the dominant root of the
B-polynomial z¢ — ayz®™' — - -+ — agq (with ag > 0) and (2% — a2zt — -+ —ayg) — (2P —
ayz® Pt — ... —a,_,) (where p is assumed to be minimal) respectively. In this case, we
obtain results for the discrepancy function.

Theorem 1. If 3 is a Parry number and D(N, I) is bounded (in N ), then \(I) € Q(f3).

Bertrand [1] and K. Schmidt [21] proved that all Pisot numbers (algebraic integers for
which all algebraic conjugates have modulus < 1) are Parry numbers. If furthermore the
[B-polynomial is the minimal polynomial of 3, then we can completely characterize the
intervals [0, y) with bounded discrepancy function.

Theorem 2. If (5 is a Pisot number with irreducible (3-polynomial, then D(N,[0,y)) is
bounded (in N ) for y € [0,1) if and only if the -expansion of y is finite or its tail is the
same as that of the expansion of 1 with respect to 3, i.e. ify = .y1ya ... with YpYgs1 ... = 0
OT YkYk41 - - - = (Qg—pi1 - .. aq)> for some k > 1.

Remark. Another way to formulate the condition on y is: the infinite [-expansion of y
has the same tail as the infinite expansion of 1 (which is 1 = .(a;...aq_1(aqg — 1)) if
1=.a1...aq).
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The classification for general intervals I seems to be more difficult. Of course,
D(N,ly,vy")) is bounded if D(N,[0,y)) and D(N,[0,y')) are bounded because of
D(N,[y,y')) = D(N,[0,y")) — D(N,[0,y)). From the proof of Theorem 2 we see that
D(N,[y,y')) is bounded if y = 4192 ... and ' = y1y5. .. With Yeye1 ... = Y¥paq - - - for
some k > 1.

The boundedness of D(NV, I) is not necessarily invariant under translation of the interval.
E.g. for 1 = .31, D(N,0,.1°°)) is bounded, but D(N,[.1%°,.2°°)) is unbounded. It is also
possible that D(N, [y,y')) is bounded and D(N, [0,y" —y)) is unbounded: D(N,[.02,1)) is
bounded and D(N,[0,1 —.02)) = D(N,[0,.2°)) is unbounded.

This article is organised as follows. In Section 2 we recapitulate some facts about num-
ber systems defined by substitutions (due to Dumont and Thomas [5]) and define a re-
verse (3-substitution which determines z,,. Theorem 1 is proved in Section 3 similarly
to Shapiro [24]. The remaining parts of Theorem 2 are proved in Section 4, where ex-
plicit formulae for the discrepancy function in terms of lengths of iterates of the reverse
(-substitution are given.

2. NUMBER SYSTEMS DEFINED BY SUBSTITUTIONS

2.1. Generalities. Let o be a substitution on the alphabet A = {1, ..., d}, i.e. a mapping
from A into the set of nonempty finite words on A, which is extended to a mapping on

words by concatenation, o(ww’) = o(w)o(w'). A sequence of words my, ..., my is called
o-b-admissible if we have a companion sequence of letters b; with byy; = b such that
m;b; <, o(b;j41) for all j <k (where w <, w' means that w is a prefix of w’). For a given
sequence my, ..., my, clearly the sequence by, ..., b; is unique.

If (1) = 1w for some word w, then the limit 0°°(1) = limy_.,, 0*(1) exists because of
o" (1) = o*(1w) = o*(1)o*(w) and we have
(1) o*Hmy) .. a%(my) <, 0" (1) <, 0™(1)
for all o-1-admissible sequences my, . .., my. Furthermore, every prefix u; ... u, <, 0%(1),
n > 1, can be written as the left hand side of (1) with a unique o-1-admissible sequence

Mk, - .., my with [mg| > 0 (where |m| denotes the length of m). Denote these m; by m; ,(n)
and set m;,(n) = ¢ (the empty word) for all j > k. For n = 0, set m;,(0) = ¢ for all

7 > 1. Then
e’ o) d
n = Zlﬂj_l(mj,a(n))l = ZZ Mo ()]s |07~ (B)],
, ey
f m;

where |m|, denotes the number of b’s in m. M) = mj,(n) for all j > k
and |mgo(n')] > |mio(n)], ie. my,(n') = my,(n)bjw for some word w, then
G

" 2(my_1,(n))...0%m1,(n)) is a strict prefix of o"=1(b), hence ZFl |07 m; ,(n)| <
o*=1(b;) and we have

n' =Y ol (my o (n))] > Zw Ymy o ()] + 0% (bi)| > s
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thus
(2) n<n if ... moy,(n)]|mis(n)| <...|maq(n")||miq(n")|

2.2. (B-substitution. If § is a Parry number, then the (3-substitution o is defined by

1w(b+1) ifl<b<d
o(b) = 194 ifb=d1=.a;...aq
1ad(d —p+ 1) if b= d, 1= ay ... ad,p(ad,pﬂ . Cld)oo

(where 1% denotes the concatenation of a; letters 1).

If we set Gy = |0*(1)| for all k > 0, then

k
1 ifa;=0forall j >k
G = Zaj Gy F { 0 elsej

J=1

(in particular Gy = 3%

i1 a;Gr_jif 1 = .a1...aq and k > d) and

n=>mis(n)| o (1) = |m;s(n)|G;y
j=1 Jj=1

since the words m;,(n) consist only of ones. Thus the |m;,(n)| are the digits in the G-ary
expansion of n with G = (G;);>0 and the o-1-admissible sequences my, ..., m; are exactly
those sequences consisting only of ones with |m;|...|[m1|0®° < ajas. .. for all j < k.
Example. If 1 = .402, then
o(1) = 11112, o(2) =3, o(3) =11

An example of a o-1-admissible sequence with k =5 is

(ms,b5),...,(my,b1) = (11,1), (1111, 2), (&, 3), (¢, 1), (1, 1)
which corresponds to

n = |o*(11)o®(1111)0% ()0 ()1| = 2G4 + 4G5 + 1 = 1053.
2.3. Reverse (J-substitution. For a Parry number 3, set t; = 0 and let {to,...,tq41}
be the set of words {a;a;+1...: j > 2} with

0 =t <ty < <ty <tgy1 =aiay...

For 1 <b<d set

T(b) _ Uo(b)...ual(b) if aity < aqas. ..
up(b) ... ug,—1(b) else
with
Uj (b) =0 if ty < jtb < tbl+1.
We clearly have ug(1) = 1, thus 7°°(1) exists and every n > 1 corresponds to a unique
7-1-admissible sequence my, ..., my with |my| > 0.
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The following example and proposition show (for b = 1) that the possible sequences of
“digits” |m;,(n)| are the same as for |m;,(n)|, but in reversed order. Therefore we call 7
reverse (3-substitution.

Ezample. For 1 = .402, we have t; = 0, t5 = 020, t3 = 20*°, t, = 4020°°, thus
7(1) =12333, 7(2)=1233, 7(3)=2233.
We have a 7-1-admissible sequence with |[ms|. .. |m;| = 10042,
(ms,b5),...,(my,b1) = (1,2), (e, 1), (g,1), (1233, 3), (22, 3)
which corresponds to

n = |74(1)73(e)7%()7(1233)22| = G4 + 19 = 373.

Proposition 1. Fach 7-b-admissible sequence my, ..., my satisfies

(3) |my| ... mylty < aras ... for all j <k.

Conversely, for each sequence € ...€; with €; ...ty < ajay... for all 7 > 1, we have a
(unique) T-b-admissible sequence my, ..., mq with |mq|...|mg| =€ ... €.

Proof. Assume first that my, ..., my is 7-b-admissible and let by, ..., b; be its companion

sequence (m;b; <, 7(bj41), bgy1 = b). Assume further

Im;|...|me—1| =a1...ai—; and tp, < ap_ji10—j12 ...
(which is trivially true for j = £). We have by = wn,|(be41), hence

Imulty,,, < tp41 < Qr_jyr1Ge—jia - ..

This implies |m;|...|me| < ay...ap_j41 or

|mj| c |mg| =ar...0p—j41 and tbe+1 < Qg—j2Qp—j+3 - -
In the latter case, we proceed inductively and obtain

]mj| R \mk|tbk+1 = ]mJ] R \mk\tb < aias...

Hence, (3) is proved.
For the converse, assume €; ... €4ty < ajas ... for all j > 1 and

thy < €opity,,, forall e {j+1,... k}

(which is trivially true for 7 = k). Then we have

Ejtijrl < 6j€j+1tbj+2 <... < €. .. Ektkarl =€... exlty < a1ay. ..,
thus b; = wu,(bj1) exists and m; = wug(bji1) ... u,-1(bjy1). Furthermore, we have
ty, < €jlp,41 and obtain, by induction, a (unique) 7-b-admissible sequence my,...,m;

with [mq|...|mg| = €1 ... . O
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By Proposition 1 (b = 1), every finite S-expansion € ... €;0% corresponds to some n <
|7%(1)| such that €; ... e, = |my(n)|...|mi,(n)]. By (2), we have n < n’ for n,n’ < |7%(1)|
if
€r...61=|mp-(n)|...Imi(n)] < |me-(0)|...Jmi-(n")| =€ ... €.

Therefore the #-adic van der Corput sequence is given by
ta =) |mj-(n)|37.
j=1
Note that we have |7%(1)| = |o*(1)| = G}, for all k > 0.

3. PROOF OF THEOREM 1

Let D be the set of all sequences (m;,b;);>1 of words m; and letters b; with m;b; <,
7(bj1) for all j > 1. Set

6((my, b5) 521, (M}, 05) 1) = 1/k
if (m;,b;) = (m!, b)) for all j < k and (m;,b;) # (m/,b’). Then D is a compact metric

space with the rrjleti"ic 0. n
In order to extend the addition of 1 in the number system defined by 7, (m; -(n));>1 —
(mj-(n+1))j>1, define the successor function (or odometer or adic transformation) on D
by
(mj, b]) lf] >k
S((my,b5)21) = (m, 0))5>1 with (m}, b)) = ¢ (mabe, b)) i j =k
(e,u0(byy)) ifj <k

where k£ > 1 is the smallest integer such that 7(bgi1) = mgbipbjw for some letter o), and
some word w. If (m;,b;);>1 is a maximal sequence, i.e. myby = 7(bg41) for all k£ > 1, then
let its successor be the (unique) minimal sequence (e, 1), (g,1), ...

If the maximal sequence is unique, then S is a homeomorphism and (D, S) is a trans-
formation group, but in many cases the maximal sequence is not unique. In particular
if asas... > (ag — 1), then every maximal sequence satisfies |m;| = aq, |mj/| = a1 — 1
for some 7,7’ > 1, and we obtain a different maximal sequence by shifting this sequence.
Hence (D, S) is only a transformation semigroup.

Define a continuous function f : D — [0,1) by

F((my,05)521) = Y [myl B~
j=1

Then we have z, = f(S"((e,1),(g,1),...)). If S is invertible, then (xq,x1,...) can be
extended to a bisequence (z,)nez by this definition.

Let X denote the orbit closure of (xg,z1,...) under the shift T, and define ¢ : D — X
by

(p((my, b))k = F(S*((my,b5)j51))
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Then ¢ is a homeomorphism and ¢ o S = T o ¢. Hence the transformation (semi)group
(X, T) is isomorphic to (D, S). If S is invertible, then (X, 7") is minimal by Theorem 2.2 of
Shapiro [24] and we can apply Theorem 5.1 of this article, which states that exp(2mi\(1))
is an eigenvalue of T" and thus of S if D(N, ) is bounded. Lemma 1 shows that Shapiro’s
proof is valid for our transformation semigroup as well.

By Théoreme 5.2 of Canterini and Siegel [2], we have a continuous and surjective “desub-
stitution map” I' : Q — D, where (0 is the set of biinfinite words which have the same
language as 7°°(1). Let A be the shift on 2. By Théoreme 5.1 of this article and since
the minimal sequence in D is unique, we have S oI' = I' o A. Therefore the eigenvalues
of S are a subset of the eigenvalues of A and, by Proposition 5 of Ferenczi, Mauduit and
Nogueira [9], these eigenvalues are of the form exp(27iy) with y € Q(8), This concludes
the proof of Theorem 1.

Remarks. Ferenczi, Mauduit and Nogueira [9] gave a more precise description of the set of
eigenvalues of A in their Proposition 4, which is too complicated to be cited here.

For more details on the spectrum of these dynamical systems, see Chapter 7.3 in Pytheas
Fogg [17], but note that the result of [9] is cited uncorrectly: According to Theorem 7.3.28
of [17], the eigenvalues of A associated with the trivial coboundary are in exp(2miZ[53]),
but Z[5] should be Q[f] and the condition on the coboundary is unnecessary. Nevertheless,
the author considered the coboundary and showed that all reverse (3-substitutions 7 have
only the trivial coboundary, but the proof is rather lengthy and technical and therefore
not given in this article.

Lemma 1. If D(N, ) is bounded, then exp(2miA(I)) is an eigenvalue of S.

Proof. Set

o0

g((mj,b)>1) = xu (Z |mj|ﬂ_j> —A(I)

i=1

where x; denotes the indicator function of I. Let w = (mj,b;);>1 be a sequence with

|ma| |ma| ... =vy1y2 ..., hence 2;\;—(}1 g(Sw) = D(N, 1) is bounded. Set U(x,n) = (Sz,n+

g(x)) for z € D, n € R. Then we have

k—1
U*(x,n) = (S’“w,nJng(Sjw)) :

J=0

The positive semi-orbit {U*(w,0) : k > 0} is bounded and has therefore compact closure.
Denote by M the set of limit points of this semi-orbit. Then M is nonempty, closed and
invariant under U (NCI). It is easy to see that {S*z : k > 0} is dense in D for all x € D.
Since M is NCI, we must therefore have some point (x,n) € M for all = € D.

Below we show that, for a given z, this 7 is unique, i.e. 7 = n(z). Then the graph
(x,n(x)) is the compact set M, therefore n is continuous. Since U(x,n(x)) = (Sz,n(z) +
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g(x)), we have

n(Sx) = n(x) + g(x),
exp(—2miA(])) = exp(2mig(z)) = exp(2min(Sz))/ exp(2min(x)).
Therefore K(x) = exp(—2min(z)) is a continuous function with
K(Sz) = exp(2miA(])) K (x)

and exp(2miA(])) is an eigenvalue of S.
To prove that n(x) is unique, we show first n(w) = 0. Suppose (w,n) € M. Since M
consists of limit points of {U*(w,0) : k > 0}, we have a sequence k; — oo with

lim U% (w,0) = (w,n).
j—o00

This implies
kj—1
lim S*w = d 1 Siw) =,
Jim 5%w=w an jir?o;g( w)=mn
hence
kj—1
lim U* (w,n) = | lim $%w,n+ lim Y~ g(S'w) | = (w,n+n).
j—o0 j—o00 j—00 £
Since M is invariant, we have U*i (w,n) € M for all j and, since M is closed, (w,2n) € M.
Inductively we obtain (w, kn) € M for all M, which implies n = 0 since M is bounded.
Next suppose (z,n7) € M and (z,7') € M. Since {S*z : k > 0} is dense, we have some
k; — oo such that

lim S*iz = w.

Jj—00
Since M is compact, we can refine the sequence k; so that the sequences U ki(z,n) and

U*i(x,n') converge (to points in M). Since the first coordinate of the limit points is w, the
second coordinate must be 0 for both points. Therefore

kj—1 kj—1
lim |+ g(S%) | = lim | 7'+ g(S0) |,
hence n = 7' and we have proved that n(z) is unique. O

4. PROOF OF THEOREM 2

Because of Theorem 1, we just have to consider y € Q(f) for Theorem 2, but first we
compute formulae for the discrepancy function of arbitrary intervals [0,y). Let A(N,I) =
#{x, € I: 0<n < N}. Then we have, for y = .y195. ..,

D(N,[0,9)) => (AN, [g1--ye—rs 01 -yx)) — NyeB75).

k=1
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Lemma 2. We have

00 d
AN [ttt u) = Uk Y D mu(N) ][5 (0)] + (N, )
(=k+1 b=1
with
Yk if |mk,T<N)‘ > Yk
M- (N)|+ 1 if [mye - (N)| < yg,

’mk,LT(NH Ce ]mLT(N)\ > Ye—1---Y1
|mi-(N)|  else.

(N, y) =

Proof. For G, < N < Gy1, we have

{(mi+(n),...,mp-(n)): 0<n< N}

L
= U U {(mq, ... ,me_1,m,mus1 - (N), ... ,mp(N)) :my_q,...,my is 7-b-adm.}

=1 m:mb<pmy (N)

and =, € [.y1 ..., Yk_1,-Y1 ... yx) if and only if

Ima ()] (R)] =y ypor, Mg (n)] < g
Thus, for ¢ > k, we have to count the 7-b-admissible sequences my_1,...,m; with
|ma| ... |mk—1| = y1...Yr—1, |mk| < yg. By Proposition 1, every 7-b-admissible sequence
Me_1,..., M1 can be prolongated to such a sequence for all |my| < yx because of

Imj| ... me_alte < yj...yp < arag... for j < k.

Therefore we have y;,|7¢"¥1(b)| such sequences for every letter b in my,(N).
For ¢ = k, we need |m| < |my,(N)| and |m| < yi. For each such |m| (and the correspond-

ing b), there is one 7-b-admissible sequence my_1, ..., my with |mq|...|mg_1| =vy1 ... yr_1.
Thus, the contribution is max(|my - (N)|, yk)-

Finally, for ¢ < k, we need |m| = y < |me(N)|, |mp-(N)| < yp and
|mus1-(N)| .. fmg—1-(N)| = Yos1 ... yr—1. Thus the contribution is 1 if |my (N)| < v,
|mp—1.-(N)| ... Jm1(N)| > yk—1...y1 and 0 else. O

The characteristic polynomial of the incidence matrix of the g-substitution ¢ is the (-
polynomial. Hence o is of Pisot type (one eigenvalue is > 1 and all other eigenvalues have
modulus < 1) if and only if § is a Pisot number and the 8-polynomial is irreducible. Since
lok(1)] = |7%(1)] for all k > 0, 3 is an eigenvalue of T as well. Furthermore, 7 is of Pisot
type because the alphabet has the same size as the alphabet of 0. Hence we have some
constants ¢, ; and p < 1 such that

175(0)| = o1 8% + 2B + -+ crafls = o1 B+ O (0F),



10 WOLFGANG STEINER

where the 3;, 2 < j < d are the conjugates of 3. Thus

0 9] d
D(N7 [an)) :Z (yk Z Z|m€T( )|b|7_e k_l(b>|+ﬂk(N’y)

k=1 t=k+1 b=1
— Yk Z Z M- (N)]y |77 (b)|5_k>
/=1 b=1
[e%s) 00 d d
=> (yk SO S mer (N Y ey (87 = B B7F) + (N, y)
k=1 t=k+1 b=1 =2
kod d 00
— e YD |mg (V)]s (cb,lﬁz—l—’f +) ﬁf‘lﬁ‘k)> =Y 50 (1)
(=1 b=1 =2 k=1
and
[eS) d /—1 d
D<N7 [07 y)) = (Z ‘mf,T(N)’b ( Zyk Z Ch,j (ﬂf_k_l - ﬁf_lﬁ_k) )
/=1 b=1 k=1 j=2

00 d
+ pe(N. y) Z M- (N)o Z Yk (Cb,lﬂgkl + Z Cb,jﬁf_lﬁk)>
=) <Me(N, y) — Z [m (N |b<cblzykﬁe o Zcb] Zykﬁé . 1)) O (1)
=1 b=1 =2

By the above formulae, we easily see that D(N,[0,y)) is bounded if y, > 0 for only
finitely many k£ > 1. Now we consider y € Q(/3). Bertrand [1] and K. Schmidt [21] proved
independently that the elements y € Q(/3) are exactly those who have eventually periodic
(-expansion. (See Rigo and Steiner [20] for an alternative proof including number systems
defined by substitutions.) Furthermore, by the above formulae, a finite number of digits
of the (-expansion of y as well as a shift of digits has no influence on the boundedness of
D(N,[0,y)). Therefore we may assume that the S-expansion of y is purely periodic.

For y = .(y1...y,)*, we have

o L Pl 4 _ B
Zykﬁe k-1 _ Yt 5 Yerp—1 ISz,dqﬁd Lyt 5008° = Py(B)
k_

for some sy ; € Q. If we set y, = yi44 for £ < 0, then we obtain

h— yf—ﬁi + o Yo
D BT = 7 = —P(3),

k=—00

—CMZM“” ZCszyﬁ“ = 501 lT? 7 (B)] + -+ s00l70(D)]

k=—o00
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and
DN, [0,)) = > (1N, ) = 3elmes(N)) ) + O (1)
=1
by extending -y, naturally on words, v,(w) = 22:1 lw]yye (D).
We split the remaining part of the proof into two lemmata.

Lemma 3. If [ s a Pisot number with irreducible [(-polynomial,
D(N, [0, (@g—p41 - - - aq)™) is bounded.

Proof. We have

_ _ pd—pte-1 d—p+0—2
YeYer1 - - - = -Qd—peQAd—pL+1 - - - = per —a B — = Ad—pre—1
and, by Proposition 1, we easily see

1 ifar...auty < ajaq...

k(py| _ k-1 0
O = alr @)+l o+{ L

for all kK > 0, hence

1 il ¢y < ag_papag—
W(b):{ 0 elseb. Tt

By definition, we have t.;,,,) < Jto,; < bu;(ber)+1, therefore

Ye(u;(bes1)) = { 0 els]e,beﬂ d—p+L0d—p+0+1

With my - (N) = uo(bes1) - - - Upm,, (v)-1(bes1), We obtain

M- (N)| i [me 7 (N)| < @a—pre

Ag—pre  if Mg (N)| > aa—pie,
my-(N)) = P ’ P
Ye(me-(N)) thpy = Qd—ptet10d—pret2 - - -
ag—pie + 1 else
and
Ay = pe(N, (ag—pi1-.-aq)™) = ve(me,(N))
=1 if [me-(N)| > aig—pre, toyy < QGdpres1Qapresa - -
_ 1 if |mg,7-(N)| < Qq—p+e,
|mg_17T(N)’ . ‘m17T(N)| > Ad—pte—1 - - - Ad—p+1
0 else.
If Ag = -1, then tb“_l < Qd—pt+-0+10d—p+0+2 - - - and

tbé+1 < |mK+I,T(N>|tb4+2 < tbz+1+1 < Ad—pt4+1Ad—p4-L+42 - - -
implies either [myq (V)| < @g—ptes1, thus Apyy =1, or
|mé+1,r(N )| = Ad—pt041; Loy < Qd—ptt420d—p+e+3 - - - and Ay = 0.

Inductively, we obtain some k > ¢ such that Ay, =--- = A1 =0 and A = 1.

11

then
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If Ay =1, then |my_1(N)|...|m1+(N)| > @g—pie—1- .- @4—p+1 implies either
[me—17(N)| > agpre1 and ty, < [me(N)|ty,,, < aqg—pie,
thus A,y = —1, or
[me—17(N)| = @g—pre—1, [me—2(N)| .. M1 (N)| > Gapre—2- .- dapir

and Ay, ; = 0. Inductively, we obtain some k < ¢ such that Ay, = —1 and Agyy = -+ =
A1 =0.
Therefore we have >_,°, A, = 0 and the discrepancy function is bounded. O

D(N, [0, (ag—p+j - - - GdQd—p+1 - - - CGg—pt+j—1)>°), 1 < j < p, is bounded as well because a
shift of digits does not change the boundedness.

Lemma 4. If D(N,[0,y)) is bounded and y # 0 has purely periodic (-expansion, then the
expansion of 1 is eventually periodic and y = .arapyq ... for some L > d — p.

Proof. Let the -expansion of y be .y1y2... = .(y1...y,)*. Consider sequences of integers
N given by

(ml,T(NK),mZJ(NK), .. ) = ((ml, Ce ,qu)K,€, g, .. )
with mypy1 = -+ = my, = € for some ¢ > 1, J > 1 such that byy; =1 and ypy1 ...y >

0...0. For these sequences, we have

tj+ksa(Nk,y) = 11;(Nk, y), Vjrksa(Myiniqr(Nk)) = 7;(m;)
for all j < Jgq, k < K. Thus D(Nk,[0,y)) is bounded if and only if

Jq
> (1 (N1, y) = 5(my)) =0
j=1
Let furthermore my = --- = my_; = ¢ for some k € {1,...,¢}, hence u;(N1,y) = vj(m;)

for all j < k. Consider simultaneously integers Ny, with mj, = & and m); = m; for all j # k.
Then we have j1;(N7,y) = v;(m};) = 0 for all j < k, v;(m)) = ~;(m;) for all j >k and

Jq Jq 1 if ]mk| > Yk,
> Ny = Y (VY y) + ] - gl < Ykt Y
j=k-+1 j=k+1 0 else,
thus
Jq
Yelmi) = (N1, y) = > (N1, y) = (my)
j=k+1
_ 1 if \mk\ >yk,]mk+1|...\mg\ < Ygt1---Ye
0 else
and

Imy | if |mg| <y
ye(my) = Ui if |my| > v, [mera| - Imel > yrar - ye
yr + 1 else.
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If miby <p 7(bg+1), then my, ..., myq, miby is a 7-1-admissible sequence and we obtain
it fmy| ..o <y ...
(4) Vi (bk) = e (muby) — i (my) = { 0 elS’e, el me <y

in particular (1) = 1 for all k£ > 1 (with k = £, my, = ¢).
If myby, = 7(bgs1), consider

Ykr1Wht2 - = B X YY1 — Yp = Sk,d—lﬁd + 4 5508 — Yk,
hence

Vi1 (Drs1) = Sta1|T (ber1) | + -+ + swolT(Brsr)| — Ui
= spa [T Hmgbe)| + - -+ s1olmnbe] — ye = e(mr) + Ye(bk) — vk

=1 if [mg] <ye (e |mp] = a1 — 1, yr = a1)

=(bk) + 9 0 if |mg| = yr or [me| > yr, [magal - el > yegr -y
1 else.
In case |mi| = |T(bg1)] —1 = a1y — 1, y» = a1, we have aity,,, > aay...,
Ykt1Yr+2 - < agag... and b, < [mygalte,,, < oo < |mpyg|. .. |me|0%°, hence
|mpsa] .. me| > ao...ap_gy1 > Yge1---ye. One of these inequalities is strict because
ey = |masa] .- [me]0® = as...ap_410% implies |myi|...|me| = as...a07F 4 >

Ykt - - - Yo. Therefore we have, for all by, bgi1,

Tt |mgl . me| < yg-ye, [mal - Imel > Yggr - e
’Yk(bk) _7k+1(bk+1) = —1 lf |mk]\mg\ >yk...yg, |mk+1|...|mg| Syk+1---y€
0 else.

and, with v,41(be1) = Ye1(1) = 1, (4) holds for all my, by.

Now, let k = 1 and my,...,my and mj,...,m} be T-1-admissible sequences with com-
panion sequences by, ...,by and bj,...,b . If by < b}, then we have |my|ty, < tp41 <
ty, < |milty,, thus either |m| < [mj| or [my| = |mj|, by < b,. Inductively, we obtain
|mal...|me| < |my|...|m}| and v1(by) > v1(}). Therefore we have some b > 2 such that

1 ifb<¥
0 else.

m(b) = {

Finally, consider the system of linear equations

1 ifb<d

s1a-1|T 7 D) 4 -+ + 10|70 (0)] = { 0 else

for 1 < b < d. We have t,y = arapyq... for some L > 2. Then, by the proof of
Lemma 3, (s14-1,...,510) = (0,...,0,1,—ay,...,—ar_1) is a solution of this system, i.e.
y = .arary1 ... To show that these solutions are unique, consider linear combinations of
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the column vectors (|7¢(1)],. .., |74(d)|)T (over Q). We have, with 3, = £3,
-1 |7(1)] d-1 1 -1 d -1
el =DM ) = ) vifjes =) ves 3 il
£=0 |T€ (d)] £=0 1 =0  j=1 j=1 £=0

where M is the incidence matrix of 7, M = (|7(b)|c)1<pe<a, and the e;, 1 < j < d, are
right eigenvectors of M to the eigenvalues 3;. If r, € Q, then all 7, must be zero, hence the
vectors (|7¢(1)|,...,|7%(d)|), 0 < ¢ < d, are linearly independent and the system of linear
equations has a unique solution.

To conclude the proof of the lemma, note that apap.; ... is purely periodic if and only
if L>d—p. U
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