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Abstract. For Pisot numbers β with irreducible β-polynomial, we prove that the dis-
crepancy function D(N, [0, y)) of the β-adic van der Corput sequence is bounded if and
only if the β-expansion of y is finite or its tail is the same as that of the expansion of 1.
If β is a Parry number, then we can show that the discrepancy function is unbounded for
all intervals of length y 6∈ Q(β). We give explicit formulae for the discrepancy function in
terms of lengths of iterates of a reverse β-substitution.

1. Introduction

Let (xn)n≥0 be a sequence with xn ∈ [0, 1) and

D(N, I) = #{0 ≤ n < N : xn ∈ I} −Nλ(I)

its discrepancy function on the interval I, where λ(I) denotes the length of the interval.
Then (xn)n≥0 is uniformly distributed if and only if D(N, I) = o(N) for all intervals
I ⊆ [0, 1). Van Aardenne-Ehrenfest [25] proved that the discrepancy function cannot be
bounded (in N) for all intervals I ⊆ [0, 1). W.M. Schmidt showed in [23] that the set of
lengths of intervals with bounded discrepancy function, {λ(I) : supN≥0 D(N, I) < ∞}, is
at most countable and in [22] that supI⊆[0,1) D(N, I) ≥ C log N for some constant C > 0.
For more details on the discrepancy, see Drmota and Tichy [4].

For some special sequences, the intervals with bounded discrepancy function were deter-
mined. If xn = {nα}, then D(N, I) is bounded if and only if λ(I) = {mα} for some m ≥ 0
(Hecke [10] and Kesten [13]). More generally, Rauzy [18] and Ferenczi [8] characterized
bounded remainder sets for irrational rotations on the torus Ts. Liardet [14] extended
Hecke’s and Kesten’s result on these rotations and studied bounded remainder sets for
xn = {p(n)}, where p(n) is a real polynomial with irrational leading coefficient, as well as
for q-multiplicative sequences.

If (xn)n≥0 is the van der Corput sequence in base q, then D(N, I) is bounded if and
only if λ(I) has finite q-ary expansion (W.M. Schmidt [23] and Shapiro [24] for q = 2,
Hellekalek [11] for integers q ≥ 2). Faure extended this result in [6] on generalized van
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der Corput sequences and recently in [7] on digital (0, 1)-sequences over Zq generated by a
nonsingular upper triangular matrix where q is a prime number (see also Drmota, Larcher
and Pillichshammer [3]). Hellekalek [12] considered generalizations of the Halton sequences
in higher dimensions.

The aim of this article is to determine the intervals with bounded discrepancy function for
the β-adic van der Corput sequences, which were introduced by Ninomiya [15] who proved
that these sequences are low discrepancy sequences, i.e. supI⊆[0,1) D(N, I) = O(log N), if
β is a Pisot number with irreducible β-polynomial.

For a given real number β > 1, the expansion of 1 with respect to β is the sequence of
nonnegative integers (aj)j≥1 satisfying

1 = .a1a2 . . . =
a1

β
+

a2

β2
+ · · · with ajaj+1 . . . < a1a2 . . . for all j ≥ 2

(Throughout this article, let < denote the lexicographical order for words.) For x ∈ [0, 1),
the β-expansion of x, introduced by Rényi [19] and characterized by Parry [16], is given by

x = .ε1ε2 . . . =
ε1

β
+

ε2

β2
+ · · · with εjεj+1 . . . < a1a2 . . . for all j ≥ 1.

The elements of the β-adic van der Corput sequence (xn)n≥0 are the real numbers x ∈
[0, 1) with finite β-expansion,

{xn : n ≥ 0} = {.ε1ε2 . . . : εjεj+1 . . . < a1a2 . . . for all j ≥ 1, ε`ε`+1 . . . = 0∞ for some ` ≥ 1},
ordered lexicographically with respect to the (inversed) word . . . ε2ε1, i.e. for xn = .ε1ε2 . . .
and xn′ = .ε′1ε

′
2 . . ., we have n < n′ if we have some k ≥ 1 such that εk < ε′k and εj = ε′j for

all j > k.
If the expansion of 1 is finite, a1a2 . . . = a1 . . . ad0

∞, or eventually periodic, a1a2 . . . =
a1 . . . ad−p(ad−p+1 . . . ad)

∞, then β is a Parry number and it is the dominant root of the
β-polynomial xd − a1x

d−1 − · · · − ad (with ad > 0) and (xd − a1x
d−1 − · · · − ad)− (xd−p −

a1x
d−p−1 − · · · − ad−p) (where p is assumed to be minimal) respectively. In this case, we

obtain results for the discrepancy function.

Theorem 1. If β is a Parry number and D(N, I) is bounded (in N), then λ(I) ∈ Q(β).

Bertrand [1] and K. Schmidt [21] proved that all Pisot numbers (algebraic integers for
which all algebraic conjugates have modulus < 1) are Parry numbers. If furthermore the
β-polynomial is the minimal polynomial of β, then we can completely characterize the
intervals [0, y) with bounded discrepancy function.

Theorem 2. If β is a Pisot number with irreducible β-polynomial, then D(N, [0, y)) is
bounded (in N) for y ∈ [0, 1) if and only if the β-expansion of y is finite or its tail is the
same as that of the expansion of 1 with respect to β, i.e. if y = .y1y2 . . . with ykyk+1 . . . = 0∞

or ykyk+1 . . . = (ad−p+1 . . . ad)
∞ for some k ≥ 1.

Remark. Another way to formulate the condition on y is: the infinite β-expansion of y
has the same tail as the infinite expansion of 1 (which is 1 = .(a1 . . . ad−1(ad − 1))∞ if
1 = .a1 . . . ad).
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The classification for general intervals I seems to be more difficult. Of course,
D(N, [y, y′)) is bounded if D(N, [0, y)) and D(N, [0, y′)) are bounded because of
D(N, [y, y′)) = D(N, [0, y′)) − D(N, [0, y)). From the proof of Theorem 2 we see that
D(N, [y, y′)) is bounded if y = .y1y2 . . . and y′ = .y′1y

′
2 . . . with ykyk+1 . . . = y′ky

′
k+1 . . . for

some k ≥ 1.
The boundedness of D(N, I) is not necessarily invariant under translation of the interval.

E.g. for 1 = .31∞, D(N, [0, .1∞)) is bounded, but D(N, [.1∞, .2∞)) is unbounded. It is also
possible that D(N, [y, y′)) is bounded and D(N, [0, y′− y)) is unbounded: D(N, [.02, 1)) is
bounded and D(N, [0, 1− .02)) = D(N, [0, .2∞)) is unbounded.

This article is organised as follows. In Section 2 we recapitulate some facts about num-
ber systems defined by substitutions (due to Dumont and Thomas [5]) and define a re-
verse β-substitution which determines xn. Theorem 1 is proved in Section 3 similarly
to Shapiro [24]. The remaining parts of Theorem 2 are proved in Section 4, where ex-
plicit formulae for the discrepancy function in terms of lengths of iterates of the reverse
β-substitution are given.

2. Number systems defined by substitutions

2.1. Generalities. Let σ be a substitution on the alphabet A = {1, . . . , d}, i.e. a mapping
from A into the set of nonempty finite words on A, which is extended to a mapping on
words by concatenation, σ(ww′) = σ(w)σ(w′). A sequence of words mk, . . . ,m1 is called
σ-b-admissible if we have a companion sequence of letters bj with bk+1 = b such that
mjbj ≤p σ(bj+1) for all j ≤ k (where w ≤p w′ means that w is a prefix of w′). For a given
sequence mk, . . . ,m1, clearly the sequence bk, . . . , b1 is unique.

If σ(1) = 1w for some word w, then the limit σ∞(1) = limk→∞ σk(1) exists because of
σk+1(1) = σk(1w) = σk(1)σk(w) and we have

(1) σk−1(mk) . . . σ0(m1) ≤p σk(1) ≤p σ∞(1)

for all σ-1-admissible sequences mk, . . . ,m1. Furthermore, every prefix u1 . . . un ≤p σ∞(1),
n ≥ 1, can be written as the left hand side of (1) with a unique σ-1-admissible sequence
mk, . . . ,m1 with |mk| > 0 (where |m| denotes the length of m). Denote these mj by mj,σ(n)
and set mj,σ(n) = ε (the empty word) for all j > k. For n = 0, set mj,σ(0) = ε for all
j ≥ 1. Then

n =
∞∑

j=1

|σj−1(mj,σ(n))| =
∞∑

j=1

d∑
b=1

|mj,σ(n)|b |σj−1(b)|,

where |m|b denotes the number of b’s in m. If mj,σ(n′) = mj,σ(n) for all j > k
and |mk,σ(n′)| > |mk,σ(n)|, i.e. mk,σ(n′) = mk,σ(n)bjw for some word w, then

σk−2(mk−1,σ(n)) . . . σ0(m1,σ(n)) is a strict prefix of σk−1(bk), hence
∑k−1

j=1 |σj−1mj,σ(n)| <

σk−1(bj) and we have

n′ ≥
∞∑

j=k

|σj−1(mj,σ(n′))| ≥
∞∑

j=k

|σj−1(mj,σ(n))|+ |σk−1(bk)| > n,
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thus

(2) n < n′ if . . . |m2,σ(n)| |m1,σ(n)| < . . . |m2,σ(n′)| |m1,σ(n′)|

2.2. β-substitution. If β is a Parry number, then the β-substitution σ is defined by

σ(b) =

 1ab(b + 1) if 1 ≤ b < d
1ad if b = d, 1 = .a1 . . . ad

1ad(d− p + 1) if b = d, 1 = .a1 . . . ad−p(ad−p+1 . . . ad)
∞

(where 1aj denotes the concatenation of aj letters 1).
If we set Gk = |σk(1)| for all k ≥ 0, then

Gk =
k∑

j=1

ajGk−j +

{
1 if aj = 0 for all j > k
0 else

(in particular Gk =
∑d

j=1 ajGk−j if 1 = .a1 . . . ad and k > d) and

n =
∞∑

j=1

|mj,σ(n)| |σj−1(1)| =
∞∑

j=1

|mj,σ(n)|Gj−1

since the words mj,σ(n) consist only of ones. Thus the |mj,σ(n)| are the digits in the G-ary
expansion of n with G = (Gj)j≥0 and the σ-1-admissible sequences mk, . . . ,m1 are exactly
those sequences consisting only of ones with |mj| . . . |m1|0∞ < a1a2 . . . for all j ≤ k.

Example. If 1 = .402, then

σ(1) = 11112, σ(2) = 3, σ(3) = 11.

An example of a σ-1-admissible sequence with k = 5 is

(m5, b5), . . . , (m1, b1) = (11, 1), (1111, 2), (ε, 3), (ε, 1), (1, 1)

which corresponds to

n = |σ4(11)σ3(1111)σ2(ε)σ(ε)1| = 2G4 + 4G3 + 1 = 1053.

2.3. Reverse β-substitution. For a Parry number β, set t1 = 0∞ and let {t2, . . . , td+1}
be the set of words {ajaj+1 . . . : j ≥ 2} with

0∞ = t1 < t2 < · · · < td < td+1 = a1a2 . . .

For 1 ≤ b ≤ d set

τ(b) =

{
u0(b) . . . ua1(b) if a1tb < a1a2 . . .

u0(b) . . . ua1−1(b) else

with

uj(b) = b′ if tb′ ≤ jtb < tb′+1.

We clearly have u0(1) = 1, thus τ∞(1) exists and every n ≥ 1 corresponds to a unique
τ -1-admissible sequence mk, . . . ,m1 with |mk| > 0.
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The following example and proposition show (for b = 1) that the possible sequences of
“digits” |mj,τ (n)| are the same as for |mj,σ(n)|, but in reversed order. Therefore we call τ
reverse β-substitution.

Example. For 1 = .402, we have t1 = 0∞, t2 = 020∞, t3 = 20∞, t4 = 4020∞, thus

τ(1) = 12333, τ(2) = 1233, τ(3) = 2233.

We have a τ -1-admissible sequence with |m5| . . . |m1| = 10042,

(m5, b5), . . . , (m1, b1) = (1, 2), (ε, 1), (ε, 1), (1233, 3), (22, 3)

which corresponds to

n = |τ 4(1)τ 3(ε)τ 2(ε)τ(1233)22| = G4 + 19 = 373.

Proposition 1. Each τ -b-admissible sequence mk, . . . ,m1 satisfies

(3) |mj| . . . |mk|tb < a1a2 . . . for all j ≤ k.

Conversely, for each sequence ε1 . . . εk with εj . . . εktb < a1a2 . . . for all j ≥ 1, we have a
(unique) τ -b-admissible sequence mk, . . . ,m1 with |m1| . . . |mk| = ε1 . . . εk.

Proof. Assume first that mk, . . . ,m1 is τ -b-admissible and let bk, . . . , b1 be its companion
sequence (mjbj ≤p τ(bj+1), bk+1 = b). Assume further

|mj| . . . |m`−1| = a1 . . . a`−j and tb`
< a`−j+1a`−j+2 . . .

(which is trivially true for j = `). We have b` = u|m`|(b`+1), hence

|m`|tb`+1
< tb`+1 ≤ a`−j+1a`−j+2 . . .

This implies |mj| . . . |m`| < a1 . . . a`−j+1 or

|mj| . . . |m`| = a1 . . . a`−j+1 and tb`+1
< a`−j+2a`−j+3 . . .

In the latter case, we proceed inductively and obtain

|mj| . . . |mk|tbk+1
= |mj| . . . |mk|tb < a1a2 . . .

Hence, (3) is proved.
For the converse, assume εj . . . εktb < a1a2 . . . for all j ≥ 1 and

tb`+1
≤ ε`+1tb`+2

for all ` ∈ {j + 1, . . . , k}

(which is trivially true for j = k). Then we have

εjtbj+1
≤ εjεj+1tbj+2

≤ · · · ≤ εj . . . εktbk+1
= εj . . . εktb < a1a2 . . . ,

thus bj = uεj
(bj+1) exists and mj = u0(bj+1) . . . uεj−1(bj+1). Furthermore, we have

tbj
≤ εjtbj+1 and obtain, by induction, a (unique) τ -b-admissible sequence mk, . . . ,m1

with |m1| . . . |mk| = ε1 . . . εk. �
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By Proposition 1 (b = 1), every finite β-expansion ε1 . . . εk0
∞ corresponds to some n <

|τ k(1)| such that ε1 . . . εk = |m1,τ (n)| . . . |mk,τ (n)|. By (2), we have n < n′ for n, n′ < |τ k(1)|
if

εk . . . ε1 = |mk,τ (n)| . . . |m1,τ (n)| < |mk,τ (n
′)| . . . |m1,τ (n

′)| = ε′k . . . ε′1.

Therefore the β-adic van der Corput sequence is given by

xn =
∞∑

j=1

|mj,τ (n)|β−j.

Note that we have |τ k(1)| = |σk(1)| = Gk for all k ≥ 0.

3. Proof of Theorem 1

Let D be the set of all sequences (mj, bj)j≥1 of words mj and letters bj with mjbj ≤p

τ(bj+1) for all j ≥ 1. Set

δ((mj, bj)j≥1, (m
′
j, b

′
j)j≥1) = 1/k

if (mj, bj) = (m′
j, b

′
j) for all j < k and (mj, bj) 6= (m′

j, b
′
j). Then D is a compact metric

space with the metric δ.
In order to extend the addition of 1 in the number system defined by τ , (mj,τ (n))j≥1 7→

(mj,τ (n + 1))j≥1, define the successor function (or odometer or adic transformation) on D
by

S((mj, bj)j≥1) = (m′
j, b

′
j)j≥1 with (m′

j, b
′
j) =

 (mj, bj) if j > k
(mkbk, b

′
k) if j = k

(ε, u0(b
′
j+1)) if j < k

where k ≥ 1 is the smallest integer such that τ(bk+1) = mkbkb
′
kw for some letter b′k and

some word w. If (mj, bj)j≥1 is a maximal sequence, i.e. mkbk = τ(bk+1) for all k ≥ 1, then
let its successor be the (unique) minimal sequence (ε, 1), (ε, 1), . . .

If the maximal sequence is unique, then S is a homeomorphism and (D, S) is a trans-
formation group, but in many cases the maximal sequence is not unique. In particular
if a2a3 . . . > (a1 − 1)∞, then every maximal sequence satisfies |mj| = a1, |mj′| = a1 − 1
for some j, j′ ≥ 1, and we obtain a different maximal sequence by shifting this sequence.
Hence (D, S) is only a transformation semigroup.

Define a continuous function f : D → [0, 1) by

f((mj, bj)j≥1) =
∞∑

j=1

|mj|β−j.

Then we have xn = f(Sn((ε, 1), (ε, 1), . . .)). If S is invertible, then (x0, x1, . . .) can be
extended to a bisequence (xn)n∈Z by this definition.

Let X denote the orbit closure of (x0, x1, . . .) under the shift T , and define ϕ : D → X
by

(ϕ((mj, bj)j≥1))k = f(Sk((mj, bj)j≥1))
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Then ϕ is a homeomorphism and ϕ ◦ S = T ◦ ϕ. Hence the transformation (semi)group
(X, T ) is isomorphic to (D, S). If S is invertible, then (X, T ) is minimal by Theorem 2.2 of
Shapiro [24] and we can apply Theorem 5.1 of this article, which states that exp(2πiλ(I))
is an eigenvalue of T and thus of S if D(N, I) is bounded. Lemma 1 shows that Shapiro’s
proof is valid for our transformation semigroup as well.

By Théorème 5.2 of Canterini and Siegel [2], we have a continuous and surjective “desub-
stitution map” Γ : Ω → D, where Ω is the set of biinfinite words which have the same
language as τ∞(1). Let ∆ be the shift on Ω. By Théorème 5.1 of this article and since
the minimal sequence in D is unique, we have S ◦ Γ = Γ ◦ ∆. Therefore the eigenvalues
of S are a subset of the eigenvalues of ∆ and, by Proposition 5 of Ferenczi, Mauduit and
Nogueira [9], these eigenvalues are of the form exp(2πiy) with y ∈ Q(β), This concludes
the proof of Theorem 1.

Remarks. Ferenczi, Mauduit and Nogueira [9] gave a more precise description of the set of
eigenvalues of ∆ in their Proposition 4, which is too complicated to be cited here.

For more details on the spectrum of these dynamical systems, see Chapter 7.3 in Pytheas
Fogg [17], but note that the result of [9] is cited uncorrectly: According to Theorem 7.3.28
of [17], the eigenvalues of ∆ associated with the trivial coboundary are in exp(2πiZ[β]),
but Z[β] should be Q[β] and the condition on the coboundary is unnecessary. Nevertheless,
the author considered the coboundary and showed that all reverse β-substitutions τ have
only the trivial coboundary, but the proof is rather lengthy and technical and therefore
not given in this article.

Lemma 1. If D(N, I) is bounded, then exp(2πiλ(I)) is an eigenvalue of S.

Proof. Set

g((mj, bj)j≥1) = χI

(
∞∑

j=1

|mj|β−j

)
− λ(I)

where χI denotes the indicator function of I. Let ω = (mj, bj)j≥1 be a sequence with

|m1| |m2| . . . = y1y2 . . ., hence
∑N−1

j=0 g(Sjω) = D(N, I) is bounded. Set U(x, η) = (Sx, η +

g(x)) for x ∈ D, η ∈ R. Then we have

Uk(x, η) =

(
Skx, η +

k−1∑
j=0

g(Sjx)

)
.

The positive semi-orbit {Uk(ω, 0) : k ≥ 0} is bounded and has therefore compact closure.
Denote by M the set of limit points of this semi-orbit. Then M is nonempty, closed and
invariant under U (NCI). It is easy to see that {Skx : k ≥ 0} is dense in D for all x ∈ D.
Since M is NCI, we must therefore have some point (x, η) ∈ M for all x ∈ D.

Below we show that, for a given x, this η is unique, i.e. η = η(x). Then the graph
(x, η(x)) is the compact set M , therefore η is continuous. Since U(x, η(x)) = (Sx, η(x) +



8 WOLFGANG STEINER

g(x)), we have

η(Sx) = η(x) + g(x),

exp(−2πiλ(I)) = exp(2πig(x)) = exp(2πiη(Sx))/ exp(2πiη(x)).

Therefore K(x) = exp(−2πiη(x)) is a continuous function with

K(Sx) = exp(2πiλ(I))K(x)

and exp(2πiλ(I)) is an eigenvalue of S.
To prove that η(x) is unique, we show first η(ω) = 0. Suppose (ω, η) ∈ M . Since M

consists of limit points of {Uk(ω, 0) : k ≥ 0}, we have a sequence kj →∞ with

lim
j→∞

Ukj(ω, 0) = (ω, η).

This implies

lim
j→∞

Skjω = ω and lim
j→∞

kj−1∑
i=0

g(Siω) = η,

hence

lim
j→∞

Ukj(ω, η) =

 lim
j→∞

Skjω, η + lim
j→∞

kj−1∑
i=0

g(Siω)

 = (ω, η + η).

Since M is invariant, we have Ukj(ω, η) ∈ M for all j and, since M is closed, (ω, 2η) ∈ M .
Inductively we obtain (ω, kη) ∈ M for all M , which implies η = 0 since M is bounded.

Next suppose (x, η) ∈ M and (x, η′) ∈ M . Since {Skx : k ≥ 0} is dense, we have some
kj →∞ such that

lim
j→∞

Skjx = ω.

Since M is compact, we can refine the sequence kj so that the sequences Ukj(x, η) and
Ukj(x, η′) converge (to points in M). Since the first coordinate of the limit points is ω, the
second coordinate must be 0 for both points. Therefore

lim
j→∞

η +

kj−1∑
`=0

g(S`x)

 = lim
j→∞

η′ +

kj−1∑
`=0

g(S`x)

 ,

hence η = η′ and we have proved that η(x) is unique. �

4. Proof of Theorem 2

Because of Theorem 1, we just have to consider y ∈ Q(β) for Theorem 2, but first we
compute formulae for the discrepancy function of arbitrary intervals [0, y). Let A(N, I) =
#{xn ∈ I : 0 ≤ n < N}. Then we have, for y = .y1y2 . . .,

D(N, [0, y)) =
∞∑

k=1

(A(N, [.y1 . . . yk−1, .y1 . . . yk))−Nykβ
−k).
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Lemma 2. We have

A(N, [.y1 . . . yk−1, .y1 . . . yk)) = yk

∞∑
`=k+1

d∑
b=1

|m`,τ (N)|b |τ `−k−1(b)|+ µk(N, y)

with

µk(N, y) =


yk if |mk,τ (N)| ≥ yk

|mk,τ (N)|+ 1 if |mk,τ (N)| < yk,
|mk−1,τ (N)| . . . |m1,τ (N)| > yk−1 . . . y1

|mk,τ (N)| else.

Proof. For GL ≤ N < GL+1, we have

{(m1,τ (n), . . . ,mL,τ (n)) : 0 ≤ n < N}

=
L⋃

`=1

⋃
m: mb≤pm`,τ (N)

{(m1, . . . ,m`−1, m, m`+1,τ (N), . . . ,mL,τ (N)) : m`−1, . . . ,m1 is τ -b-adm.}

and xn ∈ [.y1 . . . , yk−1, .y1 . . . yk) if and only if

|m1,τ (n)| . . . |mk−1,τ (n)| = y1 . . . yk−1, |mk,τ (n)| < yk.

Thus, for ` > k, we have to count the τ -b-admissible sequences m`−1, . . . ,m1 with
|m1| . . . |mk−1| = y1 . . . yk−1, |mk| < yk. By Proposition 1, every τ -b-admissible sequence
m`−1, . . . ,mk+1 can be prolongated to such a sequence for all |mk| < yk because of

|mj| . . . |m`−1|tb < yj . . . yk ≤ a1a2 . . . for j ≤ k.

Therefore we have yk|τ `−k−1(b)| such sequences for every letter b in m`,τ (N).
For ` = k, we need |m| < |mk,τ (N)| and |m| < yk. For each such |m| (and the correspond-

ing b), there is one τ -b-admissible sequence mk−1, . . . ,m1 with |m1| . . . |mk−1| = y1 . . . yk−1.
Thus, the contribution is max(|mk,τ (N)|, yk).

Finally, for ` < k, we need |m| = y` < |m`,τ (N)|, |mk,τ (N)| < yk and
|m`+1,τ (N)| . . . |mk−1,τ (N)| = y`+1 . . . yk−1. Thus the contribution is 1 if |mk,τ (N)| < yk,
|mk−1,τ (N)| . . . |m1,τ (N)| > yk−1 . . . y1 and 0 else. �

The characteristic polynomial of the incidence matrix of the β-substitution σ is the β-
polynomial. Hence σ is of Pisot type (one eigenvalue is > 1 and all other eigenvalues have
modulus < 1) if and only if β is a Pisot number and the β-polynomial is irreducible. Since
|σk(1)| = |τ k(1)| for all k ≥ 0, β is an eigenvalue of τ as well. Furthermore, τ is of Pisot
type because the alphabet has the same size as the alphabet of σ. Hence we have some
constants cb,j and ρ < 1 such that

|τ k(b)| = cb,1β
k + cb,2β

j
2 + · · ·+ cb,dβ

k
d = cb,1β

k +O
(
ρk
)
,
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where the βj, 2 ≤ j ≤ d are the conjugates of β. Thus

D(N, [0, y)) =
∞∑

k=1

(
yk

∞∑
`=k+1

d∑
b=1

|m`,τ (N)|b |τ `−k−1(b)|+ µk(N, y)

− yk

∞∑
`=1

d∑
b=1

|m`,τ (N)|b |τ `−1(b)|β−k

)

=
∞∑

k=1

(
yk

∞∑
`=k+1

d∑
b=1

|m`,τ (N)|b
d∑

j=2

cb,j

(
β`−k−1

j − β`−1
j β−k

)
+ µk(N, y)

− yk

k∑
`=1

d∑
b=1

|m`,τ (N)|b
(

cb,1β
`−1−k +

d∑
j=2

β`−1
j β−k

))
=

∞∑
k=1

ykO (1)

and

D(N, [0, y)) =
∞∑

`=1

(
d∑

b=1

|m`,τ (N)|b
( `−1∑

k=1

yk

d∑
j=2

cb,j

(
β`−k−1

j − β`−1
j β−k

))

+ µ`(N, y)−
d∑

b=1

|m`,τ (N)|b
∞∑

k=`

yk

(
cb,1β

`−k−1 +
d∑

j=2

cb,jβ
`−1
j β−k

))

=
∞∑

`=1

(
µ`(N, y)−

d∑
b=1

|m`,τ (N)|b
(

cb,1

∞∑
k=`

ykβ
`−k−1 −

d∑
j=2

cb,j

`−1∑
k=1

ykβ
`−k−1
j

))
+O (1)

By the above formulae, we easily see that D(N, [0, y)) is bounded if yk > 0 for only
finitely many k ≥ 1. Now we consider y ∈ Q(β). Bertrand [1] and K. Schmidt [21] proved
independently that the elements y ∈ Q(β) are exactly those who have eventually periodic
β-expansion. (See Rigo and Steiner [20] for an alternative proof including number systems
defined by substitutions.) Furthermore, by the above formulae, a finite number of digits
of the β-expansion of y as well as a shift of digits has no influence on the boundedness of
D(N, [0, y)). Therefore we may assume that the β-expansion of y is purely periodic.

For y = .(y1 . . . yq)
∞, we have

∞∑
k=`

ykβ
`−k−1 =

y`β
p−1 + · · ·+ y`+p−1

βp − 1
= s`,d−1β

d−1 + · · ·+ s`,0β
0 = P`(β)

for some s`,j ∈ Q. If we set yk = yk+q for k ≤ 0, then we obtain

`−1∑
k=−∞

ykβ
`−k−1
i =

y`−pβ
p−1
i + · · ·+ y`−1

1− βp
i

= −P`(βi),

γ`(b) = cb,1

∞∑
k=`

ykβ
`−k−1 −

d∑
i=2

cb,i

`−1∑
k=−∞

ykβ
`−k−1
i = s`,d−1|τ d−1(b)|+ · · ·+ s`,0|τ 0(b)|



DISTRIBUTION OF β-ADIC VAN DER CORPUT SEQUENCES 11

and

D(N, [0, y)) =
∞∑

`=1

(
µ`(N, y)− γ`(m`,τ (N))

)
+O (1)

by extending γ` naturally on words, γ`(w) =
∑d

b=1 |w|bγ`(b).
We split the remaining part of the proof into two lemmata.

Lemma 3. If β is a Pisot number with irreducible β-polynomial, then
D(N, [0, .(ad−p+1 . . . ad)

∞) is bounded.

Proof. We have

.y`y`+1 . . . = .ad−p+`ad−p+`+1 . . . = βd−p+`−1 − a1β
d−p+`−2 − · · · − ad−p+`−1

and, by Proposition 1, we easily see

|τ k(b)| = a1|τ k−1(b)|+ · · ·+ ak|τ 0(b)|+
{

1 if a1 . . . aktb < a1a2 . . .
0 else

for all k > 0, hence

γ`(b) =

{
1 if tb < ad−p+`ad−p+`+1 . . .
0 else.

By definition, we have tuj(b`+1) ≤ jtb`+1
< tuj(b`+1)+1, therefore

γ`(uj(b`+1)) =

{
1 if jtb`+1

< ad−p+`ad−p+`+1 . . .
0 else.

With m`,τ (N) = u0(b`+1) . . . u|m`,τ (N)|−1(b`+1), we obtain

γ`(m`,τ (N)) =


|m`,τ (N)| if |m`,τ (N)| ≤ ad−p+`

ad−p+` if |m`,τ (N)| > ad−p+`,
tb`+1

≥ ad−p+`+1ad−p+`+2 . . .
ad−p+` + 1 else

and

∆` = µ`(N, .(ad−p+1 . . . ad)
∞)− γ`(m`,τ (N))

=


−1 if |m`,τ (N)| > ad−p+`, tb`+1

< ad−p+`+1ad−p+`+2 . . .
1 if |m`,τ (N)| < ad−p+`,

|m`−1,τ (N)| . . . |m1,τ (N)| > ad−p+`−1 . . . ad−p+1

0 else.

If ∆` = −1, then tb`+1
< ad−p+`+1ad−p+`+2 . . . and

tb`+1
≤ |m`+1,τ (N)|tb`+2

< tb`+1+1 ≤ ad−p+`+1ad−p+`+2 . . .

implies either |m`+1,τ (N)| < ad−p+`+1, thus ∆`+1 = 1, or

|m`+1,τ (N)| = ad−p+`+1, tb`+2
< ad−p+`+2ad−p+`+3 . . . and ∆`+1 = 0.

Inductively, we obtain some k > ` such that ∆`+1 = · · · = ∆k−1 = 0 and ∆k = 1.
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If ∆` = 1, then |m`−1,τ (N)| . . . |m1,τ (N)| > ad−p+`−1 . . . ad−p+1 implies either

|m`−1,τ (N)| > ad−p+`−1 and tb`
≤ |m`,τ (N)|tb`+1

< ad−p+`,

thus ∆`−1 = −1, or

|m`−1,τ (N)| = ad−p+`−1, |m`−2,τ (N)| . . . |m1,τ (N)| > ad−p+`−2 . . . ad−p+1

and ∆`−1 = 0. Inductively, we obtain some k < ` such that ∆k = −1 and ∆k+1 = · · · =
∆`−1 = 0.

Therefore we have
∑∞

`=1 ∆` = 0 and the discrepancy function is bounded. �

D(N, [0, .(ad−p+j . . . adad−p+1 . . . ad−p+j−1)
∞), 1 < j ≤ p, is bounded as well because a

shift of digits does not change the boundedness.

Lemma 4. If D(N, [0, y)) is bounded and y 6= 0 has purely periodic β-expansion, then the
expansion of 1 is eventually periodic and y = .aLaL+1 . . . for some L > d− p.

Proof. Let the β-expansion of y be .y1y2 . . . = .(y1 . . . yq)
∞. Consider sequences of integers

NK given by
(m1,τ (NK), m2,τ (NK), . . .) = ((m1, . . . ,mJq)

K , ε, ε, . . .)

with m`+1 = · · · = mJq = ε for some ` ≥ 1, J ≥ 1 such that b`+1 = 1 and y`+1 . . . yJq >
0 . . . 0. For these sequences, we have

µj+kJq(NK , y) = µj(NK , y), γj+kJq(mj+kJq,τ (NK)) = γj(mj)

for all j ≤ Jq, k < K. Thus D(NK , [0, y)) is bounded if and only if

Jq∑
j=1

(µj(N1, y)− γj(mj)) = 0

Let furthermore m1 = · · · = mk−1 = ε for some k ∈ {1, . . . , `}, hence µj(N1, y) = γj(mj)
for all j < k. Consider simultaneously integers N ′

K with m′
k = ε and m′

j = mj for all j 6= k.
Then we have µj(N

′
1, y) = γj(m

′
j) = 0 for all j < k, γj(m

′
j) = γj(mj) for all j > k and

Jq∑
j=k+1

µj(N1, y) =

Jq∑
j=k+1

µj(N
′
1, y) +

 1 if |mk| > yk,
|mk+1| . . . |mJq| < yk+1 . . . yJq

0 else,

thus

γk(mk)− µk(N1, y) =

Jq∑
j=k+1

(µj(N1, y)− γj(mj))

=

{
1 if |mk| > yk, |mk+1| . . . |m`| ≤ yk+1 . . . y`

0 else

and

γk(mk) =

 |mk| if |mk| ≤ yk

yk if |mk| > yk, |mk+1| . . . |m`| > yk+1 . . . y`

yk + 1 else.
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If mkbk <p τ(bk+1), then m`, . . . ,mk+1, mkbk is a τ -1-admissible sequence and we obtain

(4) γk(bk) = γk(mkbk)− γk(mk) =

{
1 if |mk| . . . |m`| ≤ yk . . . y`

0 else,

in particular γk(1) = 1 for all k ≥ 1 (with k = `, mk = ε).
If mkbk = τ(bk+1), consider

.yk+1yk+2 . . . = β × .ykyk+1 . . .− yk = sk,d−1β
d + · · ·+ sk,0β − yk,

hence

γk+1(bk+1) = sk,d−1|τ d(bk+1)|+ · · ·+ sk,0|τ(bk+1)| − yk

= sk,d−1|τ d−1(mkbk)|+ · · ·+ s1,0|mkbk| − yk = γk(mk) + γk(bk)− yk

= γk(bk) +

 −1 if |mk| < yk (i.e. |mk| = a1 − 1, yk = a1)
0 if |mk| = yk or |mk| > yk, |mk+1| . . . |m`| > yk+1 . . . y`

1 else.

In case |mk| = |τ(bk+1)| − 1 = a1 − 1, yk = a1, we have a1tbk+1
≥ a1a2 . . .,

yk+1yk+2 . . . < a2a3 . . . and tbk+1
≤ |mk+1|tbk+2

≤ · · · ≤ |mk+1| . . . |m`|0∞, hence
|mk+1| . . . |m`| ≥ a2 . . . a`−k+1 ≥ yk+1 . . . y`. One of these inequalities is strict because
tbk+1

= |mk+1| . . . |m`|0∞ = a2 . . . a`−k+10
∞ implies |mk+1| . . . |m`| = a2 . . . ad0

`−k−d+1 >
yk+1 . . . y`. Therefore we have, for all bk, bk+1,

γk(bk)− γk+1(bk+1) =

 1 if |mk| . . . |m`| ≤ yk . . . y`, |mk+1| . . . |m`| > yk+1 . . . y`

−1 if |mk| . . . |m`| > yk . . . y`, |mk+1| . . . |m`| ≤ yk+1 . . . y`

0 else.

and, with γ`+1(b`+1) = γ`+1(1) = 1, (4) holds for all mk, bk.
Now, let k = 1 and m`, . . . ,m1 and m′

`, . . . ,m
′
1 be τ -1-admissible sequences with com-

panion sequences b`, . . . , b1 and b′`, . . . , b
′
1. If b1 < b′1, then we have |m1|tb2 < tb1+1 ≤

tb′
1
≤ |m′

1|tb′
2
, thus either |m1| < |m′

1| or |m1| = |m′
1|, b2 < b′2. Inductively, we obtain

|m1| . . . |m`| < |m′
1| . . . |m′

`| and γ1(b1) ≥ γ1(b
′
1). Therefore we have some b′ ≥ 2 such that

γ1(b) =

{
1 if b < b′

0 else.

Finally, consider the system of linear equations

s1,d−1|τ d−1(b)|+ · · ·+ s1,0|τ 0(b)| =
{

1 if b < b′

0 else

for 1 ≤ b ≤ d. We have tb′ = aLaL+1 . . . for some L ≥ 2. Then, by the proof of
Lemma 3, (s1,d−1, . . . , s1,0) = (0, . . . , 0, 1,−a1, . . . ,−aL−1) is a solution of this system, i.e.
y = .aLaL+1 . . . To show that these solutions are unique, consider linear combinations of
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the column vectors (|τ `(1)|, . . . , |τ `(d)|)T (over Q). We have, with β1 = β,

d−1∑
`=0

r`

|τ `(1)|
...

|τ `(d)|

 =
d−1∑
`=0

r`M
`

1
...
1

 =
d−1∑
`=0

r`

d∑
j=1

vjβ
`
jej =

d∑
j=1

vjej

d−1∑
`=0

r`β
`
j ,

where M is the incidence matrix of τ , M = (|τ(b)|c)1≤b,c≤d, and the ej, 1 ≤ j ≤ d, are
right eigenvectors of M to the eigenvalues βj. If r` ∈ Q, then all r` must be zero, hence the
vectors (|τ `(1)|, . . . , |τ `(d)|), 0 ≤ ` < d, are linearly independent and the system of linear
equations has a unique solution.

To conclude the proof of the lemma, note that aLaL+1 . . . is purely periodic if and only
if L > d− p. �
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